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Abstract. A general way to study the extremes of a random variable is to consider the family
of its Wang distortion risk measures. This class of risk measures encompasses several indicators
such as the classical quantile/Value-at-Risk, the Tail-Value-at-Risk and Conditional Tail Moments.
Trimmed and winsorised versions of the empirical counterparts of extreme analogues of Wang dis-
tortion risk measures are considered. Their asymptotic properties are analysed, and it is shown
that it is possible to construct corrected versions of trimmed or winsorised estimators of extreme
Wang distortion risk measures who appear to perform overall better than their standard empirical
counterparts in difficult finite-sample situations when the underlying distribution has a very heavy

right tail. This technique is showcased on a set of real fire insurance data.
AMS Subject Classifications: 62G05, 62G30, 62G30, 62G32.

Keywords: asymptotic normality, extreme value statistics, heavy-tailed distribution, trimming,
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1 Introduction

Early developments of extreme value analysis focused on estimating a quantile at a level so high that
the straightforward empirical quantile estimator could not be expected to be consistent. Motivating
problems include estimating extreme rainfall at a given location (Koutsoyiannis, 2004) or extreme
daily wind speeds (Beirlant et al., 1996), modeling large forest fires (Alvarado et al., 1998), analysing
extreme log-returns of financial time series (Drees, 2003) and studying extreme risks related to large
losses for an insurance company (Rootzén and Tajvidi, 1997). A large part of practical applications
of extreme value theory can actually be modelled using heavy-tailed distributions, which shall be
the focus of this paper. A distribution is said to be heavy-tailed if its survival function 1 — F,
where F' is the related cumulative distribution function, roughly behaves like a power function

with exponent —1/+ at infinity where the positive parameter v is the so-called tail index of the



distribution. In such a model, the function 1 — F essentially satisfies a homogeneity property
and it therefore becomes possible to use an extrapolation method (Weissman, 1978) to estimate
quantiles at arbitrarily extreme levels, provided an estimate of v is computed. Under appropriate
stationarity assumptions this analysis can be used to draw predictive conclusions: extreme value
analysis has been applied to determine how high the dykes surrounding the areas below sea level
in the Netherlands should be so as to protect these zones from flood risk in case of extreme storms
affecting Northern Europe (de Haan and Ferreira, 2006). It is also used nowadays by insurance
companies operating in Europe so as to determine their own solvency capital necessary to meet the
European Union Solvency II directive requirement that an insurance company should be able to

survive the upcoming calendar year with a probability not less than 0.995.

Of course, the knowledge of a single high quantile is clearly not enough to characterise the be-
haviour of a random variable in its right tail, since two distributions may well share a quantile
at some common level although their respective tail behaviours are different. This is why other
quantities such as the Tail-Value-at-Risk, Conditional Value-at-Risk or Conditional Tail Moment
(see El Methni et al., 2014) were developed and studied; a common feature of these indicators is
that their computation takes into account the whole right tail of the random variable of interest.
This, of course, also entails increased sensitivity to a change in tail behaviour compared to what is
observed in quantiles, at the population level and at the finite-sample level alike. These measures
are of great value in practice, especially in actuarial science: for instance, as mentioned in Dowd
and Blake (2006), the Tail-Value-at-Risk would be used if one is interested in the average loss after
a catastrophic event or to estimate the cover needed for an excess-of-loss reinsurance treaty. As
shown in El Methni and Stupfler (2017), the aforementioned quantities can actually be written as
simple combinations of Wang distortion risk measures of a power of the variable of interest (ab-
breviated by Wang DRMs hereafter; see Wang, 1996). Wang DRMs are weighted averages of the
quantile function, the weighting scheme being specified by the so-called distortion function; on the
practical side, Wang DRMs can, among others, be useful to price insurance premiums, bonds, and
tackle capital allocation problems, see e.g. Wang et al. (1997), Wang (2004) and Belles-Sampera
et al. (2014). It is therefore not surprising that the estimation of Wang DRMs above a fized level
of risk has been the subject of a number of papers: in particular, we refer the reader to Jones and
Zitikis (2003), Necir and Meraghni (2009), Necir et al. (2010) and Deme et al. (2013, 2015).

To the best of our knowledge though, the only study providing estimators of extreme distortion
risk measures is the recent work of El Methni and Stupfler (2017). More precisely, they show
that a simple and efficient solution to estimate extreme Wang DRMs when the right tail of the
underlying distribution is moderately heavy is to consider a so-called functional plug-in estimator.
Two weaknesses of this study can be highlighted however. The first problem, a practical one, is that
it is a consequence of the results in the simulation study of El Methni and Stupfler (2017) that the
finite-sample performance of the suggested class of estimators decreases sharply in terms of mean
squared error as the tail of the underlying distribution gets heavier. This is due to the propensity
of heavier-tailed distributions to generate highly variable top order statistics and, therefore, to

increase dramatically the variability of the estimates. No solution is put forward in El Methni and



Stupfler (2017) in order to tackle this issue. The second problem, which is theoretical, is that their
asymptotic results about this class of estimators are restricted to asymptotic normality and are
thus somewhat frustrating in the sense that they are stated under an integrability condition on the
quantile function which is substantially stronger than the simple existence of the Wang DRM to
be estimated. In particular, a consistency result under the latter condition, in the spirit of the one
Jones and Zitikis (2003) obtained for the estimation of fixed-order Wang DRMs, is not provided in
El Methni and Stupfler (2017).

Herein it is shown that robustifying the functional plug-in estimator of El Methni and Stupfler (2017)
by deleting certain top order statistics and/or replacing them by lower order statistics, namely
trimming or winsorising the estimator, enables one to obtain estimators with reduced variability, as
well as to show a consistency result under weaker hypotheses and to retain the asymptotic normality
result under the same technical conditions. Trimming and winsorising have both been (and arguably
still are) the easiest and most intuitive ways to give a statistical technique some degree of robustness
to high-value outliers. A historical account is given in Stigler (1973). The motivation here is rather
that the integrability condition of El Methni and Stupfler (2017) depends solely on the behaviour
of the quantile function around 1 and becomes more and more stringent as the rate of divergence of
this function to infinity increases. At the sample level, this means that this integrability condition
has to be fulfilled in order to control the highest order statistics. Deleting the most extreme part of
the sample or replacing it by lower (but still high) order statistics can thus be thought of informally
as a way to reduce the difficulty of the problem, both from the theoretical and practical point of

view.

To be more specific, we shall essentially consider a Wang DRM of a random variable given that it
lies between two high-level quantiles, instead of assuming that it simply lies above a high threshold
like El Methni and Stupfler (2017) did. This is then estimated by its empirical counterpart, which
leads to a trimmed estimator of a Wang DRM. The winsorised estimator, meanwhile, is obtained by
considering the empirical counterpart of a Wang DRM given that the random variable lies above a
high threshold and is clipped above yet another higher level. By construction, these two estimators
do not depend on some of the highest observations, and therefore can be expected to suffer from
less finite-sample variability than the original estimator of El Methni and Stupfler (2017) does.
To ensure consistency, the highest level (that is, the trimming/winsorising level) is then made to
increase to 1 faster than the lowest one does as the sample size increases. Both of these estimators
can actually be embedded into a common class of estimators, whose consistency and asymptotic
normality are studied. A somewhat surprising feature of this technique is that one can also obtain
the consistency of the estimator using the full data above a high level by approximating it by such
robustified estimators whose fraction of deleted data becomes smaller as the sample size increases;
this argument is actually similar in spirit to a proof by Etemadi (1981) of the law of large numbers
for independent copies of an integrable random variable, starting with the case when the variance

is finite and concluding by a truncation argument.

These new estimators, for all their improved properties as far as variability is concerned, should

be expected to suffer from finite-sample bias issues, since they are in fact sample counterparts of



a different quantity than the originally targeted Wang DRM. The second step is then to devise a
correction method which allows the estimator to have a bias intuitively similar to that of the basic
functional plug-in estimator and therefore to be (almost) unbiased in practice, while retaining its
low variability. The gist of the correction step is to note that the newly proposed estimators are in
reality approximately equal to the Wang DRM to be estimated multiplied by a quantity converging
to 1 and depending on the extremes of the sample only. This makes it possible to estimate the
error made when using the purely trimmed or winsorised estimators and thus to design corrected
estimators by multiplying them by a simple and intuitive correction factor. This correction step
should therefore be viewed as closer to Bessel’s correction method for the sample variance estimator
when the mean is unknown, rather than to traditional bias-correction devices developed in second-
order extreme value frameworks such as the estimators of Peng (1998) and Caeiro et al. (2005)
which are based on the asymptotic distribution of an estimator to be corrected. Of course, while
this approach should only be expected to be reasonable if the threshold above which the Wang
DRM is computed may be consistently estimated by its empirical analogue, extreme Wang DRM
estimators can be obtained afterwards by an extrapolation technique warranted by the extreme

value framework.

The outline of this paper is the following. In Section 2, we recall what Wang DRMs are, as well
as a definition of extreme analogues of Wang DRMs presented in El Methni and Stupfler (2017).
Section 3 then considers their estimation, by introducing a two-stage improvement of the functional
plug-in estimator of El Methni and Stupfler (2017), first in the intermediate case and then in
the arbitrarily extreme case. The finite-sample performance of the estimators is examined on a
simulation study in Section 4 and the method is applied on a real insurance data set in Section 5.
Section 6 concludes and offers some perspective on future work. Proofs of all results and additional

simulation results are deferred to an online supplementary material document.

2 Extreme Wang DRMs

It shall be said in all what follows that a function g : [0,1] — [0,1] is a distortion function if it
is nondecreasing and right-continuous, with g(0) = 0 and g(1) = 1. Let X be a positive random
variable with cumulative distribution function F. The Wang distortion risk measure (DRM) of X

with distortion function g is (Wang, 1996):

R,(X) := /000 g(1 — F(x))dz.

An alternative, easily interpretable expression of Ry(X) is actually available, and it shall be used
extensively in what follows. Denote by ¢ the quantile function of X, namely ¢(«) = inf{z >
0| F(z) > o} for all @ € (0,1). In other words, the function ¢ is the left-continuous inverse of F'.
Let moreover m = inf{a € [0,1] | g(«) > 0} and M = sup{a € [0,1] | g(a) < 1}, and assume that
F is strictly increasing on V N (0,00), with V' an open interval containing [¢(1 — M), q(1 — m)].
Noticing that F(x) = inf{o € (0,1)|¢(e) > x} and thus F is the right-continuous inverse of ¢, a

classical change-of-variables formula and an integration by parts then entail that R,(X), provided



it is finite, can be written as

Ry(X) = / g(@)dg(1 - a) = / 4(1 — a)dg(a).

A Wang DRM is thus a Lebesgue-Stieltjes weighted version of the expectation of the random variable
X, the weighting scheme being given by the measure dg(-). The above formula is actually true when
g is continuous, with no condition at all on the distribution of X; when g is absolutely continuous,

the weight is given by the Lebesgue derivative ¢’ of g. Specific examples include

e the quantile (or Value-at-Risk) at level 8 for g(x) = I{z > 1 — }, with I{-} being the indicator

function, in which case dg(-) is actually the Dirac measure at 1 — ;

e the Tail-Value-at-Risk TVaR(3) in the worst 100(1—3)% cases, namely the average of all quan-
tiles exceeding the quantile g(8), for g(x) = min(x/(1 — §8),1) and dg(-) being the Lebesgue

measure on [0,1 — ] up to a positive constant.
For more examples of DRMs, see Table 1 in El Methni and Stupfler (2017).

While the family of Wang DRMs of X already gives more information than a finite number of its
quantiles, yet more information may be recovered by considering Wang DRMs of functions of X.
More precisely, if h : (0,00) — (0,00) is a strictly increasing, continuously differentiable function
then, under the aforementioned regularity conditions, the Wang DRM of h(X) with distortion

function g is )
Ry(h(X) = [ hoq(1—a)dgle).

Since, when F' is continuous, the Conditional Tail Moment (CTM) of order a of X (see El Methni
et al., 2014) is

1-8
BOXCIX > a(8) = 125 [ lal1 = a)"do,

the CTM of order a may therefore be obtained by choosing g(z) = min(z/(1—f),1), 8 € (0,1) and
h(z) = 2%, with a > 0, and so may any risk measure obtained by combinations of CTMs; we refer
the reader to Table 2 in El Methni and Stupfler (2017) for further examples.

The idea developed in El Methni and Stupfler (2017) in order to obtain Wang DRMs of the extremes
of X is to consider

Ry 5(h(X)) = / hoq(l— (1— B)s)dg(s).

A similar, if slightly different, idea is Yang (2015), while a construction adapted to stop-loss risk
measures is Vandewalle and Beirlant (2006). In the remainder of this paper, it is assumed that the
quantile function g of X is continuous and strictly increasing in a neighbourhood of infinity; it can
then be shown (see Proposition 1 in El Methni and Stupfler, 2017) that R, g(h(X)) is actually, for 3
large enough, the Wang DRM R, of h(Xg), where X3 4 X|X > ¢(B). In other words, Ry 5(h(X))
is the Wang DRM of h(X) given that X lies above a (high) level. Using this construction, it is very
easy to recover several extreme parameters such as an extreme quantile/Value-at-Risk, an extreme

Tail-Value-at-Risk or extreme versions of the CTMs.



An important question is then to consider the estimation of such extreme Wang DRMs. An idea
to tackle this problem is that of El Methni and Stupfler (2017): consider a sample of independent
random variables (X7, ..., X,,) having cumulative distribution function F' and (,,) a nondecreasing
sequence of real numbers belonging to (0,1) which converges to 1. Moreover, denote by F,, the
empirical cumulative distribution function related to this sample and by @, the related empirical

quantile function:

~ 1 & ~
Fo(z) ==Y I{X; <z} and Gu(a) =inf{t € R|F,(t) > o} = X[nan,
i=1
in which X, , <--- < X, , are the order statistics of the sample (X1,...,X,) and [-] denotes the
ceiling function. A first step is to estimate the Wang DRM R, 3, (h(X)) by its empirical, functional

plug-in counterpart:

oL B 1 . B 1
Ryp, (MX)):= [ hogn(l—(1=pBn)s)dg(s) = [ MXina-1-,)s)1n)d9(s)-
0 0

When h is a power function, which is enough to recover all Wang DRMs as well as the class of
Conditional Tail Moments, this estimator, which shall be referred to as the PL estimator hereafter, is
consistent and asymptotically normal when (3,,) is an intermediate sequence, namely n(1—_3,) — oo
as n — 0o, within an extreme value framework which will be introduced shortly (see El Methni and
Stupfler, 2017). This is a usual and well-understood restriction in extreme value theory: to estimate
the Wang DRM above level ¢(f,,) by an empirical estimator in a consistent fashion, then ¢(53,,)
should be asymptotically within the range of the data, or equivalently, there should be a growing
number of data points above ¢(83,) to ensure that its empirical estimator Xp,s,7,, is relatively
consistent. The case when n(1 — f8,) — A < oo, corresponding to proper extreme quantiles, is then

handled by the classical extrapolation argument of Weissman (1978).

3 Extreme Wang DRM estimation

3.1 Heavy tails, top order statistics and finite-sample variability

A problem with the use of the PL estimator in practice can arise when ¢ is strictly increasing in
a left neighbourhood of 1, which is for instance the case for the Tail-Value-at-Risk, Dual Power
and Proportional Hazard risk measures considered in El Methni and Stupfler (2017). In that case,
the PL estimator takes into account all the data above level Xy, 7, in the sample; in any sample
where some of the highest order statistics are far from their population counterparts, this will result
in inappropriate estimates. Such situations appear regularly: suppose here that X has a Pareto

distribution with parameter 1/7, i.e.

Vo> 1, F(z) =1—2"Y7 sothat Yo € (0,1), ¢(a) = (1 —a)7".



The probability that the sample maximum X, ,, exceeds a multiple of its population counterpart,

namely the quantile ¢(1 — n~1), is then

P(X,., > Kq(1 —n™Y)) 1-[1-P(X > Kq(1-n"")]"

-1/y1"
e

n

~ 1-— exp(—Kﬁl/V) for large enough n.

This result is, of course, linked to the fact that sample quantiles at extreme levels do not estimate
the corresponding true quantiles consistently; a related point is that, sample-wise, the most extreme
values tend not to give a fair picture of the extremes of the underlying distribution (see e.g. Ghosh
and Resnick, 2010). Carrying on with this example, it follows that in the case v = 0.49, K = 3,
and n = 1000, the sample maximum is larger than 88.54, which is three times the quantile at level
0.999, with probability approximately equal to 0.101. In this sense, approximately 10% of samples
feature at least one unusually high value. Besides, as the above calculation shows, the probability
that a sample features one or several very large values increases as -y increases, i.e. as the tail gets
heavier. The influence of such values on extreme Wang DRM estimates should of course not be

underestimated. In the case of the Tail-Value-at-Risk, obtained for g(s) = s, namely:

o (1-p
TVaR R a)da = ————
aR(8) = Riap(X 17ﬂ/ =T
a simulation study shows that, on 5000 replicates of a sample of 1000 independent random copies of
the aforementioned Pareto distribution conditioned on the fact that the sample maximum is larger
than 88.54, the relative bias of the Tail-Value-at-Risk PL estimator,

. 15 1 n(1-p)
Rldﬁ 1—6/ da— Z Xn —j+1,n,

at level § = 0.95 is approximately 0.389. In other words, the PL estimator is, on such samples, on
average a little less than 40% higher than it should be. Of course, this could have been expected
since it is straightforward to see that the above PL estimator is adversely affected by high values
of X, (just as the sample mean is). The concern here is rather that problematic cases, through
the apparition of very high values of the sample maximum and more generally of the highest order
statistics, appear more and more frequently as v increases, even when ~ is such that the estimator
ﬁlpdljﬁ (X) is asymptotically Gaussian (which is the case here for the extreme Tail-Value-at-Risk
estimator since v = 0.49 < 1/2, see Theorem 2 in El Methni and Stupfler, 2017). This should
therefore mean increased variability of the estimates as v gets larger and indeed, at the finite-sample
level, MSEs become higher (up to unsustainably high levels) when the tail of X gets heavier, as the
simulation study in El Methni and Stupfler (2017) tends to show. Our first objective is to introduce

estimators which deal with this variability issue.



3.2 First step of improvement: reducing finite-sample variability

A simple idea to tackle the problem highlighted in Section 3.1 is to delete the highest problematic

values altogether, namely to trim the PL estimator, by considering the statistic

1
Ry, (h(X)) = /0 o Gu(tn — (tn — Ba)s)dg(s),

where (t,,) is a sequence of trimming levels, i.e. a sequence such that 5, < ¢, < 1. This is the

empirical estimator of

Trim _ ! N B
RE(b00) = [ hoatta (0~ 5a)9)dg(s),
0

which in many cases is actually the Wang DRM of h(X) given that X lies between ¢(8,,) and q(t,),

as the following result shows.

Proposition 1. Let 8 € (0,1) and t € (0,1] such that t > 3. If q is continuous and strictly

increasing on an open interval containing [3,1) then:
rim rim . rim d
Ry (M(X)) = Rg(M(X55™)) with X55™ = X|X € [q(8),q(t)]-

In practice, it is very often the case that nt, and n(t, — 8,) are positive integers (see Sections 4
and 5). In that particular case, the trimmed estimator ]%gré‘ftn (h(X)), which we shall call the
Trim-PL estimator, can be conveniently rewritten as a generalised L-statistic:

Ry, (h(X))
n(tn—Fn

) 1
= Z h(Xntn—i-i-l,n)/ H{xi—l,n(ﬁnatn) <s< xi,n(ﬁn;tn)}dg(s)
i=1 0

+ W Xng,.n) [9(1)—21_%9(8)1 With @, (Bn, tn) = v

s<i n(tn - Bn)
n(tn—PBn)
= h(Xne, —; li — li
Z Kntmivrn) | | Mmg(s) = lm - g(s)
=1 3<-’£i,n(6nvtn) 3<xi—1,n(5n7tn)

+ (Xng,n) [l - ;lznil 9(8)] :

When the function g is moreover continuous on [0, 1], this can be further simplified as

R, (h(X))

n(tn—PBrn)—1 .
)
= h(X _ Xt —i — h(Xnt, —in)l
M Xng,+1,n) + i§=1 g(n(tn—ﬂn))[h( nt,—it1n) = M Xnt, —in)]

It should thus be clear at this stage that the Trim-PL estimator ég:’%‘:,tn (h(X)) is both the empirical

counterpart of Rg)rﬁiff)tn(h(X)) and a trimmed estimator of Ry g, (h(X)) in the sense that the top



order statistics Xpt,+1,n,-..,Xn,n are discarded for the estimation. This amounts to a trimming
percentage equal to 100(1—1%,)% in the highest values of the sample. The intermediate PL estimator
of El Methni and Stupfler (2017) is recovered for ¢,, = 1.

Although the idea of trimming seems appealing because it is expected to curb the estimator’s
variability, it may not be the best method available in that it effectively reduces the available
sample size. The overall bias of the estimator, meanwhile, would be negatively affected as well,
since despite their high variability, the highest order statistics in the sample are those who carry
the least bias about the extremes of the underlying distribution. One could try reducing the loss of
information that trimming entails by winsorising the estimator ITE;IBH (h(X)) instead, which amounts

to considering the following so-called Wins-PL estimator:

RY (X)) = [ o Gumin(tn, 1~ (1 5,)5))dg(s).
0

When nt,, and n(t, — ,) are positive integers it is easy to see that, contrary to the trimmed
estimator, the winsorised estimator replaces the data points Xyt 11,n,..., Xnn by Xnt, n. This

estimator can of course also be written as a generalised L-statistic, viz.

Ry, (h(X))

1
= WXy ) / I{0 < 5 < 21—ty (B 1)}y (s)
0
n(l_ﬁn)

1
tY ) | Hoean(B) €5 <5 )}g(o)

i=n(l—ty)+1

s—1
s<1

+ h(Xng,.n) [9( ) — lim g(s )1

n(1—LByn)
_ S (X li -l
) ( " H_l’n) s—mi,ljr(lﬂml)g(S) Sﬁwifir,il(ﬁml)g(S)
i=n(1—ta)+1 < n(Bn1) $<@i—1,n(fn,1)

+h(X lim 5).
( ntn,n) sﬁzn(l_tn),n(/@ml)g( )
5<Tp(1—tn),n(Bn,1)

+ h(Xan,n) lg(l) - il_% 9(5)

s<1

If g is continuous on [0, 1], this reads:
Ry, (h(X0)

n(l—Bp)—1

= h(XnﬁnJrl,n) + Z

> [h(Xn7i+1,n) - h(anz,n)]
i=n(l—ty,)+1

i
! (nu — )
Like the Trim-PL estimator, the Wins-PL estimator is a direct empirical estimator, of the quantity
1
R, X)) = [ ho glmin(t,, 1= (1= B,)5))dg(s),

which is actually essentially the Wang DRM of hA(X) given that X is larger than ¢(8,) and clipped
above level ¢(t,,):



Proposition 2. Let 8 € (0,1) and ¢t € (0,1] such that t > 3. If q is continuous and strictly

increasing on an open interval containing [3,1) then:

Ry (h(X)) = Ry(h(X3%™))
with X3 L XT{q(8) < X < q(t)} + a(){X > q(1)}.

The focus of this paper is to study the merits of trimming/winsorising in the context of the esti-
mation of extreme Wang DRMs, both theoretically and at the finite-sample level. While it would
be straightforward to obtain the asymptotic properties of both estimators for fixed orders g and
t through L-statistic techniques (see e.g. Jones and Zitikis, 2003), a difficulty here lies in the fact
that 8 = B, T 1. As a consequence, theoretical developments involve knowing the weak behaviour
of the quantile process s — @,(s) on [8,,1]. The crucial tool is a corollary of the powerful distri-
butional approximation stated in Theorem 2.1 of Drees (1998), relating this tail quantile process
to a standard Brownian motion up to a bias term. The relevant framework for this result is that
of regular variation: a function f is said to be regularly varying at infinity with index b € R if f is
nonnegative on the half-line (0,00) and for any = > 0, f(tx)/f(t) — 2° as t — oo. In this paper,
the distribution of X is heavy-tailed, namely, 1 — F' is regularly varying with index —1/y < 0,
the parameter v being the so-called tail index of the cumulative distribution function F. We shall
actually use an equivalent assumption on the left-continuous inverse U of 1/(1 — F'), defined for
y>1by U(y) =inf{t e R|1/(1 - F(t)) >y} = q(1 —y~ '), and called the tail quantile function.
More precisely, the main hypothesis is that the tail quantile function is regularly varying with index

~ and satisfies a second-order condition (see de Haan and Ferreira, 2006):

Condition Cy(v, p, A): for any = > 0, we have

1 <U(tm) _ﬁ) _ a1

A am \ o ’

)

with v > 0, p < 0 and A is a Borel measurable function which converges to 0 and has constant sign.

When p = 0, the right-hand side is to be read as z7log .

In condition Ca(, p, A), the function |A| must be regularly varying at infinity with index p (see
Theorem 2.3.3 in de Haan and Ferreira, 2006). Such a condition is classical when studying estimators
of extreme parameters of a heavy-tailed distribution, because it makes it possible, through the
function A, to measure the deviation of the distribution of the random variable of interest from the
Pareto distribution, the latter being the simplest case of a heavy-tailed distribution. The function
A thus typically appears in bias conditions. Most standard examples of heavy-tailed distributions
used in extreme value theory satisfy assumption Ca(7, p, A), see e.g. the examples p.59 in Beirlant
et al. (2004) and pp.61-62 in de Haan and Ferreira (2006).

Our next step is to highlight that the Trim-PL and Wins-PL estimators are actually part of a
common class of estimators. For 0 < § <t < 1, let F(5,t) be the set of those nonincreasing Borel

measurable functions v taking values in [0, 1] such that

$(0)=t, (1) =8 and Vs€[0,1], 0<1—(1—B)s—(s) <1—+t.
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Let now (1) be a sequence of functions such that for all n, ¢, € F(By,tn), and set

Ry 5, (h(X); ) = / h o g o n(s)dg(s),

whose empirical counterpart is the estimator

~

1 1
Rg7ﬁn(h(X)§¢n) :/O h o Gy o Pn(s)dg(s) :/0 h(Xﬁwn(S)],n)dg(S)-

All estimators in this class only take into account data points among the X, ,,, [nf,] < i < [nt,],
and can therefore be considered robust with respect to change in the most extreme values in the
sample when n(l —¢,) > 1. The class of estimators ﬁg’gn (h(X);1y) is a reasonable, unifying
framework for our purpose: indeed, particular examples of the sequence (¢,,) are s — ¢, — (t, — Bn)s
which appears as the argument of the empirical quantile function in the Trim-PL estimator, and
s — min(t,, 1—(1—f,)s) giving rise to the Wins-PL estimator. These two examples should be those
coming to mind when reading the asymptotic results below. Finally, the case ¢,,(s) = 1—(1—3,)s,
corresponding to the original PL estimator of El Methni and Stupfler (2017), is recovered by setting
t, = 1.

At the technical level, because ¥, (s) =~ 1 — (1 — 8,)s in a certain sense when ¢, is close enough
to 1, the quantity Ry g, (h(X);y) should be expected to be close to Ry g, (h(X)) and therefore,
ﬁgygn (h(X);%y) should be thought to be a consistent estimator of Ry g, (h(X)). The first result
below shows that ﬁg, 8, (R(X);%y,) is a relatively consistent and m —asymptotically normal

estimator of Ry g, (h(X)) when h is a power function, under suitable conditions on 3,, and ¢,,.

Theorem 1. Assume that U satisfies condition Co(7, p, A). Assume further that (¢y,) is a sequence
of functions such that for all n, 1, € F(Bn,tn), with 0 < B, < t, <1, B, = 1, n(l — B,) = o©
and (1 —t,)/(1 = Bn) = 0.

(i) Pick a distortion function g and a > 0, and assume that for some n > 0, we have
1
/ sTTNdg(s) < 0.
0

If furthermore \/n(1 — B,)A((1 — B,)~1) = O(1) then:

~

R Xll.
gvﬁn( ’;bn) _ 1 L O.
Ry, (X9)
(i) Pick distortion functions gi,...,gq and ay,...,aq > 0, and assume that for some n > 0, we

have

1
Vi e{l,...,d}, §TUITY2 g (s) < oo,
0

1—t,\°

for some € € (0, min(1/2,n)). If furthermore
Vn(l =B A1 =B,)"Y = AeR,
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then:

jo ﬁﬁn (Xaj )

Ry, 5, (X%,
(1= Bn) (M = 1) 4 N0, V),
1<j<d
with V' being the d x d matriz whose (i,j)—th entry is
) f[071]2 min(s, t)s~47 1747 1dg, (s)dg; (t)
fol 57%7dg;(s) fol t=%7dg;(t)

Vi = aa;7y .
A particularly appealing consequence of Theorem 1 is the consistency of the estimators ﬁy: 8, (X% 4y,)
under mild conditions. Especially, the integrability condition fol $7%7dg(s) < oo needed to en-
sure consistency is weaker than the integrability condition fol s797=1/2714dg(s) < oo required in
El Methni and Stupfler (2017). Broadly speaking, the former condition is essentially the one re-
quired for the existence of the Wang DRM R, g, (X®) to be estimated, while the latter is needed
to write a weak approximation of the estimator by an integral of a standard Brownian motion.
We may in fact choose ¢, = 1, for which the consistency of the PL estimator of El Methni and
Stupfler (2017), which is not shown therein, is obtained; let us point out that the proof of The-
orem 1(i) consists of two steps, the first one being to prove that any estimator fzg,ﬁn (X% ,) is
asymptotically equivalent to another estimator in this class for which n(1—t,) > 1, and the second
one being to show the consistency of the latter estimator. In particular, the consistency of proper
trimmed /winsorised estimators can be used together with an approximation argument to obtain

the consistency of the estimator using all the data above a high threshold.

A second property of the estimators ﬁg’gn (X*;4,) is that they share the same limiting Gaussian

distribution under the classical bias condition

Vil = B)A((L = B.)7") = AeR,

and provided hypothesis y/n(1 — t,,)[(1—t,)/(1—8,)]° — 0, relating the order ¢, to the intermediate
level f3,,, holds true. This condition implies that ¢,, should converge to 1 quickly enough, or, in other
words, that not too many values should be deleted from the sample for asymptotic unbiasedness
to hold. The necessity of such a condition appears in the earlier works of Csorgd et al. (1986a)
and Csorgd et al. (1986b) in the context of mean estimation by the trimmed sample mean: in
the former paper, it is shown that discarding a fixed number of order statistics does not create
asymptotic bias, while the latter paper states that this may not be true for more severe trimmings.
It should be noted that the present assumption is clearly satisfied for ¢, = 1 — ¢/n, with ¢ being a
fixed nonnegative integer, corresponding to the case when the top c order statistics are discarded and
the trimming/winsorising percentage across the whole sample is 100¢/n%. Finally, taking t,, = 1
in Theorem 1(ii) yields the original asymptotic normality result for the PL estimator in El Methni
and Stupfler (2017).

As noted therein, the integrability conditions of Theorem 1 can be difficult to grasp. They are,
however, determined by the behaviour of g in a neighbourhood of 0, which motivates the introduction

of the classes of functions

&[0, 1] := {g :[0,1] — R| ¢’ continuous on (0,1) and limsups~°|¢/(s)| < oo}.
sl0
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The classes &,[0,1], b > —1 can be considered as the spaces of those continuously differentiable
functions ¢ on (0,1) whose first derivative behaves like a power of s in a neighbourhood of 0.
Especially, any polynomial function belongs to &[0, 1], and the Proportional Hazard (Wang, 1995)
distortion function g(s) = s, a € (0,1) belongs to £,-1[0,1]. The next result sums up what can

be said when g belongs to such a space.

Corollary 1. Assume that U satisfies condition Ca(7, p, A). Assume further that (vy,) is a sequence
of functions such that for all n, 1, € F(Bn,tn), with 0 < B, < t, <1, B, = 1, n(l —3,) = o©
and (1 —t,)/(1 = Bn) — 0.

(i) Pick a distortion function g and a > 0. Assume that g belongs to some &[0,1] with b > —1.

If y < (b+1)/a and \/n(1 — B,)A((1 — B,)71) = O(1) then:

Ry, (X% n) P
292 ) B,
Rgﬁn (Xa)

(i) Pick distortion functions gi,...,g4 and ai,...,aq > 0. Assume there are by,... by > —1
such that g; € &,[0,1] for all j € {1,...,d}. If v < (2b; +1)/(2a;) for all j € {1,...,d} and

n(1=Bn)A((L=Ba) ™) > A€ R and /n(1 —ta) <11—;n) o

for some € € (0, min(0,by — a1, ...,bq — aqy) + 1/2) then:

~

V(1= Bn) <jo’ﬁn L 1) Ly N0, V),
1<j<d

jowﬁn (Xaj)
with V' as in Theorem 1.

As previously noted, the integrability condition for the asymptotic normality of our class of esti-
mators is that of El Methni and Stupfler (2017), which was already obtained by El Methni et al.
(2014) in the case of the CTM of order a (for which b = 0). In this case, Corollary 1 shows that
the condition v < 1/a, which is exactly the condition needed to ensure that the CTM of order a
exists, is sufficient to make sure that the estimator ﬁg,ﬁn (X% y,) is consistent. For instance, in
the case a = 1, corresponding to the estimation of the extreme Tail-Value-at-Risk, this condition is
~v < 1, which is exactly the condition required for the existence of a finite mean, instead of the more
restrictive condition v < 1/2 which would be required for the existence of a finite second moment.
By contrast, El Methni et al. (2014), working in a model with random covariates, always require
v < 1/(2a) in their asymptotic results. They do, however, only assume that a first-order condition
holds instead of second-order condition Ca(7, p, A), which is made possible since their CTM esti-
mator can be written as a sum of independent and identically distributed random variables and is

thus much easier to handle than the generalised L-statistic R, s, (X%;y,).

3.3 Second step of improvement: finite-sample bias correction

The estimators introduced above have been shown to be asymptotically normal estimators of Wang

DRMs. It should be noted that on finite-sample situations, such estimators can be expected to
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carry some (negative) bias, all the more so as the trimming/winsorising order ¢, increases. An
intuitive justification for this behaviour is that the estimator RL],B” (X%;4,,) is actually the empirical
counterpart of R, 3, (X®; ¥,), which is in general different from, and especially less than, the target
DRM Ry g, (X®). For instance, in the case of extreme Tail-Value-at-Risk estimation for the Pareto
distribution with tail index «y, then the Tail-Value-at-Risk of X in the worst 100(1 — 3,,)% cases is
(1—5n)""
R X)=—""—
gaﬁn( ) 1— y
see Section 3.1. By contrast, the trimmed Tail-Value-at-Risk given that X lies between levels ¢(3,,)
and ¢(t,,) is obtained for ¢, (s) = t, — (t, — Bn)s and is

1 1
Ryt (X) = / q(tn — (ta — Bn)s)dg(s) = / [1 =ty + (tn — Ba)s] 7ds

(1= Bn) " = (A —tn) 7
(1 - ’7)(tn - Bn)

Rewriting this as

(1-Ba)' "= (A —ta)' ™ }

(1 - 5n)*’Y(tn - Bn) ’
results in an expression of R;r,ré‘f,tn (X) as Ry g, (X) multiplied by a quantity depending on f,, t,
and 7 and smaller than 1. In the case n = 1000, 5, = 0.9, ¢, = 0.99 and v = 1/2, namely the top
100 observations are selected and the top 10 observations among them are eliminated, the reduction

R (X) = Ry, (X) {

factor is actually 0.760, i.e. the expected relative bias is —0.240. When the number of observations
removed is halved (¢, = 0.995) this factor becomes 0.817 for an expected relative bias of —0.183.
The smallest trimming percentage, obtained when ¢, = 0.999, for removal of the sample maximum

only, results in a reduction factor of 0.909, which is still an expected relative bias of —0.091.

To retain the reduction in variability brought by the estimator §g7 8, (X;1,) and at the same time
obtain an estimator with acceptable finite-sample bias, we design a new estimator based on the
previous calculation. More precisely, in the case of Tail-Value-at-Risk estimation, estimating v by a
consistent estimator %, and plugging in the previous estimator ﬁg,ﬁn (X)) = ﬁgTrﬁ‘mt (X) in the
left-hand side of the above equality gives the corrected estimator

R R 1—B,) "7 — (1 —t,)
R (i) = o (X00) {( <1ﬂ —)Bn)‘%((tn —t@)» }

-1

Note that the correction factor is in fact

{(1 — B! T = (L= 1) } _ Ryp,(¥5)
(1= Bn) 7 (tn — Bn) Ry, (Ys,:¢n)’

where Y., has a Pareto distribution with tail index . There is an abundant literature on consistent

estimation of the parameter v: we refer, among others, to the very popular Hill estimator (Hill,
1975), the Pickands estimator (Pickands, 1975), the maximum likelihood estimator (Smith, 1987 and
Drees et al., 2004) and probability-weighted moment estimators (Hosking et al., 1985 and Diebolt

et al., 2007). A comprehensive review is contained in Section 5 of Gomes and Guillou (2015).
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Of course, in practice the underlying distribution of X is not known, but in many cases the Pareto
distribution (or a multiple of it) still provides a decent approximation for X in its right tail. It can

thus be expected that in a wide range of situations and for n large enough,

Rgvﬁn (Ya'Y) .
R.‘Lﬁn (Ya"/; ’l/)n)

_Ryp, (X))
R.Q:B?L (Xa; wn)

This motivates the following class of corrected estimators:

R ¢ R a R’"(YAn)
9,Pn \ L avypr ¥n

Ry p, (X)) = Ry, (X% ) ~ Ry p, (X% )

S = Ba)s) e dg(s)
Ry g, (X% n) 3 — .
S g (s)

This estimator should be seen as the result of a two-stage procedure:

e first, compute an estimator of the target extreme Wang DRM using a trimmed/winsorised

sample, thus reducing variability;

e then, use what can be found on the tail behaviour of the sample to shift the previous estimate

back to an essentially bias-neutral position.

Let us emphasise that this bias-correction procedure is a simple one, much closer in spirit to the
construction of the corrected sample variance estimator when the population mean is unknown than
to bias-reduction methods based on asymptotic results in a second-order extreme value framework,
of which an excellent summary is Section 5.3 in Gomes and Guillou (2015) again. In particular,
the multiplicative correction factor introduced here only depends on the tail index «y, but not on
the second-order parameter p. Finally, note that the correction factor might depend on the top
values in the sample, but can only actually do so through the estimator 74,. For instance, the Hill

estimator of 7,

[n(1—Bn)]
Z IOg (aniJan) - log (an(n(lfﬁn)‘\,n) )

i=1

~ 1
V5 = Tn(1 = Bo)]

of which a bias-reduced version is considered in the simulation study below, depends on the top
values only through their logarithms, which sharply reduces their contribution to the variability of

our final estimator.

The next result shows that any member of this new class of corrected estimators shares the asymp-
totic properties of its uncorrected version. Our preference shall thus be driven by finite-sample

considerations.

Theorem 2. Assume that U satisfies condition Co(y, p, A). Assume further that (1) is a sequence
of functions such that for all n, 1, € F(Bn,tn), with 0 < B, < t, <1, B, = 1, n(l — 3,) = o©
and (1 —t,)/(1 = Bn) — 0.
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(i) Pick a distortion function g and a > 0, and assume that for some n > 0, we have

1
/ sTTdg(s) < 0.
0

If furthermore \/n(1 — B,)A((1 — B,)~Y) = O(1) then, provided J,, is a consistent estimator
of 7y, it holds that:

E X n R X%y,
M — 1 and therefore Lf) 150
Ry 6, (X% n) Ry, (X)
(i) Pick distortion functions gi,...,gq and ay,...,aq > 0, and assume that for some n > 0, we

have

1
vie{l,...,d}, /0 §~UITY27Ndg.(s) < o0

1 _ €
and n(l—t,) (1_;”) — 0,

for some € € (0, min(1/2,n)). If furthermore

n(l — B,)A((1 — ﬁn)_l) = A€eR and /n(l—6n)An —7) = Op(1),
then:
vie{l,....d}, /n(l—By) <M1>l>07
97 Bn (Xa7;1/}n)

and therefore

E' n(Xaj;wn) d
1-38,) | =gfnr 2 270 N(0,V),
n( B )< jo,ﬂn(Xaj) >1<J<d — ( )

with V' as in Theorem 1.

It should be noted here that the requirement y/n(1 — 5,,) (3, —7) = Op(1) is hardly a restrictive one,
for all the aforementioned tail index estimators satisfy such a property in their respective domains
of validity under second-order condition Ca (7, p, A), see Sections 3 and 4 in de Haan and Ferreira
(2006).

As we mentioned at the end of Section 2, the empirical estimators developed so far only work
provided 3, is an intermediate level, namely n(1 — ,) — co. The next and final step is to design

an estimator working for arbitrarily extreme levels as well.

3.4 Final step: estimation in the extreme case

A consistent estimator of an arbitrarily extreme risk measure is now designed by using an extrap-
olation property of the tail quantile function U. Let (,) be a sequence converging to 1 such that
(1 —=96,)/(1 — Bn) converges to a positive and finite limit, and remark that for any s € (0,1) and
a > 0 it holds that:

(1= (=809 = (1252 ) la(1 = (1= A)9(1 -+ (D)
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as n — 00, as a consequence of the regular variation property of U(y) = ¢(1 — y~!). Integrating

the above relationship with respect to the distortion measure dg yields:

Ry, (X%) = (11 : ?:) Ry, (X?)(1+0(1)).

To put it differently, the extreme risk measure R, 5, (X®) is essentially obtained by multiplying the
intermediate risk measure R, g, (X®) by an extrapolation factor depending on the unknown tail
index 7. To estimate the left-hand side, suppose then that n(l — d,,) — ¢ < oo, take a sequence
(Br) such that n(1 — f,,) — oo and define

W a 1- 5" “n 5 a
Rg,&,,(X »d’n) = 1-96 Rgﬁn(X 7'¢)n)a

where 7, is the consistent estimator of v appearing in fzgﬁ" (X%1)y,). This is a Weissman-type
estimator of Ry s, (X®) (see Weissman, 1978, for the estimation of extreme quantiles). Weissman’s
estimator is actually recovered for a = 1, ¢, = 1 and g(s) = 0 if s < 1, and the extrapolated PL
estimator of El Methni and Stupfler (2017) is obtained for t,, = 1.

The third and final main result examines the asymptotic distribution of this class of extrapolated

estimators.

Theorem 3. Assume that U satisfies condition Ca(y,p, A), with p < 0. Assume further that
(¥n) is a sequence of functions such that for all n, ¥, € F(Bn,tn), with 0 < B, < t, < 1,
Brn — 1, n(l =B,) = o0 and (1 —t,)/(1 — Bn) — 0; let finally a sequence 6, — 1 be such that

(1=10,)/(1=8) — 0 andlog[(1 — B8,)/(1 = d,)]/+/n(l — Bn) — 0. Pick now distortion functions
gis---,9q4 and ay,...,aq > 0, and assume that for some n > 0, we have

vie{l,...,d}, / —ajy—1/2— dg;(s) < oo and +/n(l—t, (1—5 )6—>0,
for some € € (0,min(1/2,n)). If furthermore
n(1— Ba)A((L—Ba)™H) = A€R and /n(l - Ba)Fn — 1) -5 €,

then:
alf

(1~ B,) Ry s, (X¥50n) d
log([l—ﬁn]/[l—én])< Ry, 5,(X%) 1>1<]<d‘)

ag

Again, in the case t, = 1, we recover the asymptotic normality result of El Methni and Stupfler
(2017) for the class of extrapolated PL estimators. Our robust extreme risk measure estimators
have therefore got the same asymptotic distribution as the original PL estimator, under the same
technical conditions. It can thus be concluded that considering trimmed/winsorised estimators
results in a generalisation of the existing theory of estimators of extreme Wang DRMs. The next
section shall show that this also results in improved finite-sample performance when the underlying

distribution has a very heavy tail.
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4 Simulation study

The finite-sample performance of our estimators is illustrated on the following simulation study,
where a pair of heavy-tailed distributions and three distortion functions g are considered. The

distributions studied are:
e the Fréchet distribution: F(z) = exp(—z~ /"), z > 0;
e the Burr distribution: F(x) =1 — (14+27#/7)? 2 > 0 (here p < 0).

These distributions have tail index ; meanwhile, their respective second-order parameters are —1
and p, see e.g. Beirlant et al. (2004). We can therefore get an idea of the influence of the parameters
~ and p on the finite-sample behaviour of an estimator using these two distributions. In the case of
the Burr distribution, we shall take p € {—2,—2/3}.

The following distortion functions are considered:
e the Tail-Value-at-Risk (TVaR) function ¢g(z) = x which weights all quantiles equally;

e the Dual Power (DP) function g(z) = 1 — (1 —z)"/* with o € (0, 1), which gives higher weight
to large quantiles. When ¢ := 1/« is a positive integer, the related DRM is the expectation
of max(Xjy,...,X.) for independent copies X1,..., X, of X;

e the Proportional Hazard (PH) transform function g(x) = z® with o € (0,1), which gives
higher weight to large quantiles and is such that ¢’(s) T co as s | 0. When ¢ := 1/a is a
positive integer, the related DRM is the expectation of a random variable Y whose distribution
is such that X has the same distribution as min(Y3,...,Y;) for independent copies Yi,...,Y,
of Y. See also Cherny and Madan (2009).

Each risk measure is estimated, at an extreme level J,,, using the extrapolated estimator fzgﬁ;n (X;5¢n).

The following choices of v,, are considered:
e ¢,(s)=1—(1— B,)s, corresponding to the PL estimator;

o U, (s) =t, — (tn — Bn)s, corresponding to the corrected Trim-PL estimator, which we denote
by CTrim-PL;

e ¢, (s) =min(t,, 1 — (1 — B,)s), corresponding to the corrected Wins-PL estimator, which we
denote by CWins-PL.

Because any of the studied estimators uses a preliminary estimation at level /3, where (3,,) is some
intermediate sequence, we first discuss the choice of this level. As noted numerous times in the
extreme value literature, this is a crucial step: a value of 3, too close to 1 increases the variance
of the estimator dramatically, while a value of 3, too far from 1 results in biased estimates. An
overview of possible techniques is given in Section 5.4 of Gomes and Guillou (2015). Here a data-
driven criterion, based on the search for a stable part of the plot of a tail index estimator and similar
to that of El Methni and Stupfler (2017), is used; see also Stupfler (2013), Gardes and Stupfler (2014)
and Stupfler (2016) for other implementations. We work with a bias-reduced version 7, of the Hill
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estimator (Hill, 1975) suggested by Caeiro et al. (2005) (see also Gomes et al., 2016), which shall
also be ultimately used to estimate the parameter ~:

~ ~

55, = Hn((n(l—ﬂnﬂ)(1—fﬁ<[n(1ﬁﬁnﬂ)_)’

k

. 1

with H, (k) = EZlog(Xn_HLn)—log(Xn_k,n).
=1

Here B is an estimator of the parameter B such that the left-continuous inverse U of 1/(1 — F)
satisfies
U(z)=Cz2" (1 +XBar o(z”)) as z — 09,
P

and p is an estimator of the second-order parameter p. In particular, the version of 75, used in the
present simulation study is the one implemented in the function mop of the R package evt0O and
discussed in Gomes et al. (2016). The idea is now to detect the last stability region in the plot
B — Ag. Specifically:

e choose By > 0 and a window parameter hy > 1/n;

o for By < B < 1—hy,let I(B) = [8,5 + h1] and compute the standard deviation o(/3) of the
set of estimates {7,,b € I(3)};

e if 3+ o(f) is monotonic, let B, be By if it is increasing and 1 — hy if it is decreasing;

e otherwise, denote by S, the last value of 8 such that o(f) is locally minimal and its value is

less than the average value of the function 5 — o(f);

e choose 5* such that 4+ is the median of {7,,b € I(Bi,)}. In particular, our estimate of v is
g~
Here this choice procedure is conducted with Sy = 0.5 and h; = 0.1. Once the parameter 3,

has been chosen as 8*, we can compute the extrapolated PL estimator E;/‘,/Jn (X|B*) described in
El Methni and Stupfler (2017).

In order to compute the extrapolated CTrim-PL and CWins-PL estimators, the truncation/winsorisation
level t,, should also be chosen, and this is done by a stability region argument as well, which this
time revolves around these extreme risk measure estimators. Here, the dependence of ¥ upon 8 and
t is emphasised by denoting it by ¥(8,¢). The suggested choice procedure for ¢, given a function ¥

and the tuning parameter 8*, is the following:
e choose tg > 0 and a window parameter hy > 1/n;

o for tg <t < 1— hg, let J(t) = [t,t + ha] and compute the standard deviation X(¢) of the set
of estimates {R); (X;n(58*,0)),0 € J(t)};

e if ¢ — X(t) is monotonic, let 1, be tg if it is increasing and 1 — he if it is decreasing;
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e otherwise, denote by ¢;,,, the last value of ¢ such that X(¢) is locally minimal and its value is

less than the average value of the function t — 3(t);

e choose t* such that ﬁmn (X;9,(B*%,t*)) is the median of
{Rys, (X 9n(87,6)),0 € J(tim) }-

In the present simulation study, this choice procedure is conducted with ty = 0.95 and hs = 0.01.

The idea is now to compare the performance of the PL estimator of El Methni and Stupfler (2017)
to that of the CTrim-PL and CWins-PL estimators, first in the case of moderately heavy tails, when
the PL estimator is known to have reasonable theoretical and finite-sample properties, and then in
the case of very heavy tails, in order to illustrate the advantages of using the proposed technique.
It will in particular be shown that, compared to the PL estimator which uses all the data above a
high threshold, the corrected trimmed or winsorised estimators resist fairly well to the presence of
heavier tails and atypically high observations. It will also be of interest to compare the performance
of the CTrim-PL and CWins-PL estimators, and in particular to assess whether one of them is
preferable to the other in terms of bias: recall that before correction, the trimmed estimator should

be expected to have worse finite-sample performance that the winsorised estimator.

4.1 Case 1: Moderately heavy tails

We first consider the case of moderately heavy tails. More precisely, the parameter v is chosen
in order to ensure that Theorem 2 (ii) applies to the intermediate versions of all three estimators,
and is therefore such that the extrapolated estimators satisfy Theorem 3. This range of values
of v is considered in El Methni and Stupfler (2017), and it is shown there that the extrapolated
PL estimator performs reasonably well when ~ is moderate. We will, however, consider a range of
values of v containing the highest values of v for which Theorem 3 applies, in order to assess the
behaviour of all three estimators on the full range of moderately heavy tails and particularly in the

most difficult situations in this range. The following examples are considered:

e the TVaR and DP(1/3) risk measures. In this case, Theorem 3 applies in the range v €
(0,1/2). We therefore make « vary in the interval [0.25,0.49] for both our tested distributions.

e the PH(1/2) risk measure. Here, Theorem 3 applies in the range v € (0,1/4). We therefore
choose to have v vary in the interval [0.1,0.24].

In each case, the computations are carried out on N = 5000 independent samples of n = 1000
independent copies of X; a similar simulation study, whose results are deferred to Appendix C in

the supplementary material document, examines the case of the lower sample size n = 100. Relative
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biases and relative mean squared errors (MSEs) are recorded:

N pw *
~ 1 Rys(X5¢7)
Bias (R, ) = — S @0 70/ g
( g>5> N]; Rg’g(X)
N W * 2
~ 1 R 5(X§¢')
and  MSE (RY;) = — -1,
( 975> Nj:l ( Rg,g(X)

at 6 = 0.999 = 1 —n=! (here ¢ is the chosen function ¢ for the j—th sample and for a given

estimator), so as to be able to assess both bias and variability of all the compared techniques.

Results are reported in Figures 1 and 2. Results for the extreme DP risk measure were qualitatively
very similar to those obtained for the extreme TVaR and are therefore not reported here. As regards
the estimation of the extreme TVaR, it appears on these examples that the proposed CTrim-PL
and CWins-PL estimators perform slightly worse in terms of bias than the original PL estimator.
This is not surprising: the correction method, based on an approximation of the upper tails of the
underlying distribution by a purely Pareto tail, cannot be expected to recover all the information
the (highly variable) top order statistics carry about the extremes of the sample. By contrast, our
estimators perform essentially comparably to or better than the standard empirical extreme Wang
DRM estimator in terms of MSE; for values of v close to but less than 1/2, the improvement is
close to up to 40%, in the case of the Fréchet distribution. Surprisingly, for |p| > 1, the CTrim-PL
and CWins-PL estimators seem to provide a much improved technique for the estimation of the
extreme PH risk measure, both in terms of bias and MSE, especially when ~ is large. Let us also
mention that in all cases, results deteriorate when - increases: this is likely a consequence of the
fact that, by Theorem 3, the asymptotic distribution of our estimator is essentially that of 75, —,
which is a Gaussian distribution with variance proportional to 42 (see Theorem 3.2 in Caeiro et al.,
2005). Similarly the results, be it with respect to bias or MSE, also improve when |p| increases,
which is not surprising either since the larger is |p|, the smaller is the bias in the estimation and,
more generally, the closer is the tail of the underlying distribution to a purely Pareto tail. This
is especially critical for the CTrim-PL and CWins-PL estimators, in which the correction step is
based on an approximation of the right tail of the underlying distribution by the right tail of (a
multiple of) a Pareto distribution. Combined with the stronger emphasis the PH risk measure
puts on higher quantiles of the underlying distribution, this explains the deterioration, in terms of
finite-sample performance, that the CTrim-PL and CWins-PL estimators suffer from in the case
of the Burr distribution with p = —2/3 relatively to the PL estimator and compared to the other

cases considered here.

It should finally be underlined that, on these examples and for smaller values of v (e.g. in the case
of TVaR estimation, v = 1/4, corresponding essentially to the existence of a finite fourth moment)
the extrapolated PL, CTrim-PL and CWins-PL estimators have virtually indistinguishable finite-
sample performance. There seems, therefore, to be no loss in efficiency when using the proposed
estimators for small values of ~, while they display an appreciably lower variability for an arguably

small potential price in terms of bias when + is larger and |p| is not too small. It also appears that
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on these examples, for moderately heavy tails, the CTrim-PL and CWins-PL estimators have very
similar finite-sample behaviours, so there is on average no clear advantage in using one of these

methods over the other.
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4.2 Case 2: Very heavy tails

We now consider the case of heavier tails, when Theorem 3 fails to hold. Studying such cases
will make it possible to understand the behaviour of the tested estimators on more challenging

situations. Specifically, the following cases are examined:

e the TVaR and DP(1/3) risk measures, with v varying in the interval [0.5,0.75] for both our

tested distributions.
e the PH(1/2) risk measure, with v belonging to the interval [0.25,0.35].

In those cases, sample relative MSEs can still be computed but will not converge anymore, because

v is so large that the relative MSE of our estimators at an intermediate level is infinite:

~ 2
R n(X7"/Jn)
o e HEESLA VAN ) IR

( Rg,ﬁn(X) ) e

In order to assess both bias and variability here, we therefore look at two different situations:

(i) In the first one, N = 5000 independent samples of n = 1000 independent copies of X are

generated and relative biases are recorded for all three estimators.

(ii) In the second one, N = 5000 independent samples of n = 1000 independent copies of X
given that the sample maximum X, ,, exceeds the large value 2R, 5(X), with 6 = 0.999, are
generated. Again, relative biases are recorded for all three estimators.

The idea here is to first use (i) to assess to which extent the correction factor for the trimmed /winsorised
estimators manages to eliminate the bias introduced by the trimming/winsorising scheme, and then
to evaluate the advantages, in terms of variability, of using the proposed techniques in challenging
cases using (ii). It should be mentioned that although the cases examined in (ii) are in some sense
atypical, they are not at all infrequent: for instance, in the case of the Tail-Value-at-Risk for the
Fréchet distribution with parameter v =1/2 and § = 0.999, then R, 5(X) ~ 63.25 and

P(X, ., > 2R, (X)) =1— [P(X < 2R, 5(X))]" ~ 0.0606,

with n = 1000. In other words, 6% of samples of size 1000 feature the difficulty considered here,

which we believe makes it well worth studying.

As in the previous section, the extreme level of interest is § = 0.999 = 1 — n~!. Again, a similar
simulation study, whose results are deferred to Appendix C in the supplementary material document,

considers the case n = 100.

Results are reported in Figures 3 and 4, the top panels representing biases recorded in non-
conditioned cases and the bottom panels representing biases obtained in the difficult conditioned
cases. As in the previous study on moderate tails, results for the extreme DP risk measure were
qualitatively very similar to those obtained for the extreme TVaR and are therefore not reported
here. When estimating the extreme TVaR in standard cases, the CTrim-PL and CWins-PL estima-
tors perform slightly better, in terms of bias, than the original PL estimator when |p| > 1, although
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the PL estimator outperforms the CTrim-PL and CWins-PL estimators when |p| takes the smaller
value 2/3. By contrast, a real improvement is found using the suggested methods on atypical cases:
in this context, the CTrim-PL and CWins-PL estimators more than halve the bias overall in the
case of the Fréchet distribution, can reduce it by up to 90% in the case of the Burr distribution with
p = —2, and improve it by up to 50% for very large v when p = —2/3. As regards the estimation of
the extreme PH risk measure, the surprising conclusion reached when discussing the performance of
our estimators with moderately heavy tails is still valid: for |p| > 1, the CTrim-PL and CWins-PL
estimators appear to have a much lower bias than the PL estimator in general, all the more so for
larger values of . There is again a marked improvement in terms of bias in atypical cases, the bias
being halved overall in the Fréchet case and in the Burr case with p = —2/3, the reduction in bias

being even more substantial in the Burr case with p = —2.

As a conclusion, it appears on these heavier-tailed examples that the CTrim-PL and CWins-PL have
generally comparable performance to that of the PL estimator in the case of extreme TVaR and
DP estimation, while they often provide a significant improvement when estimating the extreme
PH risk measure. Moreover, in the most difficult cases with respect to the behaviour of the top
order statistics in the sample, the two introduced methods represent overall a great improvement
over the PL estimator. It should be pointed out that in these atypical cases, the deterioration
of the finite-sample performance of our estimators relatively to that of the PL estimator when |p|
decreases is much less severe than in the case when the right tail of the underlying distribution is
moderately heavy. An explanation is that while the correction factor applied to the Trim-PL or
Wins-PL estimator might have a disappointing behaviour when |p| is small, the action of deleting
unreasonably high top values in the sample and then correcting at least partially for the resulting
bias is already enough to obtain a much-improved technique. We would therefore argue that the
CTrim-PL and CWins-PL estimators have indeed a good potential for practical use in such a setup,
and this was the main goal of our work. Finally, on these examples and similarly to the moderate
tails case, the CTrim-PL and CWins-PL estimators exhibit similar finite-sample behaviours, so that
there is no obvious reason to choose one over the other in general. Which one of these estimators
should actually be chosen has to be decided case by case, and an instance of such a choice is

presented in a real data example below.
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5 Real data application

We consider data on n = 1098 commercial fire losses recorded between 1 January 1995 and 31
December 1996 by the FFSA (an acronym for the Fédération Francaise des Sociétés d’Assurance),
available from the R package CASdatasets by prompting data(frecomfire). The data, originally
recorded in French francs, is converted into euros, and denoted by (Xi,...,X,). The analysis of
this kind of data set from an extreme value point of view is useful to insurers, especially in view of
the Solvency II directive: in order to be able to compute their capital requirements so as to survive
the upcoming calendar year with a probability not less than 0.995, insurance companies have to
take into account extremely high losses. It is also crucial for insurance companies to estimate the
capital requirement as accurately as possible: an underestimation of this quantity can threaten
the company’s survival, while an overestimation may, among others, lead to the insurer asking for

higher premiums on policies, thus reducing the company’s competitiveness on the market.

The first step is to estimate the tail index . To this end, the procedure outlined in Section 4
is used: the sample fraction chosen to compute the tail index is then 1 — 8* ~ 0.120, for an
estimate 73- =~ 0.697. This suggests a very heavy tail, in the sense that 7« > 1/2 and therefore
the underlying distribution seems to have an infinite variance. In particular, we know from the
simulation study that this may adversely affect the PL estimator of the extreme TVaR and of
the extreme DP risk measure, which justifies comparing the PL estimates to those obtained using
our CTrim-PL and CWins-PL estimators. Note that the extreme PH(1/2) risk measure cannot be

estimated here since this would require the estimate of v to be less than 1/2.

We then compute, at the extreme level § = 0.999 ~ 1 — n~!, the PL, CTrim-PL and CWins-PL
estimators of the extreme TVaR and DP(1/3) risk measures, using the procedure of Section 4.
Results are summarised in Table 1. It is not clear, from these results, which estimator should
be chosen, especially since it was seen in the simulation study that the CTrim-PL and CWins-PL

estimators have essentially identical statistical properties.

Our goal is now to offer some insight into this choice, using the mean excess plot of the n(1—*) =
132 data points used in the present analysis. The rationale behind the use of the mean excess plot,

i.e. the plot of the function
E?:I(Xi — U)H{X1>u}
Y1 Lxisuy

is that its empirical counterpart u — E(X — u|X > u) is linearly increasing when 0 < v < 1 and X

u —

has a Generalised Pareto distribution (see Davison and Smith, 1990). Therefore, since X can be,
above a high level u, approximated by a Generalised Pareto distribution (see e.g. equation (3.1.2)
p.65 in de Haan and Ferreira, 2006), the extremes of the data set should be indicated by a roughly
linear part at the right of the mean excess plot. This plot can be tricky to use though: apart from
the choice of the lower threshold u above which the mean excess function is computed (which is
here chosen to be X,g« ), it has been observed that the mean excess function has very often a
non-linear behaviour at the right end of the mean excess plot (see Ghosh and Resnick, 2010). This

is again because the top order statistics in the sample suffer from a very high variability, and as a
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consequence the mean excess function is, in its right end, averaging over just a few high-variance
values. In other words, the intermediate, roughly linear part of the plot indicates which ones among
the top data points can be trusted from the points of view of both bias and variability, and the
unstable part at the right end of the mean excess plot represents those highly variable values that

may be cut from the analysis using the CTrim-PL and CWins-PL estimators.

We then plot on Figure 5 copies of the mean excess plot above the value © = X, g+, where the
values cut from the analysis by the CTrim-PL and CWins-PL estimators are highlighted. The least
squares line related to the data points kept for the analysis is also represented. It can be seen on
these plots that there is indeed an unstable part at the right end of the plot, which suggests to use
either the CTrim-PL or CWins-PL estimator in order to gain some stability. The linear adjustment
for the selected data points is also reasonable in all cases. It is arguable though that the CTrim-PL
estimator is too conservative in the sense that the number of data points it discards is high: in the
DP case in particular, the estimator trims 37 top order statistics, which is 29% of the available data
above the selected threshold X, g~ . The CWins-PL estimator discards much less data points (less
than half of what the CTrim-PL estimator discards, see also Table 1), and therefore does not have
to compensate for the loss of information this entails as much as the CTrim-PL has to, while the
linear adjustment of the least squares line is still perfectly acceptable. It can be argued then that the
CWins-PL estimator is preferable here, both for extreme TVaR and DP risk measure estimation.
The estimates it yields are appreciably lower (roughly 10% less) than the standard PL estimates,
and this makes us think that the extreme TVaR and DP risk measure are actually overestimated
by the PL estimator. The conclusion is that, using the CWins-PL estimator, the average loss in the
worst 0.1% of cases is estimated to be 208.5 million euros, and the average value of the maximal
loss recorded after three extreme fires (i.e. each belonging to the worst 0.1% of fires) to be 404.5

million euros.
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6 Discussion and forthcoming studies

In this paper we studied, empirically and theoretically, corrected versions of the trimmed/winsorised
empirical plug-in estimators of extreme Wang DRMs. The value of such estimators lies in the fact
that on average, they can be expected to be less variable than the full empirical plug-in estimator
thanks to the trimming/winsorising scheme. The proposed method is also implemented on a real
actuarial data set, and it is shown how to choose between the corrected trimmed estimator and its

corrected winsorised analogue.

Let us reiterate here that the present correction step is a simple one, based on an asymptotic
equivalent of the ratio of a trimmed/winsorised extreme Wang DRM and of its full counterpart.
Especially, this correction method should not, in our view, be seen as related to bias-correction
techniques based on asymptotic results developed in second-order extreme value frameworks, which
have been the subject of much interest in extreme value theory in the past twenty years. An
essential difference between the two approaches is that the proposed correction step does not take
into account second-order information: namely, it uses an estimator of the tail index v but no

estimator of the second-order parameter p.

This is why the CTrim-PL and CWins-PL methods should not be expected to show an improved
finite-sample performance compared to that of the basic empirical plug-in estimator when p is
close to 0. Actually, because the expression of the correction factor is based on the asymptotic
approximation of the underlying distribution by a multiple of a Pareto distribution, which is known
to be poor for p close to 0, the CTrim-PL and CWins-PL methods should only be expected to
work well when |p| is not too small. This is confirmed in the simulation study, by noting that in
typical cases the CTrim-PL and CWins-PL estimators do on average suffer from a deterioration in
performance, relatively to the PL estimator, when |p| decreases towards 0. It should be repeated
though that simulation results give a strong indication that the CTrim-PL and CWins-PL estimators
very often bring an important improvement, including in cases when |p| is small, upon the PL
estimator in challenging cases when the top values in the sample are extremely high, and that was

the main goal of this paper.

It would be very interesting to design another correction factor taking into account second-order
information, in order to close the gap between the finite-sample performance of the proposed tech-
nique and that of the full PL estimator in standard cases with low |p|, and retain or even improve
its finite-sample performance further in difficult cases. Two reasons why this is a difficult problem

are that:

e estimators of p typically have a rate of convergence vkA(n/ k), with the notation of condition
Ca(v,p, A), which, in conjunction with the bias conditions they have to satisfy, makes their
rate of convergence lower than that of typical tail index estimators, see e.g. p.298 in Gomes
et al. (2009) and p.2638 in Goegebeur et al. (2010). This suggests that estimators of the

second-order parameter are in general quite volatile;

e tail index estimators tend to have a poor finite-sample behaviour for low |p|, be it because of
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their bias if they are not bias-corrected, or of their increased asymptotic variance if they are

bias-corrected.

Multiplying the Trim-PL or Wins-PL estimators by a correction factor adapted to low values of
|p| might therefore entail multiplying by a highly variable quantity and ultimately wipe out part
of or all that was gained in terms of variability from using the trimming/winsorising scheme. The
problem of constructing a second-order-adapted correction factor is therefore a challenging one and

is definitely part of future research on this topic.
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Supplementary material to: Improved estimators of extreme Wang
distortion risk measures for very heavy-tailed distributions

This supplementary material collects the proofs of our auxiliary and main results, in Appendix A and

B respectively, and presents additional simulation results in Appendix C.

In all what follows, let F, be the cdf of X and denote by U, (z) := [U(z)]* the left-continuous inverse of
1/(1—F,). It is crucial for our purpose to note that by Lemma 1 in E1 Methni and Stupfler (2017), if U
satisfies condition Ca (7, p, A), then U, satisfies condition Cy(a~y, p,aA). As a consequence, Theorem 2.3.9
in de Haan and Ferreira (2006) states that one may find a Borel measurable function B,, asymptotically
equivalent to aA and having constant sign, such that for any 7, € > 0, there is t; > 0 such that for

ttx >ty

1 U, (tx) > xf -1 ‘ _
— 2% ) — 2 | < ez P max(z", 27 7). 1
0 (%6 o |= e .

Appendix A: Preliminary results and their proofs

The first preliminary result is a technical lemma on some integrals, which we shall use frequently in our

proofs.

Lemma 1. Let g be a distortion function. Assume that f is a Borel measurable regularly varying
function with index b € R, that w is a continuous and bounded function on (0,1] and that (vy) is a

sequence of Borel measurable positive functions such that

Vs €10,1], s <@np(s) <1 and pn(s) = s as n— oo.

1
/ s7""dg(s) < oo,
0

then we have the following, provided k = k(n) — oo and k/n — 0: for any 6 € R such that § <),

If for some n > 0:

[ LS St 6))iots) [ 5wl ®
Moreover, 1
fn/ljjz )log(wn(S))w(tpn(S))dQ(S)_>/0 s log(s)w(s)dg(s). (ii)

Proof of Lemma 1. We start by proving (i). Pick § < n and define € := (n — §)/2 > 0, so that
d + ¢ < n. Notice that the function f; : y + y~°~¢f(y) is regularly varying with index — < 0. By a

uniform convergence result for regularly varying functions (see e.g. Theorem 1.5.2 in Bingham et al.,



1987):

o pie | F(0/kpn(s)) _ $)]~P sup sPtE f(n/ks) _ b
G R R B RV
_ fl(tn/k) -

= fl(n/k:) t | —0.

Thus, if C is an upper bound for |w| on (0, 1]:

n/l:jk (on ()]~ w (o (s))dg(s) — / ()] w(pn(s))dg(s)

< n/ [on ()] 702w (i (s))ldg(s) <7"n/ C'max(s~"~°7%, 1)dg(s) — 0. (2)

0
Besides
¥s € (0,1], [n(s)] " *lw(pn(s))| < Cmax(s™~°,1)

and the right-hand side defines an integrable function with respect to the measure dg(-), so that by the

dominated convergence theorem:

1

(o ()] Sw(ion (5))dg(s) — / b 0u(s)dg(s)| — 0. 3)
0 0

Combining (2) and (3) completes the proof of (i). To show (ii), the idea is similar: pick € € (0,7n/2)
and write that, with the notation of the proof of part (i):

/ f n/ktpn log(wn(s))w(cpn(s))dg(s)—/0 [on ()] " log(en(s))dg(s)

< n/o [on ()] 7"~ [1og(n () [w(pn(s))ldg(s)
1 1
< rn/o K[gﬁn(s)]fb*%dg(s) < Tn/o Krnax(sib*k7 1)dg(s) — 0. (4)

Here K is a positive constant, and we used the fact that the function ¢ — ¢¢logt is bounded on (0, 1].

Using this very same fact again we get:

Vs € (0,1], [pn(s)] ™" log(wn(s)llw(pn(s))| < K max(s™*"%,1)

and the right-hand side defines an integrable function with respect to the measure dg(-), so that by the

dominated convergence theorem:

/0 ()] Tog(on(5))(pn(s))dg(s) — / 5~ log(s)w(s)dg(s)| — 0. (5)

Combine (4) and (5) to complete the proof of (ii). [

The second lemma collects an inequality we shall use in the proof of Lemma 3 below.



Lemma 2. Pick a >0 and x, y > 0 such that x <y. Then there is a positive constant C,, such that
0<y® —2%<Cuy® 'y —x).
Proof of Lemma 2. When «a > 1, the result is a consequence of the mean value theorem:

y* —a® < sup {at* Y} (y — ) = ay® " (y — x).
t€fz,y]

In the case o < 1, then for any positive integer m we have by multiplying by conjugates:

m—1 m—1
ya % = (y2m’a _ xT”a) H [$2po¢ + yQ”a:I < (y2ma _ x2mo¢> H y2pa
p=0 p=0

so that

yoc o< y—(2m—1)a <y2ma _ x2mo¢) )
Let then m be so large that 2"« > 1 and use once again the mean value theorem to get
yu —x* < 2may—(2m—1)ozy2ma—1(y _ (E) _ 2maya—1(y o x)

which is the result. [ |

In all what follows, we let 3, — 1 and t,, — 1 be such that n(1 —3,) — oo and (1 —¢,)/(1 — 8,) — 0.
Let (1) be a sequence of functions such that for all n, ¢, € F(fn,tn) and (¢,) be the sequence of
functions defined as

1- ¢n(5)

pnls) = 2.

]-_ﬁn

It is straightforward to show, using
Vs € [0, 1]7 wn(s) > ¢n(1) =B, and 0<1— (1 - /Bn)s - ¢n(3) <1—t,,

that
1—t,
1- ﬁn

The third lemma essentially shows that the full extreme Wang DRM R, g, (X?), obtained for ¢, = 1,

Vs € [0,1], s < ¢p(s) < min <1,s + ) and thus ¢, (s) = s as n — co. (6)

is equivalent to its modified version

1
Ry, (X5 00) = [ a0 va(5)°dg(s)
0
and gives a bound for the remainder.

Lemma 3. Let g be a distortion function on [0,1], a > 0 and (¢,,) be a sequence of functions such that

tn € F(Bn,tn) for all n.



(i) If U is regularly varying with index v > 0 and there is ) > 0 such that

1
/ sT T Ndg(s) < o0
0

then we have that:

Ry 5, (Xa?wn) - lS—a"/ s o
A = a0 o)

(ii) If furthermore condition Ca(v,p, A) is satisfied and \/n(1 — B,)A((1 — B,)"!) — X € R then
provided

1
/ s 26 (s) < o0
0
for some 1 > 0, we have that for any € € (0, min(1/2,7)):

Rgan (Xa7 d]n)

1 —av (s a\ Lg=rp 1
Ud[1—Ba"Y) /os dg()+m/o P
0 {1%]1/%8 P
1_671 \/n(l_ﬂn) '

Proof of Lemma 3. Let £ =n(1 — 3,,) so that k — oo, k/n — 0 and ¢,, can be rewritten as

s~ dg(s)

+

(Pn(s) = (1 - ¢n(3))

>3

The first statement is proven by using (6) and applying Lemma 1 (i):

Ryp (X%50n) _ [ Ua/bpn(9)) 0 1 gl s o
Ua([l—ﬁn}—l)_/o Oo(nky 290 /0 dg(s)(1 +o(1)). (7)

To show the second statement, use (1) and (7) together to get:

By (X500 [ N D e AT
et [ (- s LIS g

1
- (Baql ™ [ [ms)w”"dg(s)) .
Lemma 1 with f = w =1 entails

Ryp, (X5 ¢n) s - 18“”dg(s) +o0 <1> . (8)

1 —— a\ 1
Ua([1 = Bn]™) /0 [on ()] dg(s) % /n(l = Bn) /0 P V(1 = B,)

We focus on the first integral on the right-hand side of this equality. Write

S/O ([pn(8)]*7 = 8°7) [pn(s)] ™7 s™Vdg(s).

/ Lon()]d(s) — / e dg(s)

By Lemma 2, there is a positive constant C' such that

Vs € (0,1), [pn(s)]"7 = 57 < Clion(s)]"" ™ (#n(s) = 5).



Consequently,

! —ay _ ! g™y s ' WH(S) — ss—a'y s
[ tentondgts) = [ g < 0 [ EERS g,

Finally, pick € € (0,min(1/2,7)) and notice that since
on(s) —s 11—ty

0< <1 and 0< p,(s)—s<
= Te® S sl me S50
we have: . Lot
a2 _ [eule) o ‘ (k) e
Vs € [0, 1], < < n(Ss .
[0,1] on(5) on(5) 15, [on(s)]
Therefore
1 1 1_¢ 1/2+¢
[t oans - [ < o (37T [ o)
0 0 n 0
1_ tn 1/24¢
- 0 ([1 )
by the dominated convergence theorem. Combining (8) and (9) completes the proof. [ |

The fourth lemma is the key element for the proof of our main result. It shows first that the study of

the consistency of any empirical counterpart

1 1
Ry g (X 10) = / (@ 0 tn(s))"dg(s) = / X2 1 (s 9(5)

of Ry, (X% 1,) reduces to that of a proper trimmed/winsorised estimator, and it then examines
the asymptotic behaviour of some weighted integrals of the empirical modified tail quantile process

5+ Xp— |n(1—tn(s))],n- For this result, define ky = nt,, and k = n(1 — 3,).

Lemma 4. Assume that condition Co(v, p, A) is satisfied. Let (1) be a sequence of functions such that
U € F(Bn,tn) for alln and

L—9Yn(s) n
-5, E(l — Yn(s)).

(i) Let a >0 and g be a distortion function. Assume that for some n > 0:

1
/ sTTdg(s) < 0.
0

Then there is a sequence of functions (V,,) with ¥,, € F(min(t,,1 —1/n), B,) for all n and:

Ry, (X%5n) _ Ryyp, (X% W,)
Ua(n/k) Ua(n/k)

(ii) Let further f be a Borel measurable regqularly varying function with index b < avy. Pick 6 €

on(s) =

+ O]P(l).

(0,ay —b+n), and set

f g,a, (S f n/k@n <Xg_|_k§0n(3”7n

fn/k) Ua(n/k)
Ifn—k >1 and \/EA(n/k:) = 0O(1) then I,(f,g,a,6) — 0

- [son<s>]-‘”) lon ()17 *dg(s).



, fa be Borel measurable regularly varying functions with respective

(#ii) Let now ay,...,aq >0, f1,...
indices b; < ajy and g1,..., g4 be distortion functions. Assume that for some n > 0:

1
vVie{l,...,d}, / 5‘“-77_1/2_’7dgj(s) < oo.
0
Pick 01, ...,04 € R such that §; € (0,a;y —b; +n). If VEA(n/k) — X € R then
(VEL.(f5, 95,05, 0))1<j<a — N (AC, %)

with C being the column vector having j—th entry

and X being the d X d matriz having (i,j)—th entry

Y= aiaj’yZ/ min(s,t)sfbi*éi*ltfbff‘;j71dgi(5)dgj(t).
[0,1]2

Proof of Lemma 4. We start by the proof of (i). If ¢, <1—1/n, one can take ¥,, = 1), and there is
nothing to show. If ¢, > 1 — 1/n, define ¥,,(s) = min(¢,(s),1 — 1/n) and set
= X n(1=w,(s)),n)49(8).

~

A :R"’ﬁ"(Xa?"/’")_Rgﬁn(Xa§‘I’n): ! /I(Xa
! Ua(n/k) Ta(nyy J, nln(=sn))n

For any n, ¥, (s) is clearly Borel measurable, nonincreasing and takes its values in [0, 1]. Moreover

Vs €[0,1], ¥n(s) <1—(1—05,)s
= Vse[0,1], U,(s) =min(¢,(s),1 —1/n) <1—(1-5,)s. (10)

Define now ¢, =1 — 1/n: then ¢, <t,, which entails

VSE[Oal]’ 1_(1_ﬁn)8_(1_t;z)Sl_(l_ﬁn)s_(l_tn)gwn( )

Moreover:
Vs€[0,1], 1—(1—B)s—(1—t,)<t,=1-1/n.

These last two chains of inequalities show that

Vs € [Ov 1]7 1- (1 - ﬂn)s - (1 - t;“b) < lIjn(s)'

Combining (10) and (11), we get ¥,, € F(t,, Bn) = F(min(t,,1 —1/n),8,). Let now

Vs €[0,1], 0,(s) = %(1 — ,y(s)) = max(n(s), 1/k)
so that
1 1
A" = W/O (Xn—l_kapn(s)J,n - Xn—\_kén(s)],n)dg(s)



Because ks < kg, (s) we clearly have

1 1
A, < W/o( ksl — X koo (s)],n)49(8)

1 /1
= IT ( Z— max(s ) |,n f;— 00, (s n)dg(s)
Ua(n/%) J [k max(s,1/28) ;0 ~ X (50n(s)),

Set finally ., (s) = max(s, 1/2k); it is then enough to show that

1 ! @ a P
m/o (X Legin ()]0 — Xn— kb (5)),n)d9(8) — 0. (12)

The pivotal idea is to apply Theorem 2.4.8 in de Haan and Ferreira (2006): we may find a Borel

measurable function B, which has constant sign and is asymptotically equivalent to aA at infinity such

that
s@H/24n |/ <XZUCSJ’" — s_”“'y) —ays T, (s5) — \/EBa(n/k)s_’”S_p_l‘ 0 (13)
Ua(n/k) p
uniformly in s € (0, 1], where W,, is an appropriate sequence of standard Brownian motions, or equiva-
lently .
M =5 (1 + %a’ysilwn(s) + BAn/k:)% + %871/2777 o]p(l))

with the op(1) being uniform in s € (0, 1]. Replacing n—|ks| by first n— | kun(s) | and then n—| k6, (s)],
this yields

X k()i _ . - [1n(5)] 7 = 1
Sl (9] (14 a9 W () + By L2
+ el ()] o (1) (14)
and
Ko lhon@) ) _ rp oyiman L o (a1 s oy n()] 77 =1
St (g, ] (14 an 8, ] W05 + By P
+ (] 0n (1), (15)
We first work on the remainder terms. We have
max s)|~1/2 —1/2
%[‘un(s)]fa'yfl/2fn — [ (1/\2/‘% )] [max(1/2k, S)]fa'yfn < %Sawn
= s 7T x0(1)
where the O(1) is uniform in s € [0,1]. Thus
7 [ e ag(s) = o). (16)

A similar result holds with u,(s) replaced by 6,,(s) since

Vs € [0,1], 0,(s) = max(pn(s),1/k) > max(s,1/k) > max(s, 1/2k) = un(s).



Now, for any s € (0,1] and « > 0,

[[n ()] = [0n ()] = (100 ()] = [ ($)]*)[1n ()] [On ()]

A consequence of this inequality is, by Lemma 2,

[ ()] = [0n(s)] 7] < Calfn(5)] 71 (On(5) = prn(s))l1en ()]~

= Ca 1—““(5; [ (5)] 7 (17)
fu(s)

where C,, is a positive constant. Since ¢, (s) — s pointwise on [0, 1] and

_ pn(s)  max(pn(s),1/k) —max(s,1/2k)
! On(s) max(pn(s),1/k) =1, (18)

the function on the left-hand side of (17) converges pointwise to 0 on (0, 1] and is bounded by a multiple

of s~% on this interval. Thus

/0 ([a ()] =777 = [Ba(s)] =" ")dg(s) = 0 (19)

by the dominated convergence theorem. We shall now show that

1
% /O {1 ()7 W (12 ())dg (5) — [0 ()]~ " Wi (B (5)) bg(s) — 0. (20)

Because the W, are all standard Brownian motions, we may replace W,, by a standard Brownian motion

W to show this weak convergence. For any s € [0, 1]:
|1 ()]~ W (i () = [0 ()]~ W (0 ()|
< [l ()] = [0n ()] W (i (5))] 4 [0 ()] W (1 () = W (O (5))]

The first term on the right-hand side is controlled using (17), the inequality p,(s) > 1/2k and the fact
that, by the law of the iterated logarithm, s~1/2*7WW (s) is uniformly stochastically bounded on (0, 1]:

()] B ()]~ [W (1 ()]
< ()7 (1 - ’;())) (D (9127 (o ()] ()77 O(1)
,un(s) —ay—n
< VE(1- B e 0n() )

where the Op(1) term is uniform in s € (0, 1]. To control the second term, combine the (1 —n)/2—local
Holder continuity of the standard Brownian motion, which translates to Holder continuity on the
compact interval [0, 1], with the inequality 6, (s) > p,(s) > 1/2k and inequality (18):
[0n ()] W (1 () = W(0n(s))] < [0n(8)] 7 Hpan(s) — Gn(s)|(1_")/2 Op(1)
(1=n)/2
k=729, (s)] 727" (1 _ Mn(3)> 05 (1)

O (s)
< K10, ()] Op(1) (22)

IN



where again the Op(1) term is uniform in s € (0,1]. Combining (21) and (22) entails

|1 ()] W (i (5)) = [0 ()] =" W (0 ()|

< [ﬁ (1—{;:5))) i ()77 4 KO=/2(g, (]| Op (1), (23)

By (18), the sequence of functions 1 — u,,/6,, converges pointwise to 0 on (0, 1); use then (18) and (23)

together with the dominated convergence theorem to obtain (20). Finally, recall that Bg(n/k) =
O(1/vk) so that

1 - _
Bato/8) [ G P2 =) 0 (29

by the dominated convergence theorem again, with an analogue result for u, replaced by 6,,. Combin-

ing (14), (15), (16), (19), (20) and (24) completes the proof of (12) and thus of the first statement.

We proceed with the proof of point (ii). Let ¢’ € (0,1/2) be such that § + 2¢’ < n. From Lemma 1 in
El Methni and Stupfler (2017), U, satisfies condition Cs(av, p,aA). By (14) with n replaced by &’ and

tin(s) replaced by ¢n(s),

I(f.g.0.0) = <n+sn+ou»( o [ D sy
with G = o [ LB s o)t
wd & = By [ LD T oty

The remainder term is controlled in the following way: notice that ¢, (s) > ¢,(0) = (n — k1)/k > 1/k
and thus, by Lemma 1 (i):

[ LetensD ity < e [ IO ey
_ o) (25)
which leads to
In(fvguav(s) :Cn+§n+O]P’(]-) (26)

Recall now that for any n, W, L W where W is a standard Brownian motion, and the random process

W has continuous sample paths and s~/ 2+8/W(8) — 0 almost surely as s — 0. Thus

' f(n/kpn(s))
R e i

by (25). Finally, we obtain, using the bound vkA(n/k) = O(1) and the fact that B, is asymptotically

m<s>]1/2“'dg<s>) ~ op(1) (27)

equivalent to aA:
f n/ kon(s

& =0z [ ey (o agt)) =0l (29



by Lemma 1. Combining (26), (27) and (28) completes the proof of the second statement.

The proof of (iii) is actually that of Lemma 3 in El Methni and Stupfler (2017) up to slight changes
essentially due to s having to be replaced by ¢y, (s) throughout, which can be handled by using Lemma 1.

We omit it for the sake of brevity. ]

Our final lemma is the key to the proof of Theorem 2(ii).

Lemma 5. Let g be a distortion function on [0,1], a > 0, (¢¥,) be a sequence of functions such that

Y € F(Bn,ytyn) for all n and

onle) = 102

(i) If 7, is a consistent estimator of v and there is 1 > 0 such that
1
/ sT g (s) < o0
0

then we have that:

Jolew(a)"dg(s) o,
fo 579dg(s)

(i) If furthermore 7, is a \/n(1 — B,)—consistent estimator of 7y, then we have that:

Jolon(@)"Tndg(s) _ | o Sy 57 log(1/s)dg(s) w( 1 )
Jo Ten(s)]—27dg(s) Jo s=ovdg(s) V(L= By)

Proof of Lemma 5. To prove the first assertion, note that ¢,(s) — s pointwise on [0,1] and

1.

[on(8)]¢7™" < 79771 g0 that by the dominated convergence theorem,

/ on(s)" T dg(s) = / ()] [W] T vag(s) By / s dg(s).

S

To show the second result, set k(z) = e” — 1 — 2 and notice that

Jo lon ()]~ dg(s) S [on ()72 Tog(on())dg(s)
Joln(s)]=7dg(s) S n(s)]a7dg(s)
o on(8)] = 5(=a(Fn — ) log(n(s)))dg(s)

+ - .
Jo lpn(s)]=7dg(s)

A Taylor inequality for the exponential function at order 2 gives |x(z)| < 22e/*! /2 and thus

= 1—a(%—7)

1
/0 [on ()] K(=a(Yn — ) log(en(s)))dg(s)

a2 1 R
< G [ oo og s len(s)] ()
< GO [ hog (105 g

10



Since fol s dg(s) < oo, it follows by the y/n(1 — 3,)—consistency of 7, that

~(7=m)
“\ V- 5y

1
A[%K@T“M*M%r”ﬁbﬂwdﬁﬂww):

and thus
Jolen(s)=dg(s) _ o fylea(s)] -mog«on(s»dg(s) ( 1 )
Tenl gy T T g\ VA=)

Note finally that ¢, (s) — s pointwise on [0, 1] and
a7 <577 and [[pa(s)] " log(pn(s))| < 5~ log(1/s) < K57

where K is a positive constant. Both right-hand sides being integrable with respect to the measures

dg, we conclude by the dominated convergence theorem that

Jolon(s)™dg(s) _ o Jy 57 log(1/s)dg(s) | <1>
Jo lpn(s)]=27dg(s) =) Jo 57dg(s) F\ V= 5w

This is the desired result. [ |

Appendix B: Proofs of the main results

Proof of Proposition 1. By definition:

REEOC0) = [ hoatt = (1= B)s)dats). -

It follows from the condition on ¢ that the function F' is necessarily continuous on an open interval

containing [¢(3), c0). The cdf of X given X € [¢(8), q(t)] is then

0 if 2 <q(B),
Fau(o) = PX < alX € fa(@)a0) = D028 it o e (). a0,
1 it = >q(t).
The related quantile function is defined by
Va € (0,1), ggi(a) :=inf{z e R|Fp(z) > a} = inf{x e R|F(x) >+ (t—p)a}

q(B+ (t = B)a)

and thus
Ry (h(XT5m)) /hoqﬁtu—sdg /hoqt— (t — B)s)dg(s). (30)

Combining (29) and (30) completes the proof. [ |

11



Proof of Proposition 2. We have:

Rﬁ%UwX»::[;ho«mmaﬁ—«l—ﬁpmm@. (31)

The function F' is continuous and increasing on an open interval containing [¢(5), c0), so that the cdf

Wins ;
of Xﬂ,t is

0 it z<q(B),
Goulw)i= ¢ BEZE it v e a(6).q0)
1 if x> q(t).

The related quantile function is defined by
Va € (0,1), Qpi(a) = inf{z € R|Gy4(z) > al.
When a < (t — 8)/(1 — B), this is
Qpt(e) =inf{z e R[F(z) > B+ (1 - Bla} = q(B+ (1 - Ba),

and if a > (t — 8)/(1 — B) then, since

Vi € [08),4(0)), Gaele) = 2P 2B o ana Gta) =1,
-3 ~1-3
we must have Qg (a) = ¢(¢). It follows that Qs .(a) = g(min(t, 8 + (1 — B)a)) and therefore
. 1 1
Ry(hCX) = [ 0o Qasll = s)dg(s) = [ hogtmin(t,1 = (1= Bo)dg(s). (32
0 0
Combining (31) and (32) completes the proof. [ |

Proof of Theorem 1. We start by proving (i). We have the equality

1
f%ﬁJX%¢w=jA-Ximmf%QMmdﬂ@-

By Lemmas 3 (i) and 4 (i),

~ ~

Rgvﬂn (Xa; wn) — ngﬁn (X(l; \I/n)
Rgp, (X9 Ryp, (X% W)

(1+o0p(1))

with ¥,,(s) = min(¢,(s), 1 —1/n), and in particular it is enough to tackle the case when n(1 —t,) > 1.
By Lemma 3 (i) again, it suffices to prove that:

~

Rgﬁn (Xaﬂ/’n) - Rg,ﬁn (Xa§¢n) P
ATEARY 0

12



Define k = n(1 — f,,), notice that k/n — 0 and write

Ry, (X% 00) — Ry, (X9 10,)

= ) =6nl69) + &) (33)
with Goa,g)= [ Velben) (Sothentein g 1707 o )] ag(s)
wnd ¢ (ao— [ Ualn/ken(s) X n—Lkw(s)J,n Ua(n/k) (o) dofs

@ talog) = [ T e (e~ (oI ) do)
where cpn(s):%(kwn(s)). (34)

By Lemma 4 (ii), {,(a,g) = op(1). We control &,(a, g) by Proposition B.1.10 in de Haan and Ferreira
(2006): since @, (s) € [s,1], we have for any ¢ € (0,n) and n large enough,

o] < o [ LoD (Dactientiin -0 o r—Sagts
b [ Dbl s,

The first-term on the right-hand side is controlled by Lemma 4 (ii), while the second integral converges to
a finite positive constant by Lemma 1 (i). Since d can be taken arbitrarily small, we get &, (a, g) = op(1)

and the proof is complete.

We now turn to the proof of the second statement. By Lemma 3 (ii),

n(1 = Bn) (W - 1) =o(1) +O< n(l—t,) [11_;1]6)

for any € € (0,min(1/2,7)). Using an assumption on the pair of sequences ((8,), (t,)), we obtain with

a suitable choice of ¢ that:

T (B )

and thus it is enough to show the convergence

Ry, 5, (X%;) :
1-8,) | 29bn’ 0] 4 Mev
TL( IB ) (jofﬁn (X‘h;l/}n) >1§J§d h ( )

or equivalently, by Lemma 3 (i),

— ggn@n(X van) - g‘]76n(Xaj;¢n)
n(l—5,) ( Ua, (L= Ba] ™)

) —Ly N(0, M) (35)
1<5<d
where M is the d x d matrix with (4, j)—th entry

M, ; = aiaj72/ min(s, t)s~ %797 dg; (s)dg; (t).
[0,1]2

13



To this end, we use equation (33):

E. X%, —Rg, " X%y,
V n(l — 671) gjﬁn( Uai[f — ﬁn]ﬁﬁl)( w ) = \/%Cn(ajvgj) + \/%gn(ajagj)'

By Lemma 4 (iii):
(ViGnlazg))) =5 N(AC.M) (36)

1<j<n

where C' is the column vector whose j—th entry is

C; = aj/ i s7%7dg;(s).
0 P

To examine the convergence of &; ,,, we note that according to (1), there exist Borel measurable functions
Bg,,...,Ba,, respectively asymptotically equivalent to a1 A;,...,aqAs and having constant sign, such

that for any § > 0:

Vs € (0,1],

1 Ua, (n/k) ~ 48P =1 e
: — 5% ) — 5% < 550N TP—0
Ba, (n/ks) <Uaj(n/ks) ° > P (37)

for n sufficiently large. Replacing s by ¢, (s) makes us consider the following decomposition of ; ,:

Eimlaz,g5) = €5 (aj.9;) + €7 (az,97) (38)
with
L U, (n/kon(s)) X2 lkgn(s)),m o len(s)) -1
e _ j L (s)], a; ]
fjm (CLJ ’ g]) - /0 Uaj (’I’L/k’) Baj (n/kwn(s)) Uaj (L:L/k) [SOTL(S)] 7 P dg] (5)7

a

5 /01 Uaj (n/k<pn(s)) ‘Baj (n/kcpn(s))\ Xn]— Lken(s)],m [@n(s)]aj’YJrP*&dgj (5)

CI.
|§j,n( ]agj)| Uaj(n/k) Uaj(n/k)

IN

Here the bound on ffg(aj, g;) holds for any § € (0,7) when n is large enough. Writing

X% X%
n—lken(s)]n aY — 1 n—|kon(s)],n o —a;y a;y
Ua,j ('I’L/k/’) [cpn(s)] + ( Uaj (Tl/k’) [SDTL(S)] > [SDTL(S)] )

we get by Lemma 4 (ii):

earg) = [ s 2 By () =g () + 2B (/)

Applying Lemma 1 with f = U,,|B,;| and using the convergence \/EB%. (n/k) — ajA, we get

—p

1
Vg aas.g;) = VEBa,(n/k) /O s‘“”l_ps dg;(s) + op(1)

= 7aj)\/0 s 5 5 dg;(s) + op(l) = —AC; + op(1) (39)

since B, is equivalent to a;A. Besides, the ideas used to control §§},3(aj, g;) yield for n large enough:

VEER) (az,95)

1 1
< 5aj|>\|/ s7%77%dg; (s) + op(1) < 5aj|/\|/ 5747 dg;(s) + op(1)
0 0
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which, since § can be taken arbitrarily small, entails

VRE (0,99)| = 02 (1). (40)
Combining (38), (39) and (40) entails
P
(VEginlas00)),_ = =2C. (41)
Combine finally (33), (36) and (41) to obtain (35): the proof is complete. [ |

Proof of Theorem 2. The first assertion is a direct consequence of Theorem 1(i) and of Lemma 5(i).

To show the second result, write

D a; L—— 1 —aj 1 —a;5

By, (XWit0) _ Jys~dgs(s)  Jjlon(s) " dgy(s)  Jy s~ dgy(s)

3 . = v 1 S T :

Ry, 6,(X%:¢n)  [olon(s)]77dg;(s) [y len(s)]~%mdg;(s) [y s=%7dg;(s)
We first work with the first factor on the right-hand side. Writing

1 _q 1 s a
fo s~%7dg;(s) _ fo [(1 = Bn)s] ﬂdgj(s) [(1=8n)] ™
Jo ()l =e7dg; (s) (1= B fo ~ Bu)pn(s)]7%57dg; (s)

Ry, (V) (1B
[(1 - Bn)]iaﬂ jo,ﬁn (Yaj ) wn)

where Y has a Pareto distribution with tail index «, and applying Lemma 3(ii) twice, we obtain

fol S*aﬂdgj(s) 140 (1) .
Jo [on ()] 7257dg; (s) (1= Bn)

To control the second and third terms, we apply Lemma 5(ii) to each term successively to get

Jolpn(s)]=*dg;(s)  Jy 5~ dgy(s) _ 1+0P< : )
Jo Ten(s)] aﬂndgm Ji s77dg;(s) n(l = Bn)

Combining these two results entails

Ryy5,(X9300) (1) |
jovﬁn (Xaj;ﬂ}n) n(l - /6n>

Apply Theorem 1(ii) to complete the proof. [ ]

Proof of Theorem 3. We start by writing:

Ry o (X550n) _ (1 - ﬁn)“m” Ry, 5, (X"30n) | Ry, (X%) (1 - /3)
Ry, 5,(X5) ~ \1-34, Ry, 5, (X%) " Ry, (X9) \1- 34,

(42)

95 ,0n
which is the basic step for our proof. Taking logarithms and applying Lemma 4 of El Methni and
Stupfler (2017) with Y = X% we get

jo, (Xa] ) 1/}77) B ,\ 1— ﬂn Egj,ﬁn (Xa’ﬂﬁn) 1
log (RQJ(X“J)> —w(%—v)log(l_an) + log (W +0 Noealk
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A use of Theorem 1(ii), together with the delta-method, entails

EZ,% (X% 51hn) N 1-8, 1
log (W) = aj('Yn *’Y)log (1 — (5n) + Op <m> .

The hypothesis on 7,, and a Taylor expansion of the exponential function now make it clear that

W(U=Fn)  (Bys (X500 _
logul—ﬂn]/u—an])( Ry, 5. (X%) —1>—aj§<1+0u»<1>>

which completes the proof. [ |

n

Appendix C: Additional simulation results

In this Appendix we examine some simulation results in the case of a sample size n = 100. We work
using the methodology described in Section 4 of the main paper: in particular, we set § = 0.99 = 1—n 1.
The only modification is that the window parameter in the choice of the trimming/winsorising order ¢ is
now hs = 0.03. This is needed because we should have hy > 1/n = 0.01 in this case, see the description

of the choice procedure for ¢ on pages 21-22 of the main article.

Appendix C.1: Moderately heavy tails

Results for the case of moderately heavy tails are given in Figures 1 and 2. In the case of extreme TVaR
estimation, the conclusions are similar to those reached in the case n = 1000: for |p| > 1, the bias and
MSE of our CTrim-PL and CWins-PL estimators are comparable to those of the full PL estimator,
indicating that the correction factor works as expected. When p is closer to 0, the performance of the
CTrim-PL and CWins-PL estimators deteriorates relatively to the PL estimator. Note though that in
the case p = —2/3 and n = 100, both bias and MSE of the CTrim-PL and CWins-PL estimators are
higher than those of the PL estimator, while when n increases to 1000, the MSEs of the CTrim-PL and
CWins-PL estimators become lower than the MSE of the PL estimator and the gap in terms of bias
becomes much narrower (see Section 4.1 of the main article). In other words, the suggested estimators
first catch up with and then perform better than the PL estimator as the sample size grows. This
can also be observed when the estimation of the extreme PH risk measure is considered: for a sample
size n = 100, the proposed estimators are still much better than the PL estimator in terms of bias
when |p| > 1, while being poorer in terms of MSE. When the sample size increases, the MSEs of our
estimators actually become appreciably lower than the MSE of the PL estimator, and the relative gap
in performance between the CTrim-PL and CWins-PL estimators and the PL estimator reduces sharply

in a case with a lower |p|.

These conclusions for the low sample size n = 100 could have been expected from the way the proposed

estimators are constructed. When the sample size is low, the correction factors used in the CTrim-PL

16



and CWins-PL estimators have to reconstruct a bigger proportion of the information missing about the
right tail of the underlying distribution — impacting performance in terms of bias — while at the same
time being built on a sample a lot smaller and therefore being much more variable than in the case
n = 1000 — thus increasing the MSE. To put it differently, the deletion of even a handful of top order
statistics in the case n = 100 is much more problematic in terms of loss of information, and therefore
in terms of statistical efficiency, than the deletion of this same number of order statistics in the case
n = 1000. This effect is of course amplified as |p| decreases, since for small |p| only the very top order
statistics, which are precisely those targeted by the trimming/winsorising scheme, can bring meaningful
information about the unknown right tail of the variable of interest. This is why, for smaller samples
and a moderate value of v, we would advise to assess the suitability of our estimators on a case-by-case
basis, all the more so when a challenging Wang DRM such as the PH risk measure is considered. In
particular, in a situation where (i) the tail appears to be moderately heavy, (ii) the sample size is low
and (iii) there is no specific indication of unreasonably high values in the sample, then one might simply

use the basic PL estimator in place of the CTrim-PL or CWins-PL estimator.
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Appendix C.2: Very heavy tails

Results in the challenging case of very heavy tails are given in Figures 3 and 4. The finite-sample
performance of the CTrim-PL and CWins-PL estimators when estimating the TVaR in typical cases is
somewhat disappointing relatively to the performance of the full PL estimator; in that case, just as in
the moderately heavy tails context, the CTrim-PL and CWins-PL estimators catch up with (and then
perform better than, for |p| > 1) the PL estimator as the sample size grows, see Section 4.2 in the main
paper. By contrast, the conclusion reached in the case of moderately heavy tails for the estimation
of the PH risk measure stays true: the CTrim-PL and CWins-PL estimators surprisingly have a lower
bias than the PL estimator when |p| > 1. An important improvement can appear on atypical cases: in
the example of TVaR estimation, the CTrim-PL and CWins-PL estimators more than halve the bias
overall in the case of the Fréchet distribution and can reduce it by more than 75% in the case of the Burr
distribution with p = —2; the improvement is less clear for lower values of |p| and for this small sample
size, although the CTrim-PL and CWins-PL seem to outperform the PL estimator for large values of ~.
In the case of the estimation of the extreme PH risk measure, the CTrim-PL and CWins-PL reduce the
bias by roughly a third overall in the Fréchet case and by a half overall in the Burr case with p = —2.
Again, the performance of the CTrim-PL and CWins-PL estimators deteriorates with respect to that
of the PL estimator when |p| decreases, for the reasons we explained at the end of Appendix C.1. We
note in particular that in all the conditioned cases considered, the performance of the CTrim-PL and
CWins-PL improves sharply, relatively to the PL estimator, when a larger sample size is considered,

see the lower panels of Figures 3 and 4 in the main article.

As a conclusion from this simulation study, it appears that the proposed CTrim-PL and CWins-PL can
still bring a significant improvement overall relatively to the PL estimator in the most difficult cases
when + is large and the top order statistics have very high values, even for the low sample size n = 100.
The results therefore suggest that our estimators have practical value in atypical cases, even for small
sample sizes. Let us finally reiterate that, for such a low sample size and as in the previous case of
moderately heavy tails, our simulation study indicates that the suitability of our estimators should be
decided case by case: in particular, if there is no evidence of extremely high values in the sample, then

one might simply decide to use the basic PL estimator instead.
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