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Least-Squares Solution of Equations of Motion Under Inconsistent Constraints

Udwadia and Kalaba have obtained explicit equations for the motion of discrete mechanical systems under consistent holonomic or nonholonomic constraints. Using the extremal property of the Moore-Penrose pseudoinverse, a direct proof now shows that the UK equations also determine the least-squares solution for motion under inconsistent constraints.

F. E. Udwadia and R. E. Kalaba [START_REF] Udwadia | A new perspective on constrained motion[END_REF][START_REF] Udwadia | A New Perspective on Constrained Motion[END_REF] have derived equations of motion for mechanical systems under general constraints. Their equations are remarkable because they apply even to nonholonomic constraints. According to Herbert Goldstein [5, p. 16], " ... the more vicious cases of nonholonomic constraint must be tackled individually, and consequently in the development of the more formal aspects of classical mechanics it is almost invariably assumed that any constraint, if present, is holonomic."

As an application of linear algebra, the Udwadia-Kalaba equations are interesting because they are easily obtained from the Moore-Penrose pseudoinverse [START_REF] Moore | On the reciprocal of the general algebraic matrix, Abstract[END_REF][START_REF] Penrose | A generalized inverse of matrices[END_REF]. The present paper extends the Udwadia-Kalaba results to systems with complex coordinates and to systems with inconsistent constraints for which a least-squares solution is desired.

If B is any m x n matrix with complex components, the Moore-Penrose pseudoinverse may be defined as the n x m matrix B+ such that, for all given vectors g E em, the unique vector w of minimum Euclidian norm II w II that minimizes the error norm IIBw-gil is w = B+g. The pseudoinverse B+ is easily obtained from the singular-value decomposition of B; see, e.g., Golub and Van Loan [6, p. 139].

The basic references in mechanics include papers by d'Alembert [START_REF] Franklin | Traite de Dynamique[END_REF], Lagrange [START_REF] Lagrange | Mecanique Analytique[END_REF], Gauss [START_REF] Gauss | Uber ein neues allgemeines Grundgesatz der Mechanik[END_REF], Gibbs [START_REF] Gibbs | On the fundamental formulae of dynamics, A mer[END_REF], and Appell [START_REF] Appell | Sur une forme gewfrale des equations de Ia dynamique[END_REF]. See also Pars [START_REF] Pars | A Treatise on Analytical Dynamics[END_REF] and Neimark and Fufaev [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF]. The following purely algebraic discussion can be applied to mechanics by setting
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x ( t) = the unknown acceleration vector, M(x, x, t) the given n x n positive-definite mass matrix, f(x, x, t) =the vector of applied forces, A(x, x, t) =a given m x n matrix (no assumption is made about the rank of A), b(x, x, t) =a given vector, the (possibly redundant or inconsistent) system of of constraints, r = r (X' X' t) = the unknown vector of internal forces.

Holonomic constraints have the form [5, p. 12] hi(x(t), t) = 0 (i=1, ... ,m), where x( t) is the vector of position coordinates. A virtual displacement 8x satisfies the equations These constraints cannot be put into holonomic form.

n 8h ""'-' 8x = 0 L..
In general, differentiation of the constraint equations with respect to time produces a linear system of the form Ax = b, where the matrix A and the vector b depend on x, x, and t. The extended principle of virtual work, as it appears in [START_REF] Udwadia | A new perspective on constrained motion[END_REF], now requires that v*(Mx-f)= 0 for all variations v satisfying Av = 0.

We will state three problems, and we will prove they are equivalent.

Problem 3 generalizes a minimum principle of Gauss [START_REF] Gauss | Uber ein neues allgemeines Grundgesatz der Mechanik[END_REF]. The common solution is easily obtained with the matrix pseudoinverse. 
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 1 i=1, ... ,m). D'Alembert's principle of virtual work requires that (8x)T(Mx-f) = 0 for all virtual displacements 8x, where M is the mass matrix, xis the acceleration vector, and f is the vector of applied forces. If the m constraints leave k degrees of freedom, the original coordinates x 1 , ... , Xn are replaced by k Lagrangian coordinates q 1 , ... , Qk, and one obtains the classical Lagrange equations of constrained motion[5, p. 20].N onholonomic constraints often take the form hi(x(t), x(t), t) = 0 (i=1, ... ,m)In the example of a vertical disk rolling on a horizontal plane[5, p. 15], if we define the four independent coordinates X1, x 2 , x 3 = (), x 4 =¢,we have the two nonholonomic constraints x1 -a(sin x3)

PROBLEM 1 . 1 .Problems 1 '

 111 Find column vectors z and fc such that Mz = f + r, IIAz-bll =minimum, where v*r = 0 for all v satisfying Av = 0. PROBLEM 2. Find column vectors z and r such that Mz = j + r, IIAz-bll =minimum, where fc has the form r = A*u. PROBLEM 3. Find the unique vector z that minimizes z* Mz -2 Re (f*z) for all z that minimize IIAz-bll-Then define fc = Mzf. THEOREM. Assume that M is positive definite. Then the three problems are equivalent. They each have the unique solution vectors NOTE. Udwadia and Kalaba obtained this solution in [13] assuming real data and consistent constraints Az = b. Inconsistent constraints, for which Az = b has no solution, may appear if the data A and b contain errors of measurement. PROOF. Define w, B, and g as follows:Thenllwll 2 = z*Mz-2Re(f*z) + f*M-1 j, Bwg = Az-b.Now Problem 3 takes this form: Find the vector w of minimum norm llwll that minimizes the error norm IIBw-gll• This is the minimum problem that defines the pseudoinverse s+; the unique solution vector is w = s+ g.In terms of the original unknown z, the unique solution isSetting r = Mz-j, we have the unique asserted solution vectors fc and z.To prove the three problems are equivalent, we first recall some elementary results of linear algebra. First, the matrices A* and A* A have the same range; second, the range of A* is the orthogonal complement of the null space of A; third, z minimizes IIAz-bll if and only if A* Az-A* b = 0. In brief, R(A*) = R(A* A), R(A*) = [N(A)]\ IIAz-bll =min <* A*Az-A*b=O. Hence, Problems 1, 2, and 3 may be restated as follows: PROBLEM 1'. Find z and fc such that Mz =f+r, A* Az = A*b, r E [N(A)].L, where v*fc = 0 for all v E N(A), the null space of A. PROBLEM 2'. Find z and fc such that Mz =J+r, A* Az = A*b, r E R(A*). PROBLEM 3'. Find z satisfying the constrained-minimum problem z* Mz-2Re(j*z) =min for A* Az -A* b = 0; then define fc = Mz-f. The Lagrangian of Problem 3' has the form ~z* Mz-Re (!* z)-Re[p*(A* Az-A*b)], where the 2n real Lagrange multipliers are the real and imaginary parts of the unknown vector p E en. Lagrange's variational equations are Mzj -A* Ap = 0, A*Az-A*b=O. Since M is assumed positive definite, these equations are sufficient as well as necessary for the solution z, and hence r, to Problem 3. Setting fc =A* Ap = A*u, we see that Problem 2' is equivalent to Problem 3 and 2' are the same except that the first problem requires JC to be orthogonal to N(A) where the second problem requires r to lie in R(A*). Since [N(A)].L = R(A*), the theorem is proved. •