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If the matrix A is not of full rank, there may be many solutions to the problem of minimizing [[Ax-b[[ over x. Among such vectors

x, the unique one for which [[x II is minimum is of importance in applications. This vector may be represented as x =A +b. In this paper, the functional equation technique of dynamic programming is used to find the shortest solution to the least-squares problem in a sequential fashion. The algorithm is illustrated with an example.

Introduction

Consider the problem of finding the shortest length solution to the leastsquares problem Ax~b, where A is an m x n matrix with rank r, the first r columns of which are independent, x is an n x 1 vector, and b is an m x 1 vector. Put in another way, we would like to find a vector x such that xr x is minimum among those that make Ax as close to b as possible in the sense that (Ax-b) T (Ax-b) is a minimum. As is well known, the solution to this problem is x=A+b, 1 0ur debt to the late Professor Richard Bellman is clear, and we wish to thank Professor Harriet Kagiwada for many stimulating conversations concerning least-squares problems over a long period of years.

where A+ is the Moore-Penrose generalized inverse of matrix A (Ref. [START_REF] Kalaba | Algorithms for Generalized Inverses[END_REF]. In this paper, we present an alternative approach to this shortest length leastsquares problem (Ref. 2) via dynamic programming (Ref. [START_REF] Bellman | Dynamic Programming[END_REF].

Let a; be the ith column of the matrix A, and let X; be the ith element of the vector x, i= 1, 2, ... , n. Then, the problem presented above is equivalent to finding the set of scalars, x,, x2, ... , Xn, such that jja,x, +a2x2+ • • • +anxn-bll is a minimum, and xf+x~+ • • • +x~ is as small as possible.

In Section 2, an aQ-algorithm (Ref. [START_REF] Bellman | Numerical Inversion of Laplace Transforms[END_REF]) is introduced to solve the consistent set of linear algebraic equations A,x<r>=c in a sequential fashion; here, A, is the m x r submatrix of A whose columns are a 1 , a 2 , ••• , a, ; x<r> is the r x 1 subset of vector x whose elements are x 1 , x 2 , ... , x, ; and c is an m x 1 vector. In Section 3, a PR-algorithm is introduced to find the set of values x<r>, x,+ and an aQPR-algorithm is developed to solve the original problem. Section 5 provides an example to illustrate the procedures proposed. Discussions and extensions are given in Section 6, where we see that the aQPR-algorithm is capable of handling any shortest length least-squares problems as well as providing an algorithm for calculating A+. Concluding remarks follow in Section 7.

The aQ-Aigorithm

Consider the independent problem of finding a solution to the consistent set of linear algebraic equations A,x<r>=c; here, A, is an m x r matrix with rank r, whose columns are a, , az, ... , a, ; x<r> is an r x 1 vector whose elements are x 1 , x 2 , ... , x,; and c is an m x 1 vector. We use dynamic programming to determine the values of x 1 , Xz, ... , x, sequentially.

Let fk( ck) be the smallest square of the distance between ck and I:= I a;x;, where ck is an m x 1 vector and k= 1, 2, ... , r. Then, the Bellman principle of optimality leads to the recurrence relationship k=2,3, ... ,r, /I(ci) =min (ci-a1 xi)r(ci -a I x1), XJ where, eventually, Cr=c,

k = r-1, r-2, ... , 1. Relation (2) is equivalent to /I(ci) =min (cici-2ciaixi +aia1 xi), XJ (1) (2) (3a) (3b) (4)
which is quadratic in x 1 • Therefore, the first-order condition for the minimizing value of x1 is

J( • )j8x1 =2aiaixi-2aici =0.
(5)

It follows that x1r The inequalities in (6) and (7) hold, since a1 is not the null vector. Substituting Eq. ( 6) or (7) into Eq. ( 4) gives where

!1 ( c1) = cic1-2ci(a1ai /ai a1)ci + ci(a1ai /ai a1)ci =cici-ci(aiai/aiai)ci =ci(I-aiai/aiai)ci =ciQici, (8) (9) 
From Eqs. (8) and (9), we see that the minimum cost attainable when approximating c 1 by the first column of Ar is cfQ 1 c 1 , where Q 1 is a symmetric mxm matrix.

Assuming that

Jk-I(Ck-1) =ci-IQk-ICk-1,

where Qk-1 is a positive-definite symmetric m x m matrix, we now prove that fk( ck) has the form

fk(ck) = c[Qkck,
where Qk is a symmetric m x m matrix and k= 1, 2, ... , r.

From the recurrence relation [START_REF] Kalaba | Algorithms for Generalized Inverses[END_REF], it can be seen that

fk(ck) = minfk-1( ck-akxk) =min[c[Qk-lck-2a[Qk-lckxk+ a[Qk-lakxk]. ( 10 
)

Xk

Realize that, in Eq. ( 10), the sum in the square brackets is quadratic in Xk• Therefore, the first-order condition for the minimizing value of xk is

8[ • ]/ oxk = -2a[Qk-lck + 2a[Qk-lakxk = 0. (11) 
Consequently,

The last inequality will become clear later in Eqs. (41)-(44) and Eqs. (36)- (39), from which we can prove that a[Qk-lak=aiak:;i::O. Substituting Eq. ( 12) or (13) into Eq. (10) gives where

fk( ck) = ci Qk-1 ck-2c[ Qk-1 ak x%P 1 + x%P 1 a[ Qk-1 ak x%P 1 = ciQk-lck-2c[Qk-lak(a[Qk-t!aiQk-lak)ck + c[(Qk-lakja[Qk-lak)a[Qk-lak(a[Qk-tfa[Qk-lak)ck = c[Qk-lck-c[(Qk-lakaiQk-1/a[Qk-lak)ck = c[(Qk-1-Qk-laka[Qk-J/a[Qk-lak)ck =c[Qkck, k=2,3, ... ,r. ( 14 
) (15)
Let ak=Qk-lak.

Then, Eq. ( 15) is equivalent to

Qk=Qk-1-akal/aiak> aiad=O, (16) k=2,3, ... ,r.

(

Define a 1 = a1. Let us now examine the relationship between a1, az, ... , a, and a 1 , az, ... , a,. It can be seen from Eq. ( 9) that, on the one hand, Q 1 premultiplying a vector that is a scalar multiple of a 1 (say, s1a1) yields Qls1a1 =(I -a~ai/aiaJ)sJal

(18)
on the other hand, Q 1 premultiplying a vector (say, vJ) that is orthogonal to a1 yields

Thus, we conclude that any vector premultiplied by Q 1 equals the component of that vector that is perpendicular to a 1 • Consequently, according to the definition of az implied by Eq. ( 16), az is the component of a 2 that is perpendicular to a1 or a1. That is,

Similarly, by Eqs. ( 17) and ( 9),

Qz =I -alai/aial -azai/afaz, ( 22 
)
it follows that, on the one hand, Q 2 premultiplying a vector that is a scalar multiple of a 1 (say, s 21 a1) or a scalar multiple of a 2 (say, s 22 a 2 ) yields and

Qzsz1al =(I -alai/aiaJ-azai/afaz)SzJal =s2JaJ-szJ(aJaiaJ/aiaJ) -0 Qzs22a2 =(I-a1ai /ai a1-a2ai/afa2)s22a2 = Szzaz-0-s22(a2afaz!afaz) (23) (24) 
on the other hand, Qz premultiplying a vector (say, vz) that is orthogonal to both «1 and a 2 yields

Qzvz =(I-alaf/afal -azaf/afaz)Vz =vz -0-0=vz, (25) 
for aivz=O and afvz=O.

(26)

Thus, we conclude that any vector premultiplied by Qz equals the component of that vector that is perpendicular to both «1 and «z. Consequently, based on the definition of fl3 implied by Eq. ( 16), a3 is the component of a3 that is perpendicular to both a 1 and «z. That is,

This way, it can be inferred that ak is actually the component of ak that is orthogonal to all the earlier a 1 , a 2 , ... , «k-l, and k= 1, 2, ... , r. Put in another way, for all k =I=!.

(

Furthermore, «1, a 2 , ... , a, and a1, az, ... , a, span exactly the same vector space. This is so because a 1 , a 2 , . . . , a, can be expressed by a linear combination of a 1 , a 2 , ... , «rand vice versa. That is,

a3 = a3-Uz3«2-u13a1 = a3-UzJ(az-u12a1)-u13a1 = a3-Uz3a2 + (uz3U1z-u13)a1,
where the u's are all scalars. In matrix form, we have 

The reason a[ak :;C 0 is because of the assumption that the columns of A, are independent; hence, each of them does have a component that is perpendicular to all its proceeding column vectors. This is true for all k, k= (46)

These are the simplified formulas for the optimal set of scalars Xt, Xz, ... , X,.

Notice that a 1 , az, ... , a, are independent; hence, none of them is the null vector. By assumption, the system A,x<r)=c is consistent. It follows that there 1s one and only one set of scalars x1 , x2, ... , x, that satisfy Clearly, this set of scalars x1, x 2 , ••• , x, is the shortest available one.

In short, to find the solution to the consistent system 

opt _ T ( opt)/ T Xr-1-«r-1 C-a, X, «r-l«r-1, 3. The PR-Algorithm (47a) (47b) (48a) (48b) (49a) (49b) (50) (51) 
(52)

Consider the independent problem of finding the shortest length solution to the consistent set of linear algebraic equations Ax=d; here, A is an m x n matrix of rank r having its first r columns a1 , az, ... , a, linearly independent; xis ann x 1 vector; and dis an m x 1 vector. Put in k=n-1, n-2, ... , r,

In Eq. (53), the reason for which k starts from r+ 1 is that there is one and only one set of scalars xi, x2, ... , Xr that fulfills the constraint hence, there is no freedom in choosing the scalars xi , x 2 , ••• , xk when k::;; r. Let Ar be them x r matrix whose columns are ai, a 2 , ••• , a" and let x<r> be the r x 1 vector whose elements are xi, x 2 , ••• , Xr. Since a I, a 2 , ... , a, are independent, the matrix A'{."Ar is of dimension r x r with rank r; hence, its inverse (A'{.'Ar)-I exists. Thus, the unique solution to the consistent set of linear algebraic equations where R, is an m x m symmetric matrix. Later, in Section 6, we will give an alternative formula for R, with no matrix inversion involved.

Assuming that

gk-l(dk-I) =d[-IRk-ldk-1,
where Rk-1 is an m x m positive-definite symmetric matrix, we now prove that gk( dk) has the form

gk( dk) = d[Rkdk,
where Rk is an m x m symmetric matrix and k = r + 1, r + 2, ... , n.

From the recurrence relation ( 53 (

) ( 65 
) (67) (68) (69a) (69b) 66 
Therefore, the sequence of R,, R,+ 1, . . . , Rn is now obtainable through formulas (57) and (66). The optimal values of x(rl, x,+ 1 , Xr+ 2 , ••• , Xn can be calculated via Eq. ( 55) and Eq. (67) or Eq. ( 68).

In brief, to find the shortest length solution to the consistent set of linear algebraic equations Ax=d, we use the following PR-algorithm. We carry out the sequence of calculations 

We now turn to the original least-squares problem of finding the shortest length solution to Ax~b;

here, A is an m x n matrix of rank r, having its first r columns, a I, a 2 , . . . , a" linearly independent; xis ann x 1 vector whose elements are XI, x 2 , ••• , Xn; and b is an m xI vector. The aQ and PR-algorithms can be extended and used here.

Recalling that, in carrying out the aQ-algorithm, we have also obtained ak, the component of the kth column of the matrix A, that is perpendicular to all its preceeding column vectors ai, «z, ... , «k-I and k= I, 2, ... , r. It can be inferred that the component of b that is perpendicular to all the vectors ai, az, ... , a, can be obtained by «r+I =Q,b.

(78) Since A is the augmented matrix of A, discussed in Section 3, and since each of the additional columns ar+I, a,+z, ... , an, in A, can be expressed by a certain linear combination of a1 , a 2 , . . . , a" it follows that u,+ 1 is also the component of b that is perpendicular to all the columns a1, az, ... , an. Or alternatively, bu,+ 1 is the component of b that can be expressed by a linear combination of a 1 , az, ... , an. Therefore, is a consistent set of linear algebraic equations. The problem of finding the shortest solution to the consistent system of equations Ax=b-ur+l is in the form that can be solved by the ~R-algorithm introduced in Section 4.

In summary, the general procedure (uQ~R-algorithm) proposed to find the shortest solution to the least-squares problem Ax:;;;::: b is as follows:

(i) Calculate u~> Ql, Uz, Q 2 , ... , u, Q, by Eqs. ( 47)-( 49). (ii) Calculate a,+ 1 by Eq. ( 78). Apparently, A has rank r=2. Its first two columns are independent, and its last two columns are certain linear combinations of the first two columns.

Denote the columns of A by vectors

Let

We follow the procedures prescribed in Section 4 to solve this shortest length least-squares problem.

-

1/2 1/2 1/2 -1/2] 1/2 ' 1/2 (94) (95) 
(iv) Calculate the optimal set of scalars X4, x 3 , x2, X1 by Eqs. ( 79)-(84). We have which can be verified to be correct by the elimination method or otherwise.

Discussion and Extension

The procedure prescribed in Section 4 can also be modified to handle a more general shortest length least-squares problem Ax::;:;;b, where A is an m x n matrix whose rank is unknown. The modifications include finding the rank and rearranging the columns of A so that it will have the form described in Section 1. These can be done via the aQ-algorithm. More specifically, we calculate the values of a; and Q; for all the columns of A, namely, fori= 1, 2, ... , n. If for any column/, we encounter a 1 = 0, we will move this column to the right end of A and continue. This way, after carrying out the aQ-algorithm, all the columns with a 1 :;60 are at the left, and all the columns with a 1 = 0 are at the right. The number of the columns with a 1 :;6 0 is then the rank of A.

It is also worthwhile to point out that there is an alternative way to calculate them x m matrix Rr in Eq. (57). Recall that, in Eq. ( 35 

. 'ar]

and U is an r x r nonsingular upper triangular matrix with 1 's on the main diagonal. Since (105) it follows that premultiplying both sides of Eq. ( 105) by af yields (106) Furthermore, since af az = 0, Eq. ( 105) is equivalent to 

is an alternative formula for calculating Rr. That is to say, after carrying out the aQ-algorithm, the value of R, can be directly obtained from the vectors a1, a2, ... , ar and a1, a2, ... , «r without considering the matrix inversion problem. In this sense, Eq. (125) has advantages over Eq. (57). Furthermore, in view of the fact that the aQ~R-algorithm solves the problem of finding the shortest length vector x such that II Ax-bil 2 is a minimum, we can use it to determine the jth column of A+, where A is the matrix with its first r columns being independent. This is because, when we put b = [o, ... , o, 1, o, ... , of, with the one in the jth position, the shortest length solution to IIAx-bll 2 =min, if we call it xUlop\ is the jth column of A+, since xUlopt=A +[0, ... , 0, 1, 0, ... , 0(. This way, we can obtain all the columns of A+ by letting j= 1, 2, ... , m. For a more general matrix B with rank r, we may first use the aQ algorithm to transform it into the form of A, so that B=AP,

  [aJ,az, ... ,a,]=[a 1 ,az, ... ,a,] 0 It follows that afa 2 =af<az + u12a1) = afaz +0 =afaz, afa 3 =af(a3 +uz3«z +ul3at) =afa3 +O+O=afa3, Substituting Eqs. (36)-(39) into Eq. (17) provides k=2,3, .. . ,r. Define Q 0 =1. Then, Eq. (40) holds fork= 1, 2, ... , r. More specifically, Qo=I, Qz=l -a.aflafa.-azaf/afaz, afat ;CO and afaz#O,

  another way, we want to find the set of scalars XI, x2, ... , Xn such that the assumed consistent set of linear equations aiXI +a2x2+• • • +anxn=d is satisfied and xf + x~ + • • • + x~ is minimum. Again, we use dynamic programming to solve this problem sequentially. Let gk( dk) be the value of xi+ x~ + • • • + x~ when using an optimal set of scalars XI, X2, ... , xk; here, is a consistent set of linear algebraic equations; dk is an m x I vector; and k=r, r+ 1, ... , n. Optimal is in the sense that this particular set of scalars x~o x 2 , ... , xk renders the value of xi+ x~ + • • • + x~ a minimum. Then, the Bellman principle of optimality leads to the recurrence relationship gk(dk) = min{x~ + gk-I(dkakxk) }, k = r+ 1, r+ 2, ... , n,

  in vector form, is x<r> = (A'{.'A,}-IA'{.'dr. Consequently, by definition, gr(d,) =xf+ x~+ • • • + x~=x<r>Tx(r) = d'{.' Ar[ (A'{.' Ar) -I ]r(A'{.' Ar )-I A'{.' dr = d'{.' Ar( A'{.' Ar) -l (A'{.' Ar) -l A'{.' dr.

  ), we see that, fork= r + 1, r + 2, ... , n, gk(dk) =min{x~+ gk-1(dk-akxk)} Xk Xk Since the first-order condition for the minimizing value of xk is o{ • }joxk=2(1 +a[Rk-lak)xk-2d[Rk-lak=O, we find that xkP 1 =d[Rk-lakj(l +a[Rk-1ak), or Substituting Eq. (61) or Eq. (62) into Eq. (59) givesgk(dk) = (1 + a[Rk-Iak)[x%P 1 f-2a[Rk-ldkx%P 1 +d[Rk-ldk = (1 + a[Rk-Jak)[d[Rk-Iaka[Rk-Idk/(1 + a[Rk-1adl -2d[[Rk-Iaka[Rk-J/(1 + a[Rk-lak)]dk + d[Rk-1dk = d[Rk-Jdk-d[[Rk-Iaka[Rk-J/(1 + a[Rk-Jak)]dk Rk-1-Rk-laka[Rk-J/(1 +a[Rk-lak)]dk =d[Rkdk, (63) Rk = Rk-1-Rk-lakakRk-1/(1 + aiRk-lak), Notice that the denominator, k=r+ 1, r+2, ... , n. (64) 1 +aiRk-lak#O, always holds. Let k=r+ 1, r+2, ... , n. Equation (64) is equivalent to Rk=Rk-1-pkpi/(1 +afpk), k=r+ 1, r+2, ... , n. Substituting Eq. (66) into Eq. (61) or Eq. (62) gives x%P' = dkPk/ ( 1 + aipk), or where k=n-1, n-2, ... , r.

4 .

 4 Rn=Rn-I-PnP~/(1 +a~Pn).The optimal set of scalars xi, Xz, ... , Xn is then obtained by x~pt=P~d/(1 +a~Pn), X~~I =P~-I(d-anx~P1 )/(l +a~-IPn-I), The aQPR-Procedure

  (iii) Calculate R, ~r+ 1, R,+ 1, ... , Pn-1, Rn-1, Pn by Eqs. (70)-(73). (iv) Calculate the optimal set of scalars Xt, Xz, . .. , Xn by us consider an example, in which we want to find the shortest length vector x, such that I I Ax-bll is minimum,

  ), them x r matrix Ar is factored as Ar=aU, (104) where a= [a)' az, ..

0

  premultiplying both sides of Eq. (109) by a[ and af produces u23 = afa3/afaz way, it can be shown that the elements uiJ, in the matrix U, can be obtained by the following formulas:Since o is an orthonormal matrix, we haveOT=O-l.Therefore, oTo=l and OOT =symmetric.

Rr=b

  since V is an upper-triangular and nonsingular matrix, its ordinary inverse exists. Hence, It can be seen then that(118) because the four properties of the Moore-Penrose generalized inverse are fulfilled. That is,ArA: Ar=Arl=Ar.It follows that and furthermore, gr(dr) =x(r)TX(r) =dTb(VTV)-IbTd.Comparing Eq. (124) against Eq. (58), we see that

  1, 2, ... , r.

	Substituting Eqs. (36)-(39) into Eqs. (6) and (12) provides	
	opt Xt = Ot Ct Ot Ot , TIT	afat ;CO,	(45)
	and		
	opt xk = akck akak, T I T	a[ak;CO.	

(ii) Calculate a3 by Eq. (78). We have

(iii) Calculate Rz, P 3 , R3, P4 by Eqs. ( 70)-(73). Since

Therefore,

where P is a permutation matrix. Since B+= (APt=P+ A +=PTA+, we see that the generalized inverse of B can be readily obtained by multiplying the matrix A+ by pT on the left. Thus, the aQPR-algorithm is also an algorithm for calculating the generalized inverse of any matrix.

Concluding Remarks

An algorithm based on dynamic programming has now been given for finding shortest length solutions of least-squares problems in which the matrix may be of less than full rank. It provides a sequential solution to the problem. Numerical experiments need to be carried out to test the algorithm and to compare it against alternative procedures.