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Abstract Real-Time Calculus (RTC) [37] is a framework to analyze heterogeneous,
real-time systems that process event streams of data. The streams are characterized
by pairs of curves, called arrival curves, that express upper and lower bounds on
the number of events that may arrive over any specified time interval. A well-known
limitation of RTC is that it cannot model systems with states and several works
[T, [ (Bl 1T, 18, 19 221 23, [30, 24, BT, [38] studied how to interface RTC curves
with state-based models. Doing so, while trying, for example to generate a stream of
events that satisfies some given pair of curves, we faced a causality problem [33]: it
can be the case that, after generating a finite prefix of an event stream, the generator
deadlocks, since no extension of the prefix can satisfy the curves afterwards.

This paper formally defines the problem; it states and proves algebraic results
that characterize causal pairs of curves, i.e. curves for which the problem cannot
occur. We consider the general case of infinite curve models, either discrete or con-
tinuous time and events. The paper provides an analysis on how causality issues
appear when using arrival curves and how they could be handled. It also provides
an overview of algorithms to compute causal curves in several models. These algo-
rithms compute a canonical representation of a pair of curves, which is the best pair
of curves among the curves equivalent to the ones they take as input.

1 Introduction

The increasing complexity of modern embedded systems makes their design more
and more difficult. Modeling and analysis techniques have been developed and help
taking or validating decisions about the conception of a system as early as possible
in the design process. There exist many techniques among which we can distinguish
two families. Computational approaches study fine-grain models of the system and
represent its complete behavior. The validation of the system using such a model may
involve simulation, testing and verification. As opposed, analytical techniques, such
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as Real-Time Scheduling (founded with [27]) and Real-Time Calculus [37], use purely
analytical models, based on mathematical equations that can be solved efficiently.
They usually compute quantitative information, such as worst case performances.

Both families of approaches have their advantages and drawbacks. Simulating
precisely an embedded system gives very precise results, but only for one execution,
and one instance of a system. Analytical approaches, on the other hand, provide,
e.g., worst case execution times, but only for cases that the theory can encompass.
For example, Real-Time Calculus cannot handle the notion of state in the modeling
of a system. Several studies try to combine the approaches to take the best of both
[T, 4, B, 111 18, 19, 22, 23, B0, 24, 311, 38, [36]. The work we present in this paper
fully takes its root and motivation in one of those studies, while working on the
combination of Real-Time Calculus, state-based models and abstract interpretation,
using synchronous languages [1J.

Real-Time Calculus (RTC) [37] is a framework to model and analyze heteroge-
neous system in a compositional manner. It relies on the modeling of timing prop-
erties of event streams with curves called arrival curves (and service curves, which
count available resources instead of events in a similar fashion). A component is
described with curves for its input streams and available resources and some other
curves for the outputs. Atomic RTC components, such as greedy processing compo-
nent (GPC), are usually defined as a set of equations that relates their input and
output streams. Now, given input arrival and service curves, RTC computes an ab-
straction of the behavior of the component expressed as output arrival and service
curves. Then, several components can be composed in order to model a complex RTC
system (see e.g., [26]). For instance, inputs of the first component model constraints
from the environment; the output curves of the first component can then be used
as input for the next component, and so on. The analysis of the complete system is
static, 7.e., does not need to execute the system.

Arrival curves are functions which use relative time and constrain the number
of events that can occur time intervals. Precisely, the pair of arrival curves (o, ot)
explicitly defines the lower o!(A) and upper a*(A) bounds on the number of events
that can occur in any sliding window of time of length A. For example (see Figure7
a*(2) = 3 means that at most 3 events can occur during any time interval of length
2. Arrival curves may also contain implicit constraints which can be inferred from
explicit ones. This paper studies those implicit constraints and provides algorithms
to make them explicit.

Motivation. Implicit constraints cause problems in several contexts. For simulation
purpose [21I], it is typical to produce a stream of events that satisfies some given
arrival curves using a generator of events: such generators produces streams of events
which satisfy the curves. There are multiple ways to write such generators [21], 4]
1), 18, B8] but many faced the problem of implicit constraints. For example, let us
consider a straightforward generator in discrete time. At each point in time, this
generator computes the lower and upper bounds on the number of events which are
allowed to be emitted, based on the events that were previously emitted. It then
emits an number of events picked at random between those bounds. Imagine, now,
using the curves in Figure (b), that the generator has emitted no event during the
first four time units. Then, after five time units, the generator is in a deadlock state,
since it has to emit at least 4 but at most 3 events. In other words, it may happen,
due to implicit constraints, that some upper bound becomes strictly lower than the
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Fig. 1 Implicit and explicit constraints on arrival curves

corresponding lower bound, leading the generator to deadlock. Curves exhibiting this
kind of problems are said to be non-causal.

Another case where implicit constraints are problematic is the case of formal
verification of a system with inputs and outputs characterized by arrival curves.
Such techniques usually handle stateful systems and analyze them using tools such
as model-checking for timed automata [IT], 22] 23, 24} [I8| [38], model-checking for
event count automata [31], abstract interpretation and bounded model-checking of
synchronous data-flow programs [I]. In these works, one may want to prove a prop-
erty like “If the input complies with the pair of arrival curves a;j, then the output
satisfies the pair of arrival curves ap”. But verification tools based on reachability
analysis (see e.g. [I6]) usually allow the expression of “If the input complies with
ay up to some time t, then the output complies with ap up to time t”, only. Of
course, those two properties are not equivalent and it can happen that the tools
exhibit some spurious counter-erample, namely, a counter-example which violates
the latter property while the first one is satisfied. Precisely, this would be a finite
counter-example which would violate ap without violating oy up to some time t,
but which could not be extended into an infinite execution that still satisfies ary. The
problem, here, is the same as for generator: trying to extend the execution deadlocks
due to contradictory constraints between lower and upper bounds of «ay; again the
curve is said to be non-causal.

Back to verification tools that are used to analyse stateful systems specified
with arrival curves, one may wonder, for each tool: “what is the behavior of the
tool when used with non-causal curves?” and also “does the tool output non-causal
curves?”. Actually, except [I], the papers do not answer those questions. We will see
that [22], 23] [24] [I8], B8] can not create non-causal curves while [31] could at least
in theory. Nevertheless, each of the tools would badly behave with non-causal input
curves. Getting rid of this, inside those tools, may require, in general, heavyweight
state exploration techniques. This paper gives a way to get rid of non-causal curves
before using any verification tool.

Implicit constraints on arrival curves. We distinguish two kinds of implicit
constraints that we call informally “unreachable regions” and “forbidden regions”.
The first one is a well-studied phenomenon within the Real-Time Calculus commu-
nity [25] and the second, which may produce deadlocks in generators and spurious
counter-examples in verification is the goal of this paper. Let us discover the two
kinds of implicit constraints using a pair of arrival curves (a%, a!) (see Figure [1] for
an example).
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Firstly, by splitting some time interval into smaller ones, we can get additional
constraints. As shown in Figure (a), in an interval of size A = 6, the curve says
explicitly that the lower bound on the number of events is 1, but splitting this interval
into three intervals of size 2, one can deduce a better bound, which is 3. Although
the curve explicitly specifies the bounds of(6) and a*(6) as 1 and 7, the number
of events in a window of size 6 can actually never be equal to !(6) = 1. In other
words, the actual implicit lower bound is greater than o!(6): this means that the
curve is equivalent to a tighter curve. A well-known result [25] is that the upper
(resp. lower) curve does not have this kind of implicit constraints if it is sub-additive
(resp. super-additive). The transformation of an arbitrary curve into an equivalent
sub-additive (resp. super-additive) curve making those constraints explicit is called
sub-additive closure (resp. super-additive closure). In this paper, we call the region
between the curves and its sub-additive (resp. super-additive) closure unreachable
regions (since a, e.g., generator can never visit such regions). Unreachable regions
are due to constraints of a single curve on itself, and can be computed at some point
by looking only at the past, i.e. smaller A.

The second case of implicit constraints can be found by looking at both curves
toward the future. We use again Figure (b) for an example of such a case: if no
event occurs during a time window of size 3 (this is allowed since a!(3) = 0), then the
upper curve forbids emitting more than 3 events in the next 2 units of time, while
the lower curve forces to emit at least 4. It is therefore impossible to emit no event
for 3 time units. We call the regions that contain such points forbidden regions. No
execution can cross a forbidden region without getting locked some time later, due to
some contradiction between lower and upper constraints. Borrowing the vocabulary
used in [33], we call this kind of implicit constraints causality constraints. A pair
of curves for which the beginning of any execution never prevents the execution
from continuing is called causal. Intuitively, this is the same as having no forbidden
region (but we will see that the relationship between absence of forbidden region and
causality is only a one-way implication).

Surprisingly, this question has received very little attention and to the best of our
knowledge, no transformation has been published before [2] to make these implicit
constraints explicit. One may wonder if this is a “true” problem, i.e. if such non causal
curves can be encountered in practice. Indeed, part of the answer is that they cannot
come from measurements on a real system, since curves derived from execution
or simulation of real systems are always well-formed (i.e. are sub-additive/super-
additive and causal). The common practice is to use causal curves for the inputs of
RTC models. As RTC computations preserve the causality of the curves, non-causal
curves were not considered as a problem so far. This may explain why no studies have
been published yet on the subject. Things are different when instead of using RTC
operators, one uses other tools for deriving output arrival curves, given some input
arrival curves. Those tools (e.g. model-checking of timed automata [I5] on abstracted
models, abstract interpretation of Lustre programs [16]) may compute non-causal
arrival curves, even when the input is causal. Since the output of one analysis can
be used as input for the next analysis, this non-causality can be problematic.

Additionally, non-causal curves contain implicit constraints that could be made
explicit. If the output of a computation gives the curve in Figure [I] then making
the implicit constraints explicit gives tighter bounds (for example, a tighter bound
on the number of events in a window of size 4). We encountered the case, when
merging the output of several computations for the same inputs [4] using different
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approximation methods. This provides several pairs of curves, each of them being
a valid over-approximation of the expected result. The basic combination of these
curves (point-wise minimum and maximum) can contain implicit constraints, and
making them explicit gives more precise results from the same analysis.
Contributions. To solve these issues, this paper formally defines the causality prob-
lem and proposes several solutions.

— We give an algebraic characterization of a causal pair of arrival curves.

— Combining this property with existing ones, we give a definition of a canonical
representation of a pair of arrival curves, which is causal and sub-additive/super-
additive. We show that it is also the tightest representation of the original pair
of curves.

— We propose a general transformation called causality closure which computes the
causal representation of an arbitrary pair of arrival curves.

We provide an overview about causality issues that can appear when using arrival
curves and how they could be handled. We also outline algorithms which compute
causality closure, dedicated to several important classes of arrival curves.

The paper is an extended version of [2] and contains all the proofs of the results.
The theory is developed for dense-time or discrete-time arrival curves on the one
hand, discrete-event or fluid-event models on the other hand. The implementation
part has been developed for discrete-time discrete-event models, since this was our
context of use [I], but it could be adapted to other contexts. Furthermore, although
all along the paper we talk about arrival curves, the reader should be convinced that
results also apply to service curves in Real-Time Calculus, and strict service curves
in Network Calculus [8].

Again, the results were published in short in [2], and they are starting to gain
acceptance in the Real-Time Calculus community. Indeed, [10] considers the problem
of conformance of a stream to an RTC specification, and relies on [2] to define whether
a finite valid sequence can be extended into an infinite valid one (finite sequences
that cannot be extended are called locking sequences). [12] proposes Finitary RTC to
solve some performance issues with traditional RTC. The authors consider causality
as a part of RTC Basics, assume the curves to be causal, and rely on it (using
Theorem [4| of this paper) in proofs of their own theorems. [5] proposes an approach
to generate random sequences of events based on RTC specifications and also refers
to [2] for the definition of causality.

However, the problem is still not well understood. [I0] detects locking sequences
using a SAT solver and [23] proposes to detect deadlocks using model-checking on
timed automata. Those methods are usually more expensive, algorithmically, than
the analytical solution proposed in this paper. [5] defines an algorithm to turn RTC
specifications into an automaton and prunes the states of this automaton, a priori, to
avoid forbidden states. Again, applying the causality closure algorithm proposed in
this paper would have been simpler and would have completely avoided the problem.

Now, new approaches based on [2], e.g. [12], rely on the validity of theorems they
use. Note that up to now, proofs of these theorems have not been published while the
proofs are non-trivial. The main goal of this paper is therefore to enhance the results
of [2] providing complete proofs. We provide, in addition, new pedagogic material to
help the reader to better understand our results, new experimental results and, also,
new results like Theorem [10| which does not appear in previous work.

Roadmap. Section[2]defines arrival curves and some algebraic operators; the reader
familiar with RTC may jump to Section [3] which defines causality and gives a suffi-
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cient condition to guarantee that a pair of arrival curves is causal. Section [4] extends
this result to a characterization (necessary and sufficient condition), valid for a wide
class of curves. Section [p|defines causality closure which computes the tightest causal
representation of a pair of arrival curves. Section [f] provides a discussion about
causality issues and their solutions. Section [7] gives an overview on how to compute
causality closure for many classes of curves used in RTC applications. Algorithms
are evaluated experimentally in Section [§

2 Arrival Curves

Usually in RTC, arrival curves are given by pairs and express upper and lower bounds
on the number of events that can occur in any window of time. This section defines
arrival curves. It first gives the context — the study allows either discrete or con-
tinuous time and discrete or fluid event counts — and recalls some basic notions of
Min/Max-plus algebra that will be used later in the paper.

2.1 Basic Notions in Min-plus and Max-plus Algebra

Notations: R denotes the set of non-negative real numbers, RT & R U {o0}, N

the set of natural numbers and N = N U {o0}.

To define arrival curves, we use functions that measure the number of events
occurring before a given time. We assume either a discrete-event or a fluid-event
model: the number of events may be discrete (i.e. in N) or fluid (i.e. in R™); we
give bounds in AV or R+, oo being used to denote the absence of constraint on upper
bounds. Also, we allow time to be either discrete or continuous. We denote by T the
time and € the event count; 7 and &£ independently represent either A or Rt (€
is either A/ or RT). We consider functions from T to & whatever be the value of T°
and &.

Definition 1 Let f be such a function from 7 to &. f is wide-sense increasing
iff(def) Ve,y e T .2 <y = f(z) < f(y).

In the definition, < is naturally extended to £. We denote by F the set of functions
f such that f is a function from 7 to &, f is wide-sense increasing and f(0) = 0.
Frinite represents the set of functions in F restricted to functions from 7 to £. We
use the usual point-wise order on F:

def,

Definition 2 Let f,ge F, f<g < Va e T . f(x) < g(z).
We recall the usual operators ®, ® ,@, @:
Definition 3 Let f, g be functions from 7 to £ and 2 € T,

def

(f®g)(z) = telﬁl)fz]{f(ac —t)+g(t)} ((min, +) convolution)
(f@g)) = Sup ]{f(iﬂ —t)+g(t)} ((max, +) convolution)
(fog)(z)= igg{f(x +t)—g(t)} ((min, +) deconvolution)

(fOg)(z)= gg{f(a: +1t)—g(t)} ((max, +) deconvolution)
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Note that if f,g € F, (f ® ¢g) and (f®g) are in F, but (f @ g) and (f @ ¢g) may
not (since, for instance, (f @ ¢)(0) and (f @ ¢)(0) may not be equal to zero). The
following lemma gives conditions for (f © g) and (f @ g) to be in F.

Lemma 1 Let f,g be two functions. If f,g € F, then

1. fegeF; fegeF;
2. f@g and f ©g are wide-sense increasing;
3. fogeF < [f<y
4. fogeF <= g<f

Proof 1. (f @ g)(0) = infose<ol f(0 — ) + g(t)} = £(0) + 9(0) = 0; let z,y € T
such that @ <y, for all t: f(x —t) + g(t) < f(y —t) + g(¢) since f is wide-sense
increasing, this implies that f ® g(x) < f ® g(y). The proof is similar for ®.

2. Let ,y € T such that z <y, then for all t > 0: f(z+1¢t) —g(t) < f(y+1t) —g(t)
since f is wide-sense increasing and this implies that f © g(x) < f @ g(y). The
proof is exactly the same to prove that f @ g(z) < f@g(y).

3. f@g(0) =sup;»o{f(t) —g(t)}. Note that f < g <= sup,>o{f(t) —g(t)} <0.
If f <g,as f(0) =g(0) =0, we have f @ g(0) = 0. Conversely, if f ©® g(0) = 0,
this means that sup,~o{f(¢t) — g(t)} <0, hence f < g.

4. The proof for @ is the same as for @.

O

We now give the formal definition of the intuitive notion of “unreachable regions”
(see Figure . Curves have no “unreachable region” if they are sub-additive/super-
additive:

Definition 4 Let f € F, f is sub-additive iff(def) Vs,t € T . f(t+s) < f(t) + f(s).
Well-known results (see [25] for example) characterize sub-additivity:

1. f € Fand f sub-additive <= fQf=f

2. Let f € F. Among all the sub-additive functions g € F that are smaller than f
(g < f) there exists an upper bound called the sub-additive closure of f given
by:

7 def . n
f= nfenf
where @' f = f,@" "1 f = f @ (@"f).

Definition 5 Let f € F, f is super-additive iff(def) Vs, t € T . f(t+s) > f(t)+ f(s).
Again, well-known results (see [25] for example) characterize super-additivity:

1. f € F and f super-additive <— f®@f=7f

2. Let f € F. Among all the super-additive functions g € F that are greater than
f (g > f) there exists a lower bound called the super-additive closure of f given
by:

f=sup @S
- n>1
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2.2 Arrival Curves
2.2.1 Definition of Arrival Curves

Arrival curves define lower and upper bounds on the number of events that can occur
in a window of time. It defines a set of event streams that satisfy all the bounds: as
usual, we represent such an event stream with a cumulative curve.

Definition 6 A cumulative curve of an event stream is a curve R € Fyipize such
that R(t) represents the (finite) number of events that occur in the interval of time
[0, t].

Definition 7 A pair of arrival curves is a pair of functions (o, ozl) in F X Frinite,
such that o! < a®.

Equivalently, a pair of arrival curves is a pair of positive wide-sense increasing
functions (a*,a!) such that o!(0) = a*(0) = 0, o' < a® and Vt > 0. ol(t) # o0
(since o' is a lower bound, it cannot have an infinite value).

Let R be a cumulative curve and (a¥,a') a pair of arrival curves. R satisfies
(%, al) (we also use “R complies with (a*,at)”), noted R |= (a, o), iff(def)

Ve e T,¥6 €T, R(z+9d)—R(z) € [ (5),a"(s)]

We say that an arrival curve (a*, o!) is satisfiable iff(def) there exists a cumulative
curve R that satisfies (a%, al).

Definition 8 Let (a*, o) and (a*, a!’) be two arrival curves. (a*, a!) and (a®, o’
are equivalent iff(def) for all cumulative curves R € Finite,

RE (a*d) < RE (¥, d)

2.2.2 Sub-additivity and Super-additivity

As shown in the introduction, a pair of arrival curves can have unreachable regions.
A curve with no unreachable regions is sub-additive if it is an upper curve a*, and
super-additive if it is a lower curve o!. When the curve has unreachable regions, it
is possible to remove them, using the associated closure operation.

Definition 9 A pair of arrival curves (a%, ot) is Sub-Additive-Super-Additive (SA-
SA for short) iff(def) a* is sub-additive and o super-additive.
We denote by (o, a') the SA-SA closure of (a¥,at).

Lemma 2 Let (a*,a!) be a pair of arrival curves. (a®,a!) is a SA-SA pair of arrival
curves equivalent to (a%,al).

Proof This is a well-known result [25],[37], and a corollary of Lemmaandpresented
below. O
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2.2.3 Arrival Curves Satisfied “Up to T”

Real-time calculus usually deals with infinite event streams and cumulative curves
which should comply with arrival curves on their entire domain 7. In this paper, we
need in addition to define that a cumulative curve satisfies a pair of arrival curves
up to a certain time T. Instead of checking event counts in any window of time, we
only check windows of time ending before this time 7. The same notion is used, for
example, in [I7].

Definition 10 Let (a“,a!) be a pair of arrival curves and R a cumulative curve.
Let T € T. R satisfies (a%, al) up to T, denoted by R <7 (a¥,al), iff(def)

YVt <T,V6<t, R(t)—R(t—20)c[a(5),a"()

Intuitively, this means that R did not yet violate the arrival curves at time 7. A
relationship between =<7 and }= can be simply expressed:

Lemma 3 Let R be a cumulative curve, and (a*, ol) be a pair of arrival curves. We
have:
VT €T,RE<r (@*,d)) <= R (a%a)

Proof The proof is trivial once the definition of R =<7 is expanded. a

3 Causality: Definition and Sufficient Condition

We now define the notion of causality. We consider the problem of an event stream
which is correct, w.r.t a given pair of arrival curves, up to a given time 7', but “cannot
be continued” without violating this pair of curves. This can be seen as a deadlock
of the stream, since it can neither let time elapse nor emit any additional event. A
pair of arrival curves for which this problem can never happen is called causal. We
first give a formal definition of causality and then give a (necessary and sufficient)
characterization of the definition using algebraic formulas.

3.1 Definition of Causality

Definition 11 Let (%, a!) be a pair of arrival curves.

Informally, (a*, o) is causal when for any time T, any cumulative curve R that
satisfies (%, al) up to T can be indefinitely extended into a cumulative curve R’
that also satisfies (a%, a!). Formally, (a%,al) is causal iff(def)

VT > 0,YR, RE<r (a*,ol) = 3R, R = (a*,a') AVt < T,R(t) = R'(t)

Note that if (a*, o/) is a causal pair of arrival curves then it is satisfiable. Indeed,
as a*(0) = al(0) = 0, a cumulative curve R such that R(0) = 0 satisfies (a*,al)
until 7' = 0. Using the definition, there exists a cumulative curve R’ which extends
R and satisfies the curves.

Unlike sub-additivity and super-additivity, causality is really a property on a pair
of curves. It does not make sense to say that o* alone, or o' alone, is causal. Indeed,
the only way to observe that a cumulative curve cannot be extended is to exhibit a
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contradiction between a bound from the upper curve and a bound from the lower
curve.

Some approaches use one curve only. For example, [35] [IT] use an upper bound
only; similarly, [19] works with some lower bound service curve. Such approaches do
not face the causality problem at all. However, it is a common practice in Real-Time
Calculus to manipulate pairs of curves, from one of the founding works [9] to more
recent applications (e.g. [22] [30} 23, 24}, 3T, [T0, [ 12} 17}, [36, 26] ). Including both an
upper and a lower bound increases precision of the analysis. Also, it can be part of
the specification (e.g. an event generator can be specified with both upper and lower
bounds [5] to avoid generating irrelevant traces).

Causality reveals new implicit constraints (see Figure . When curves are not
causal, there exists another pair of curves defining the same set of cumulative curves,
but with those constraints made explicit. Just like SA-SA closure computes an equiv-
alent pair of curves where the unreachable regions are made explicit, we will build
a new pair of curves where implicit constraints due to causality are made explicit.
This new pair of curves will be equivalent to the first one; it will be called causality
closure. The goal of the following results is to build properties about causality, in
order, next, to be able to characterize and then compute this causality closure.

3.2 Sufficient Conditions for Causality: Intuitions and Schema of the Results

The formal definition of a causal pair of curves enables to derive sufficient conditions
to detect whether a pair of curves is causal or not. This condition will be directly
used to build the causality closure of the curves. We first give some intuitions about
the results and explain the schema of proofs in this paragraph ; next paragraph
details theorems and their proofs.

Informally, we call forbidden regions the points between a* and o' that are reach-
able by finite cumulative curves, but for which the cumulative curves can trivially
not be extended into infinite ones.

Let us consider the curve of, and define ol informally as “a' without its for-
bidden regions”: we give here some intuition on how to compute it. o/ (Ag) is the
smallest value above a!(Ag) for which a cumulative curve R verifying V¢ € [0,T], A €
[0, Ag), R(t+ A) — R(t) > o' (A) is guaranteed to be extensible infinitely beyond T
by emitting the maximum number of events allowed by o*, without violating . This
the same as saying that if R(t+ A) — R(t) < a!"(A) for some ¢, A, then R cannot be
extended without violating either a® or a!, which means that the region below al”
is forbidden. Computing the forbidden region of a! at abscissa Ay means therefore
computing the lowest N for which a*(A) + N would not cross o (Ag 4+ A) for some
A > 0. This is equivalent to finding the supremum of N for which the curves would in-
tersect. Formally, this can be written as a!” (Ag) = sup s {a! (Ao + A) — a*(A) }:
this is deconvolution of @ a*. A similar reasoning would lead to the curve a* @ o
for the forbidden regions of a*.

This explanation is far from being a proof, but gives a piece of intuition, and
exhibits a formula using deconvolution operators @ @ . Following this intuition, we
can therefore define forbidden regions as the area between a curve a® (resp. al), and
a"@al (resp. o' @ a®). Intuitively, computing a* @ a! means “removing forbidden
regions from a*”, and computing o @ o* means “removing forbidden regions from
a!”. When o* = a*®al and of = ! @ a*, we can say that the curves have no
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ad=aoa (e
and :Z (%, al) is causal

at = a0 o

@ 7@ o
and (:al (o, al) is causal

Fig. 2 Overall view of theorems in this section

forbidden region. This is a sufficient condition for (a*, a!) being causal; it is formally
expressed in implication (e) of Figure

Next section provides a proof of this result. The intermediate results of the proof
are summarized in Figure [2] Implications (c) (Theorem [2), and (e) (Theorem [4)),
give algebraic sufficient conditions for causality. Intuitively, they state that a pair
of curves is causal if either the pair of curves (e) or it SA-SA closure (c) has no
forbidden region.

One could have expected the converse of (e), i.e. that a causal pair of arrival
curves has no forbidden region. This implication is indeed false in general, because a
causal pair of curves can have unreachable forbidden regions (see counter-example in
Section [3.3.6)). Nevertheless, the converse of (c) and the converse of (a) are true in
many cases. Actually, Section [d] proves them for a wide class of curves and conjecture
their validity in the general case.

Precisely, intermediate results of the proof (see Figure |2)) are proved in the fol-
lowing order:

(a) is given by Lemma [4] when applied to (o, at).

(b) (Theorem is based on the fact that (a®,a!) and (¥, a!) accept the same set
of cumulative curves.

(c) (Theorem [2)) is obtained by transitivity of (a) and (b).

(d) (Theorem |3) is proved using induction and continuity of deconvolution opera-
tors.

(e) (Theorem [4) is obtained by transitivity of (c¢) and (d).

3.3 Sufficient Conditions for Causality: Theorems and Proofs
3.8.1 Sufficient Condition for Causality of SA-SA Curves

The following lemma gives a sufficient condition for causality of SA-SA pairs of
curves. A strictly more general result will be given in Theorem [2| which uses this
first one in its proof. It makes the link between forbidden regions and causality: an
SA-SA pair of curves is causal if it does not have forbidden regions.
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Lemma 4 (Sufficient Condition for Causality of SA-SA Curves) Let (o, al)
be a SA-SA pair of curves. We have:

a=ad oa
and = (a!, ") is causal
at = oz“@al

Applied to (o, '), this is implication (a) on Figure

Proof Let (a*,a!) be a SA-SA pair of arrival curves such that o' = o @ a* and
a¥ = a*Q@al. Let T € T be a time and R a cumulative curve such that R E<r
(¥, al).

To prove the lemma, we need to show that R can be extended into some cumu-
lative curve R’ such that R’ = (a*,a'). We build R’ such that the lowest number
of events is emitted while still complying with the lower bounds required by of and
the prefix of R up to T'. This cumulative curve, R’, will indeed be valid with respect
to (a*,a!), and infinite.

Formally, let R’ be the cumulative curve defined by

vVt <T,R'(t) =R(t)

vt >T,R'(t) = sup {R(z)+ ol(t — )}
z€[0,T]

To show that R’ |= (¥, '), we prove first that R’ = o! and then R’ |= a®.
Proof of R’ |= a!: This part uses only the definition of R’ and needs no hypothesis

on (a*,al). Lett € T, A € [0,t]. If t < T, then by definition of R’, R'(t)—R/(t—A) €
[al(A),a%(A)]. We now consider ¢ > T, and distinguish two cases on A:

— Ift— A>T, then
R(t)—R(t—A)= sup {R(z)+a'(t—x)} — sup {R(z)+l(t—A—2z)}

«€[0,T] z€[0,T]
For all « € [0,T], we can write
d(t—x—A)+a(A) <t —x) (by super-additivity of a')
R(z) +a'(t —x — A) + o/ (A) < o' (t — z) + R(x)

Hence,
sup {R(m) +alt—z—A)+ al(A)} < sup {R(z) +ol(t —x)}
z€[0,T] z€[0,T]
sup {R(z)+a'(t—z—A)} +a/(A) < sup {R(z)+a'(t—2)}
©€[0,7) z€[0,T]

R(t—A)+ al(A) < R'(t) (def. of R')
— Ift — A<T, then

R(t)—R'(t—A) = esE)pT]{R(x) +al(t—z)} — R(t— A)

>R(t—A) +a(t—(t—A)—R(t—A4) (withaz=t—A)
> a'(4)
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In both cases, R'(t) — R'(t — A) > a!(A), therefore R’ = o.

Proof of R’ = a*: We distinguish the same two cases as above on ¢t — A:

—Ift— A>T, then
For all z € [0,7], we can write

At —z—A)+a*(A) > ot — 2) (since o' = o' @ a%)
R(z) +al(t —x — A) + a*(4) > o' (t — 2) + R(z)
Hence,
sup {R(z) + At —x—A)+ a"(A)} > sup {al(t — ) + R(z)}
z€[0,7) 2€[0,7)
sup {R(w) +al(t—a— A)} +a%(A) > sup {a!(t—z)+ R(z)}
z€[0,T] z€[0,T]

R'(t—A)+a“(Q) > R'(t) (def. of R')
— If t — A < T, then, by definition of R,
R(t)—R(t—A)=R(t)—R(t—A)= sup {R(z) — R(t — A) +a'(t — z)}

z€[0,T]
For all z € [t — A, T| we can write
R(z) — R(t — A) <a™(z —t + A) (since R =<7 (%, al))
ot —z)+ R(x) — R(t — A) <a*(z —t + A) + ol (t — )

As o =avDadl, a¥(z —t+ A) + ol (t — x) < a*(A). Using the line above, we
get, for all x € [t — A, T

a(t—x)+ R(z) — R(t — A) < a*(A)
Now, for all x € [0,t — A] we can write
R(t— A) — R(z) >a'(t — A —z) (since R =<7 (a“,al))
al(t—z)+ R(z) — R(t — A) <a'(t —z) —al(t — A — =)
Asal =l oa¥, al(t—z) —al(t — A—x) < a*(A). Hence, for all x € [0,t — A],
ot —x)+ R(z) — R(t — A) < a*(A)
The two sub-cases lead to the same conclusion:
Vr € [0,T], o'(t—=)+ R(x)— R(t— A) < a"(A)

sup {a'(t —a) + R(z)} — R(t — A) < a"(4)
z€[0,T]

R'(t) — R (t — A) < a*(A)
Indeed, t — A < T and R(t — A) = R/'(t — A)). So, R’ is valid w.r.t. «*. This
concludes the proof.

O

Notice that the proof uses the fact that o is super-additive; nevertheless we show
later that the implication actually holds for any pair of arrival curves.
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3.3.2 Causality Preservation by SA-SA Closure
The following theorem is the equivalence (b) in Figure
Theorem 1 Let (a*,al) be a pair of arrival curves.
(%, al) is causal <= (a¥,a') is causal
The proof uses the following lemma:

Lemma 5 For any pair of arrival curves (a*,a!), any T > 0, and any cumulative
curve R, we have:

Rl<r (0*,0') <= R E<r (0%, d)

Proof (Lemma H) To simplify the notations, we write o/ () def Snad and o) %

®"a*. The notation is ambiguous, but we use this shortcut only when it is clear

from the context (lower bounds ol always use the ® operator, while upper bounds
o always use the ® operator).

We first focus on the direct implication (=>). We show by induction that VN >
1,R E=<r o) The base case N = 1 is exactly the hypothesis. We now assume

that R 'ZST a"<N):

Vit <T,VA €[0,1],Vs € [t — A, t]
R(t) — R(t — A) = R(t) — R(s) + R(s) — R(t — A)
<Mt —s)+a(s— (t — A))

Therefore, Vt < T,

R(t)— R(t—A) < inf {auW)(t — ) +at(s—(t— A))} — o (V+D(A)
t—s€[0,4]
Which concludes the induction:
VN € N\Vt > T,VA € [0,t] R(t)— R(t — A) < a*™(A)

Hence,
Vt>TVA€[0,t], R(t)—R(t—A)< jivrgl{aﬂmm)} =a%(4)
This concludes the proof for a*. The proof for ot would be the same.
The reverse implication (<=) is trivial since o/ > o! and a® < o™. O
Proof (Theorem [1)) The definition of causality states that:

VT > 0,VR, R =<t (%, al)
(", al) causal <= =
R | R | (a%, o) and V¢t < T, R(t) = R'(t)
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Lemma [2| applied to some R’ gives R’ = (a%,d!) <= R’ |= (o, a!), and Lemma
gives VI' > 0, R <7 (a¥,a!) <= R =<7 (a¥,a!). Therefore, the equation above
can be rewritten as

VT > 0,VR, (R =<1 (a®,a'))
(", al) causal <= =
3R | R' = (a%,a!) and Vt < T, R(t) = R'(t)

<« (a¥,al) is causal

3.3.8 Sufficient Condition for Causality

The result given below is a variant of Lemma [ which does not require the curves
to be SA-SA. This is implication (c) in Figure which is obtained by transitivity of
Theorem [Il and Lemma [l

Theorem 2 Let (a*,a!) be a pair of arrival curves.
a=adoa”

and = (a", ) is causal
at=a"pal

3.3.4 Absence of Forbidden Regions Implies Causality
The main result of the section states that if a pair of curves has no forbidden region,

then its SA-SA closure has none either. This is stated by implication (d) in Figure
and by Theorem [6}

Theorem 3 Let (a*,a!) be a pair of arrival curves.

al=dl oo al=d oa®
and = and
b =a%Qat o =av0d

We prove this theorem in several steps, given by the following lemmas:

Lemma 6 Let (¥, ') be a pair of arrival curves.

ol =dl @ av dd=dlpar
and = and
au:au@al au:auéoi

Lemma 7 Let (a¥, ') be a pair of arrival curves.

ol =aloan ad=adoa
and = and
a*=a"0al o' =a"pal

For each lemma/theorem, we show only the implication of the first equality, the
proof of the second would be similar.
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Proof (Lemma@ Let (¥, a!) be a pair of arrival curves such that o = o @ a®. We
first prove by induction that

YN >1, oo (a"(N)) =a

The base case is given by the hypothesis of the lemma. For the inductive step,
assuming o @ au(N) = a!, we have:

ol @V =l g [a”(N) ® a”] (by definition of a“(N))
= [al®a“(N)]®a“ (since (fog)oh=f2(g®h),

see [25] p. 123)

=doa® (by induction hypothesis)

=a! (hypothesis of the lemma)

This concludes the induction. Now, we can write, V¢ > 0,

al(t) = sup {(al @ [a"(N)]) (t)}

N>1

= sup {sup {al(t +A4) - [a“(N)(A)] }} (definition of @)
N>1 (A>0

—q ! _ u(N)

= Zuz%{a (t+4) I{fnzfl {a (A)}}

= sup {a!(t+A) —a"(A)} (definition of a*)
A>0

= (o' @ a®)(t) (definition of @)

O

Proof (Lemmal[7) Let (a*,al) be a pair of arrival curves such that ! = ol @ a®. We
first show, by induction, that:

al(N) :az(N)

VN > 1, o a*

The base case is given by the hypothesis of the lemma. For N > 1, we assume

al(N) _ al(N) 1(N+1) < al(N+1) ((N+1)

© a". We already have a @ a®. To prove «

al(NH) © o, we will show the converse inequality, i.e:
ve>0vA>0, o'V TV0) +ar(a) > V(e 4 2) ie:
vVt > 0,YA >0, PARAR (t) +a*(A) >  sup {al(N)(:L“) +al(t+A—x)} e
z€[0,t+A]
vt>0vA> 0z e[0,t+ 4], o' V) +av(a) > ™M @) +al(t+ A 2)

Let t >0, A >0and z € [0,t + A]. We distinguish two cases on x:
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— If z > t, then we can write:

a“(A) = (A—(z—t)>a“(xz—t) (since " = a"Dal, hypothesis of lemma)

o) = at@—t) <o) (since '™ = o™ g a1,

the induction hypothesis)

The rest of the proof follows from the combination of these equations:
(A= (A—z41t)>at(z—1t) > ot (x) — ozl(N)(t)
a(A) + ™M) > ot (@) + A~z + 1)

Since al(NH)(t) > al(N)(t),

l(N+1)

a“(A) + a 1) = () + ™M@ > ™ (@) + (A -z + 1)

al(NH)(t) +a(4) > al(N)(x) Yal(t+A—z) (reordering)

— If z < t, then we can apply a similar reasoning, swapping = — t and ¢ — x:

dt+A—z)—a*(A) <a(t—2x) (since a! = a! @ a¥, hypothesis of lemma)

(N+1) () (N+1)
o' ( P )

t) >« z) +al(t —2) (by definition of «

The rest of the proof follows from the combination of these equations:

allt+ A~ x) —a"(4) < al(t —2) <ol V(1) ~ otV (a)

al(N+1)(t) Fat(A) > O/(N)(gc) +al(t+A—x) (reordering)

Both cases prove that al(NH)(t) + a™(4) > al(N)(ﬂc) +al(t+ A — ), and thus
YVt >0,A >0, al(NH)(t) +a*(4) > al(NH)(t + A). This implies by definition of @
that vVt > 0, al(N+1>(t) > (al(N+1) @ a™)(t). As for any functions f and g, f© g > f,
the converse inequality holds and the induction goal is proved.

Hence, VN > 1, ozl(N) = al(N) @ a™. The rest of the proof is a simple application
of the lower semi-continuity of the operator @ with respect to its left operand, as
stated in [25], page 135. To make this proof self-contained, we detail the steps:

Vi, ol (t) = sup {al(N) (t)} (definition of o!)
N>1

sup {(al(N) %) a“) (t)} (applying the result of the induction)
N>1

= sup {sup {al(N)(t +A) - a“(A)}} (definition of @)
N>1 (A>0

— sup {sup {al(N)(t + A)} - a“(A)}

A>0 (N>1

=d oat (definition of o! and @)
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Proof (Theorem|d) Let (a*,a!) be a pair of arrival curves, such that o! = o! @ a®
and o“ = o Q0 '
From Lemma [] and [7] the following equalities also hold:

ol =aloa® (1)
v =" 0o (2)
at=a"Dal (3)
o =doa* (4)

Equations and [2| ensure the hypotheses which allow to apply Lemma E to (a¥,al)
and get o = o @ o¥. Similarly, Equations [3| and [4] allow to apply Lemma [7] to
(a*, a!), which provides a® = a® @ o'. O

3.3.5 Sufficient Condition for Causality

The last theorem of this section gives a sufficient condition for the causality of
a curve. Unlike Lemma [ it applies to any pairs of curves, and its hypothesis is
simpler than the one of Theorem 2} Informally, it states that a pair of curves without
forbidden regions is causal (see implication (e) in Figure [2)). The result is obtained
by transitivity of Theorem [3]and Lemma [4

Theorem 4 Let (a*,a!) be a pair of arrival curves.

a=adoat
and = (o, ') is causal
a* =a%0a

3.8.6 Causality does not Imply Absence of Forbidden Regions

Theorem [ provides a sufficient condition to ensure that a pair of arrival curves
is causal. Unfortunately, this condition is not necessary, as shown in the counter-
example of Figure [3] The vertically hatched region is a forbidden region, and we do
not have o = o @ a*, but the pair of curves is still causal. Actually, the forbidden

region is below o, so it is not reachable.

# events

O W GO
|
I
I
I
I
2 |
a8

012345678910

Fig. 3 Causal Curve with an Unreachable Forbidden Region
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4 Characterization of Causality for Piecewise-Affine Curves and
Conjecture

This section presents a characterization of causal arrival curves when they have
the particular shape of piecewise affine functions. This characterization is still a
conjecture in the general case — left as an open problem —, since we did not succeed
in proving it nor building counter-examples.

4.1 Validity of Causal Curves with Respect to Themselves: a Conjecture

The characterization property relies on the fact that causal and SA-SA arrival curves
are valid cumulative curves with respect to themselves, i.e. a® |= (a*,a!) and o! |
(o™, al). We enunciate it as a conjecture, since we can prove it for piecewise affine
curves, but it remains open in the general case. Intuitively, the conjecture means
that if the arrival curves have neither “forbidden” nor “unreachable” regions, then
we can follow either the lower or the upper curve to get a valid cumulative curve.

Conjecture 1 Let (a®,a') be a causal pair of arrival curves. If ! is super-additive,
then o! = (¥, al). Similarly, if a* is sub-additive and is finite (€ Frinize), then

a¥ (%, ab).

This conjecture was originally presented in [2] as a theorem, but the proof given
was actually valid only for discrete-event systems.

Definition 12 A function is finitely piecewise-affine if and only if its restriction to
any finite interval of the form [0, T], for T' € T, is made of a finite number of affine
pieces.

The class of finitely piecewise-affine functions includes arrival curves in the discrete-
time model, in the discrete-event model (assuming VA, o*(A) # +00), and in the
commonly used “piecewise-affine, pseudo-periodic” model [32] [6].

Lemma 8 Conjecture (1| holds for finitely piecewise-affine curves.

Proof We show that o! |= (%, at). Since o is super-additive, it complies with itself
by definition. The only way to have a! [~ (a*,a!) is to violate the constraint on a*.
The rest of the proof is done by contradiction:

Let T = sup,~¢{a! < (a%, al)}. Since we assume o! £ (¥, al), then T exists
and is finite (by Lemma [3)). Two cases can happen:

— If ol fer (%, al), then 3A > 0 | o/(T) — (T — A) > a¥(A). Then, o! F<r_a
(¥, at) (because T — A < T and by definition of T'), and a! cannot be extended
until ¢ without violating o*, which would conclude the proof.

— If o Ecr (¥, al), then Vt > T,al <, (a%,al) (by definition of T), i.e. Vt >
T,34: > 0| al(t) — ol (t — Ar) > a*(4A,).

Because (a*,a!) is finitely piecewise-affine, we can set ¢ close enough to T to
have only one affine piece of o/ within (T',], i.e. 34 > 0, B < 0 such that:

Vo € (T,t], o'(6)=A5+ B
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If Ay >t —T, then of E<i—a, (a*,a!), and o! cannot be extended beyond T
without violating o, which would conclude the proof. We can therefore concen-
trate on the case A; < t — T. Since ! is non-decreasing, o/ (T) < (AT + B)
and

(T + A) — o (T) > AT + Ay) + B— (AT + B) = AA,
> (At+ B) — (At — A) + B)
>al(t) —al(t — Ay) (definition of A and B)
> a(Ay) (definition of Ay)

l

Therefore, a* cannot be prolonged after T" without violating a*.

O

Unfortunately, the proof does not extend to the general case in fluid-event, con-
tinuous time model. Intuitively, to prove the conjecture, one would need to show that
al £ (%, ot) implies the non-causality, and hence show the existence of a cumulative
curve that is valid up to some point, and non-extensible infinitely. It is tempting to
try to construct such cumulative curve by letting it enter a forbidden region before
violating (a*, a!), but doing so is not trivial: not all forbidden regions are reachable
(see Figure[d] (a) for an example), and the notion of “first forbidden region” may not
be defined in the continuous case. See an example in Figure (b), showing a pair of
curves with an infinite number of forbidden region. For any forbidden region, there
exists another one, closer to the origin, that makes it unreachable. However, it does
not give a counter-example for the conjecture because o is not super-additive.

# events # events

7 7

6 at 6

5 5

4 o 4

3 Worbidden, but unreachable 3

2 2

1 A 1

0 > 0
01234567 012345617

(a) (b)

Fig. 4 Why the proof for Lemma [8 does not apply in the general case

4.2 Conjecture about the Characterization of Causality

Assuming Conjecture [1| (i.e. either in case of finitely piecewise-affine curves, or if a
proof is found in general), we can strengthen some of the implications in Figure
page Figure [5| shows the result. Propositions are the same, but implications (a)
and (c) have been promoted to equivalences (A) and (C).

We now prove equivalence (A), previously implication (a), proved in Lemma
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o =al o at ©)
and —  (a%, o) is causal
' =a"Da

and £ (a, al) is causal

Fig. 5 Overall view of theorems valid assuming Conjecture |1| holds

Theorem 5 Let (a*,a!) be a SA-SA pair of curves. Assuming Conjecture |1}, we
have:
a=adoat
and — (!, a) is causal
a* =a*Qal

Proof =»: This is Lemma [4]

«: Suppose (a*,a') is SA-SA and causal.

Let us show that YA € T, al(A) = (a! @ a®)(A). By definition, (a! @ a%)(A) =
sup;so{a!(A+t)—a®(t)}. This supremum is obtained for ¢t = 0 with the value a!(A):

Since (a*,a!) is SA-SA and causal, applying Conjecture [I} we know that o' =
(a*,al). So in particular, ¥Vt > 0,a!(A + t) — ol(A) < a¥(t), which leads to the
conclusion.

We can show that a* = a* @ o' in a similar way. a

The result given below is a stronger version of Theorem 2]and can be summarized
as “a pair of arrival curves is causal if and only if its SA-SA closure has no forbidden
region”. This is equivalence (C) in Figure [2| Similarly to Theorem [2| the proof is
obtained by transitivity of Theorems [I] and

Theorem 6 Let (a”,al) be a pair of arrival curves. Assuming Conjecture we
have:

and — (a¥,al) is causal

Theorems [5] and [6] give characterizations of causality for any pair of curves pro-
vided that Conjecture [[] holds. Note that by Lemma [§] those characterizations hold
for any pair of finitely piecewise-affine curves.

It should be noted that although Theorems [5| and |§| are conditional (i.e. assume
Conjecture |1) holds), the validity or invalidity of Conjecture|1|has no consequence on
the following sections. Indeed, to compute causality closure, we need to show that a
given pair of curves is causal (in Theorem , which requires one direction only of
the existing implication (Lemma , but not the equivalence.
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events T ol
# events at # events at # events C (((Y ,al)
i 7
73 | 72 I ol 6
6+ 61 5
5,, J_LH  e— 5” 4 ,,,,,
4y - Y | 3
3 k\al 3 5
2 LLH ? 2 1
] a_ a0
0 0 ————— 012345678910
012345678910 012345678910 ( ) C 1
.. — c) Causal curve:
(a) Original curve: (a%,a!)  (b) SA-SA curve: (o, al)

Fig. 6 Step by step causality closure

5 Computing Causality Closure

The goal of this section is to define the causality closure of a pair of curves (a*, at): it
is a pair of arrival curves which is causal and equivalent to (a*, at). The first step is
to define the operator C, which removes the forbidden regions from a pair of curves.

Now, removing forbidden regions transforms both curves o* and o! and regions
removed from o can create new forbidden regions on the upper side, and vice versa.
One natural way to solve this issue may be to iterate the forbidden region removal
operator C until reaching some fix-point (assuming it is reached in a finite number
of steps).

However, we will show that operator C does not create any new forbidden region
when applied on SA-SA curves (see later Lemma . Hence, in cases where the
SA-SA closure can be computed, it will be enough to compute it and then to apply
operator C; in other cases, a fix-point iteration of C will applied.

To illustrate this, an example is given in Figure [f] The original curve, in Fig-
ure [6} (a), has both forbidden regions (vertically hatched) and an unreachable region
(horizontally hatched). One region of interest is the little square between A = 4 and
A = 5, marked with a “?” in Figure @(a). If we consider the curves (a*,al), this
square does not seem to be a forbidden region. Indeed, an execution, which emits
only 1 event in 4 time units, seems to be able to continue by emitting 3 events right
after. Actually, this is not possible, and there are at least two ways to show this.

A first way is to apply the forbidden regions removal, C, twice: emitting 3 events
as suggested above is not possible given the leftmost forbidden region of a*. So, the
“?”-region will have to be removed, as a consequence of the forbidden region on a*
if we iterate C twice. After the second iteration of the forbidden region removal, we
reached the fix-point, and implication (e) (Theorem |4) guarantees causality. This
iterative process will be detailed in Section

A second way to show that the “?”-region should be removed is to work on o'
instead of a!: since a!(10) = 8 and a%(6) = 6, an execution has to emit at least
two events in 4 time units. This illustrates the approach followed in this section: we
eliminate the forbidden regions with C (Figure [6](c)) only after computing SA-SA
closure (Figure [6}(b)).

5.1 Removing Forbidden Regions: Operator C

We defined pairs of arrival curves as pairs (a*, a!) of functions for which a* > o.
In addition, we write | o¢ the set of pairs of functions in F such that the former
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constraint is false. To simplify notations, L 4o will be used as a single element even
if it represents an infinite set of objects. We note AC the set of all pairs of arrival
curves plus L s¢.

Definition 13 Let (%, ') and (a“’,ozl/) be two pairs of arrival curves. We say
that (a*’,a!’) is tighter (meaning: more precise) than (a*, o) (noted (o, o) <c
(a*,al)) iff(def) o/’ > o and o™ < a* We extend the <4¢ relation to any object
of ACby:Vee AC. Lac<ace

We now define formally the “forbidden region removal” operator, C.
Definition 14 We define operator C from AC to AC as:
let L=0a!0a*U=0a"0d
def

C(lac) Z Lac and C(a%a')= [ if L<U then (U, L)
else L s¢

When (a%,a!) is a pair of arrival curves then L = ol @ a* and U = a* @ o! are
functions in F (i.e. wide-sense increasing and equal to zero at zero, see Lemma .
Nevertheless, they may cross each other, i.e., it may happen that L £ U. In such
cases, the operator C returns the value 1 4¢. This means that the pair of arrival
curves is not satisfiable (direct consequence Lemma |§| below).

We now show that operator C computes a tighter pair of arrival curves (Remark
trivial from the definition of C), compared to the initial pair of curves, and which is
equivalent to those (Lemma E[)

Remark 1 For any pair of arrival curves, (a*, o), C (oz“7 al) is tighter than (a*, o),
namely C (a*,a') <ac (a",al).

Lemma 9 (Equivalence of (a% o!) and C (a“,al)) Let (a*,a!) be a pair of
arrival curves. Let R be a cumulative curve.

RE (a",d) <= RE (! ©a",a"Da)

In particular, if C (a“, al) = L ac, then (¥, al) is not satisfiable; but the converse
is false, in general.

Proof Let R be a cumulative curve. R = C (a“,oel) = R (a%,dl) is a direct
consequence of Lemma [I| Now assume that R = (a*,a'). Let x > 0,¢ > 0,z > 0.
The following inequalities hold:

d(z) < Rx+t+2)—Rx+t) <a'(z)
dx+2)< Rx+t+z2)—R{t) <a'(z+2)

As R(x+1t)—R(t) = R(x+t)— R(x+t+z)+ R(x +t+ 2) — R(t), we can combine
these two inequalities to get:

d(x+2)—a(z) <Rx+1t) — R(t) < a®(z+ 2) — al(2)
Since the inequalities hold for all z > 0,

ig}g{al (x+2)—a“(2)} <R@+t)— R(t) < Ziglg{a“(x +2) — al(2)}



24 Karine Altisen, Matthieu Moy

And thus, for all x > 0 and t > 0,
(o' @a")(x) < R(z+1t) — R(t) < (0" D a')(x)

i.e. R |= C(a",a'). Note that, as R is accepted by C (a*,a'), C(a*,a') is not
Lac. O

5.2 C(a%,al): the Canonical Representative and its Properties

This section presents the main result of the paper. It basically states that C(a®, o)
has many desirable properties: it is SA-SA, causal, and the best possible pair of curves
equivalent to (a*, al). We will start with some properties and their proof, and will
proceed with the main theorems (easy to prove given the lemmas) in Section

5.2.1 Properties of C(a*,a') for SA-SA Curves

Lemma 10 (SA-SA preservation) Let (a*,a') be an SA-SA pair of arrival curves.
If C(a*, ') # Lac, then C(a¥, at) is SA-SA.

Lemma 11 (Validity of C(a%,a') with respect to themselves) Let (a%,al) be
an SA-SA pair of arrival curves. If (o, ol o C(a*,al) # Lac, then

T E (@) and o™ = (@, )

Lemma 12 (C does not add forbidden regions on SA-SA curves) Let (a%, o/
be an SA-SA pair of arrival curves. C(a*,a!) is a fiz-point of C: C (C(a“,al)) =
C(a*,al).

Proof (Lemma@) We note (a"*,a!") = C(a*, of) with C(a*, o) # Lac.

l*

al*(t —8)+ al*(s) = (sstuz% {al(t —s5+4;) — au(ét)} + 535112% {al(s +ds) — au(és)}

Ve > 0736&65 > 0,
Tt =)+t (s) St —s+6) — au(d) + (s + ;) — au(ds) + €
(i(t —s+8;) +ag(s+ds)) — (e (0) + ay(85)) + €
(reordering and grouping)

<ot —s+9+5+0s) — (0 +05) + €

<
<

(by sub-additivity of o and super-additivity of o)
<o(t+ 6 +9s) — (6 +05) + &
Setting 6 = d; + &, we get
l*

Ve>0,30 >0, o (t—s)+a
Ve>0, o (t—s)+a

l*

(s) <ai(t+9) —a,(d) +e
(s) < i};g {ai(t+96) —au(d)} +¢

l*

Ve >0, o (t—s)+a(s)
l*

o (t—s) + ot (s)

() +e (definition of ot")
(1)

*

<d
<da

Hence o' is super-additive. The proof for a** is similar. a
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Proof (Lemma We still use the notation (a**,al") = C(a¥, o!) with C(a*, ot) #
L ac. We'll prove the first equation (the other is similar). al” being super-additive
(Lemma, it is valid with respect to itself. We only have to prove that o!” is valid
with respect to (a"*,a!™). We first prove that it is valid with respect to %, i.e. that
Yt >5>0, a7 (t) — ol (s) < a*(t — s). Let and t > s > 0. By definition, we have:

*

o (s) = sup {o!(s+y) — a“(y)}

Hence,
Vy>0, o (s)>al(s+y) —a"(y)
For any x > 0, we set y = x + ¢ — s. y > 0, hence the above inequality yields:

Ve >0, o (s)>al(s+a+t—s)—a(@w+(t—s))

Ve >0, o(s)>al(z+1t)—a’(z)—a’(t—s) (sub-additivity of a*)
ol (s) > ilig {al(ac +1t)—a"(z) —a"(t — s)}
ol (s) > ilig {al(ac +1t)— a“(w)} —a"(t—s)
ol (s) > o (t) — a¥(t — s) (by definition of a!” (t))

Hence o!” = (a*,al”). This implies trivially o!” = (a*, o), and by Lemma |§| it
implies in turn o!* = (a**, a!"). O

Proof (Lemma The case of L ¢ is trivial. When C(a“,al) # 1 ac, using the
notation (a*,a'") = C(a®,a'), we have to prove that

_— *

* *
=" 2o and a%* =a**0d

We prove that "t =a" o a®* the other equation could be proved similarly.
This is equivalent to prove that V¢t > 0,5 > t,a!"(s) — ol (t) < a**(s — t) which is
actually implied by o!” E (a7, al*), itself guaranteed by Lemma a

5.2.2 Key Theorems About Causality Closure

We now have the necessary prerequisites to introduce important results. In particu-
lar, Theorem@ states that C(a®, a!) is a causal pair of curves, equivalent to (a*, a!)
when this pair of curves is well-defined. Intuitively, this means that removing for-
bidden regions on SA-SA curves, once, does not create new forbidden regions. On
the example of Figure[6] page [22] this means that, since the curve (b) is SA-SA, (c)
has no forbidden regions anymore. The theorem motivates Definition where we
introduce C(a¥,a!) as the causality closure of (a*,at).

Theorem 7 For any pair of arrival curves (a*,al),
— C(a™, ) = Lsc <= (a%,al) is not satisfiable;
— C(a%,a!) is causal, SA-SA and equivalent to (a*,al), otherwise.
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Proof Firstly, Lemma [2| (stating that (a*, a!) and (a®, o!) are equivalent) and Lem-
ma|§| (stating that C (o, W) = lic = (a%a!) is not satisfiable) give the first

direction of the equivalence.
def

Conversely, let us assume that (a@",o!") = C(a¥,a') # Lac. By Lemma
o' = C(a¥, o). By Lemma@ ((a@,at) and C(a¥,a!) are equivalent), we also have
o = (a¥, al). Since (¥, al) <ac (a¥, al), this also implies o = (a*, a!) which is
thus satisfiable.

Secondly, assume that (a*, a!) is satisfiable (i.e., C(a%, a') # Lac), then (¥, a!)
is SA-SA; therefore, Lemma [I2] applies. This gives the hypothesis for Lemma [
which ensures causality. Lemma [I0] ensures the SA-SA property and Lemma [J] the
equivalence with (a%,al). O

Definition 15 (Causality Closure) Let (a*,a!) be a pair of arrival curves. The
causality closure of (a*,a!) is the pair of curves obtained by C(a¥,at).

Theorem 8 (Optimality of Causality Closure) For any pair of arrival curves
(¥, al), if (a*,al) is satisfiable, then C(a™®,al) is the tightest pair of curves equiv-
alent to (a*,al).

By tightest, we mean the smallest w.r.t. <a¢; i.e., C(a¥,a!) is made of the smallest
(resp. the greatest) curve for the upper (resp. lower) part such that the properties
are satisfied.

Proof We note C(a®,a!) = (a®",a!"). Lemma states that o/ = (a@",o!") and
™ = (@, o).

Any pair of curves equivalent to (a*,a!) would therefore have to accept o' " and
a®". (a®",al") would, hence, be tighter than any such pair of curves. ad

These last two theorems provide an interesting result: given any pair of curves,
one can compute C(a%, o), and get either the information that the curves are not
satisfiable, or the best possible pair of curves equivalent to the original one. In addi-
tion to this optimality, one also gets the desirable properties: causality and SA-SA.
This result is implementable on top of any algorithmic toolbox implementing the
basic operators: deconvolutions, sub-additive and super-additive closure [32] [6].

Theorem [§ also provides the existence and uniqueness of a tightest pair of curves
equivalent to a given one. As a result, the following theorem also holds:

Theorem 9 Let (¥, ') be a pair of curves. If (a*, a!) is the tightest pair of curves
representing a set of cumulative curves, then (a*,at) is causal.

A corollary follows:

Theorem 10 (Uniqueness) Let (¥, ') be a pair of arrival curves. The causality
closure of (a*, o) is the only pair of curves equivalent to (a*, at), causal and SA-SA.

Proof Any pair of curves causal and SA-SA is a fixed-point of the SA-SA closure and
of €, hence a fixed-point of the causality closure. By Theorem 3] it is the tightest pair
of curves equivalent to (a*, ') hence it is equal to the causality closure of (a*,al).

O
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Any computation giving the best possible pair of curves also gives a causal pair
of curves. Theorem |§| explains why, in practice, most pairs of arrival curves usually
manipulated in Real-Time Calculus are causal. Indeed, curves obtained for example
by measurements on a real system are causal by construction; furthermore most
computations made in the RTC framework compute the optimal solution and thus
preserve the causality property. This probably explains why this problem received
so little attention up to recently. In practice, for example, simulators are rarely used
in situation leading to deadlock (but they might be able to). But, with the causality
closure presented here, we can now guarantee that it never happens after applying
the causality closure.

On the other side, non-causal pairs of curves may arise whenever a computation
is done in an approximated manner, even if the approximation is conservative. Next
section provides deeper discussions about causality issues.

6 Issues and Solutions About Causality

The causality problem has received surprisingly little attention in the Real-Time
Calculus community, although many existing approaches can face it. The goal of
this section is first to exhibit from the literature approaches that encounter causality
issues and how they treat the problem; second, it explains how to use the causality
closure to avoid causality problems.

Usual approaches from RTC aims at computing output curves as functions of
input arrival curves. Causality issues can appear at both sides. Some approaches
may output non-causal curves (see Section ; in such cases, computing causality
closure on the resulting curves provides equivalent but more precise curves. Other
approaches or techniques assume causality as input (see Section .

6.1 Non-Causal Output Curves

Non-causal curves can be produced by non-exact computations on some input ar-
rival curves. Usually, those computations perform conservative approzimations, to
obtain guaranteed results, but even when the input is causal, output curves may
be non-causal. This typically occurs when using other tools than RTC algebraic so-
lutions. Abstract interpretation and model-checking algorithms with a timeout, as
used in the tool ac2lus [I] compute some abstractions, and hence do not guarantee
causality of the curves computed. Abstractions can also appear in the model before
computation [4] yielding the same problem.

This can also happen when the method computes only part of the points of the
resulting arrival curves [31I]. In this work, the authors implement an interface be-
tween RTC and Fvent Count Automata. The output curves are computed point by
point using exact model-checking, but the long-term rate computation uses an ap-
proximation which could produce non-causal curves. We give now an example where
the procedure described in [3I] produces a non-causal pair of curves (see Figure
where black curves are inputs). The system we consider is the identity component for
which the output is equal to its input (i.e. the component immediately produces an
output event whenever an input event is received); therefore the theoretical output
curves are the same as the input ones. The procedure computes first a finite set of
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points for the beginning of the curve; here, we chose to compute the curves up to
A = 3. Then, to estimate the long-term rate, the procedure computes one more point
with some larger A, taken here with value A = 9. The resulting curves are made of 8
points (see plots in Figure@. As one can see, this curve is not causal. Indeed, looking
at the super-additive closure of o! (see dashed red line ol in Figure B) the big step
between al/(8) and al,(9) is greater than «a*(1). Note that computing the causality
closure actually removes the forbidden region between of and ol and provides back

the exact curve o.

#events

& &
@ @ T T T T T T T
0 1 2

Fig. 7 Example of computation of a non-causal curve using Event Count Automata [31]

On the other hand, the CATS tool [18] [38] relies on exact model-checking, so the
tool should always output causal curves. Still, even with exhaustive model-checking,
the model-checker may reach a timeout or get out of memory, and CATS would
produce a conservative approximation that may not be causal.

Precision Increased. Now, once any approach have computed some output arrival
curves, and as far as it may produce non-causal curves, causality closure can be
used on those outputs and provide curves which are equivalent and tighter, some-
how increasing the precision of the result. As an example, in [4], output curves are
computed, one point at a time on an abstract model: this produces non-causal out-
put curves. As a post-treatment, curves are further refined using causality closure to
obtain better precision.

6.2 Causal Input Curves

RTC approaches may also face causality issues from their inputs. Indeed, some ap-
proaches are not robust to non-causal input curves and require causality to give
correct results whereas for some others, non-causal input curves may degrade the
analysis of the system. We describe below two kinds of applications where causality
issues occur: state-space exploration methods sometimes require causal input curves
but often suffer from spurious counter-example when applied on non-causal input
curves; whereas event generators may deadlock if the input curves are non-causal.
The work in [22] [36], which interfaces RTC with timed automata, gets rid of
causality by constraining the class of curves it considers: input curves are causal by
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assumption. The extension of this work to arbitrary curves [23] deals with causality
using model-checking.

Spurious Couter-Examples. Most model-checking algorithms may produce spurious
counter-examples if fed with non-causal input curves. To illustrate the problem, let
us assume again the identity component (the output is equal to its input). Again, the
output arrival curve (a/%, o’t) is equal to the input (a*, a!). We set this input to the
non-causal pair of curves (a*, o!) of F igure(b). Using a verification tool, as done in
e.g. ac2lus [I], we encode the input curve as an observer that tells whether the input
stream conforms to the curves at each point in time, and encode the component as
a program that takes the observed stream as input. Then, we ask the model checker
whether it is safe to set a//(3) = 1, 4.e. whether the model-checker can prove that the
system will never emit less than 1 event in a window of time of size 3. The model-
checker answers: false property, and finds the counter-example which corresponds
to: “emit nothing on the input for 3 time units”. This counter-example is a finite trace
which satisfies the input, but does violate the candidate output curve o*(3) = 1.
However, this counter-example cannot be prolonged into an infinite trace, hence is
not a real counter-example. Indeed, it is safe to set a’!(3) = 1, but the model-checker
failed to prove it because of non-causality. We call spurious such a counter-example.

It should be noted that the problem happens even though the model-checker
considers infinite curves: the property to prove involves infinite arrival curves and
event streams, but a counter-example for this property is a finite trace. The issue is
that this finite trace may or may not correspond to the prefix of an infinite one.

It is possible to solve non-causality during the state-space exploration either in
the tool itself (see for example the -causal option of Lesar [I4] [34], which does this
for Boolean programs) or with an appropriate temporal logic formula as proposed
in [23], but this leads to costly algorithms and is not applicable in all tools. Actually,
[23] proposes to identify non-causal curves with model-checking, but does not say
what should be done in case the curves are not causal. As opposed to this, causality
closure proposed here can be applied a priori on curves regardless of the tool being
used for the analysis. Causality closure can be computed using cheaper algorithms
than model-checking.

One indirect consequence of spurious counter-examples is that since they prevent
the tool from returning the exact pair of curves, the output may not be causal any-
more. In other words, the non-causality of curves can propagate through components
analyzed using model-checking. We give a concrete example where ac2lus applied on
non-causal input curves produces non-causal curves even using exact model-checking
without timeout in Section 8] Even though we could not test it because we do not
have access to the tool, we believe that the CATS tool [I8] [38] has the same issue.

Event Generators. Event generators for RTC [20] are used to build event streams
that complies with a given pair of arrival curves. They usually appear in simulation-
based approaches |21 [5]. Non-causal curves can make their design likely complicated.
Indeed, the usual implementations generate event streams that satisfy the constraints
up to some point in time, but doing so may result in deadlocks in the future, namely
contradiction between the upper bound and the lower bound. Back to the example
of Figure (b)7 a concrete event generator may chose to generate no event for 3 time
units, but would deadlock at time 5. A generator for non-causal curves would there-
fore have to explore the reachable state-space proactively to make sure no deadlock
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can occur. This approach is usually costly, due to the well-known explosion state
problem; we believe that it is less costly to make the curve causal, a priori, with
polynomial cost algorithms.

We believe that causality closure is both simpler and more general than any
state-space pruning algorithm, such as [5], to avoid the problem.

A generator that does not properly deal with non-causal curves eventually dead-
locks after entering a forbidden region. When this happens, the whole execution has
to be aborted since event traces generated up to deadlock are actually not valid.
Also, since the generator produces only finite traces, there is no easy way to know
whether a trace produced by a generator actually corresponds to a valid trace or
not: it may not be a prefix of any infinite event trace. Hence, non-causality-aware
generators may silently produce invalid event traces.

Eztension of RTC. [12] proposes an extension of RTC, Finitary RTC, in order to
solve performance issues encountered with traditional RTC. The framework assumes
the curves to be causal and relies on the sufficient condition proven in Theorem @

6.3 How to Use Causality Closure

As a conclusion for previous section, applying causality closure on inputs, first, allows
to get rid of causality problems and therefore to use any method, even if it is not
robust to non-causal inputs. Second, computing causality closure on output results
allow obtaining the most precise equivalent curves. We detail next how to apply this
within a local computation step and then iteratively, in a compositionnal framework.

Local Computation. In general, when an algorithm A computes output curves as a
function of input curves (O = A(I)), and if the algorithm does not work on non-
causal curves I and/or may produce non-causal curves O, we can easily transform
this algorithm A into an algorithm A’ which accepts non-causal curves and produces
only causal curves the following way:

Algorithm 1 (Robust algorithm A’ based on A)
Jeausal ¢ {C(W, o), (a®,al) € I} // Causality closure on inputs
Qnon-causal ¢ A(Jeausaly // Actual computation
Ocausel o {C(a™,al), (a¥,al) € Oremeausaly // Causality closure on outputs
return Ocausal

The tool ac2lus [I] actually applies this algorithm: the causality closure is applied
before computation, so does not have problems with non-causal input curves, and
applies the causality closure operator to the output to possibly increase the precision.

In all the approaches combining RTC and other formalisms cited above, the line
Qron-causal ¢ A(Jeausal) jg by far the most expensive (in time and memory). Hence,
the overhead of the causality closure is small and makes the algorithm more general
— since it accepts non-causal curves, and more precise.

Note that there are many ways to improve the precision of some analysis by
computing additional constraints, but computing the causality closure of the result
will in any case return, at low price, a pair of curves which is at least as precise.
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It can be the case though that the causality closure of a pair of curves makes
the analysis slower, i.e., computing A(1°*"$2!) is slower than computing A(I). On the
other hand, the causality closure of a pair of curves can also be simpler and therefore
make the analysis faster. If O°®"?! is only used in a context where non-causal curves
are acceptable, and if the causality closure yields an unacceptable slowdown of the
next analysis, then returning O instead of 0" may be sensible. For an example
where a curve can be more complex than its causality closure, see Figure Bl The
points marked with a circle are below the causality closure. In the original curve, a
machine representation would have to store all of them, while the causality closure
of the curve is straightforward (y = 2 — 2).

#events

Fig. 8 Example of curves where the causality closure is simpler than the original curves

Composition of Computations. Now, we focus on composition of several RTC anal-
ysis. Consider the schema in Figure [J] Assume for example, that the analysis for
component A does not preserve causality and that the analysis for component B
requires causal input curves. In this case, the output of A, (a¥s,aly), may not be
causal and the analysis for B, which is launched on it, may suffer from the above-
mentioned issues (see Section . Replacing the analysis for component A by the
robust algorithm A’ based on it (Algorithm [1)) solves those issues.

(ay,aly) A (ay, aly) B (a3, als)
I e B

Fig. 9 Composition of Two Components

7 Causality Closure for Special Classes of Arrival Curves

The previous sections gives a general, theoretical framework to define and compute
causality closure. When common min/max-+ operators are applicable, the causality
closure can be computed, using Definition as C(a¥,a!), where C is the operator
from Definition [I4] defined in terms of deconvolutions.
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In some classes of curves, however, computing C(a%,a!) directly may not be
possible as-is. For example, the causality closure of a finite discrete pair of curves
(namely, made of a finite set of points) is in general not finite. This section sum-
marizes the existing results on the algorithmic computation of the causality closure
for particular classes. We give only an overall view and some intuitions on compu-
tations. For formal definitions and proofs, the reader may refer to [28] 29]. Table
below, gives an overview on how causality closure can be applied to classes of curves
commonly used in RTC.

Class of Curves SA-SA Closure Causality Closure

Pseudo-periodic Direct computation of

Well-known, e.g. [39] [32]

piecewise affine C(av,ab)
Cf)nvex./ concave By construction (nothing to By construction
piecewise affine do)
Not applicable; Computation Not applicable; Computation
Finite discrete of a finite prefix instead. of a finite prefix instead.
E.qg. [6] Fixed-point iteration of C, [2]
Ultimately Computation of a dedicated

SA-SA normal form of curves,

B operator on SA-SA normal

form of curves, [3]

piecewise affine
(Upac)

Table 1 Causality Closure for Common Classes of Curves Used in Real-Time Calculus

Results on Table[I]focus on pseudo-periodic [39] and convex-concave [22] piecewise-
affine, finite discrete [38] and ultimately piecewise affine [I] curves. They are further
commented in paragraphs [7-1} [7-3] and [7-4] The class of pseudo-periodic piecewise-
affine curves is very expressive and commonly used in analytical models like the
MPA-RTC toolbox [39]. It is however hard to use when interfacing with state-based
formalisms. Indeed, most interfacing approaches restrict to a much stricter class.
For example, [22] uses convex/concave piecewise affine curves. An extension to non-
convex/concave curves is proposed in [23], but involves complex synchronization of
automata, hence a greater algorithmic complexity. [4] and [38] use discrete, finite
curves, which are not able to express precisely long-term rates of the streams. [31]
can use any ultimately periodic curve to model the input of a component, but the
output computed has a periodic part limited to a single entry (long term period),
hence, the generality of the model is not exploited.

7.1 Pseudo-Periodic Piecewise Affine Curves

Pseudo-periodic piecewise affine curves are common in RTC. This is the class of
curves used by the MPA-RTC framework [39] and the COINC network calculus
toolbox [7]. In this class, SA-SA closure and deconvolution operators can be com-
puted using existing algorithms as described in [6]. The causality closure of (a*,al)
can then be computed directly as C(a%,a!) (i.e. (a*@,al @ a™) or L 4¢, see Defini-
tion. A discussion on how to implement this in MPA-RTC is given in Section
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7.2 Convex/Concave Piecewise Affine Curves

Convex/concave piecewise affine curves (for which o! is convex and a* is concave)
are an interesting class of curves, used for example in [22] 23, 24]. It is a subclass
of pseudo-periodic piecewise affine curves, which includes simpler classes like affine
curves (sometimes referred to as (o, p)-curves). For a convex/concave piecewise affine
curve, a* (resp. a!) can be expressed as the minimum (resp. maximum) of a set of
affine functions. When reasoning about these curves, the minimum and maximum
are naturally translated in conjunction of conditions. These curves are SA-SA by
construction. They are also causal and, hence, do not need causality closure operator,
as stated by Theorem [I1] below.

Theorem 11 Let (a*,a!) # Lac be a pair of piecewise affine, convex/concave
curves. Then (%, a!) is equal to its causality closure.

Proof Let a“A + b* (resp. a' A+ b') be the last affine piece of a* (resp. al).

A direct consequence of the convex/concave property is that V0 < A; < Ay,
au(Ag) — Oéu(Al) > a“(Ag — Al) and QZ(AQ) — al(Al) < al(AQ — Al), since the
slope of a* (resp. a!) keeps decreasing (resp. increasing) until it reaches a® (resp.
a'). In particular, YA > 0,a%(4A) > a*A and of(A) < d'A.

Then, if we set (a**,a!") = C(a®, al),

VA >0,Vt>0, a“(A+t)—a(t)>a"(A)+a't—at
u* — u A 0 > i u u 1l )
a®’(4) = nffa®(A+1) — o’ (1)} = inf{a™(4) +1(a” —a)} = a®(4)
>0 if (a¥, o) # Lac

a"*(A) > a™(A
a'*(A) = a"(A) (since a"*(A) < a*(A) too)
Using symmetric arguments, we can show that YA > 0, ol"(A) = o/ (A). O

7.3 Finite Discrete Curves

Finite discrete curves are defined with a finite set of points; up to those points, say up
to T, a®(t) is set to +o0o and a!(t) to its last value of(T). From an algorithmic point
of view, each curve can be represented as an array of values. These curves are used
by e.g. [I]. Unfortunately, this class of curves is not closed under SA-SA closure,
i.e., (a¥,a!) is not, in general, a finite discrete curve. In this case, the causality
closure C(a%,al) is not finite discrete either. But, as for SA-SA closure, we can
compute a finite prefix with interesting properties. The solution consists in iterating
the operator C until a fixed-point is reached; we further detail the algorithm next.
More details can be found in [2].

Notice first, that the exact definition of causality closure, C(a®,a!), is helpless
from the algorithmic point of view for finite discrete curves since it relies on (%, at),
which is a pair of infinite curves. Therefore, we manage to compute a finite prefix of
C(a¥, o) which is equivalent to (a*,al), causal and SA-SA. To construct a causal
and SA-SA pair of curves, we use Theorem [4] which states that any fix-point of C
is causal and Lemma [J] which ensures that applying C does not change the set of
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SA closure of C(a®,al) (e) The curve after two full iterations.

Fig. 10 Step by step causality closure for finite curves

accepted cumulative curves. So, given the fact that we know how to compute C,
the proposed algorithm applies repeatedly until a fix-point is reached, and the result
then is causal. In addition, we apply SA-SA closure at each iteration to speed up
convergence and ensure SA-SA property on the result.

The pair of curves a*, computed by iterating C on the SA-SA closure of «, is a
finite representative of the causality closure C(a%, a!) of a. o* is causal and SA-SA,
and its SA-SA closure is equal to C(a%, at): the SA-SA closure of o* is equivalent
to a* hence to C(a¥, al) (by Theorem. Since o* is causal, so is its SA-SA closure
(again, by Theorem . Theorem implies that the SA-SA closure of o* is the
causality closure of a. In other words, a* can be seen as a machine representation of
C(a™,al): although it is finite, it contains all the information to recover any point
of C(a¥,at).

We illustrate the process with an example in Figure The original pair of
curves is (a), which is already SA-SA on [0,4] (but clearly not SA-SA because of the
curve o with 400 values). One application of C is not sufficient: the curve (b) is
not even SA-SA on interval [0,4], and still has forbidden regions. We iterate the C
operator once more and get (c¢), which is causal, but not SA-SA.

As the result is causal, one could be satisfied but this is not the finite prefix of
the causality closure as announced. To obtain it, a finite prefix of the SA-SA closure
is computed, each time, before applying C again. In the example, this gives curves
(d) and then (e) by applying € again. Then, neither SA-SA closure nor C would
change the curve anymore since we reached a fix-point. In this case, the final curves
are the finite prefix on [0,4] of the causality closure.

We still need a way to compute C efficiently. The definition of C contains the
supremum of an infinite set, which, as it is, would not be computable. Fortunately,
operator C applied to finite restrictions of curves is indeed much simpler. Since
Vt > T, a“(t) = +oo and ol(t) = o!(T) (where T is the last date at which some
value is defined), the values of (a*, a!) beyond T' do not have to be taken into account
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when computing the deconvolutions. So, C can be easily computed quadratically on
finite discrete curves.

The detailed proof appears in [28]. It is made simple by the fact that we work in
discrete time and events. In particular, this makes the set of possible curves finite:
since the computed curves become tighter and tighter, their sequence has to reach a
fix-point in a finite number of steps.

The full algorithm for computing the causal and SA-SA pair of curves equivalent
to the finite pair of arrival curves Ay is given in Algorithm [2}

Algorithm 2 (Causal (SA-SA) Curves for Finite Discrete Curves)

A+ A()
repeat
A + SA-SA-closure(A) // Not mandatory, but speeds up convergence,
// and ensures SA-SA property of the result
A+ A
A+ C(4)
until A=_1,00r A=A

The loop terminates, since the sequence is decreasing and there is a finite number
of possible curves tighter that the original one, but finding a bound on the number
of iterations (other than brute-force counting possible tighter curves) is still an open
question. In practice, however, the number of iterations is low (one or two in most
of the examples we tried, and up to 5 in tricky corner-cases, see Section .

After the loop, A is either 1 4o or a causal pair of finite discrete curves; it is
equivalent to Ay, the original pair of curves; and it is a finite prefix of some SA-SA
curves if the SA-SA finite closure was applied (first line within the loop). In this case,
it is a finite prefix of the causality closure, i.e., the best pair of curves equivalent to
the original Ajg.

7.4 Ultimately Piecewise Affine Curves

Ultimately piecewise affine curves (Upac) are a combination of finite discrete curves
from [38] and convex/concave curves of [22]. This class of curves is the one used in
the tool ac2lus [I]. It was chosen to be both expressive and adapted to interfacing
other formalisms. A Upac pair of curves (a%, a!) is described, for a® (resp. al), with
a prefix given by a finite set of points followed by a convex (resp. concave) piecewise
affine curve given by a finite set of affine pieces. a (resp. o) is then defined as the
minimum (resp. maximum) between all points and affine pieces. The Upac class
allows a precise and possibly non-convex/concave description of the initial portion
of curves, as well as a set of constraints on the long-term rate of the event stream;
it may be easily machine-representable: the finite portion is basically an array and
each affine piece is encoded with its slope and its Y-intercept.

Figure [TI] shows an example: the upper part is made of 3 points and two affine
pieces; the lower part, 3 points, one affine piece.

7.4.1 Normal Form in Upac

To compute causality closure on Upac curves, the difficulty comes from the points
of a* and of, which can interact with each other, or with affine pieces of the other
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Fig. 11 Example of a Upac pair of curves

curve. In particular, arbitrary curves with points and affine pieces are not necessarily
SA-SA. We first transform the curves into ones that obey a few well-formedness
properties called normal form. Properties on normal form then allows, in general, to
apply operator C to get the causality closure.

Causality closure is trivial when curves have only affine pieces, as expressed in
Theorem Curves with only points are not SA-SA, and could not be made so
algorithmically, since their SA-SA closure has an infinite number of points (this is
the case dealt with in Section . This difficulty can be eliminated thanks to the
piecewise affine part of the curves, when it exists. When we apply SA-SA closure to
the points of the curves, only a finite number of points remains under or above the
affine pieces. If this is not the case, this means that affine pieces add no information
w.r.t. the set of points and can be removed: we say in this case that affine pieces are
not relevant. Removing non-relevant affine pieces or making the finite prefix SA-SA
up to crossing some affine piece is called normalization of the curves (refer to [3] for
details).

Precisely, a pair of curves in normal form has an SA-SA finite prefix with as many
points on the upper and lower curves, followed by a set of relevant affine pieces. In
the common case, normalization computes a date M such that all points after M
are dominated by some affine piece, and extends the finite prefix by SA-SA closure
up to M. This ensures that the result is SA-SA. The formal definition of the normal
form [3] includes special cases when a! and/or a* has no relevant affine piece, or
(Oz"7 al) = J—AC-

The transformation of a pair of curves into normal form is illustrated by Figure
(common case where both curves have relevant affine pieces). It essentially consists
in adding explicit points from the SA-SA closures to the curve until one can be sure
all points are above the affine pieces.

7.4.2 C for Upac Curves

If none of the curve have affine piece after applying normalization, then the nor-
malized curves are basically finite discrete curves, and we simply apply Algorithm
from Section [Z.3}

When curves in normal form have either o, a* or both with relevant affine
pieces, it can be shown that considering only a finite set of points in the infimum
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and supremum defining the operator C is sufficient (see [3] for results and proofs).
This provides an algorithm which is given again in [3] and further illustrated in
Figure [[3] which details the whole causality closure algorithm on an example. The
pair of curves is given in Figure (a): a® has no affine piece and o' has one.
Figure (b) shows an attempt to use operator C on the curves without performing
normalization. Since the curves are not SA-SA, C is able to remove some forbidden
regions but misses one (the point a/(4) = 2). On the other hand, the normalization
algorithm ([13}(c)) adds some points to the prefix of the curves, and applying C on
the result yields a causal pair of curves, without further iteration (I3}(d)).

8 Experimental Evaluation

We now show experimental results obtained with causality. We show the impact of
using causality closure when performing a model-checking based analysis, measure
the performance of our implementation on discrete, finite curves, and study the
applicability in the MPA-RTC framework. All experiments were performed on a
Intel(R) Core(TM) i3-2120 CPU @ 3.30GHz machine with 8 Gb RAM.

8.1 Using Causality Closure in a Model-Checking Based Analysis

To demonstrate the benefits of causality closure, we consider an analysis using the
tool ac21lus [I] which implements the operator and allows to analyze Lustre program
using model-checking. We first illustrate causality closure on a didactic example, and
then on a more realistic case study.

8.1.1 Illustration on a Didactic Example

We consider, here, a very simple system. The input curve is given by o/ (0) = o/(1) =

.=ad(4) =0, &/(5) = 4, and a*(0) = 0, a*(1) = a%(2) = a*(3) = 3 (used
previously on Figure (b))7 and is non-causal. For simplification, we write o/ =
0,0,0,0,0,4 and a* = 0,3, 3,3 and use this notation in the sequel. The processing
component is infinitely fast (it transmits input events on its output immediately). We
aim at computing a valid output arrival curve (a/*,a’t). By definition, (%, a'!) =
(a*,al) is a valid solution. Obviously, the causality closure of (a*,al'), given by
alt = 0,0,1,1,2,4,... and o** = 0,2,3,3,..., is also a valid solution, and it is the
tightest one.

We run the analysis with ac21lus using different strategies to check how close we
can get to this theoretical result, in practice. All experiments use the model-checker
Kind [13], with a timeout of 10 seconds for each individual call to kind. ac2lus
individually computes each points of the output curves; here, we compute 10 points.
For each point, the tool proposes a guessed value using binary search; then the guess
is validated using kind on a so-called observer (roughly, the encoding of the prop-
erty that the point is correct). We experiment two strategies at the output side:
det_observer uses a deterministic observer (it returns false whenever the property
is violated) and nondet_observer uses a non-deterministic observer (if the prop-
erty is violated, then there exists an execution of the observer which returns false).
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Both strategies are equivalent in theory, but the model-checker may fail to prove or
disprove the property from one strategy but not from the other.

The result of the experiment is given in Table [2| For clarity, values which are
looser than in the optimal curve are underlined. First line shows the default behavior
of ac21lus which runs causality closure on the input pair of curves, and then runs the
analysis. As one can see, the time spent during causality closure is negligible (< 1
millisecond) in comparison with the total analysis time. Actually, applying causality
closure even reduces the analysis time in this case: comparing first and second lines
(resp. third and fourth) of Table 2] we see that not applying causality closure saves
0.2 (resp. 0.09) milliseconds in the one hand, but leads to an analysis which is 8.8
(resp. 1.7) seconds slower in the other hand. In first and second lines, the end result
is the same and corresponds to the optimal output curves.

Not applying causality closure on inputs (second and fourth lines) lead to sub-
optimal values in the output curves like ozl/(2) = 0. The suboptimality is not due
to approximations or timeouts in the model-checker: in all cases of Table [2] kind
was either able to prove the property or to disprove it with a concrete counter-
example. Values like al,(2) = 0 come from spurious counter-examples as explained
in Section Indeed, when ac2lus checks whether ozl/(l) =1 is a valid point, the
sequence of input 0, 0 is a valid counter-example (since ac21lus checks the property
“at all instants, if the input is correct then the output is correct”, rather than “if
at all instant the input is correct, then at all instant the output is correct”). It does
not violate the input curve, but does violate an output curve with al/(l) =1, hence
al/(2) = 0 is the best value at this point. If we apply causality closure on the output
pair of curves, the precision loss can be recovered, as in second line.

Nevertheless, fourth line shows a case where the loss of precision cannot be recov-
ered after the fact. Using a non-deterministic observer, the model checker is not able
to compute the optimal lower curve (regardless of causality closure) in practice. As a
result, the curve ol does not allow recovering the precision lost in the computation
of a*’| and even the causality closure of the output curves still has a*/(1) = 3 while
the optimal curve has a*'(1) = 2.

As a conclusion for this small example, not applying causality closure on the
input curves does not result in incorrect curves, but yields suboptimal curves even
on simple cases like this one. Applying causality closure, we compute tighter results,
and faster.

8.1.2 Analysis of a Scheduler Model

We now consider a two-inputs, two-outputs system scheduled with a fixed-priority
scheduler modeled in Lustre, taken from [I], itself inspired from the case study in [22]
from which we removed the first CPU. The first input (I;) is processed with highest
priority and each processed event produces an event on the first output (Oy). The
second input I is processed with lower priority events to O,. The service curve
for the whole system is defined by 8* = 0,3,4 and 8! = 0,1,4. I; is defined by
the pair of curves a¥ = 0,3,3,3,6,6 and o} = 0,0,0,0,0,4, and I, by the pair
oy =0,3,3,3,3,3,3 and 0/2 =10,0,0,0,0,0,1. All curves are causal except (a¥, ah).

The results are given in Table [3] The analysis computes 8 points for the output
service curves 3 and for the output arrival curves of O1 and O,, but for clarity, only
the results for Oy are shown in the table. Values are underlined when one of the
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other computations provides a tighter result. As in the former section, we ran four
experiments, depending on the strategy used for the output observer and whether
causality closure is applied on I;. Again, the analysis using a deterministic observer
and applying causality closure on inputs provides strictly better results than all other
analyses.

In this example, the output curves for O, provided by all four analysis are causal
(hence applying causality closure on the output cannot provide tighter curves). Nev-
ertheless, a4*(1) = 2 (see first line of Table[3) is only obtained when applying causal-
ity closure on input I3, prior to the analysis. It should be noted that non-causality of
the first input results in imprecision on the second output, even though they are not
directly connected. Indeed, internally the fixed-priority scheduler model computes
the remaining service after the first computation and uses it on the second stream.
This example shows that non-causality can propagate within a model, and again,
the precision can not necessarily be recovered after the analysis.

In this example, the computation times for causal and non-causal curves are
similar, and the time taken to apply causality closure is always negligible compared
to the analysis.

8.2 Performance of Causality Closure when Scaling Up

In all the examples above, the time taken by causality closure is lower than 1 millisec-
ond, hence negligible. The memory usage is never a problem since the computation
is done in-place. This section analyses the performance of causality closure on large
curves.

As explained in Section [7:3] we do not have a formal bound for the number of
iterations needed in the case of discrete, finite curves. The worst number of iterations
we ever observed was obtained for pairs of curves with the following shape: a* =
0,a,...(a times)...,a and o = 0,0,...(b times)...,0,b,...(a — b times)...,b,a,
with @ > b > 0. Intuitively, those curves are composed of large “steps” that in-
troduce smaller ones at each iteration. We tested all possible pairs (a,b) for a,b €
{1,...,1001}. The worst-case was reached for a = 1001 and b = 569. In this case, the
algorithm needs 5 iterations, each iteration consisting in an SA-SA closure followed
by an application of the forbidden region removal operator C.

The application of causality closure on this curve is shown on Figure The
computation takes 1.6 seconds in total. This is not a theoretical worst-case, but a
very pessimistic one with really large curves, while the performance is still very good.

8.3 Causality Closure in MPA-RTC

The MPA-RTC [32] toolbox provides @ and @ operators (respectively called rtcmindeconv
and rtcmaxdeconv in the toolbox), but unfortunately not sub-additivity and super-
additivity closure operators. Note that this is not a theoretical limitation since, there

exist algorithms to compute them [6]. Hence, applying causality closure on SA-SA

pairs of curves in MPA-RTC is trivial, as far as the result is not empty:

function [l_causal, u_causal] = causality_closure(u, 1)
1_causal = rtcmindeconv(l, u);
u_causal = rtcmaxdeconv(u, 1);
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Fig. 14 Iterative Causality Closure on Large Arrival Curves

However, when dealing with non-SA-SA curves, this approach cannot be used in
practice. Instead, MPA-RTC provides an operator called rtctighten which uses an
iterative approach as we did in Section [7-3] for discrete, finite curves. This operator
applies (o', a’) = (" ®@ a*) A ("D ab), (! ®a) A (&) @ a®) N times. On some
curves, the iteration can reach a fixed-point. As a fixed-point of rtctighten is also
a fixed-point of C, it is causal by Theorem [ Furthermore, its upper curve is a
fixed-point of ® and its lower curve of ®, hence it is SA-SA. As a consequence, a
fixed-point of rtctighten is equal to the causality closure C(a%,al) of (a¥,al).

However, iterating rtctighten does not always reach a fixed-point; it may hap-
pen instead that each iteration doubles the length of the non-periodic part of the
curve, resulting in an exponential (in N) computation time as well as an output
curve whose length is also exponential (in V).

We illustrate this on the following curves:

1_base = rtccurve([[0 0 0]; [5 4 011);
u_base rtccurve ([[0 3 0]; [3 inf 0]1);
u_base_alt = rtccurve([[0 3 0]; [3 6 1]11);

rtccurve ([[0 0 0]; [5 4 011, 0, 5, 4);
rtccurve ([0 3 0], 3);

1
u

where u_base represents the finite upper curve such that a*(3) = 3 and a*(t) = 400
for t > 3; and 1_base represents the finite lower curve such that o!(5) = 4 and
al(t) = 4 for t > 5. As the MPA-RTC operator rtcmaxdeconv does not handle
infinite values, we replace u_base with u_base_alt which is equivalent (u_base is
extended with a*(t) =t + 3 for t > 3).
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First, we compute causality_closure(u_base_alt, 1_base) which lasts 6 mil-
liseconds, but since (u_base, 1_base) is not SA-SA, the result is neither optimal nor
causal.

Second, we compute rtctighten([u_base_alt, 1_basel, N). But, we could
not reach a fixed-point with any N-value we tried. Instead, we could observe an
exponential behavior: for instance, for N = 10, 11, 12, 13, the computation lasts
respectively 2.4 seconds, 10.1 seconds, 42.8 seconds and 179.5 seconds, and the 4
calls return different pairs of curves. The output curves have non-periodic parts of
length respectively 5120, 10240, 20480 and 40960, i.e. exactly 5 x 2%V (5 is the length
of the non-periodic prefix of [u_base_alt, 1_basel).

Now, we focus on the pair of curves (u, 1) (periodic extension of (u_base,
1_base): it is the SA-SA closure of (u_base, 1_base), computed by hand. As ex-
pected, causality_closure(u, 1) returns the causality closure of (u, 1), which is
also a fixed-point of rtctighten. The call to causality_closure takes 9 millisec-
onds. Similarly, a call to rtctighten([u, 1], 1) lasts 12 milliseconds and returns
a causal curve.

9 Conclusion

In this paper, we formally define the notion of causality for RTC curves, and set up
a formal framework to study it. As already mentioned, and although all along the
paper we talk about arrival curves, the results are applicable to arrival curves as well
as to service curves.

To the best of our knowledge, the phenomenon has received little attention and no
work has been carried out on the subject yet except |2, B] and to some extent [5] [10].
This is mainly due to the usual way arrival curves are used within RT'C frameworks
(which do not produce non-causal curves) on the one hand and to the restrictions of
the studies to some causal-by-definition class of arrival curves on the other hand.

One starting point is the intuitive notion of forbidden region, from which we
derive a formal definition of causality based on the possibility to extend a curve. We
state a sufficient condition for causality on SA-SA pairs of curves (this condition is
also necessary for a wide class of curves).

We detail under which conditions causality may appear and be problematic.
When using simulators or formal verification tools, causal pairs of curves are very
often mandatory (unless involving, if at all possible, heavyweight computations).

We believe that causality should be considered as a basic well-formedness prop-
erty like the sub-additive/super-additive closure, as done in [12]. Most pairs of curves
in practice are already causal, and the ones that are not can easily be made so with
the causality closure algorithm in most, if not all, interesting classes of curves.

The definition of causality and causality closure are needed for several approaches.
For example, Finitary Real-Time Calculus [12] explicitly requires causal curves. The
tool ac2lus [I] would yield spurious counter-examples hence return sub-optimal re-
sults if not applied on causal inputs. The connection to timed automata presented
in [4] applies causality closure on its output to improve precision. The one presented
in [23] has to deal with causality when applied on non convex/concave curves. Ran-
dom generation of event streams [5], 20] needs to solve the causality problem too.
Still, the proofs for the main theorems and algorithms about causality were never
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published. The main goal of this paper is to consolidate the theoretical foundations
by providing detailed formal proofs for all these results.

To avoid non-causal curves, we proposed an algorithm that turns a non-causal
pair of curves into an equivalent and causal one. After application of this algorithm,
event generators based on arrival curves can no longer deadlock, and formal verifiers
no longer produce spurious counter-examples linked to causality. As an additional
benefit, the transformation gives the tightest pair of curves equivalent to the original
one. It is also a canonical representative of all pairs of arrival curves, defining the
same set of event streams.

The theory was developed for discrete and fluid event model, discrete and con-
tinuous time for infinite curves. Although one of the results is still a conjecture in
the most general case (fluid event model, continuous time), other theorems still hold.
In particular, every results about causality closure, and the algorithms derived from
them are valid regardless of the conjecture.

Given any class of curves and framework implementing the basic operators (@, @
and SA-SA closure), one can implement causality closure as a simple combination of
those operators. Algorithms have also been adapted to discrete time and event model
for the case of finite arrival curves, where the sub-additive and super-additive clo-
sure operators do not make sense. We also briefly present the case of concave/convex
piecewise affine curves, which does not have the problem at all, and a combination
of finite discrete curves with this model called Upac, which also requires some adap-
tation of the general algorithm. These specific algorithms are implemented in the
ac2lus [I] toolbox.
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