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We give an introduction to superalgebra, founded on difference between even (commuting) and odd (anti commuting) variables. We give a sketch of the work of Grassmann, and show how derivations of those structures induce various superalgebra structures, even derivations giving Lie superalgebras of Cartan type, while odd derivations give Jordan type superalgebras.

Résumé

Ce texte constitue une introduction à la superalgèbre, fondée sur la distinction entre variables commutantes, dites paires, et les anticommutantes, dites impaires. Nous donnons un aperçu historique sur l'oeuvre de Grassmann, et nous montrons comment les dérivations de ces superalgèbres permettent d'engendrer de nouvelles structures de superalgèbres de Lie. Les dérivations d'algèbres associatives et commutatives permettent d'engendrer des algèbres de Lie du type algèbres de champs de vecteurs; le résultat s'étend au cas commutatif gradué, la construction produisant alors des superalgèbres de Lie, pourvu que la dérivation de départ soit paire, c'est à dire respecte le degré. Nous explorons les structures algébriques très différentes (algèbres de Jordan) obtenues à partir d'une dérivation impaire (qui modifie le degré).

x j x i , tandis que les variables impaires anticommutent, vérifiant θ α θ β = -θ β θ α .

Les exemples standards en sont respectivement les algèbres symétriques et antisymétriques sur un espace vectoriel de dimension finie, que l'on peut représenter respectivement par des algèbres de polynômes et des algèbres extérieures, dites aussi "de Grassmann". Ce sont les algèbres commutatives (resp. anticommutatives) libres sur un nombre fini de générateurs. La référence de base pour les questions de supergéométrie est l'article de D. Leites [START_REF] Leȋtes | Introduction to the theory of supermanifolds[END_REF], voir aussi [START_REF] Deligne | Notes on supersymmetry (following Joseph Bernstein)[END_REF].
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Aperçu historique C'est ici l'endroit d'évoquer l'oeuvre d'un mathématicien quelque peu méconnu: Hermann Günther Grassmann (1809-1877). Formé à Stettin (aujourd'hui Sczczecin, Pologne), puis à Berlin, son principal titre de gloire en mathématiques est d'avoir été le premier à jeter les bases de l'algèbre linéaire et bilinéaire. Il présente ses résultats sous forme de mémoire de doctorat en 1840, le rapporteur le rejette. En 1844, il en publie une version étendue à compte d'auteur: Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (La théorie de l'extension linéaire, une nouvelle branche des mathématiques); le livre finira au pilon, faute d'acheteurs. Le saut épistémologique aussi fondamental qu'audacieux fut de considérer les êtres géométriques comme pouvant être soumis à des opérations algébriques, comme des nombres. Comme le dit Dieudonné : "A partir de là, toute une série d'idées nouvelles vont élargir considérablement ces conceptions, et conduire peu à peu à l'idée que l'Algèbre est la science des opérations sur des objets arbitraires"([2] p.93).

Citons Grassmann en traduction française: La première impulsion est venue de considérations sur la signication des nombres négatifs en géométrie. Habitué à voir AB comme une longueur, j'étais néanmoins convaincu que AB = AC + CB, quelle que soit la position de A, B et C sur une droite.

Il décrit ensuite comment il a prolongé cette réflexion aux rectangles, à leurs aires orientées, etc., aux parallélépipèdes et à leurs volumes. Il anticipe d'un même mouvement le calcul barycentrique de Möbius, allant plus loin que lui dans la formalisation de la multiplication d'un scalaire par un vecteur. Il développe une 'analyse géométrique', allant plus loin que le calcul vectoriel de A. Cayley en calculant sur des grandeurs orientées ("extensive Grössen" ) de dimension quelconque, ce qui l'a amené à construire l'algèbre extérieure, que l'on peut donc qualifier "de Grassmann" de façon tout à fait légitime.

Il a ainsi jeté les bases de l'algèbre linéaire et multilinéaire, sans toutefois donner une définition générale et axiomatique des espaces vectoriels et applications linéaires, faute d'avoir à sa disposition la théorie des ensembles; ce sera le travail de Giuseppe Peano, quelque trente ans plus tard. Il donne à cette époque la démonstration du célèbre théorème permettant de déterminer la dimension de la somme de deux sousespaces en fonction de la dimension de ceux-ci et de celle de leur intersection. Le travail de Grassmann reste cependant méconnu; sa candidature à un poste universitaire en 1847 est rejetée suite à un rapport négatif d'Ernst Kummer.

Il va alors enseigner au lycée de Stettin sa ville natale, et se tourne vers d'autres recherches, d'abord en physique avec une théorie des couleurs, mais la célébrité allait venir de ses travaux en linguistique génórale; en contact avec Franz Bopp, pionnier de la linguistique comparée indo-européenne, il se lance dans l'étude du sanskrit et la réalisation d'un dictionnaire de cette langue, puis dans la traduction du Rig-Veda. Sa principale découverte, dite "dissimilation des aspirées" reste connue des linguistes sous le nom de loi de Grassmann: sous certaines conditions on observe une mutation des consonnes occlusives aspirées en occlusives sourdes; cela se produit notamment en grec ancien et sanskrit; pour les hellénistes la mutation consiste en : (φ, θ, χ) → (π, τ, κ) 1 .Pour une introduction accessible au comparatisme indo-européen, on poura se reporter à l'ouvrage d'André Martinet [START_REF] Martinet | Des steppes aux océans, L'indo-européen et les "Indo-Européens[END_REF](remarque: les chapitres non purement linguistiques de cet ouvrage sont fortement contestés par les spécialistes).

La vérification de l'identité de Jacobi est un calcul algébrique très simple qui permet d'obtenir la famille des algèbres de Lie dites 'de Cartan': pour toute variété différentiable V , l'algèbre de Lie des dérivations de l'algèbre C ∞ (V ) s'identifie à l'algèbre de Lie V ect(V ) des champs de vecteurs tangents. Il est remarquable que ce résultat ne dépende pas d'hypothèses topologiques ou analytiques sur les dérivations considérées. Les algèbres de Cartan sont alors des sous algèbres de Lie de V ect(V ) liées à des structures géométriques, unimodulaires, symplectiques, de contact...En particulier si V = S 1 , on obtient l'algèbre de Virasoro sans son terme central.Voir par exemple [START_REF] Guieu | L'algèbre et le groupe de Virasoro[END_REF] pour les propriétés algébriques et géométriques de cette algèbre de Lie.

La construction de l'algèbre de Virasoro peut se généraliser de la façon suivante: pour toute dérivation δ d'une algèbre commutative et associative A (par exemple A = C ∞ (V ), mais pas nécessairement), l'espace des dérivations du type aδ pour a ∈ A forment une sous-algèbre de Lie de Der(A) pour le commutateur des dérivations, et le crochet obtenu est encore donné par la célèbre formule:

[aδ, bδ] = (aδ(b) -bδ(a))δ.
Cette construction est appelée "virasorisation"(cf. [START_REF] Ovsienko | Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2 + 1[END_REF], appendice). On montre ensuite facilement que le crochet donné par le commutateur gradué:

[δ 1 , δ 2 ] = δ 1 • δ 2 -(-1) |δ 1 ||δ 2 | δ 2 • δ 1 .
vérifie l'identité de Jacobi et définit donc une structure de superalgèbre de Lie; cf. encore [1, vol.1, part.1] pour les structures de superalgèbres de Lie. . On obtient ainsi une superalgèbre de Lie notée V(A) que nous appellerons virasorisation de A; on détermine immédiatement la parité: V(A) i est isomorphe à A i pour i = 0, 1 modulo 2. On retrouve ainsi l'algèbre de Virasoro ainsi que certaines de ses partenaires supersymétriques, notamment la célèbre algèbre de Neveu-Schwarz et la famille des algèbres dites superconformes, utilisées en théorie des champs, dont on trouvera une présentation détaillée dans [3, chap. 9].

Notre construction est cependant beaucoup plus générale car elle fonctionne pour toute superalgèbre associative et supercommutative.

Le cas où la dérivation est impaire

Ici la construction inverse la parité: V(A) i est isomorphe à A i+1 pour i = 0, 1 modulo 2.

La condition que les produits des aδ soient des éléments du même type nous impose le choix des signes, comme le montre un calcul élémentaire (en langage physicien, il faut que l'algèbre "ferme"), il suffit d'annuler les termes en δ 2 . On doit poser:

aδ.bδ = (aδb + (-1) (|a|+1)(|b|+1) bδa)δ.

On a donc un commutateur si |a| = |b| = 0 , un anticommutateur dans tous les autres cas, et il s'agit d'étudier la nature des structures algébriques obtenues.

V(A) 0 × V(A) 0 → V(A) 0 V(A) 0 × V(A) 1 → V(A) 1 V(A) 1 × V(A) 1 → V(A) 0
On remarque immédiatement que ces multiplications vérifient les mêmes conditions de symétrie-antisymétrie que les Antigèbres de Lie définies et étudiées par Valentin Ovsienko et al. dans [START_REF] Ovsienko | Lie antialgebras: prémices[END_REF].

Nous allons tout d'abord considérer un cas particulier important, celui où A est l'algèbre des fonctions sur le supercercle S 1|1 en les variables t, θ, et où δ = D θ = θ ∂ ∂t -∂ ∂θ . Cet opórateur vérifie une relation remarquable D θ • D θ = ∂ ∂t , en quelque sorte D θ est la racine carrée du temps. Cette algèbre sera notée V(A( 1)). On a alors la :

Proposition:

Le produit . associé à δ = D θ munit V(A(1)) d'une structure d'antigèbre de Lie isomorphe à celle notée AK(1) dans [START_REF] Ovsienko | Lie antialgebras: prémices[END_REF].

Cette proposition va résulter d'un calcul direct, le produit de deux éléments de V(A(1)) s'écrit :

(u + θφ)D θ .(v + θψ)D θ = (uψ + vφ + θ(uv -vu + 2φψ))D θ
En prenant des bases trigonométriques appropriées on retrouve les formules de [START_REF] Ovsienko | Lie antialgebras: prémices[END_REF] p.4.

Il est maintenant naturel d'étudier la généralisation pour une dimension impaire N arbitraire: à toute dérivation impaire δ de la superalgèbre A on associe une algèbre graduée notée V(A, δ). Ici nous n'avons plus de structure d'antigèbre de Lie dès que N > 2, par contre: Proposition: La partie paire V(A, δ) 0 est une Algèbre de Jordan, et si de plus δ 2 = 0 la partie impaire V(A, δ) 1 est un module de Jordan.

Il est maintenant naturel d'étudier la généralisation pour une dimension impaire N arbitraire: à toute dérivation impaire δ de la superalgèbre A on associe une algèbre graduée notée V(A, δ). Ici nous n'avons plus de structure d'antigèbre de Lie dès que N > 2, par contre: Proposition: La partie paire V(A, δ) 0 est une Algèbre de Jordan, et si de plus δ 2 = 0 la partie impaire V(A, δ) 1 est un module de Jordan.

Pour les résultats de base sur les Algèbres de Jordan, voir [START_REF] Mccrimmon | A taste of Jordan algebras[END_REF]. Pour démontrer cette proposition la définition nous suffira; une algèbre commutative est de Jordan si pour tous x, y, on a: -les structures orthosymplectiques ou supersymplectiques paires. Pour des coordonnées p i , q i , θ j , i = 1....n, j = 1...N sur la variété de dimension 2n|N , la forme s'écrit ω = n i=1 dq i ∧ dp i + N j=1 L'action adjointe de a ∈ A pour ces crochets de Poisson respectifs définit une dérivation impaire de A, si a est impair (cas orthosymplectique), ou pair (cas périplectique). On peut interpréter géométriquement la condition δ 2 = 0 comme l'annulation du crochet d'un champ impair avec lui même, voir le formalisme type 'Master Equation' pour les structures BV.

Essai de classification en N = 2

Considérons donc A(2) l'algèbre des fonctions sur le supercercle S 1|2 en les variables (t, θ 1 , θ 2 ),et cherchons un opérateur D = A∂ t + U 1 ∂ θ 1 + U 2 ∂ θ 2 impair, tel que D 2 = 0. On en déduit 3 équations différentielles en les fonctions coefficients, soit 6 équations en 6 fonctions sur le cercle S 1 , et on aboutit facilement à la forme générale:

D = λ(u 2 θ 1 -u 1 θ 2 )∂ t + (u 1 + λu 1 θ 1 θ 2 )∂ θ 1 + (u 2 + λu 1 θ 1 θ 2 )∂ θ 2
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  Ces considérations s'étendent sans difficultés majeures au cas gradué. Soit A une algèbre associative Z/2Z-graduée, commutative-graduée; si on note par |a| le degré d'un élément a ∈ A,la commutativité graduée s'écrit:ab = (-1) |a||b| ba.Une application linéaire f est de degré |f | si pour tout a ∈ A, on a |f (a)| = |f | + |a|, les applications paires conservent le degré, les impaires l'échangent. On va maintenant s'intéresser aux dérivations graduées de A. Une application δ : A → A est une dérivation graduée de degré |δ| si pour tous a, b ∈ A, on a: δ(ab) = δ(a)b + (-1) |a||δ| aδ(b).
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  La virasorisation graduéeConsidérons le supercercle unité S 1|N , qui est la supervariété dont la variété sousjacente est S 1 , et l'algèbre de fonctions est donnée par C ∞ (S 1 ) ⊗ Λ * (N ) où Λ * (N ) désigne l'algèbre extérieure sur N générateurs impairs. Nous allons donc généraliser la construction de l'algèbre de Virasoro à partir de l'algèbre commutative et associative des fonctions sur le supercercle unité S 1|N . Si δ est une dérivation fixée, et a ∈ A, aδ définie par [aδ](b) = aδ(b), est une dérivation de degré |aδ| = |a| + |δ|; en particulier pour δ paire |aδ| = |a|. Dans ce cas on définit naturellement le commutateur gradué de deux telles dérivations: [aδ, bδ] = (aδb -(-1) |a||b| bδa)δ.

  (x.y).(x.x) = x.(y.(x.x)).(J 1 ) Calculons d'abord avec les termes pairs, de la forme aδ où |a| = 1; dans ce cas le produit est commutatif suivant aδ.bδ = (aδb + bδa)δ. On trouve: aδ.aδ = 2aδaδ bδ.(aδ.aδ) = (2aδaδb + 2bδaδa + 2abδ 2 a)δ aδ.(bδ.(aδ.aδ)) = (6aδaδbδb)δ + (2bδaδaδa)δ En particulier les termes en δ 2 disparaissent miraculeusement. aδ.bδ = (aδb + bδa)δ (aδ.aδ)(aδ.bδ) = (6aδaδbδb)δ + (2bδaδaδa)δ Et on a donc bien (aδ.aδ)(aδ.bδ) = aδ.(bδ.(aδ.aδ)), ce qui achève la démonstration de la première assertion. Pour la suite, il convient de définir la notion de module de Jordan: on dira que M est un module sur l'algèbre de Jordan A s'il est muni d'actions à droite et à gauche telles que a.m = m.a pour tout a ∈ A et m ∈ M , et telles que l'espace A + M muni de la multiplication (a, m).(b, n) = (a.b, a.n + m.b) soit une algèbre de Jordan. On développe suivant les formules J 1 et on en déduit deux conditions indépendantes: (aδ.aδ).(aδ.nδ) = aδ.((aδ.aδ).nδ)(J 2 ) (aδ.aδ).(bδ.mδ) + 2(aδ.bδ).(aδ.mδ) = (bδ.(aδ.aδ)).mδ + 2aδ.(bδ.(aδ.mδ))(J 3 ) On peut tout calculer explicitement en prenant garde aux parités: |a| = |δn| = 1 |n| = |δa| = 0. On trouve: (aδ.aδ).(aδ.nδ) = (6aδaδaδn + 2nδaδaδa)δ = aδ.((aδ.aδ).nδ) (aδ.aδ).(bδ.mδ)+2(aδ.bδ).(aδ.mδ) = 12aδaδaδn+6bδmδaδa+6mδaδaδb = (bδ.(aδ.aδ)).mδ+2aδ.(bδ.(a Conjecture Pour δ 2 = 0, l'algèbre commutative graduée V(A, δ) est une superalgèbre de Jordan (voir [6] pour les définitions). Pour δ 2 = 0 ,comme par exemple pour δ = D θ i = θ i ∂ ∂t -∂ ∂θ i sur A(N ) l'algèbre des fonctions sur le supercercle S 1|N en les variables t, θ i , i = 1....N la démonstration est en défaut . 7 Zoologie des dérivations impaires 7.1 Dérivations des structures (super)symplectiquesOn distingue deux types de structures supersymplectiques suivant la parité de la forme correspondante:

  -les structures périplectiques ou symplectiques impaires, sur des variétés de dimension N |N , et où la forme s'écrit suivant ω = N i=1 dx i ∧ dθ i le crochet de Poisson

	s'écrit comme	{f, g} =	N i=1	(	∂f ∂x i	∂g ∂θ i	-	∂f ∂x i	∂g ∂θ i	)
					1 2 dθ 2 j , et le crochet de Poisson correspondant s'écrit
	suivant la formule												
		{f, g} =	n i=1	(	∂f ∂p i	∂g ∂q i	-	∂f ∂q i	∂g ∂p i	) +	N j=1	∂f δθ j	∂g δθ j	.

La reconnaissance mathématique allait venir, mais bien tardivement; une réédition de l'"Ausdehnunglehre" en 1867 facilite la diffusion de ses idées et en 1871, il est admis à l'Académie des Sciences de Göttingen grâce à l'appui de Clebsch et de Klein. Vers la même époque, le jeune Sophus Lie lui rend visite à Stettin pour des explications à propos d'espaces vectoriels.La véritable reconnaissance sera posthume, avec les travaux de J.C. Maxwell (axiomatisation de l'électromagnétisme) et de W.K.Clifford vers 1880, lui reconnaissant la paternité des notions de produit scalaire et produit vectoriel. Enfin, vers 1900, en partant de l'algèbre extérieure de Grassmann et généralisant les formes de Pfaff, Elie Cartan introduisit les formes différentielles extérieures et l'opérateur d de différentiation extérieure qu'il utilisa pour établir les équations de structure des groupes de Lie, des " groupes infinis ", pour formuler la théorie du repère mobile et de la géométrie de ce qu'on appelle maintenant les variétés riemanniennes. 3 Les dérivations d'une algèbre associative et commutative A constituent naturellement une algèbre de Lie Der(A) pour le commutateur des dérivations; une application δ : A → A est une dérivation si pour tous a, b ∈ A, on a: δ(ab) = δ(a)b + aδ(b).1 Suivant la prononciation restituée du grec ancien selon Antoine Meillet[START_REF] Meillet | Aperçu d'une histoire de la langue grecque[END_REF],(φ, θ, χ) correspondaient respectivement aux phonèmes (p, t, k) aspirés, donc différents de la prononciation dite "érasmienne" du grec ancien, ou de celle du grec moderne