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I. INTRODUCTION

The increasing performance requirements of safety-critical real-time embedded systems made traditional single-core
architectures obsolete. Moving to more complex many-core systems requires new techniques and tools for the certification
of the embedded software. Timing and functional behaviours are subject to specific requirements of certification guidelines
such as D-178B/C for avionics and ISO26262 for automotive systems. Determinism and predictability of such systems are a
major challenge. Running tasks should be known in advance which makes the static and non-preemptive scheduling a suitable
approach to reach an optimal execution with a guarantee of a certain degree of determinism. Recent work on mapping and
scheduling problems [1], [2], [3] consider a known value (or a set of possible values) of the Worst-Case Response Time (WCRT)
and computes a mapping that optimizes a predefined cost function. When the response time analysis is too pessimistic, the
static scheduling may introduce an idle time which reduces the core utilization.

Scheduling techniques must rely on tight estimations of the WCRT which in turn depends on co-runner tasks. However, in
order to obtain a tight upper-bound on the response time, a mapping and scheduling should be known in advance. Indeed, the
response time is highly influenced by the co-runner tasks. Concurrent accesses to the same shared resource may introduce
interferences that should be accounted for in the response time analysis. The search for an optimal scheduling with a tight
WCRT analysis that includes the shared resource interferences is a challenging open problem.

II. THE OPEN PROBLEM

We illustrate the open problem on a Synchronous Data-Flow (SDF) application. SDF languages such as Lustre [4] offer an
efficient programming paradigm that, using a certified compiler, can produce deterministic sequential code. An SDF application
is represented with a task dependency graph, where the amount of exchanged data among the tasks is deterministic and known
in advance. We consider the application to be running on a multi/many core architecture with a banked shared memory. Figure 1
represents an example of a node in an SDF application. The node increases the values of an input array by 1. Among the
challenges while parallelizing such applications, we need to i) specify a task mapping that optimizes a certain cost function; ii)
specify a scheduling per processing element that respects dependencies; iii) find a tight estimate of the response time that takes
into account the interferences from co-runners. There exists several solutions for the mentioned points when taken individually.
However, the connexion and the interaction among them remains as an open problem.� �
1 const n=1000;
2 node N (in_data: intˆn) returns (out_data: intˆn);
3 var N: intˆn;
4 let
5 N = 1ˆn; -- array of n values of 1
6 out_data=in_data+N;
7 tel� �

node N

in data[n]

in data[0]

out data[n]

out data[0]

Fig. 1: Example of a Lustre node and its high level graphical representation

In this context, Figure 2 represents a potential solution for an efficient execution of such applications. The proposed technique
relies on an iteration between a scheduling/mapping function and the WCRT analysis. Existing approaches may be used in each
step but must interact altogether. In the following, we highlight open problems regarding such composability:

1) Code Generation: A code generator transforms the example given in Figure 1 into a low level language (such as C
language) which in turn is compiled to run on a target architecture. We consider that in_data (produced by a previous
node) is present in the local memory bank. After computation, out_data is copied to the next nodes’ local memory
banks. Several execution models can be applied: 1) A single phase execution model where the output is ”sent” to the
next node as soon as it is ready. 2) A structured execution model with an execution phase and a replication phase. The
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Fig. 2: High level work flow of a complete WCRT/Scheduling interaction

execution phase uses only the local memory bank to compute and store the output data. Then, a replication phase is
added to copy the values of out_data into their memory destinations. The number of shared resource accesses may
be significantly increased, but with a good scheduling of the execution and replication phases the interference may be
reduced. The choice of the execution model affects the results in the next steps. It is not clear whether it is possible to
recognize at this stage which execution model is more efficient by analyzing the structure of the application.

2) Task Mapping: We are interested in the optimization of the overall response time according to an estimated WCRT
of each task. In memory intensive applications, the scheduler may consider minimizing the interference by avoiding
concurrent accesses to the same shared resource. Each task is modeled by its release date, response time, deadline,
and period. The single phase execution model may use traditional scheduling techniques to respect all the deadlines.
The structured execution model offers more flexibility by co-scheduling communications and computations such that
the interference is reduced [5]. However, we still need to investigate the efficiency of this method w.r.t a single-phase
execution model where the number of accesses is not increased but the interference can be pessimistically overestimated.

3) WCRT Analysis: The WCRT analysis must be able to derive tight upper-bounds on the interference due to concurrent
accesses to shared resources, and therefore estimate the response times and release dates for all tasks. This requires a
task mapping and scheduling as well as the constraints on the task dependencies. The execution model given by the
code generation step can highly influence the analysis. In the case of a structured execution model, the upper bounds
on the shared resource interferences in the execution and replication phases may be too pessimistic due to pessimistic
assumptions on the arbitration policy. This may as well result in a larger estimation on the overall interference per task
depending on the application’s topology. As a result, one may run the analysis on both execution models and retain the
one with the best overall response time.

4) WCRT/Mapping Iteration: Depending on the chosen task mapping and scheduling per processing elements, the response
times must be re-estimated by taking into account the interference in order to check that all constraints are respected and
potentially reduce idle times. However, the optimality obtained from step (2) may be lost due to the updated timing
information. A possible solution relies on constraint programming languages. A solver finds a satisfiable task mapping
that optimizes the cost function. The WCRT Analysis and a schedulability test can then compute a tighter estimation by
taking into account potential interferences. New timing constraints are added to the model and the search stops when no
better solution can be found.

Since the mapping problem is NP-hard, it is hard to prove that the iteration done in 4) converges toward an absolute optimal
solution (assuming its existence). In the absence of such guarantee, one can iterate for a certain amount of time and choose the
best solution. This interaction remains as an open problem.
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