
HAL Id: hal-01406052
https://hal.science/hal-01406052v1

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Advanced Collaborative Environment for Software
Development

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès,
Emerson Cabrera Paraiso

To cite this version:
Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès, Emerson Cabrera Paraiso.
An Advanced Collaborative Environment for Software Development. The 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2016), IEEE Systems, Man, and Cybernetics
Society, Oct 2016, Budapest, Hungary. pp.2917-2922, �10.1109/SMC.2016.7844683�. �hal-01406052�

https://hal.science/hal-01406052v1
https://hal.archives-ouvertes.fr

An Advanced Collaborative Environment for
Software Development

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès
Sorbonne Universités, Université de Technologie de Compiègne

CNRS UMR 7253 Heudiasyc
Compiègne, France

Email: {gregory.wanderley, marie-helene.abel, barthes}@utc.fr

Emerson Cabrera Paraiso
Pontifı́cia Universidade Católica do Paraná
PPGIa - Graduate Program in Informatics

Curitiba, Brazil
Email: paraiso@ppgia.pucpr.br

Abstract—Collaborative software development is a complex
activity. An important factor that needs to receive attention
in collaborative software development is software quality. High
quality software reduces the development and the maintenance;
improves delivery schedules; and reduces repairs and rework.
In order to measure, evaluate, control and improve the software
quality, software metrics can be used. In this research we present
an advanced collaborative environment for software development
currently being built, called ACE4SD, which intends to support
the improvement of the code quality during collaborative software
development. ACE4SD is a system of systems composed of a
software development environment, a multi-agent system and
a platform to capitalize and manage knowledge, all of them
being integrated in the same environment. ACE4SD can provide
personalized support to team members to improve the code
quality and encourage its reuse, it can answer questions or doubts
arisen during the development, record document problems and
solutions, and improve the awareness and collaboration between
the participants.

I. INTRODUCTION

Collaborative software development is a complex activity,
composed of many steps like planning, analysis, design, im-
plementation, or maintenance. During collaborative software
development, participants have to work collaboratively in order
to produce consistent results. One important factor that needs
to receive attention in collaborative software development
is software quality. According to Bonsignour and Jones [1]
software quality is the critical path to achieve successful
software development.

Software metrics allow measurement, evaluation, control
and improvement of software products and processes (Fenton
and Neil [2], Kitchenham [3]). They are essential resources
to improve quality and control cost during software develop-
ment (Wallace and Sheetz [4]). Dozens of metrics have been
proposed since the mid-60s ([2] [3]).

In this research we are interested in the roles of the
developers and of the managers in collaborative software
development. The main goal of this work is to support them for
improving code quality during the software development. To
do this, we propose an advanced collaborative environment for
software development, called ACE4SD, based on a software
development environment, on multi-agent systems (MAS) and
on a platform for capitalizing and managing the knowledge
related to the code quality. Thus, ACE4SD is a system of
systems integrating all elements in the same environment.

The information concerning the code quality are capitalized
through the use of software quality metrics.

ACE4SD can provide personalized support to team mem-
bers to improve the code they are writing, to answer questions
arising during the development, to record problems and solu-
tions, to improve awareness and collaboration.

In this paper we state the problem, highlighting some of
its aspects, and show how we address them. But first, in order
to better understand the proposed approach, we give some
background related to software quality metrics, multi-agent
systems, and capitalization and management of knowledge in
organizations. We then detail our approach and discuss some
related work and the current state of the research.

II. PROBLEM DEFINITION

According to a study made by the University of Cambridge
[5], the annual cost to correct source code defects is about
US$312 billions. This cost could be reduced by improving the
quality of software, which will also reduce the costs linked to
the maintenance and support of the application. Having a high
quality software also improves testing and delivery schedules.
Furthermore, the repairs and rework can be reduced by more
than 50%. On the other hand, low quality software makes
delivery dates unpredictable. Repairs and rework become the
major cost drivers of the project. Even more, low quality
reduces customer satisfaction, can affect market share, and can
even lead to criminal charges in some cases (Bettenburg and
Hassan [6], Bonsignour and Jones [1]).

In order to handle and improve the quality of the source
code, we propose an advanced collaborative environment for
software development, ACE4SD. ACE4SD must provide per-
sonalized support to developers in: measuring the code quality
and finding out solutions to improve it; giving answers to
questions about quality that may arise during the development;
documenting quality problems and solutions; and also increas-
ing collaboration between team members. The improvement of
code quality, reduces its complexity, facilitates its reuse (i.e.
is easy to reuse) and code maintenance (i.e. readability).

ACE4SD is also concerned with the role of managers
by improving awareness. Awareness is an understanding of
the activities of others, which provides a context for your
own activity. Furthermore, awareness information is always
required to coordinate group activities (Dourish and Bellotti

[7]). Thus, in the context of collaborative software develop-
ment, a manager must be aware of what is going on in the
projects and with the developers. ACE4SD intends to improve
managers awareness regarding the quality of project code and
regarding each developer. It can be useful, for instance, to
know if some developer encounters the same kind of quality
problem frequently. If so, the manager could advise courses,
formation or training, in order to improve the developer’s
ability to produce better code.

ACE4SD is being built as a system of systems integrating
a software development environment, an MAS and a platform
to capitalize and manage knowledge. A system of systems is
a super system composed of other systems, which are them-
selves independent complex operational systems, interacting to
achieve a common goal (Saleh and Abel [8]).

To support collaborative software development, researchers
have proposed different approaches using MAS (Tacla et al.
[9], Ramos et al. [10]). The software agents have been found
to be useful in environments where the work load is high,
the goal is difficult to achieve and the environment is highly
collaborative (Sethuraman et al. [11]). According to Tacla
et al. [9], an MAS can potentially improve the exchange of
information among the participants, provide support, improve
workflows and procedures controls, and provide convenient
user interfaces systems (Paraiso and Barthès [12]). Moreover,
agents can also learn the behavior of the participants and give
them a customized support.

The multi-agent part of the ACE4SD connects the two other
parts of the environment, the software development environ-
ment and platform to capitalize and manage the knowledge.
The platform to capitalize and manage knowledge is used to
store and recover the data concerning the code quality, such
as the problems, the users related to them, and the solutions
associated with the problems.

III. BACKGROUND

This section introduces software quality metrics, multi-
agent systems, and the capitalization and management of
knowledge in organizations.

A. Software Quality Metrics

The quality of the source code can be measured by software
metrics regarding complexity and maintainability. The goal
of quality software metrics is to manage and to reduce the
complexity of the structures, to improve maintainability and
to improve the development of source code and consequently
to improve the software itself as mentioned by Yu and Zhou
[13].

Studies by Olague et al.[14], Sellers [15], or Martin [16]
report that source code metrics may indicate situations of
increasing or decreasing code quality related to maintainabil-
ity, reusability, complexity and understandability. Regarding
object-oriented code quality metrics, table I shows some met-
rics related to complexity; inheritance; size; and coupling.

B. Multi-agent Systems

Multi-agent systems are sets of agents that interact to
coordinate their behavior and often cooperate to achieve chal-
lenging tasks (Ren and Chen [20]).

TABLE I. EXCERPT OF QUALITY METRICS.

Metrics
McCabe’s Cyclomatic complexity met-
ric - MCC [17]

Weighted Methods per Class metric -
WMC [18]

Lack of Cohesion in Method metric -
LCOM* [18], [15]

Nested Block Depth - NBD [16]

Depth of Inheritance Tree - DIT [18] Number of Children - NOC [18]
Number of Overridden Methods -
NORM [15]

Specialization Index - SIX [15]

Method Lines of Code - MLOC [15] Number of Attributes per Class - NOA
[15]

Number of Static Attribute - NSF [19] Number of Static Methods - NSM [19]
Number of Parameter - NOP [19] Number of Interfaces - NOI [19]
Number of Package - NOP [19] Afferent Coupling - Ca [16]
Efferent Coupling - Ce [16] Instability metric - I, named here as

RMI [16]
Abstractness - A, named here as RMA
[16]

Normalize Distance from Main Se-
quence - D [16]

Many platforms exist to create and support multi-agent
systems. We consider the OMAS (Open Multi-Agent Sys-
tems) developed in our laboratory [21]. Indeed, in addition
to be readily available, OMAS offers a rich environment
for developing multi-agent applications. OMAS agents are
cognitive, persistent, multi-threaded; they have skills (what
they can do) and goals (what they plan to do). Each agent can
have its own ontology to understand the expressions of the
content language, to build a knowledge base, or to interpret
the utterances from the user. The ontologies are expressed
with the MOSS1 representation language. The OMAS platform
has three kinds of agents: Service Agent(SA), Transfer Agent
(XA) and Personal Assistant (PA). SAs provide a particular
type of service corresponding to specific skills; XAs are
gateways that communicate with platforms having different
structures, implementing their own protocol, and translating
communication and content languages; PAs are in charge of
interfacing humans to the system. The PA acts autonomously
and is built to be a real assistant or surrogate of its master
(Wanderley et al. [22]), or even to act as a “digital butler”
(Negroponte [23]).

A PA has a crucial function, being dedicated to:

• understanding its master’s needs (i.e. the needs of the
user owning the agent);

• acting pro-actively to anticipate its master’s needs;

• mobilizing SAs to execute a command or demand
from its master;

• mediating all information exchanges among team
members (who are considered information sources);

• organizing the documentation of its masters with the
help of an SA;

• capturing and representing the team members’ opera-
tions, helping them in the process of preserving and
creating knowledge (Paraiso and Barthès [12]).

C. Capitalization and Management of Knowledge in Organi-
zations

Different approaches intend to handle the question of
capitalizing and managing the knowledge produced in orga-
nizations. One of them is the MEMORAe platform (Abel

1See http://www.utc.fr/∼barthes/MOSS/ for full documentation.

Fig. 1. The ACE4SD Architecture.

[24]) also developed in our laboratory. It aims at capitalizing
knowledge and skills in the context of organizations, and
more precisely the resources associated with this knowledge.
The MEMORAe platform lets its users make annotations,
comments, descriptions, recommendations, etc., and associates
them with resources, like documents, pictures, events, or
forums. Furthermore, the user can vote about resources, ex-
pressing his opinion about them. Moreover, the user is also
able to index the resources using a semantic map (an ontology)
visualized as concepts and instances. Besides, MEMORAe
gives users the ability to annotate resources and share them
within different sharing spaces, in addition to tracing users’
activities within the platform.

IV. THE ACE4SD ENVIRONMENT

In this section we present ACE4SD. First, we introduce
the architecture of the environment, and then we introduce a
prototype.

A. Architecture

Figure 1 shows the proposed architecture of ACE4SD. As
mentioned earlier, the architecture forms a system of systems
composed of three main parts: a software development envi-
ronment, a multi-agent system and a platform to capitalize and
manage knowledge. In addition, managers have an interface,
named ”Manager - Information,” with which they can interact
with the environment. It is important to highlight that in
the architecture, both developers and managers can interact
directly with the knowledge platform.

The knowledge platform aims at documenting the code
quality problems detected during software development and the
solutions that were found. Moreover, it allows developers and
managers to contribute with and improve the solutions, mak-
ing annotations, comments, descriptions, recommendations;
adding resources such as excerpt of codes; sharing ideas; and
also voting for the best solutions giving them a score.

In ACE4SD, each participant has its own Personal Assistant
Agent (PA), and the communication uses natural language.
Furthermore, all of the agents (SA, XA and PA) are in the
multi-agent platform. It is important to highlight that each
agent has its own ontology, which is used for understanding
the expressions of the content language (e.g. messages between

Fig. 2. Diagram representing the flow of assistance provided by a PA,
concerning the quality of developers’ source code.

agents and systems), to interpret the users’ utterances (e.g.
dialogues between developers/managers and their PAs), and to
work as a knowledge base. In the latter case, a PA ontology
can be used to store in a User Model personal information
(name, address, email, etc.) of its master, as well as information
concerning the quality of the developer’s code. The agent can
be aware of the experiences, skills and competencies of the
participants, and then give them personalized support. That
is, for developers, the ontologies can store information that
keeps track of the necessary quality improvements and their
respective solutions. It is thus possible to better understand the
developers’ needs.

Managers on the other hand, interface with their PAs
through the ”Manager - Information.” ACE4SD intends to
make managers aware of the quality of the code being devel-
oped. Managers are able to assess the quality of the projects,
packages, classes or methods, and also assess the quality of
the code produced by each developer.

One of the ways that PAs can help developers is by mea-
suring the code quality and finding possibilities of improving
it. Figure 2 shows the flow of assistance provided by a PA,
regarding the metrics and quality of the developer’s source
code.

During collaborative software development, while a devel-
oper is developing code, the software quality metrics of Table
I (Section III) are calculated and extracted from the code each
time the code is committed. Then, the resulting metrics are
sent to the multi-agent platform, through the transfer agent
“DevEnvironment/Multi-agent” that bridges the two platforms.
After that, the service agent “Metrics Agent” receives and
evaluates the metrics, verifying whether the code needs quality
improvement. To evaluate the metrics, the agent compares
them with thresholds that can be found in the literature (Filo et
al. [25], Martin [26]). If the evaluation concludes that the code
needs some improvement, them the Metrics Agent forwards it
to the agent “SA Search,” that will try to find solutions in
the following way: by asking the other developers’ PAs or by
searching the Web. When the agent “SA Search” asks other
PAs, it will try to find out whether their masters (developers)
have knowledge about this quality problem.

An agent is able to find solutions in documentation, excerpt
of codes, answers from forums, recommendations and hints
given by other development participants. As it goes through
the Web, and given that the team members can contribute to

the solutions in the knowledge platform, it is expected to find
and propose new solutions frequently.

Once a solution is found, it is synthesized and documented
in the knowledge platform, with information about the user;
the metrics and their values regarding the methods, classes,
packages, projects needed to be improved; and solutions found
for each quality problem. After that, the solution is sent to
the developer’s PA. The PA updates the User Model, saving
information about the quality improvement needed and about
the solutions that were found. After that, the PA sends a report
to all other PAs, making the collaborative development team
aware of the quality problems in this part of the code.

For example, if the Metrics Agent found, for a given
developer, that the value of “Depth of Inheritance Tree (DIT)”
Table I (Section III) has increased abruptly since the last
evaluation, then it can indicate that this part of the code is
complex and needs quality improvement. For the DIT metric,
the deeper a class will be in the hierarchy, the greater the
possibility to inherit more methods, making it more complex
for predicting its behavior as shown by Suresh et al. [27].
Then, the agents can search for solutions to reduce this type
of complexity.

In addition, ACE4SD must support team members, trying
to provide answers to questions about quality that may arise
during development. For example, a developer can directly
ask his PA if the use of the repetition structure ”for” one
inside the other could affect the quality. Then in order to find
out the answer, the PA would ask the agent ”SA Search,”
that exchanges information with other PAs, and also search
the Web. The information and the results of the answers
are stored in the knowledge platform, and we also keep
track in the ontologies of the PAs. When the PA interacts,
exchanging information with other users’ PAs, it improves the
collaboration between team members. Moreover, the use of the
knowledge platform that capitalizes and shares knowledge, also
improves the collaboration as well as the documentation.

B. Prototype

This section presents a mock up of the ACE4SD environ-
ment from the point of view of the developers and managers.
In order to build the prototype, the following tools were used:
the Eclipse IDE, the OMAS platform and the MEMORAe
platform. The Eclipse IDE is a Java environment, in which
developers write their codes. The OMAS platform provides
the multi-agent environment, and the MEMORAe platform the
environment to capitalize and share knowledge.

The Eclipse IDE contains two plugins: (i) Metrics [28]:
and (ii) ACE4SD.

• The Metrics plugin calculates, automatically and in a
non-intrusive way, quality metrics of Java source code,
providing the measured values, the mean and standard
deviation for resources (project, class and method).
Some of the quality metrics that the plugin calculates
are available in Table I (Section III). The goal is to
extract the quality metrics of the source code that is
being produced by a developer and to send it to the
OMAS plugin.

Fig. 3. The ACE4SD developers’ interface inside the Eclipse IDE.

• The ACE4SD plugin creates the interface between
developers and their PAs (which are inside the OMAS
platform). In this way, the developers can interact
with their PA’s directly from Eclipse, avoiding switch-
ing between different windows from different tools.
Moreover, the ACE4SD plugin receives the calculated
metrics from the Metrics plugin and sends it to the
service agent “Metrics Agent” (Figure 1). This agent
is responsible for analyzing the metrics.

Figure 3 shows a developer’s interface of the Eclipse
IDE. The interface provides a communication channel between
developers and their PAs. In the interface, a developer can
communicate and exchange information with his PA in natural
language directly, avoiding changing windows or tool. For
instance, the developer can tell his PA that he wants to access
the MEMORAe platform. Besides, the PA is proactive and it
is always monitoring its master. In the example of Figure 3,
the PA alerts the developer that a new report with information
about problems related to code quality and possible solutions is
available. It also shows directly in the interface some highlights
of the report.

A manager’s interface of ACE4SD is shown in Figure 4.
The interface enables a manager to be aware of the quality
of the projects and the developers. She can see the quality
of the whole project, the resources (.java) with the worst
quality, and what are their main defects, such as inheritance,
coupling, complexity, etc. If the quality of some project is
under a defined threshold, it is highlighted in red. Besides,
in her interface, the manager is able to interact and exchange
information in natural language with her PA.

For instance, in Figure 4 the manager asks more details
about a specific developer, and the PA brings her the results
showed in Figure 5. In this figure, the manager has a quality
chart of the developer, being aware of the quality of the code
he produced as well as its problems, such as it is difficult to
test, i.e. the code contains a high number of decisions paths,
and more tests are needed.

V. RELATED WORK

In this section we present other approaches related to
supporting the collaborative software development teams for

Fig. 4. The ACE4SD managers’ interface.

Fig. 5. Details and informations of some developer in the manager’s view.

improving the code quality.

The work of Haderer et al. [29] presents a framework
for measuring the quality of the code after each commit
made by a developer. After that, it sends an email to the
development team, comparing the last evaluation with the new
one, and giving advice for improving the code. However, the
approach is reactive, and it does not provide proactive nor
personalized support to the team members, as agents can do.
Furthermore, as far as we can see from the paper, advice
proposed by the framework to improve the quality appears
to be limited to predefined strings. That is, we do not know
whether the solutions improve over time, whether they come
from different sources, or whether the system provides other
kinds of resources like excerpt of codes or answers from
forums.

The goal of the work of Mishra and Srivastava [30] and
Santos et al. [31] is to develop a multi-agent architecture to
handle software maintenance. Given a requirement made by
some user, such as a change or an enhancement in the code, the
agents compute some metrics in order to assess and estimate
the complexity of the modifications. In the work of Santos et
al. [31], the developer chooses the quality attribute she wants to
improve, and then the agents search the code for opportunities
to apply the maintenance tasks and evaluate whether the source
code quality has been improved. Nevertheless, in this works
the only kind of support provided by the authors to the users
is related to code maintenance. The approach does not support
the software development team providing solutions, answering
question/doubts, or giving personalized support for each team
members during the development.

The work of Heinemann et al. [32] describes a tool for
providing feedback to the developer using incremental code
quality analysis. The approach aims at evaluating the quality
of a piece of code (through the use of quality metrics) when
it is committed by a developer, revealing the impact of this
new code onto the quality of the entire system. The tool also
annotates the source code with quality defects. However, it
does not provide support to the collaboration between the
team members, that is, there is no exchange of information,
contributions, messages or help, among users.

The fact is that none of the cited works proposes a system
of systems approach, that takes advantages of a software
development environment, a multi-agent part and a platform
to capitalize and manage knowledge. We did not find an
approach that: measures the code quality; tries to find out
solutions (coming from different sources) to improve the
quality; provides answers to questions that may arise during
the development; documents quality problems and solutions;
and also increases collaboration between team members.

VI. DISCUSSION AND CURRENT STATE OF THE
RESEARCH

Collaborative software development is a complex activity.
An important factor that needs to receive attention in order to
achieve successful software development is software quality.
Low quality code makes delivery dates unpredictable and
repairs and rework expensive.

Software metrics can be used to measure, evaluate, con-
trol and improve software products and processes. They are
essential for improving code quality.

In our research, we plan to support developers and man-
agers for improving the code quality. To do that, we started to
develop an advanced collaborative environment for software
development, ACE4SD, integrating a software development
environment, an MAS platform and a platform to capitalize
and manage the knowledge related to the code quality..

ACE4SD will provide personalized support to developers
by measuring the code quality and finding out solutions to
improve it; attempting to provide answers to questions that
may arise during the development; documenting the problems
encountered, and also increasing the collaboration. In the case
of managers, ACE4SD will increase their awareness of the
developers.

In this paper, we presented the general architecture of the
ACE4SD, discussed the help that a PA can provide related
to the quality of the developers source code. Besides, we
described a first prototype that shows the views of a developer
and a manager in ACE4SD. In the prototype the software
development environment was handled by the Eclipse IDE,
the multi-agent platform OMAS, and the knowledge platform
MEMORAe.

In the current state of this research, the interface be-
tween Eclipse and OMAS is handled by a transfer agent,
“DevEnvironment/Multi-agent.” The quality metrics are ex-
tracted and the results are sent to OMAS. The results are also
analyzed and evaluated by a service agent, “Metrics Agent”
that can detect quality problems. Moreover, the interface to
the MEMORAe platform is done by an OMAS transfer agent,

“Multi-agent/Knowledge Platform” agent, allowing to store the
data concerning the metrics and the results of evaluating each
developer. Now, we are working on better ways to recover
information stored in MEMORAe to help the developer effi-
ciently.

VII. ACKNOWLEDGMENT

Gregory Moro Puppi Wanderley would like to thank CNPq-
Brazil for its support in this research.

REFERENCES

[1] O. Bonsignour and C. Jones, The Economics of Software Quality.
Addison Wesley, 2011.

[2] N. E. Fenton and M. Neil, “Software metrics: roadmap,” in Proceedings
of the Conference on the Future of Software Engineering. ACM, 2000,
pp. 357–370.

[3] B. Kitchenham, “Whats up with software metrics?–a preliminary map-
ping study,” Journal of systems and software, vol. 83, no. 1, pp. 37–51,
2010.

[4] L. G. Wallace and S. D. Sheetz, “The adoption of software measures:
A technology acceptance model (tam) perspective,” Information &
Management, vol. 51, no. 2, pp. 249–259, 2014.

[5] Cambridge University, “Cambridge University study,”
http://insight.jbs.cam.ac.uk/2013/financial-content-cambridge-
university-study-states-software-bugs-cost-economy-312-billion-per-
year/, 2013, online; accessed 09 June 2016.

[6] N. Bettenburg and A. E. Hassan, “Studying the impact of social inter-
actions on software quality,” Empirical Software Engineering, vol. 18,
no. 2, pp. 375–431, 2013.

[7] P. Dourish and V. Bellotti, “Awareness and coordination in shared
workspaces,” in Proceedings of the 1992 ACM conference on Computer-
supported cooperative work. ACM, 1992, pp. 107–114.

[8] M. Saleh and M.-H. Abel, “Information systems: Towards a system of
information systems,” in KMIS 2015 7th International Conference on
Knowledge Management and Information Sharing, 2015, pp. 193–200.

[9] C. A. Tacla, A. R. Freddo, E. C. Paraiso, M. P. Ramos, and G. Y. Sato,
“Supporting small teams in cooperatively building application domain
models,” Expert Systems with Applications, vol. 38, no. 2, pp. 1160–
1170, 2011.

[10] M. Ramos, C. Tacla, G. Sato, E. Paraiso, and J.-P. Barthès, “Cscw
in software development: Collaboration among humans and artificial
agents through dialogs,” International Journal of Energy, Information
and Communications, vol. 2, no. 4, pp. 31–45, 2011.

[11] A. Sethuraman, K. K. Yalla, A. Sarin, and R. P. Gorthi, “Agents assisted
software project management,” in Proceedings of the 1st Bangalore
Annual Compute Conference. ACM, 2008, p. 5.

[12] E. C. Paraiso and J.-P. A. Barthès, “An intelligent speech interface for
personal assistants in r&d projects,” Expert Systems with Applications,
vol. 31, no. 4, pp. 673–683, 2006.

[13] S. Yu and S. Zhou, “A survey on metric of software complexity,”
in Information Management and Engineering (ICIME), 2010 The 2nd
IEEE International Conference on. IEEE, 2010, pp. 352–356.

[14] H. M. Olague, L. H. Etzkorn, and G. W. Cox, “An entropy-based
approach to assessing object-oriented software maintainability and
degradation-a method and case study.” in Software Engineering Re-
search and Practice. Citeseer, 2006, pp. 442–452.

[15] B. H. Sellers, “Ojbect-oriented metrics. measures of complexity,” 1996.

[16] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[17] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[18] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, 1994.

[19] R. Harrison, S. Counsell, and R. Nithi, “An overview of object-
oriented design metrics,” in Software Technology and Engineering
Practice, 1997. Proceedings., Eighth IEEE International Workshop on
[incorporating Computer Aided Software Engineering]. IEEE, 1997,
pp. 230–235.

[20] C. Ren and C. P. Chen, “Decentralized control for second-order uncer-
tain nonlinear multi-agent systems consensus problem based on fuzzy
adaptive high-gain observer,” in Systems, Man, and Cybernetics (SMC),
2013 IEEE International Conference on. IEEE, 2013, pp. 4935–4940.

[21] J.-P. A. Barthès, “Omasa flexible multi-agent environment for cscwd,”
Future Generation Computer Systems, vol. 27, no. 1, pp. 78–87, 2011.

[22] G. M. P. Wanderley, M. P. Ramos, C. Tacla, G. Y. Sato, E. J. d. Silva,
E. C. Paraiso et al., “Modus-sd: User modeling in collaborative software
development,” in Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on. IEEE, 2012,
pp. 372–378.

[23] N. Negroponte, Being digital. Vintage, 1996.

[24] M.-H. Abel, “Knowledge map-based web platform to facilitate organi-
zational learning return of experiences,” Computers in Human Behavior,
2014.

[25] T. Filó, M. Bigonha, and K. Ferreira, “A catalogue of thresholds for
object-oriented software metrics,” in Advances and Trends in Software
Engineering, 2015 The First International Conference on. IARIA,
2015, pp. 48–55.

[26] R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151–170, 1994.

[27] Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of software metrics
for object-oriented system,” Procedia Technology, vol. 6, pp. 420–427,
2012.

[28] Metrics, “Eclipse Metrics Plugin,” http://metrics2.sourceforge.net, 2016,
online; accessed 15 April 2016.

[29] N. Haderer, F. Khomh, and G. Antoniol, “Squaner: A framework for
monitoring the quality of software systems,” in Software Maintenance
(ICSM), 2010 IEEE International Conference on. IEEE, 2010, pp.
1–4.

[30] A. Mishra and V. Srivastava, “Multi agent paradigm used to complexity
measure for perfective software maintenance,” in Computer Science and
Engineering (APWC on CSE), 2014 Asia-Pacific World Congress on.
IEEE, 2014, pp. 1–9.

[31] H. Santos, J. F. Pimentel, V. T. Da Silva, and L. Murta, “Software
rejuvenation via a multi-agent approach,” Journal of Systems and
Software, vol. 104, pp. 41–59, 2015.

[32] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: software quality
control in real-time,” in Companion Proceedings of the 36th Interna-

tional Conference on Software Engineering. ACM, 2014, pp. 592–595.

