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50 Av. Franklin Roosevelt CP 194/6, 1050 Brussels, Belgium

2Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven,

59 Naamsestraat - bus 2466, 3000 Leuven, Belgium

3CHuepe Labs Inc.,

614 N Paulina St, Chicago IL 60622, USA

Received: date / Accepted: date

Running title: A novel motion control method for flocking

Contact person: Eliseo Ferrante

Laboratory of Socioecology and Social Evolution

Naamsestraat 59, B-3000 Leuven, Belgium

E-mail: eliseo.ferrante@bio.kuleuven.be

Phone: +32-488-27-68-42

1



2

Abstract

In flocking, a swarm of robots moves cohesively in a common direction. Tradi-

tionally, flocking is realized using two main control rules: proximal control, which

controls the cohesion of the swarm using local range-and-bearing information about

neighboring robots; and alignment control, which allows the robots to align in a com-

mon direction and uses more elaborate sensing mechanisms to obtain the orientation

of neighboring robots. So far, limited attention has been given to motion control, used

to translate the output of these two control rules into robot motion.

In this paper, we propose a novel motion control method: magnitude-dependent

motion control (MDMC). Through simulations and real robot experiments, we show

that, with MDMC, flocking in a random direction is possible without the need of

alignment control and of robots having a preferred direction of travel. MDMC has

the advantage to be implementable on very simple robots that lack the capability to

detect the orientation of their neighbors. Additionally, we introduce a small proportion

of robots informed about a desired direction of travel. We compare MDMC with a

motion control method used in previous robotics literature, which we call magnitude-

independent motion control (MIMC), and we show that the swarms can travel longer

distances in the desired direction when using MDMC instead of MIMC. Finally, we

systematically study flocking under various conditions: with or without alignment

control, with or without informed robots, with MDMC or with MIMC.

Keywords: Flocking, swarm robotics, swarm intelligence, coordinated motion, self-organization
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1 Introduction

Flocking, also referred to as self-organized flocking, is a collective behavior that is widely

observed in nature. It can be defined as the cohesive and ordered motion of a group of

individuals in a common direction. Examples can be seen in many animal species, from

locusts to birds and quadrupeds.

One of the first computer models of the flocking behavior was proposed by Reynolds

(1987). In his work, the behavior of each individual of the swarm is determined by three

components: attraction, repulsion and alignment. The attraction component allows the

individual to be attracted to its neighbors to keep the group together. The repulsion

component allows the individual to stay away from its neighbors to avoid collisions. The

alignment component allows the individual to match its heading direction to an average of

the heading of its neighbors, thus making all individuals point in the same direction. Note

that these three components had already been introduced in a previous flocking model

by Suzuki and Sakai (1973).

Reynolds’ model can be considered as a seminal work that inspired much subsequent lit-

erature. In the majority of these later works, none of the individuals composing the swarm

has a preferred direction of motion. This literature includes works in biology (Couzin et al.,

2002), statistical physics (Vicsek et al., 1995) and robotics (Turgut et al., 2008a). Another

part of the literature followed the seminal work of Couzin et al. (2005), who introduced

the notions of informed individuals, which have a preferred direction of motion or goal

direction, and non-informed individuals, which are not aware of the goal direction.

In robotics, all works use rules of attraction and repulsion that are similar to those stud-

ied by Reynolds. However, only some works use the alignment rule. Turgut et al. (2008a)

developed a flocking method consisting of proximal control, which encodes the attraction

and repulsion rules, and alignment control, which encodes the alignment rule. Turgut et al.

(2008a) achieved a flocking behavior on autonomous robots that, for the first time, did not

require external computation or communication devices. They did not consider informed

robots, but these were later introduced in a subsequent study by Çelikkanat and Şahin

(2010). Other works achieved alignment either by using global information or simulated

sensors (Hayes and Dormiani-Tabatabaei, 2002; Holland et al., 2005) or by making all or

most of the robots aware of the desired goal direction (Matarić, 1994; Spears et al., 2004).

3
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When the knowledge of the goal direction is widely available in the swarm, the alignment

of all robots in the same direction results merely from this global information rather than

from a self-organization process.

In this paper, we take a perspective that is different from what is found in the litera-

ture. We propose magnitude-dependent motion control (MDMC), a method that, together

with proximal control, achieves flocking with minimal components. By minimal we mean

that, differently from Turgut et al. (2008a), alignment control is not needed; differently

from (Hayes and Dormiani-Tabatabaei, 2002; Holland et al., 2005), external hardware is

not needed; differently from (Matarić, 1994; Spears et al., 2004), information about the

goal direction is not needed. Our method achieves ordered and cohesive flocking using

very simple robot hardware: robots only need to be non-holonomic and to sense their

neighbors’ range and bearing. Using this method, large swarms composed of hundreds or

thousands of even very simple robots (such as nano-robots, aerial robots or robots used

for extra-planetary missions) could be used to explore large environments. Furthermore,

we believe that our model is simple but powerful enough to be used as a reference model

for biology, for studying the movement of very simple animals (Simpson et al., 2006)

or cells (Szabó et al., 2006) and, in the context of statistical physics, for studying the

principles underlying swarms of active particles (Vicsek et al., 1995; Romanczuk et al.,

2009).

The contribution of this paper is twofold. First, we introduce MDMC, a method ca-

pable of achieving self-organized flocking without alignment control and without informed

robots. Second, we systematically study self-organized flocking by performing extensive

simulations and validating our results with real robot experiments. The study is conducted

with and without alignment control, with and without informed robots, with MDMC and

with magnitude-independent motion control (MIMC) (Turgut et al., 2008a). We show

that MDMC always outperforms MIMC when alignment control is not used, both with

and without informed robots.

The rest of the paper is organized as follows. In Section 2, we introduce the flocking and

the motion control methods. In Section 3, we explain how the model has been implemented

on the utilized robotics platform. In Section 4, we describe the metrics, the simulation

and the real robot experimental setup. In Section 5 and in Section 6, we present the
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results obtained without and with informed robots, respectively. In Section 7, we discuss

related works within robotics literature and we also survey some related works in statistical

physics. Finally, in Section 8 we conclude and we discuss possible future work.

2 Self-organized Flocking

In this section we describe the method we use to achieve flocking. The method is made

of different components: proximal control, alignment control and motion control. Motion

control is, in turn, realized either with the novel MDMC or with MIMC.

The overall flocking method is defined as follows. We assume that the robot under

consideration, the focal robot, computes a flocking control vector denoted by f . The

expression of the flocking control vector, in the most complete form that we call Model 1,

is:

f =p + a + g, (1)

where p is the proximal control vector, encoding the attraction and repulsion rules, a

is the alignment control vector, encoding the alignment rule, and g is the goal direction

vector, encoding the goal following behavior used only by the informed robots. In this

study we will also consider the following models:

f =p, (2)

f =p + g, (3)

f =p + a. (4)

In Section 4, we explain how these models are utilized.

5



2.1 Proximal control 6

2.1 Proximal control

The proximal control part of the method is common to all four models. The main idea

of proximal control is that, in order to achieve cohesive flocking, a robot needs to keep a

certain distance from its neighbors. The proximal control vector encodes the attraction

and repulsion rules: a robot tends to move closer to its neighbors when their distance is

greater than the desired distance and tends to move away from them when their distance

is smaller than the desired distance.

Proximal control assumes that the focal robot is able to sense the range and bearing of

its neighboring robots within a maximum interaction distance Dp. The proximal control

vector p is computed as:

p =

mp∑

i=1

pi(di)e
jφi ,

where pi(di)e
jφi is a vector expressed in the complex plane; mp is the number of neighbor-

ing robots perceived by the focal robot within range Dp; and di and φi denote respectively

the relative range and bearing of the ith neighboring robot, expressed in the body-fixed

reference frame of the focal robot1. The magnitude of the vector, pi(di), is computed as:

pi(di) = −∂P (di)

∂di
= −4αε

di

[
2

(
σ

di

)2α

−
(
σ

di

)α]
.

In words, pi(di) is defined as the negative derivative of the virtual potential function

P (di). A virtual potential function is often used in swarm robotics and statistical physics

to model social interaction between robots (Spears et al., 2004) or particles (Gregoire

et al., 2003). In our study, we use a generalized version of the Lennard-Jones potential

function:

Pi(di) = 4ε

[(
σ

di

)2α

−
(
σ

di

)α]
.

Parameter ε determines the depth of the potential function; that is, the minimum of the

potential function located at di = ddes = 2
1
ασ is −ε. We generalized the standard Lennard-

Jones potential used in (Hettiarachchi and Spears, 2009) in order to have the flexibility

to choose the exponent α, which determines the steepness of the function. Originally,

Lennard-Jones set α = 6. In this paper, as summarized in Table 1, we use α = 2, which

1The body-fixed reference frame is fixed to the center of a robot, its x-axis points to the front of the
robot and its y-axis is coincident with the rotation axis of the wheels.
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2.2 Alignment Control 7

corresponds to a lower steepness, as this value was found to achieve better performance

in experiments with real robots.

Finally, regarding the maximum interaction distance Dp, in general it can be less

than or equal to the maximum sensing range of the sensor. In this study, in order for the

proposed model to work in the absence of alignment control and informed robots, we found

that Dp must be chosen so that, when the swarm reaches a stable formation, interactions

among robots are limited to the first neighbors only in the Voronoi sense (Voronoi, 1908).

In order to achieve this without having to compute the Voronoi tesselation, we set Dp =

1.8 · 2 1
6σ, that is, the maximum interaction range is less than twice the desired distance

2
1
6σ between two robots.

2.2 Alignment Control

The main idea of alignment control is that a robot computes the average orientation of its

neighbors and adjusts its own orientation accordingly.

The method used for alignment control uses the following equation:

a =

∑ma
i=0 e

jθi

‖∑ma
i=0 e

jθi‖ ,

where θ0 is the orientation of the focal robot, ma is the number of neighbors within

a range Da of the focal robot, θi, i ∈ {1, . . . ,ma} are the orientation of the neighbors

expressed in the body-fixed reference frame of the focal robot and ‖·‖ denotes the length of

a vector. The focal robot calculates its alignment control vector as the average orientation

of the ma neighboring robots and of its own orientation (which we label as i = 0).

2.3 Motion control

Motion control is used to convert the flocking control vector f into the forward speed u

and the angular speed ω of the robot that is assumed to be non-holonomic. Below, we

describe the two motion control methods considered in this paper.

7



2.3 Motion control 8

2.3.1 Magnitude-dependent motion control (MDMC)

MDMC is the novel contribution of this paper. In MDMC, the forward and angular speed

of the robot depend on both the magnitude and the direction of the flocking control vector.

Therefore, the method uses all the information contained in this vector.

We define MDMC as follows. Let fx and fy denote the projection of the flocking control

vector (f) on the x- and y-axis of the body-fixed reference frame, respectively. The forward

speed u is directly proportional to the x component of the vector, pointing in the same

direction as the robot’s orientation. The angular speed ω, instead, is directly proportional

to the y component of the vector, pointing in the direction perpendicular to the robot’s

orientation. The corresponding equations are

u = K1fx + U ;

ω = K2fy,

where U is a forward biasing speed, and K1 and K2 are the linear and angular gains,

respectively.

The rationale of this method is the following: the larger the x-component of the flocking

control vector, the faster we want the robot to move forward; the larger the y-component

of the flocking control vector, the faster we want the robot to turn. Note that, with

MDMC, robots can in principle move also backwards, but they have a propension to move

forward due to the presence of the +U term in the equation for the forward speed.

2.3.2 Magnitude-independent motion control (MIMC)

MIMC was introduced for the first time in Turgut et al. (2008a) and later used in sub-

sequent work by Çelikkanat and Şahin (2010). In MIMC, the forward and angular speed

of the robot only partially depend on the information contained in the flocking control

vector. By “partially” we mean that, for calculating the speeds, only the direction of the

flocking control vector is taken into account, while the magnitude is discarded.

Let o be the unit vector matching the orientation of the focal robot (it points forward

along the x−axis of the body-fixed reference frame). The forward velocity and the angular

8
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velocities are computed as:

u =





(
o · f
||f ||

)
U , if o · f

||f || ≥ 0;

0, otherwise;

ω = K3 (6 o− 6 f) ,

where K3 is the angular gain and · denotes the dot product of two vectors.

The rationale of the method is the following. The robot modulates its forward speed

according to the angular difference between the flocking control vector and its orientation.

When the two directions are aligned, the robot moves at maximum speed U . When the

angular difference is equal or larger than 90 degrees, the robot does not move forward but

rotates on the spot. In between these two cases, the forward speed is interpolated between

0 and U according to the dot product between the flocking control vector and the robot’s

orientation. The angular speed is instead proportional to the angular difference between

the flocking control vector and the robot’s orientation. Note that, with MIMC, the robots

are not able to move backwards.

3 Self-organized Flocking with Mobile Robots

The mobile robot we use is the foot-bot (Bonani et al., 2010), shown in Figure 1a. The

foot-bot is commonly used for swarm robotics experiments and was developed during the

Swarmanoid project2 (Dorigo et al., in press).

3.1 The hardware

We utilized the following sensors and actuators: i) A light sensor, used to measure the

intensity and the direction of the light in the environment. ii) A range and bearing system

(RAB), used to measure the range and the bearing of the other robots. iii) Two wheel

actuators, used to control independently the speed of the left and the right wheels of the

robot.

2http://www.swarmanoid.org/
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3.2 The simulator 10

Range and Bearing
sensors

Light sensors

Wheels

(a)

Informed robot

Directional marker

Light source

(b)

Figure 1: (a) The foot-bot with its used sensors and actuators. (b) The arena as seen by
the overhead camera used for tracking: on the left side we created a light source by placing
four lamps; a cardboard hat with a directional marker is placed on each foot-bot, in order
to detect its orientation to compute the required metrics; the glowing robots are informed
about the desired goal direction (this example is taken from experiments with informed
robots). Note that LEDs and cardboard hats are used for debugging, visualization and
measurement purposes only, but are never utilized by the controller.

3.2 The simulator

We used the ARGoS3 simulator (Pinciroli et al., 2011) to execute physics-based simulations

of the robot dynamics when real-robot experiments are not possible or practical. ARGoS is

an open-source, plug-in based simulator in which custom-made physics engines and robots

with any desired degree of accuracy can be added. We used a custom-made 2D-kinematic

physics engine and a realistic model of the foot-bot that simulates very accurately all

the sensors and actuators. Another feature of ARGoS is the possibility to cross-compile

controllers both in simulation and on the real robots. This allowed us to seamlessly port

the same controller studied in simulation to the real robots.

3.3 Flocking implementation

The method described in Section 2 is implemented both on simulated and on real robots as

follows. Proximal control is achieved by using the RAB to measure the relative range and

bearing di and φi of the ith neighbor. Since robots are not able to measure the orientation

of their neighbors directly, we achieve alignment control by using a method similar to the

one in Turgut et al. (2008a). A light source, placed in a fixed position in the environment,

3http://iridia.ulb.ac.be/argos/
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is used to define a reference frame common to all robots. Each aligning robot measures

its orientation θ0 with respect to this reference frame by using its on-board light sensor.

It then communicates θ0 to its neighbors by using the communication unit present in

the RAB. The result is equivalent to having neighbors that are able to sense each others’

orientations. Only the informed robots are given the goal direction, expressed with respect

to the fixed light source4.

To achieve motion control, we first limit the forward speed to the interval [−U,U ], and

the angular speed to the interval [−Ω, Ω]. We then use the differential drive model used

in (Turgut et al., 2008a) to convert the forward speed u and the angular speed ω into the

linear speeds of the left (NL) and right (NR) wheel:

NL =
(
u+

ω

2
l
)

,

NR =
(
u− ω

2
l
)

,

where l is the distance between the wheels. Note that, in MIMC and MDMC, we fix

the maximum attainable speeds to the same values. This is done for two reasons: first, in

order to be able to properly compare the performance of the two methods; second, in order

to have numerically stable simulation results with the control time-step used (∆t = 0.1 s),

which requires limiting both speeds to low values.

We summarize the values of the parameters used in our experiments in Table 1 (simu-

lation and controller parameters) and Table 2 (real robot). Note that the parameters used

for the controller in simulation are the same as those used in the real robot experiments.

4 Experimental setup

In this section, we introduce the tools and the settings used in the experiments. First, we

define the metrics used to assess the performance. Then, we describe the experimental

setup used in the simulations and with the real robots.

4Note that non-informed robots that do not use alignment control do not need the light sensor. There-
fore, the light was not used in experiments without informed robots and without alignment control.
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4.1 Metrics 12

Parameter Description Value

N Number of robots {10, 50,100, 500, 1000}
ρ Proportion of informed robots {0.01, 0.05, 0.1, 0.15, 0.2}
U Maximum forward speed 0.005 m/s

Ω Maximum angular speed π/2 rad/s

K1 MDMC linear gain 0.5 m/s

K2 MDMC angular gain 0.06 rad/s

K3 MIMC angular gain 0.25 rad/s

l Inter-wheel distance 0.14 m

α Steepness of potential function 2

ε Strength of potential function 1.5

ddes Desired inter-robot distance 0.45 m

Dp Maximum interaction range of proximal control 1.8ddes = 0.81 m

Da Maximum interaction range of alignment control 2.0 m

σ Amount of noise 0.1

T Duration of experiments 2500 s

R Number of runs per setting 100

Table 1: Parameter values or range of values used in the controller and in simulations.
The values in bold are the nominal values, that is, the values used in experiments when
the effect of another parameter is explored.

Parameter Description Value

N Number of robots 8

ρ Proportion of informed robots 0.25

T Duration of experiments 300 s

R Number of runs per setting 10

Table 2: Parameter values or range of values used for the real-robots experiments. All the
parameters related to the controllers were omitted in this table, since they are the same
as in simulation (refer to Table 1).

4.1 Metrics

We are interested in having a cohesive swarm of robots that aligns in a common direction

in a short time. In the experiments with informed robots, we want this direction to be

the desired goal direction, and we want the swarm to travel as far as possible in this

direction. We use order (Vicsek et al., 1995) and accuracy (Couzin et al., 2005) as metrics

to measure the degree of success in achieving these objectives. Additionally, we also

measure the steady-state value that is reached for a given metric and how long it takes

for the swarm to reach such value. We call these metrics steady-state value and settling

time respectively. Finally, we also measure the effective traveled distance in the desired

12



4.1 Metrics 13

goal direction.

Order: The order metric ψ measures the degree of agreement of the orientations of the

robots in the swarm. We first define the vectorial sum of the headings of all N robots as:

b =
N∑

i=1

ejθi .

The order is then defined as:

ψ =
1

N
‖b‖.

When the robots have a common heading, then ψ ≈ 1; when they point in different

directions, then ψ ≈ 0.

Accuracy: The accuracy metric δ is used to measure how close to the goal direction

the robots are moving. The accuracy metric is defined in the [0, 1] interval in order to be

consistent with the order metric and follows the same definition as the one provided in

previous flocking studies (Çelikkanat and Şahin, 2010):

δ = 1− 1− ψ cos( 6 b− 6 g)

2
,

where 6 b is the direction of b and 6 g is the desired goal direction. Robots with a common

heading and also moving in the goal direction will thus have δ ≈ 1 and ψ ≈ 1. Conversely,

when δ ≈ 0, they are moving in a direction which is opposite to the goal direction, even if

they are well aligned. Note that, when the swarm is not aligned, the value of the accuracy

is δ ≈ 0.5, since ψ ≈ 0 nullifies the contribution of the cosine term.

Steady-state value: The steady-state value is the asymptotic value reached by either

order or accuracy during an experiment. After the system reaches a steady state, we

compute the stead-state value as the average value of the metric in the last 100 simulated

seconds:

µ̄ =

∑T
(t=T−100) µt

100
,

where µt denotes either the order ψ or the accuracy δ at time t.

13



4.2 Experimental setup in simulation 14

Settling time: The settling time is the time needed to reach a steady state in order or

in accuracy. More precisely, the settling time t∗ is defined as the time for which ∀t ≥ t∗ we

have µt ≥ 0.95µ̄. In other words, t∗ is the time at which and after which the considered

metric stays above the 95% of the steady state of the considered metric µ.

Effective traveled distance: The effective traveled distance is the distance, in me-

ters, traveled in the desired goal direction. It is computed as the total distance traveled

projected onto the goal direction g:

De = (xT − x0) · g.

Here, xT and x0 are the position vectors of the center of mass of the swarm at time t = T

and t = 0, respectively; g is the goal direction, and · denotes the dot product of two

vectors.

4.2 Experimental setup in simulation

We compared the proposed MDMC with MIMC, the motion control method used in Turgut

et al. (2008a), and in Çelikkanat and Şahin (2010). The experiments can be divided in

two sets. In the first set, no robot is informed about any desired goal direction. In the

second set, we select a proportion ρ of robots and we inform them about the goal direction

g. All the other robots remain uninformed during the entire experiment. The informed

robots and the goal direction are randomly selected at the beginning of each run. In all

cases, we performed experiments with and without alignment control.

The models described in Section 2 are utilized in the following way. In experiments

without informed robots and without alignment control, all robots use Model 2 (Equa-

tion 2). In experiments without informed robots and with alignment control, all the robots

use Model 4 (Equation 4). In experiments with informed robots and without alignment

control, informed robots use Model 3 (Equation 3), whereas the rest of the swarm uses

Model 2. Finally, in experiments with informed robots and with alignment control, in-

formed robots use Model 1 (Equation 1) and the rest of the swarm uses Model 4.

We study both the transient and the steady-state behavior of the system. When

analyzing the transient behavior, we report the time evolution of the median value of the

14



4.3 Experimental setup with real robots 15

order or of the accuracy metrics, with the corresponding error bars showing the values at

the 25% and the 75% percentile scores (see Figure 2 for an example). When analyzing

the steady-state behavior, we report the box-plot of the distribution of the steady-state

values and of the settling times. In experiments with informed robots, we also report the

box-plot of the distribution of the effective traveled distances.

In all experiments, we add noise to several components of our system: to the proximal

control vector p, to the alignment control vector a, and to the goal direction vector g. We

consider noise only in the bearing, as commonly done in flocking studies (Vicsek et al.,

1995; Turgut et al., 2008a), and we introduce it by adding to the bearing a random variable

homogeneously distributed in the range (−σ2π,+σ2π). For each experimental setting, we

execute R independent runs.

At the beginning of each run, N mobile robots are placed within a circle at random

positions and orientations. The radius of the circle is chosen so that the mean density of

the initial configuration is kept fixed at 5 robots per square meter, indepedently of the

number of robots N . In the experiments with informed robots or with aligning robots, a

light source is also placed at a fixed position in the arena, in such a way to be seen by all

robots that use it as a global reference frame.

4.3 Experimental setup with real robots

In order to validate the results obtained in simulation with MDMC, we perform experi-

ments on real robots. Eight foot-bots are placed in the arena depicted in Figure 1b. The

robots are placed within a circle at the center of the arena at the beginning of each run,

each with a random orientation. A light source is placed at the left side of the arena. To

measure order and accuracy over time, we built a custom-made tracking system. We place

cardboard hats with a directional marker on top of each robot5. This marker is detected

by an overhead camera placed on one side of the arena, at an height of about 3 meters and

pointing towards the floor (Figure 1b was taken by this camera). We recorded a movie

for each experiment and we analysed each video off-line using the Halcon software6. The

analysis of each video produced a file containing, for each frame, the orientation of all

robots.

5Note that such hats are used for tracking purposes only and are not detectable by the robots themselves.
6http://www.halcon.de/
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We conduct two sets of experiments as we did in simulation: without and with informed

robots. All parameters are kept the same as in the simulations. We only change the

number of robots and the duration of the experiments in order to comply with arena-size

constraints. We consider a proportion of 25% informed robots. The parameters used with

real robots are summarized in Table 2. All other parameters are the same as used in

simulation (Table 1).

For each of the two sets of experiments, and for each of the two motion control methods,

we execute 10 runs and report the median values of the metrics together with their first

and third quartiles.

5 Results without informed robots

In this section, we report results obtained without informed robots, that is, g = 0. We

first analyze the transient and the steady-state behavior of the system in simulation, and

then we report the results obtained with real robots.

5.1 Simulations

Transient behavior: Figure 2 shows the transient behavior of the system in a medium-

sized (N = 100) and in a large (N = 1000) swarm. Figures 2a and 2c show the results

obtained without alignment control (Equation 2). As we can see, the swarm reaches an

ordered state only when using MDMC. The ordered state is reached within 700 simu-

lated seconds in the medium-sized swarm and within 1500 simulated seconds in large

swarms. When MIMC is used, the swarm remains disordered during the entire experi-

ment. Figures 2b and 2d show the results obtained with alignment control. In this case,

the alignment state is reached with both motion control methods, and the response of the

system is much faster than without alignment control. The performance of MDMC and

MIMC are comparable: the system self-organizes in less than 200 seconds in medium-sized

swarms and in less than 400 seconds in large swarms.

Steady state and settling time without using alignment control: Figure 3 shows

the steady-state behavior of the system for different swarm sizes. Figure 3a shows box-plots

of the distributions of the asymptotic values of order reached without alignment control.
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Figure 2: MDMC vs MIMC in simulation experiments without informed robots. Time
evolution of the order metric for (a) 100 robots - without alignment control, (b) 100 robots
- with alignment control, (c) 1000 robots - without alignment control and (d) 1000 robots
- with alignment control. The line denotes the median of the distribution obtained over
R = 100 runs whereas the error bars represent the interval between the 25% and the 75%
quartiles of the distribution.

Figure 3b shows box-plots of the distributions of the settling times without alignment

control.

An important result of this paper is shown in Figure 3a: by using MDMC, the system

achieves an ordered state without the need of alignment control for all swarm sizes. The

use of MDMC is critical for achieving this result. In fact, as shown in Figure 3a, the

system never reaches the ordered state when using MIMC.

Figure 3a also displays points indicating results that were considered as outliers. These

are of two different types. Some correspond to cases where the system is trying to self-

organize but is too slow to reach its stationary state within the maximum run time of T =

2500 s, and can be easily identified by looking at the time series. The others correspond
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Figure 3: MDMC vs MIMC in simulations with no informed robots and without alignment
control. Box-plots of the distribution of (a) steady-state values and (b) settling times of
the order metric for different swarm sizes.

to cases in which the swarm, instead of achieving aligned motion, converged to a rotating

state with fixed center of mass, low order (ψ < 0.5) and high angular rotation. A video

of a rotating state can be found in our supplementary material page (Ferrante et al.,

2012a). For the purpose of our current study, we consider these as outliers and focus

on the convergence to parallel states. Convergence to a rotating state is rare, becomes

less probable if more robots are used, and can be easily suppressed by imposing minor

constraints to the robot dynamics. Its analysis goes beyond the scope of this paper and

will be presented in a parallel study.

In Figure 3b we report the settling time needed to reach the ordered state. The settling

time obtained with MDMC increases with increasing swarm sizes, as expected. We also

noticed some outliers in the distribution of settling times for MDMC. These correspond

to runs where the systems first self-organizes in the rotating solution, and only later, due

to noise, reorganizes in the ordered solution. Settling times for MIMC are not reported as

the system does not converge to a steady-state in the allotted time (2500 s).

Steady state and settling time when using alignment control: Additional results

reported in the supplementary material page (Ferrante et al., 2012a) show that the sys-

tem reaches the ordered state for any swarm size and any motion control method when

alignment control is used. This is consistent with previous studies in flocking (Turgut
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Figure 4: Results with no informed robots using MDMC in real-robots experiments. Time
evolution of the order metric for 8 robots (a) without alignment control and (b) with
alignment control. The line denotes the median of the distribution obtained over R = 10
runs whereas the error bars span the interval between the 25% and the 75% quartiles of
the distribution.

et al., 2008a) and, additionally, it shows that MDMC can also be implemented together

with alignment control. Additionally, for both methods the medians of the settling times

increase with increasing swarm sizes.

5.2 Real robots

Figure 4 shows the results obtained with MDMC using real robots. Results in Figure 4a

show that, when alignment control is not used, the system reaches reasonable levels of

order also with the real robots. The difference in performance when compared to the

simulations can be attributed to the different nature and amount of noise on the real

robots, which is very difficult to replicate in simulation. Figure 4b shows that, when

alignment control is used, results are less noisy. This is because alignment control uses a

communication device, the RAB, that is noise-free. Its only source of noise comes from

orientation measurements via the light sensor, which appears to be very precise. Results

with no alignment control also exhibit much larger fluctuations of the order vs time than

those with alignment control. Finally, note that both in Figure 4a and in Figure 4b the

order becomes constant at t ≈ 280 s and at t ≈ 180 s, respectively. This is because by

time t ≈ 280 s (respectively t ≈ 180 s) all experiments had been stopped due to the robots

having reached the borders of the arena.
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Figure 5: MDMC vs MIMC in simulations with a proportion of ρ = 0.01 informed robots.
Time evolution of the accuracy metric for (a) 100 robots without alignment control, (b)
100 robots with alignment control, (c) 1000 robots without alignment control and (d) 1000
robots with alignment control. The line denotes the median of the distribution obtained
over R = 100 runs whereas the error bars represent the interval spanned between the 25%
and the 75% quartiles of the distribution.

6 Results with informed robots

In this section, we report results obtained with informed robots. Analogously to the

experiments in Section 5, we analyze the transient and the steady-state behavior of the

system in simulation, and then we report the results obtained with real robots.

6.1 Simulations

Transient behavior: Figure 5 shows the transient behavior of the system for N = 100,

N = 1000 and a proportion of informed robots ρ = 0.01. Figures 5a and 5c show results

obtained without alignment control. For this case, the swarm reaches a value of accuracy

close to 1 only when using MDMC. This value is reached within 1000 s and 1500 s for
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Figure 6: MDMC vs MIMC in simulations with a proportion of ρ = 0.01 informed robots
without alignment control. Box-plots of the distribution of (a) steady-state values and (b)
settling times of the accuracy metric for different swarm sizes.

swarms with N = 100 and N = 1000 robots, respectively. When using MIMC, accuracy

of the system remains δ = 0.5. As explained in Section 4.1, this is the value obtained

when the order metric is close to 0. In other words, when using MIMC without alignment

control, the system is not able to reach an ordered state if the proportion of informed

robots is small (ρ = 0.01). Complete results that include also the value of the order

metric are reported in our supplementary material page (Ferrante et al., 2012a). However,

as we will show later, if the proportion of informed robots is increased, the system self-

organizes also with MIMC. Figures 5b and 5d show the results obtained with alignment

control. In this case, a proportion ρ = 0.01 of informed robots is enough to reach high

levels of accuracy for both MIMC and MDMC. Furthermore, MIMC seems to have better

performance in terms of convergence time.

Steady state and settling time of accuracy without using alignment control:

Figure 6 shows the steady-state behavior of the system for different swarm sizes, with ρ =

0.01 and without alignment control. Figures 6a shows the distribution of the asymptotic

value of the accuracy metric. As we can see, MDMC dominates MIMC in all three cases.

In facts, the system does not reach an ordered state when MIMC is used. This makes the

accuracy metric settle approximately at δ ≈ 0.5. In Figure 6b, we see that the distribution

of settling times for MDMC has 1000 s as median value.
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Figure 7: MDMC vs MIMC in simulations with informed robots, no alignment control,
a swarm size of N = 100 robots and ρ = {0.01, 0.05, 0.1, 0.15, 0.2}. Box-plots of the
distribution of (a) steady state values and (b) settling times of the accuracy metric for
different proportions of informed robots.

Steady state and settling time of accuracy when using alignment control: Ad-

ditional results reported in the supplementary material page (Ferrante et al., 2012a) show

that, when alignment control is used, the steady-state values of the accuracy are almost

always close to 1. The few outliers that are observed are due to the fact that, in rare

cases, the system splits into two groups. The median settling time, as well as its spread,

increases with increasing swarm sizes, and increases more with MDMC than with MIMC.

Impact of the proportion of informed robots: Figure 7 reports the results of the

study conducted with fixed swarm size N = 100 and various proportions of informed

robots. Figure 7a shows that, when alignment control is not used, MDMC dominates

MIMC in terms of accuracy only for ρ = 0.01. In the other cases, the two methods achieve

very similar performance level. However, as shown in Figure 8 and explained below,

this apparent equivalence beween MDMC and MIMC in accuracy does not result in an

equivalence in the effective traveled distance. Finally, Figure 7b shows that the system

converges faster with MDMC than with MIMC in the ρ = 0.01 case, and that the opposite

is true for the other cases.

Additional experiments performed with alignment control (Ferrante et al., 2012a) show

that the system achieves very good performance levels in all cases. However, MDMC
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Figure 8: MDMC vs MIMC in simulations with informed robots and no alignment control.
Box-plots of the distribution of effective traveled distance for (a) different swarm sizes
(ρ = 0.01) and (b) different proportions of informed robots (N = 100).

converges slower than MIMC when the proportion of informed robots is low.

Effective traveled distance: Figure 8 shows the box-plots of the distribution of the

effective traveled distance for different swarm sizes (fixing ρ = 0.01) and of the proportion

of informed robots (fixing N = 100). When alignment control is not used, MDMC consis-

tently outperforms MIMC for any swarm size (Figure 8a). This was already known since,

unless when the swarm is small, the system cannot order or achieve high accuracy values

when using MIMC. Figure 8b shows that MDMC also consistently outperforms MIMC

for any proportion of informed robots. Although the system can self-organize and achieve

a high level of accuracy for a larger proportion of informed robots, MDMC still has the

advantage of being able to let the swarm travel farther in the desired direction of motion.

Additional experiments performed using alignment control (Ferrante et al., 2012a)

show that the swarm is able to travel in the desired goal direction for all swarm sizes. We

note that MIMC performs slightly better than MDMC with alignment control, although

the latter is still competitive. Finally, we also observe that the two methods perform

almost equally for a large proportion of informed robots.
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Figure 9: Results with informed robots using MDMC in real-robots experiments. Time
evolution of the accuracy metric for a group of 8 robots and 2 informed robots (a) without
alignment control and (b) with alignment control. The line denotes the median of the
distribution obtained over R = 10 runs whereas the error bars represent the interval
spanned between the 25% and the 75% quartiles of the distribution.

6.2 Real robots

Figure 9 shows the results obtained with MDMC using real robots. The results in Figure 9a

show that, without alignment control, the system reaches reasonable levels of accuracy.

The difference in performance when compared to simulation could be due to the different

way in which noise affects the system, since our simulation does not attempt to model

realistically the noise. Figure 9b shows that, surprisingly, MDMC performs worse in real

robots with alignment control. In fact, in a group of 8 real robots with 2 informed robots,

the range and bearing communication device made the swarm agree on a common, random

direction very fast. When this happened, the interactions between informed and non-

informed robots were not strong enough to let the swarm change its direction in the desired

one. Furthermore, the swarm, due to noise, continuously changed its direction, which may

explain the increase in the spread and the decrease of the median of the distribution after

t = 100 s. By contrast, when alignment control is not used, the swarm never agrees on a

common direction. Hence, the movement of the swarm is almost completely driven by the

interaction between the informed and the non-informed robots, that in this case is enough

to make the swarm move in the desired direction of motion.
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7 Related work and discussion

In this section, we review the literature on flocking. We first discuss previous works in

robotics, highlighting the novelties of the current paper. We then discuss the most repre-

sentative work on flocking in statistical physics, comparing the two different perspectives.

7.1 Robotics

In robotics, flocking has been studied for the last two decades. We will focus here on works

where the method is either directly tested on real robots or at least it has the potential to

be readily applied to real robots. We classify the literature according to two categories.

In the first, we include works that use alignment control; in the second, those that do not

use it.

7.1.1 Robotics studies with alignment control

We divide studies where alignment control is used into two categories. In the first, we

place studies that relied on external hardware beyond what robots have on-board. In the

second, we place studies using on board hardware only.

In works belonging to the first category, authors have either estimated the relative ori-

entation of the robots (Hayes and Dormiani-Tabatabaei, 2002) or emulated an orientation

sensing device using an external computer (Holland et al., 2005).

Hayes and Dormiani-Tabatabaei (2002) proposed a flocking method based on collision

avoidance and velocity matching where all measurements were emulated via an external

computer and broadcast to the robots. Robots compute the position and the velocity of

the center of mass of their neighbors, in order to maintain cohesion and to align in the

same direction. Furthermore, each robot is informed about the direction to a goal area.

Emulated external sensing was also used by Holland et al. (2005), who developed a method

based on Reynolds’ rules for unmanned aereal vehicles.

In the works that fall within the second category, a local communication unit is always

used to implement alignment control. In Campo et al. (2006), robots have to transport

an object to a given location. This work is one of the pioneering studies of coordinated

motion with purely on-board local communication, implemented via an LED ring and an

omni-directional camera.
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Turgut et al. (2008a) proposed a method based on proximal control and alignment con-

trol that achieves ordered motion in a random direction. Proximal control and alignment

control ware implemented using proximity sensors and a virtual heading sensor (VHS),

respectively. The VHS combines a digital compass and a communication unit: each robot

measures its orientation and broadcasts it. In this way, the orientation of a robot is sensed

“virtually” by its neighbors. In a follow-up study, Gökçe and Şahin (2010) introduced

a goal-following behavior and studied the effect that a noisy goal direction has on the

swarm motion. Çelikkanat and Şahin (2010), inspired by the work of Couzin et al. (2005),

provided a goal direction to some of the robots and showed that these are enough to guide

a large swarm.

Ferrante et al. (2010) proposed a communication strategy that uses the same range and

bearing sensor considered in this paper. The authors achieved good flocking performance

in environments where the goal direction changes over time. Stranieri et al. (2011) studied

self-organized flocking in a heterogeneous swarm of robots, where some of the robots use

alignment control, and the rest of the swarm only uses proximal control. Under these con-

ditions, the swarm can still organize and move in a common random direction. Recently,

in Ferrante et al. (2012b), a self-adaptive communication strategy was proposed to deal

with flocking in situations with two conflicting goal directions with different priorities.

The authors showed that the swarm can always follow the highest priority goal direction

without splitting.

7.1.2 Robotics studies without alignment control

In this category, we place studies that do not use alignment control. Instead, alignment

to a given direction is typically induced by introducing a large majority of robots that are

informed about a goal direction (Matarić, 1994) or light-source direction (Spears et al.,

2004).

Matarić (1994) proposed a flocking method based on a set of “basis behaviors”: safe-

wandering, aggregation, dispersion and goal-following. The robots sense obstacles in the

environment, localize themselves with respect to a set of stationary beacons and broadcast

their position. Robots moved cohesively in a goal direction known to all robots.

Kelly and Keating (1996) proposed a flocking method based on a leader-following
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behavior. They used an active infra-red sensing system to sense the range and bearing of

other robots and a radio-frequency system for dynamically electing the leader. Multiple

informed robots could co-exist in the swarm and, in their presence, the swarm was able

to split to overcome obstacles.

Baldassarre et al. (2003) used artificial evolution to evolve a flocking behavior with

a group of four simulated robots. The robots were equipped with proximity and light

sensors. They used the former to perceive each others’ relative position and orientation,

and used the latter to perceive a common goal direction.

Nembrini et al. (2002) proposed a minimalistic method to achieve flocking using only

a local communication device and a sensor able to detect obstacles and beacons. Some

robots were informed about a goal direction and signaled their status using their beacon.

They achieved a swarming behavior where robots dynamically disconnect and reconnect

to the swarm.

Spears et al. (2004) proposed a flocking method based on attraction/repulsion and

viscous forces. The robots form a regular lattice structure using the range and bearing

of their neighbors and move in a goal direction given by a light source perceived by the

majority of the robots.

Moslinger et al. (2009) proposed a method for minimalistic flocking based on attraction

and repulsion zones with different threshold levels. By adjusting these levels, they achieved

flocking with a small group of robots in a constrained environment. In this work, as in

our study, no robots used neither goal direction nor alignment information. However, the

flocking behavior was limited since the group could not stay cohesive all the time.

Monteiro and Bicho (2010) developed a control method based on leader-follower dy-

namics to move a swarm in formation towards a target. The location of the target is

known to some informed robots, assumed to be identifiable within the swarm.

Recently, Tarcai et al. (2011) studied a system composed of very simple remote-

controlled (RC) boats subject to inelastic, natural collisions between each other. They

placed the boats in a toroidal pool and observed that the swarm organizes in a clockwise

or counter-clockwise motion after a certain amount of time. They also studied the effect

of adding informed boats into the system. This work can be considered of hybrid nature,

between robotics and statistical physics, but is only analyzed here.
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7.1.3 Discussion

The main contribution of this paper is to propose a motion control method that achieves

flocking without alignment control and without informed robots. Therefore, the unique

characteristic of this work with respect to the literature analyzed above is that we explic-

itily study motion control, which has received little or no attention at all.

Since our method can achieve flocking even in absence of alignment control, it is unique

when compared to the literature dicussed in Section 7.1.1. When comparing to the studies

discussed in Section 7.1.2 where alignment control was not used, our study presents the

following differences. Our analysis considers only a few informed individuals or no informed

individuals, while almost all of the previous studies (Matarić, 1994; Kelly and Keating,

1996; Baldassarre et al., 2003; Nembrini et al., 2002; Spears et al., 2004; Monteiro and

Bicho, 2010) included a large proportion of informed robots, to help the system reach an

ordered state. The rest of the studies either achieved sub-optimal performance in swarm

cohesion when compared to our work (Moslinger et al., 2009) (the swarm was splitting

and rejoining very often in a bounded arena) or analyzed a system under very specific

environmental conditions (Tarcai et al., 2011). To the best of our knowledge, our work

is the first to achieve both ordered and cohesive flocking performance in an environment

with no constraints on the boundary conditions.

7.2 Statistical physics

In statistical physics, flocking is studied with the aim of searching for a theory of self-

propelled collective motion applicable to a wide range of systems. Often, the approach is to

consider simple models, such as point-particle systems in which actuation or sensing noise

plays a role similar to that of temperature in standard physical systems. The resulting

dynamics are analyzed using tools from non-equilibrium statistical physics.

Here, we describe briefly some of the most representative statistical physics flocking

studies. We classify them into two groups: with and without explicit alignment rules. A

complete survey can be found in (Vicsek and Zafiris, 2010).
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7.2.1 Statistical physics models with alignment

The first flocking model developed within statistical physics was SDP (self-driven par-

ticles) (Vicsek et al., 1995). In SDP, particles advance at constant speed and use an

alignment rule: at every time-step, each particle’s orientation is set to the average orien-

tation of its neighbors plus a noise component. The model includes neither attraction nor

repulsion. The authors found that a phase transition separates the ordered state (particles

moving in a common direction) from the disordered state (particles with random orien-

tation). The transition is reached by either varying the amount of noise or the particle

density.

Gregoire et al. (2003) extended the SDP model by adding the attraction and repulsion

rules. Noise is introduced by adding a small randomly oriented vector to the particles’

heading. As in the Vicsek et al. (1995) case, the authors observed a transition between

an ordered and a disordered state at a critical noise value. The details of this transition

appear to be different, and this issue is still a matter of debate.

Aldana and Huepe (2003) considered the vectorial network model (VNM), in which

individuals do not move in space but are nodes of a network. Each node has an associated

orientation that evolves following an SDP model where neighbors are nodes directly con-

nected through a link. The authors found that an order-disorder transition equivalent to

that in the SDP model could be obtained only when long-range interactions are present.

The VNM was extended by Turgut et al. (2008b) to analyze the self-organized flocking of

robots that follow the method proposed in Turgut et al. (2008a).

Finally, Cucker and Huepe (2008) introduced informed individuals and studied the-

oretically the behavior of the swarm. They considered a Laplacian model, where each

particle tries to minimize the difference between its velocity and that of its neighbors,

that are defined according to an adjacency matrix.

7.2.2 Statistical physics models without alignment

Szabó et al. (2006) proposed one of the first models that achieves ordered motion using

locally interacting particles and no explicit alignment rule. The goal was to fit exper-

imental data they gathered on the dynamics of collectively migrating tissue cells. The

authors observed an order-disorder phase transition occurring at critical mean density of
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particles. Their model has many similarities with MDMC. For example, particles interact

through attraction-repulsion forces and move forward with non-constant speed. An im-

portant difference, however, is that in their model each particle is not constrained to only

translate parallel to its orientation but can also advance sideways. Due to this difference,

their model is not directly applicable to standard non-honolomic mobile robots, which are

constrained in their movements by their wheels. Similar results to those of Szabó et al.’s

were also obtained by Erdmann and Mikhailov (2005), who considered particle motion in

two dimensions and later extended the model to three dimensions (Strefler et al., 2008).

Grossman et al. (2008) considered a system composed of particles that interact only

through inelastic collisions on a 2D plane with reflecting circular boundary conditions.

They observed complex phenomena such as ordered motion, vortices and chaos. They

then studied the system in elliptic-shaped arenas, showing that more complex dynamical

patterns, such as particles moving together in sub-groups, could be observed.

In Romanczuk et al. (2009), the authors considered particles with asymmetric non-

isotropic interactions. Their model represents “escape-pursuit” dynamics. A particle is

attracted to particles in the front (pursuit) and is repelled from particles on the back

(escape). Here again, the authors find ordered phases displaying collective motion for

high levels of the mean density. At low densities, collective motion is only achieved for

specific combinations of the parameters that determine the escape-pursuit dynamics.

7.2.3 Discussion

The above review allows us to speculate on the key mechanisms required for a method to

make a swarm self-organize to a flocking state with no alignment rule and informed robots.

For this to happen, we have observed in simulation videos (Ferrante et al., 2012a) that

robots must first oscillate in place while turning to adjust their orientation. This process

produces small coherent aligned regions that gradually grow until they span the whole

group, which then starts moving. We have observed that, in cases where the system fails

to self-organize, robots oscillate and turn in place, without creating coherently moving

regions. By combining these observations with our survey of successful and unsuccessful

methods, we formulate here hypotheses on the conditions required for a method to achieve

collective motion.
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A first component that we believe is required to reach an ordered flocking state is

continuous angular dynamics. In most statistical physics models, the orientation relaxes

in a single time-step to the direction dictated by the model, leading to discrete jumps

from one angle to the next. These jumps often leave robots pointing in directions that are

still not fully coherent with their neighbors’, which may have switched to a very different

heading on the same time-step. Instead, in models that successfully order (such as MDMC

and Szabó et al. (2006)) each robot adjusts its angular velocity (and not its angle) at each

time-step, while the angle relaxes in a continuous manner. These smooth dynamics allow

the system to gradually reconfigure as it converges towards the ordered state.

Another component we believe is essential is the dampening of the rotational and

translational dynamics as the robot approaches a stable, locally ordered state. In MIMC,

this condition is not satisfied, and robots close to a stable local configuration still have

high angular velocities, as the angle between the flocking vector and the orientation vector

is never zero. A similar situation arises if the forward component of the robot speed is

made constant by setting K1 = 0 in the definition of the MDMC model. In this case, high

relative velocities between neighbors remain possible when close to a stable configuration.

The two conditions described above are satisfied by MDMC and Szabó et al. (2006).

However, a rigorous confirmation of whether these conditions are indeed necessary can

only be achieved through a detailed theoretical study, which is currently ongoing.

8 Conclusions and future work

In this paper, we have presented a novel motion control method to achieve flocking that

can be implemented on robots with limited hardware requirements. Only the relative

distance and bearing to neighboring robots are needed to execute the attraction-repulsion

dynamics that leads to flocking. Furthermore, to implement MDMC robots do not need

to sense each others orientation to perform alignment control, as required by the Reynolds

model. The proposed method could thus make possible, in the future, the production of

a very large swarm of robots able to perform flocking at a substantially lower cost due to

the relatively simple hardware required.

We performed experiments, using both a realistic simulator and real robots. We showed

that, with MDMC, self-organized collective motion in a random direction can be achieved.
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Also, MDMC can be implemented including informed robots that have a desired goal

direction to be followed, and only a small proportion of such robots is needed to lead

a large swarm in the goal direction. Furthermore, MDMC without alignment control

and with informed robots allows the swarm to travel farther in the goal direction, when

compared to the MIMC method, that was used as a reference. Finally, we carried out a

systematic study where we measured and compared the performance of the two methods

in various settings: with and without alignment control and with and without informed

robots.

This work presents several opportunities for future studies and/or applications. From a

theoretical standpoint, we are conducting a more rigorous analysis of the proposed motion

control method. We are studying why the proposed model has the properties shown here

while others do not. We are also analyzing under which conditions the swarm exhibits the

rotating motion on the spot that was mentioned in the results section.

From the point of view of possible applications, the method could be applied to different

types of robots, requiring only relatively simple hardware.

An additional possible research direction would be to extend the proposed method to

flocking in three dimensional space. These results could be applied to aerial and submarine

swarms, where often communication and long range sensing are very difficult to achieve.
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