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We introduce an elasticity-based mechanism that drives active particles to self-organize by cascading
self-propulsion energy towards lower-energy modes. We illustrate it on a simple model of self-propelled
agents linked by linear springs that reach a collectively rotating or translating state without requiring align-
ing interactions. We develop an active elastic sheet theory, complementary to the prevailing active fluid
theories, and find analytical stability conditions for the ordered state. Given its ubiquity, this mechanism
could play a relevant role in various natural and artificial swarms.
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Animal groups that move together, such as bacterial col-
onies, insect swarms, bird flocks, or fish schools [1–6], are
all examples of biological systems displaying collective
motion (CM). In recent years, the dynamics of such sys-
tems (referred to here generically as swarms) has been
the subject of intense research [6–9]. A number of theoreti-
cal models have been introduced to study swarms and to
develop control rules that achieve similar coordinated col-
lective dynamics in groups of autonomous robots [8,9].
Despite this proliferation of algorithms, there is still no
clear understanding of the different underlying mechanisms
that can lead a group of self-propelled agents to self-
organize into CM. While most models assume aligning
interactions that produce heading angle consensus, numeri-
cal and experimental evidence suggests that CM can be
achieved without these [10–12], motivating our search
for alternative mechanisms. We develop here an active
elastic sheet (AES) theory that reveals one of these
mechanisms, which is fundamentally different from the
well-studied ferromagneticlike alignment mechanism intro-
duced in [13], and results instead from standard elasticity
dynamics.
The current CM paradigm has been strongly influenced

by the seminal work of Vicsek et al. [13], which introduced
a minimal model for flocking, the Vicsek model, that has
become a referent in the field [7–9]. This model describes
a group of point particles advancing at a fixed common
speed, only coupled through alignment interactions that

steer them towards the mean heading direction of all
particles within a given radius [13–15]. In this framework,
a swarm can be viewed as a group of self-propelled spins
with aligning interactions, described by a variation of the
XY model [16] where spins advance in their pointing direc-
tion rather than remaining affixed to a lattice. In the
continuous limit, this system becomes a fluid of self-
propelled spins that follows the hydrodynamic theory
developed in [17–20]. (Note that we will not consider here
self-propelled swimmers, which belong to a different class
of systems where the embedding fluid’s hydrodynamics
must be considered [21–26].) More recently, some models
that do not rely on explicit alignment interactions have also
been introduced. In [10], for example, CM is driven by
escape-pursuit interactions only, in [27] by inelastic colli-
sions between isotropic agents, and in [11] and [12] by
short-range radial forces coupled to each agent’s turning
dynamics. Given that Vicsek-like algorithms rely on
explicit alignment rules to achieve CM [5,13,28,29], it
was initially surprising that such systems could self-
organize without them. While it can be argued that all these
models include at least an implicit alignment interaction, it
remains unclear if they are all driven to CM by the same
underlying heading consensus mechanism and to what
extent agents must exchange orientation information, either
explicitly or implicitly, to achieve CM.
In this Letter, we introduce a CM mechanism that is

based on a very different paradigm: the emergence and
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growth of regions of coherent motion due to standard elas-
ticity processes. We explore this mechanism by introducing
a simple two-dimensional AES model with springlike inter-
actions between neighboring agents and no explicit align-
ment, which describes what we refer to as an active solid or
an active crystal.
We define the AES model as a system of N agents on a

two-dimensional plane, where the position x⃗i and orienta-
tion θi of agent i follow the overdamped equations of
motion,

x⃗
:

i ¼ v0n̂i þ α½ðF⃗i þDrξ̂rÞ · n̂i�n̂i; (1)

θ
:

i ¼ β½ðF⃗i þDrξ̂rÞ · n̂⊥i � þDθξθ: (2)

Here, v0 is the forward biasing speed that induces self-
propulsion (injecting energy at the individual particle
level), n̂i and n̂⊥i are two unit vectors pointing parallel
and perpendicular to the heading direction of agent
i, and parameters α and β are the inverse translational
and rotational damping coefficients, respectively. The
total force over agent i is given by F⃗i ¼P

j∈Sið−k=lijÞðjr⃗ijj − lijÞr⃗ij=jr⃗ijj (with r⃗ij ¼ x⃗j − x⃗i), a
sum of linear springlike forces with equilibrium distances
lij and spring constants k=lij. Each set Si contains all agents
interacting with agent i and remains fixed throughout the
integration. This system is thus akin to a spring-mass model
of elastic sheet [30] where masses are replaced by self-
propelled agents that turn according to F⃗i · n̂⊥i and move
forward or backward following F⃗i · n̂i and their self-
propulsion. We include actuation noise (fluctuations of
the individual motion) by adding Dθξθ to the heading
angle, where Dθ is the noise strength coefficient and ξθ
a random variable with standard, zero-centered normal
probability distribution of variance 1. We include sensing
noise (errors in the measured forces) by adding Drξ̂r to F⃗i,
with Dr the noise strength coefficient and ξ̂r a randomly
oriented unit vector. We chose two different noise sources
to include variants known to produce different effects
in other CM systems [8,31]. The degree of alignment is
monitored by the usual polarization order parameter
ψ ¼ ∥

P
N
i¼1 n̂i∥=N, where ψ ¼ 1 if all agents are perfectly

aligned and ψ ¼ 0 if they are randomly oriented or rotating
about the group’s barycenter.
The AES model was designed to achieve CM under con-

ditions that are in many ways opposite to the Vicsek ones.
While Vicsek agents only sense their relative heading
angles, AES agents only sense their relative positions.
While the Vicsek dynamics requires changing interacting
neighbors over time to achieve long-range order
[14,17,32], the AES case has virtual springs connecting
the same agents throughout the dynamics. Furthermore,
although both models describe overdamped systems,
Vicsek particles relax instantaneously to the next desired
heading angle while AES agents turn following Eq. (2),

which we found is necessary for achieving CM. In sum,
the AES model explores a limit situation of elasticlike col-
lective dynamics with only position-based interactions,
much like the Vicsek model explores the fluidlike limit with
only orientation-based interactions. Note that we observed
the same qualitative dynamics when model conditions were
relaxed by using finite-range attraction-repulsion forces that
allow neighbor exchanges when links are broken (violating
the structure’s topological integrity). Our results could thus
be relevant for a broad range of systems.
We integrated Eqs. (1) and (2) numerically using a stan-

dard Euler method. All simulations below were carried out
with α ¼ 0.01, β ¼ 0.12, v0 ¼ 0.002, and dt ¼ 0.1.
Figure 1 presents three runs of the AES model. Column

A displays the dynamics of an hexagonal active crystal
composed of N ¼ 91 agents. At t ¼ 0 (panel A1), ran-
domly oriented agents are placed on a perfect hexagonal
lattice, separated by dA ¼ 0.65. Nearest neighbors are con-
nected by springs with natural length l ¼ dA and spring
constant k=l ¼ 5=0.65. Only sensing noise is considered
(Dr ≈ 0.158, Dθ ¼ 0), but results remain qualitatively
unchanged for other subcritical noise combinations. As
time advances, growing regions of coherent motion
develop, deforming the whole structure (A2) until the group
starts translating or rotating collectively. Here, the system
converges to a state that rotates while translating (A3). Note
that rotating states have higher elastic energy, since inner

FIG. 1. Active elastic sheet simulations of Eqs. (1) and (2). (A)
Hexagonal active crystal at t ¼ 0 (A1), 240 (A2), and 1700 (A3).
(B) Rodlike active crystal at t ¼ 0 (B1), 400 (B2), and 1700 (B3).
(C) Active solid at same times as column B; darker agents sym-
bolize higher local alignment. See Supplemental Material for
movies of these simulations [33].
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and outer shells cannot move at the same v0 speed and must
be sped up or slowed down by elastic forces. These states
are metastable and can relax to lower-energy translating
solutions. We show one here to illustrate its dynamics,
which cannot be attained by the Vicsek model.
Column B displays an active elastic rod, comprised of

N ¼ 118 agents arranged into three rows, with the same
noise as in A. It is generated (B1) by placing randomly ori-
ented agents with nearest-neighbor distances dB ¼ 0.32
(within rows) and d�B ¼ 0.58 (between rows), linking all
agents separated by d < 1 with springs of natural length
d and spring constants k=l ¼ 1=d. Here again, growing
regions of coherent deformation emerge (B2) until CM
is attained and the rod starts moving (B3). Since the first
bending mode has the largest final deformation, a collective
heading direction perpendicular to the rod’s axis is favored.
This opens the possibility of controlling the self-organized
CM direction by arranging self-propelled agents into
different formations.
Column C shows N ¼ 891 agents forming an active

solid (given the irregular agent positions) with two holes.
To construct it, we distribute agents at random, homo-
geneously within the structure, connecting all agents sep-
arated by d < 1, as in column B, but using k=l ¼ 5=d. Here
Dr ¼ Dθ ¼ 0, but equivalent dynamics are observed for
small enough values. To highlight ordered regions, each
agent’s darkness is displayed proportional to the local
order, defined as ψ but summing only over the focal
agent and those linked to it, instead of the whole system.
Initially, most of the structure appears in light gray, since
agents are randomly oriented (C1). As time advances,
coherent (darker) regions grow (C2) until the whole
structure starts moving when agents become sufficiently
aligned (C3).
The AES model displays a discontinuous order-disorder

transition similar to that in the Vicsek model [29]. Figure 2
examines it as a function of noise for the hexagonal active
crystal on Fig. 1(A) and for larger (N ¼ 547, N ¼ 32 137)
hexagonal configurations with identical parameters. We
performed 30 runs per noise value (80 near the transition),
storing 2000 ψ values per run (every 500 time steps after
the initial 106). Bottom panels show the mean and local
maxima of the ψ distributions. As we increase noise, ψ
jumps from an ordered state where agents align to a
disordered state with random headings. Top panels show
that the distributions of ψ values become more bimodal
in the transition region for larger systems. These
numerical results show that the AES transition is first
order with a bistable region for both types of noise.
Furthermore, the system supports long-range order at
nonzero noise values, as evidenced by the bottom panel
insets. These plot ψ�

r ≡ hψðDr ¼ 0.51Þi and ψ�
r ≡

hψðDr ¼ 0.51Þi vs N in log-log scale with up to
N ≈ 105 agents, showing that global order is preserved
as N → ∞.

A relevant feature of the AES model is that we can use a
continuous elastic sheet approximation to perform analyti-
cal calculations. We follow this approach to carry out a
standard linear stability analysis [30] of the translating
CM state in the zero noise case. We begin by writing
the elastic forces F⃗ ¼ ðFx; FyÞ that result from small dis-
placements u⃗ ¼ ðux; uyÞ of points on the membrane with
respect to their equilibrium positions

Fx ¼ ðλþ 2μÞ ∂
2ux
∂x2 þ μ

∂2ux
∂y2 þ ðλþ μÞ ∂

2uy
∂x∂y ; (3)

Fy ¼ ðλþ 2μÞ ∂
2uy
∂y2 þ μ

∂2uy
∂x2 þ ðλþ μÞ ∂

2ux
∂x∂y ; (4)

where the elastic constants are the Lamé parameter λ and
shear modulus μ [30]. We then linearize Eqs. (1) and (2)
around an equilibrium solution with undeformedmembrane
andall agentsmovingat speedv0 in the x̂direction, obtaining
u
:
x ¼ αFx, u

:
y ¼ v0φ, andφ

: ¼ βFy, whereφ denotes pertur-
bations to theθ ¼ 0equilibriumheadingangle.Casting these
expressions in Fourier space with wave-vector components
(kx, ky), we can write the perturbation dynamics in matrix
form and compute its eigenvalues Λ to determine stability.
These are found to satisfy the characteristic equation
Λ3 þ C2Λ2 þ C1Λþ C0 ¼ 0, with

C0 ¼ αβμv0ðλþ 2μÞ½k2x þ k2y�2; (5)

C1 ¼ βv0½μk2x þ ðλþ 2μÞk2y�; (6)

C2 ¼ α½ðλþ 2μÞk2x þ μk2y�: (7)

FIG. 2 (color online). Order parameter ψ vs positional sensory
noiseDr and angular actuation noiseDθ for hexagonal active crys-
tals with N ¼ 91 (same as on Fig. 1, panel A1), N ¼ 547, and
N ¼ 32137 agents. Both cases display a first-order transition with
bistable region. Bottom panels show the mean and local maxima of
the distribution of ψ values obtained in simulations. Top panels
show these distributions in the transition region for two system
sizes. Insets plot hψi vs system size at fixed noise level.
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Using Routh’s stability criterion (here given by
C1C2 > C0) [34], we find that the system is stable if
αβv0ðλþ μÞ2k2xk2y > 0, which is always verified. We con-
clude that translatingCM solutions are always linearly stable.
This is not the case, however, for most variations of the AES
model.Forexample, ifweconsideraconstant speedalgorithm
by setting α ¼ 0, the characteristic polynomial becomes
Λ3 þ βv0½μk2x þ ðλþ 2μÞk2y�Λ ¼ 0, which only has null or
imaginary solutions. Linear perturbations will therefore not
dampen out, but produce instead permanent oscillations.
Numerical simulations confirm that, even for zero noise
and starting from a perfectly aligned initial condition, the
group loses order as agents rotate in place instead of aligning.
We now characterize the nonlinear energy cascading

mechanism that drives the AES model to self-organize.
Figure 3 presents the energy dynamics of an hexagonal
active crystal simulation with N ¼ 91 and zero noise that
converges to a translating solution. Top panels display the
total kinetic and potential energies as a function of time.
Panel C shows the spectral decomposition of the latter into
its elastic modes, listed in order of growing energy and
without accounting for degeneracies. It is produced by first
computing all 182 elastic normal modes numerically (with-
out considering agent orientations or self-propulsion) and
then expanding the dynamics into this basis. The initial
condition is set as in Fig. 1(A), with zero potential energy
and kinetic energy Ek ¼ Nv20=2 ¼ 1.82 × 10−4 (setting the

agent mass to 1). As the membrane deforms during the ini-
tial transient, potential energy grows and becomes broadly
distributed over all modes (as expected for disordered sys-
tems), while kinetic energy drops. As time advances, the
system rearranges itself into configurations with lower elas-
tic energy and higher kinetic energy, eventually reaching
again (now in the ordered, translating state) values close
to zero and Ek, respectively. The energy of each mode
oscillates while decaying, as in an underdamped oscillator,
with higher modes decaying faster than lower ones. This
results from a combination of standard elasticity, self-
propulsion, and the coupling between elastic forces and
turning rate imposed by the AES model. Indeed, in standard
damped elastic systems, higher energy modes also decay
faster. Here, however, each agent is continuously injecting
energy through its self-propulsion term, so motion cannot be
fully dampened. Instead, modes decay by steering agents
away from them, since advancing in directions that excite
higher elastic modes is disfavored. Self-propulsion thus
feeds energy to lower and lower modes, eventually reaching
the translational or rotational mode and achieving CM. Note
that, despite this mechanism, similar models may not con-
verge to CM if, for example, agents inject too much energy
into high-energy modes while turning (as in the aforemen-
tioned α ¼ 0 case) or overshoot the angles that dampen
these modes by instantaneously switching heading (as in
[28,29]) instead of integrating Eq. (2).
We have identified in this Letter an alternative, elasticity-

basedmechanism that, in contrast to theVicsekcase, requires
no exchange of heading information to achieve CM. It also
requires no fluidlike mixing (i.e., switching of interacting
neighbors over time) to overcome the Mermin-Wagner
theorem, since it achieves long-range order at nonzero noise
levels [14,17,32,35]. This is because the forces leading here
to alignment are fundamentally different from ferromagne-
ticlike aligning interactions, resulting instead from elastic
deformations that accumulate between misaligned agents
over time. We found only one other model, introduced in
[11] to study the collective migration of tissue cells, that
displays CM under similar conditions. In a version of this
algorithm (designed to study active jamming) where agents
onlyhave repulsive interactions and are confined to a circular
box, elastic modes were shown to be responsible for the
dynamics of the jammed phase [12]. That model, however,
describes a different situation (where interaction forces can
displace agents sideways) and its self-organizing properties
have not been fully analyzed. Further investigation of its
energy dynamics should unveil if it develops CM through
asimilar energy-cascadingmechanism.Anequivalent analy-
sis should be carried out in models that include fluid and
crystallinephases [28,36] todetermine the roleof thismecha-
nism in their self-organizing dynamics.
Our work provides a simple approach for creating artificial

swarms and suggests how to determine experimentally if
elasticity- or alignment-based interactions are behind CM
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FIG. 3 (color online). Kinetic energy (A), elastic energy (B),
and spectral decomposition of the elastic energy (C) as a function
of time for an hexagonal N ¼ 91 active crystal simulation (with
zero noise and same initial condition as in panel A1 of Fig. 1) that
converges to the aligned state. Brighter points on C indicate
higher energies. After an initial transient, A and B converge to
their stationary values for collective translational motion. All
modes display energy levels that oscillate as they decay, with
higher modes decaying faster. Elastic energy flows to lower
modes, producing coherent motion that eventually reaches the
lowest (translational or rotational) modes.
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in specific systems (such as bacteria [37] or tissue cells
[11,38]), without having to probe individual interactions,
by analyzing if their dynamics organize into elastic modes
or if perturbations propagate as in active elastic systems.
A similar approach could be followed even for macroscopic
animals, where experiments show that aligning interactions
suffice to explain CM in birds [39,40], but are negligible
between two fish [41] (although both results may depend
on the species and regimes considered). More in general,
given that some kind of attraction-repulsion interactions must
be present for any group to remain cohesive and avoid over-
lapping, the elasticity-based mechanism could play a relevant
role in a variety of swarms. It is likely that many natural sys-
tems combine alignment- and elasticity-based dynamics,
effectively behaving as active aligning viscoelastic systems.
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