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Abstract Swarm robotics is an approach to collective robotics that takes inspi-
ration from the self-organized behaviors of social animals. Through simple rules
and local interactions, swarm robotics aims at designing robust, scalable and flex-
ible collective behaviors for the coordination of large numbers of robots. In this
paper, we analyze the literature from the point of view of swarm engineering: we
focus mainly on ideas and concepts that contribute to the advancement of swarm
robotics as an engineering field and that could be relevant to tackle real-world
applications. Swarm engineering is an emerging discipline that aims at defining
systematic and well founded procedures for modeling, designing, realizing, verify-
ing, validating, operating and maintaining a swarm robotics system. We propose
two taxonomies: in the first taxonomy, we classify works that deal with design
and analysis methods; in the second taxonomy, we classify works according to the
collective behavior studied. We conclude with a discussion of the current limits
of swarm robotics as an engineering discipline and with suggestions for future
research directions.

Keywords Swarm robotics · review · swarm engineering

1 Introduction

Swarm robotics has been defined as “a novel approach to the coordination of large
numbers of robots” and as “the study of how large numbers of relatively simple
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physically embodied agents can be designed such that a desired collective behavior
emerges from the local interactions among agents and between the agents and the
environment.” (Şahin, 2005).

The main characteristics of a swarm robotics system are the following:

– robots are autonomous;
– robots are situated in the environment and can act to modify it;
– robots’ sensing and communication capabilities are local ;
– robots do not have access to centralized control and/or to global knowledge;
– robots cooperate to tackle a given task.

In this review, we use these characteristics to discriminate between the works that
belong to swarm robotics from those that belong to other multi-robot approaches
(Iocchi et al., 2001). Slightly different characterizations of swarm robotics have
been proposed and adopted by Şahin (2005), Beni (2005) and Dorigo and Şahin
(2004).

The main inspiration for swarm robotics comes from the observation of social
animals. Ants, bees, birds and fish are some examples of how simple individuals can
become successful when they gather in groups. The interest towards social animals
stems from the fact that they exhibit a sort of swarm intelligence (Bonabeau et al.,
1999; Dorigo and Birattari, 2007). In particular, the behavior of groups of social
animals appear to be robust, scalable and flexible.

Robustness is the ability to cope with the loss of individuals. In social animals,
robustness is promoted by redundancy and the absence of a leader. Scalability is
the ability to perform well with different group sizes. The introduction or removal
of individuals does not result in a drastic change of the performance of a swarm.
In social animals, scalability is promoted by local sensing and communication.
Flexibility is the ability to cope with a broad spectrum of different environments
and tasks. In social animals, flexibility is promoted by redundancy, simplicity
of the behaviors and mechanisms such as task allocation. A detailed analysis of
robustness, scalability and flexibility in social animals has been carried out by
Camazine et al. (2001).

By taking inspiration from social animals, swarm robotics aims at developing
robotics systems that exhibit swarm intelligence features similar to those that
characterize social animals. In particular, swarm robotics systems are meant to be
robust, scalable and flexible.

1.1 Swarm engineering

Swarm engineering is the systematic application of scientific and technical knowl-
edge to model and specify requirements, design, realize, verify, validate, operate
and maintain a swarm intelligence system. Swarm engineering as a term was in-
troduced by Kazadi (2000), who recognized that the focus of swarm intelligence
research is moving towards “the design of predictable, controllable swarms with
well-defined global goals and provable minimal conditions”. He also adds that “to
the swarm engineer, the important points in the design of a swarm are that the
swarm will do precisely what it is designed to do, and that it will do so reliably
and on time” (Kazadi, 2000). However, the first work to formally introduce swarm
engineering was published only five years later, with the seminal paper by Winfield
et al. (2004).
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Swarm engineering is still in a very early stage and its development is not homo-
geneous. On the one hand, some topics, such as design and analysis, have already
received attention from the swarm robotics community and several methodologies
and tools have been proposed. For these topics, our goal is to present and classify
the existing works. On the other hand, other topics, such as requirements analysis,
maintenance and performance measurement, have received almost no attention. In
the last section of this review, we propose a discussion of these topics with the
hope to foster new ideas and promote their development.

As we take a swarm engineering perspective, our review covers works that
contributed to the advancement of swarm robotics as a field of engineering. In
particular, we focus on ideas and solutions that promote the application of swarm
robotics to real-world applications.

1.2 The outline of our review

In this review we use two taxonomies: methods and collective behaviors (see Fig-
ure 1 for a full scheme of the structure of the review).

In Section 2, we analyze methods to design and analyze swarm robotics sys-
tems.

In Section 3, we analyze some of the possible collective behaviors a swarm
robotics system can exhibit. By collective behaviors we mean behaviors of the
swarm considered as a whole. Such collective behaviors can be used as building
blocks for applications, such as foraging or construction (see also Section 4).

In Section 4, we conclude the paper with a discussion of the open problems in
swarm robotics and swarm engineering.

1.3 Previous reviews

Previous reviews proposed taxonomies that differ from those that we propose
here. Dudek et al. (1993) chose swarm size, communication range, communication
topology, communication bandwidth, swarm reconfigurability and swarm unit pro-
cessing ability to classify the literature. Cao et al. (1997) used: group architecture,
resource conflicts, origins of cooperation, learning and geometric problems. Iocchi
et al. (2001) adopted a hierarchical taxonomy: in the first level they considered
aware versus unaware cooperation. The aware category is divided into strongly
coordinated, weakly coordinated and not-coordinated systems. Works related to
strongly coordinated systems are divided into strongly-centralized, weakly central-
ized and distributed. A separate section is dedicated to applications of multi-robot
systems. Gazi and Fidan (2007) chose to divide the literature into mathematical
models, swarm coordination and control, and design approaches. Bayindir and
Şahin (2007) classified the literature according to five taxonomies: modeling, be-
havior design, communication, analytical studies and problems.

2 Methods

The goal of this section is to classify the articles published in the swarm robotics
literature according to the methods used to design or to analyze swarm robotics
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Fig. 1: The two taxonomies proposed in this review.

systems. In Section 2.1, we present the most common design methods used to
develop collective behaviors for swarms of robots. In Section 2.2, we present the
most common methods used to understand, predict and analyze the collective
behavior of a swarm.

2.1 Design methods

Design is the phase in which a system is planned and developed starting from the
initial specifications and requirements. Unfortunately, in swarm robotics there are
still no formal or precise ways to design individual level behaviors that produce
the desired collective behavior. The intuition of the human designer is still the
main ingredient in the development of swarm robotics systems.
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We divide the design methods into two categories: behavior-based design and
automatic design.

Behavior-based design is the most common way to develop a swarm robotics
system. In an iterative way, the individual behavior of each robot is implemented,
studied and improved until the desired collective behavior is obtained. In behavior-
based design, inspiration is often taken from the observation of the behaviors of
social animals. This may ease the design process as, sometimes, the details of a
particular behavior are already understood and mathematical models are available.

Another way to develop swarm robotics systems is via automatic design meth-
ods. Automatic design methods can be used to reduce the effort of the developers
in creating a collective behavior. We classify automatic design methods in two
categories: evolutionary robotics and multi-robot reinforcement learning.

In the following, we discuss behavior-based design methods and automatic
design methods by describing the general principles and the relative advantages
and disadvantages.

2.1.1 Behavior-based design methods

In swarm robotics, the most commonly used design method involve developing, by
hand, the individual behaviors of the robots which results in the collective behavior
of the swarm. Designing a behavior for a swarm robotics system is usually a trial
and error process: individual behaviors are iteratively adjusted and tuned until the
resulting collective behavior is obtained. For this reason, behavior-based design is,
typically, a bottom-up process (Crespi et al., 2008) even though some top-down
methods have been recently proposed (see Section 2.1.1).

We divide the literature on behavior-based design methods into three main
categories: probabilistic finite state machine design, virtual physics-based design
and other design methods.

Probabilistic finite state machine design. Generally, in swarm robotics, an individ-
ual robot does not plan its future actions, but it takes decisions only on the basis
of its sensory inputs and/or its internal memory (Brooks, 1986). One of the most
adopted design methods to obtain such behaviors is the use of a particular class of
finite state machine (Minsky, 1967): probabilistic finite state machines (PFSMs).

In PFSMs, the transition probability between states can be fixed or can change
over time. The transition probability is fixed when a single probability value is de-
fined and used throughout the execution of the collective behavior. An example
can be found in the work of Soysal and Şahin (2005). The transition probability is
not fixed when it is defined through a mathematical function of one or more param-
eters of the system. One of the most widely used function is the response threshold
function developed by Granovetter (1978) (see also Bonabeau et al. (1997)). The
response threshold function, depicted in Figure 2, has been used to study the col-
lective behavior of social insects (Theraulaz et al., 1998), and has been introduced
in swarm robotics by Theraulaz et al. (1990) to study collective decision-making
and task allocation. In the response threshold function, the probability to switch
to a new state is usually related to the current state of the robot.

PFSMs have been used to develop several collective behaviors, such as aggre-
gation (Soysal and Şahin, 2005), chain formation (Nouyan et al., 2008) and task-
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Fig. 2: The response threshold function. The transition probability p depends on:
s, a stimulus that represents a measure of the transition urgency; θ, a threshold
on the stimulus; and β, a sensitivity parameter. The function is non-linear: When
s � θ, the transition probability is very low, whereas when s � θ it is very high.
In the example in the figure, s ranges in [0, 100], θ = 50 and β = 8.

allocation (Liu et al., 2007; Labella et al., 2006). These behaviors will be explained
in more details in Section 3.1.1, Section 3.1.2 and Section 3.3.2 respectively.

Virtual physics-based design. The virtual physics-based design method draws in-
spiration from physics. Each robot is considered as a virtual particle that exerts
virtual forces on other robots.

One of the first works using virtual physics-based design was by Khatib (1986),
who used the concept of artificial potential field. In this and in some following
works, the robots are subject to repulsive virtual forces originating from the en-
vironment: the goal is associated with an attractive force and the obstacles with
repulsive forces. The social potential fields framework (Reif and Wang, 1999) con-
siders also robots as associated to virtual forces. Later, Spears et al. (2004) pro-
posed a virtual physics-based design method called physicomimetics framework.
Since we believe this is the most general framework, it will be used to describe the
method. In describing virtual physics-based design, we will follow the most com-
mon used terminology, which uses, sometimes in an inaccurate way, a vocabulary
borrowed from physics.

Virtual physics-based design assumes that the robots are able to perceive and
distinguish neighboring robots and obstacles, and to estimate their distance and
relative position. Each robot computes a virtual force vector f =

∑k
i=1 fi(di)e

jθi ,
where θi and di are the direction and the distance of the i-th perceived obstacle or
robot and the function fi(di) is derived from an artificial potential function. The
most commonly used artificial potential is the Lennard-Jones potential, depicted
in Figure 3.
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Fig. 3: The Lennard-Jones potential function. The potential v depends on the
current distance d between two robots. σ is the desired distance between the
robots and ε corresponds to the depth of the potential function. In this example,
σ = 0.3 and ε = 2.5.

The main advantages of virtual physics-based design methods are: i) a single
mathematical rule smoothly translates the entire sensory inputs space into the
actuators output space without the need for multiple rules or behaviors; ii) the
obtained behaviors can be combined using vectorial operations; iii) some properties
(such as robustness, stability, etc.) can be proved using theoretical tools from
physics, control theory or graph theory (Gazi and Passino, 2002).

The virtual physics-based method is often used to design collective behaviors
that require a robot formation. Examples of such behaviors are pattern forma-
tion (Section 3.1.2), collective exploration (Section 3.2.1) and coordinated motion
(Section 3.2.2).

Other behavior-based design methods. In this section, we outline other works using
behavior-based design that do not fit in the previous sections.

Bachrach et al. (2010) proposed a scripting language called Protoswarm based
on the amorphous computational medium (Beal, 2004). The amorphous compu-
tational medium considers the environment as filled with individuals able both
to perform computations and to communicate with their neighbors. Using Proto-
swarm it is possible to define behaviors for an individual by writing scripts at the
collective level. Several collective-level primitives exist in the scripting language,
both related to space and time. These primitives are translated into individual
behaviors by exploiting the underlying local communication. This language, even
though it cannot be considered a standalone design method, can significantly ease
the design process thanks to its collective-level primitives. This approach is partic-
ularly suited for sensor networks, where the great number of individuals guarantees
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that the system is able to cover the entire environment with a single communica-
tion network.

Brambilla et al. (2012) proposed a top-down method to design swarm robotics
systems. Their idea is to define the desired system using a set of properties. These
properties are logic formulae which need to hold true in the final system. The
authors propose an iterative process composed of four steps. In the first step, the
properties are defined. In the second step, a macroscopic model is produced. A
model checker is then used to verify that the properties hold true in the produced
model. In the third step, the macroscopic model is used to guide the process of
implementing the system using a simulator. Finally, in the fourth the system is
tested using real robots. This approach can guide the design process from the de-
sired system to the actual implementation. Moreover, the process helps to formally
verify that the final system satisfies the desired properties.

2.1.2 Automatic design methods

The use of automatic design methods allows the automatic generation of behaviors
without the explicit intervention of the developer.

Automatic design methods for swarm robotics systems can be divided in two
main sub-domains: reinforcement learning and evolutionary robotics. Panait and
Luke (2005) conducted an extensive review of the state of the art of automatic
design methods for multi-agent and multi-robot systems. Differently from Panait
and Luke (2005), in this review we focus on understanding the obtained results
and the challenges of applying automatic design methods in swarm robotics.

The section is organized as follows. We first introduce reinforcement learn-
ing (Kaelbling et al., 1996; Sutton and Barto, 1998) and we identify the key chal-
lenges of the application of the methods developed for reinforcement learning to
swarm robotics. We then present evolutionary robotics (Nolfi and Floreano, 2000),
the application of evolutionary computation techniques to single and multi-robot
systems. Finally, we present some individual works on automatic design methods
that do not belong to either of the above two categories.

Reinforcement Learning. A set of methods to automatically design individual be-
haviors for robots in a swarm can be found in the reinforcement learning (RL)
literature. RL traditionally refers to a class of learning problems: an agent learns a
behavior through trial-and-error interactions with an environment and by receiv-
ing positive and negative feedback for its actions. In this section, we do not go into
the details of RL: our goal is to discuss to what extent the methods developed for
RL are or can be applied to swarm robotics. For a more formal introduction and
more details about RL, the interested reader can refer to Kaelbling et al. (1996).

In RL, the robot receives a reward for its actions. The goal of the robot is to
learn automatically an optimal policy, that is, the optimal behavior mapping robot
states to robot actions. The behavior is optimal in the sense that it maximizes the
rewards received from the environment.

RL has been intensively studied in the single robot case where an elegant and
unified mathematical framework has been developed (Kaelbling et al., 1996; Sutton
and Barto, 1998). In the multi-robot case, only few works with limited scope exist.
A review of such works was conducted by Panait and Luke (2005), Yang and Gu
(2005), and Stone and Veloso (2000).
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A swarm robotics problem can hardly be seen as a RL problem. In fact, the
swarm engineer tackles the task at the collective level, but learning typically takes
place at the individual level. Thus, in applying methods developed for RL to
swarm robotics, the main issue is the decomposition of the global reward into
individual rewards (Wolpert and Tumer, 1999). This challenging problem is called
spatial credit assignment. Matarić (1998, 1997) addressed this issue by performing
experiments with few robots (2 to 4), using communication or signaling to share
the reward (Matarić, 1998, 1997).

Additionally to the spatial credit assignment, there are also other open prob-
lems: i) The size of the state space faced in RL problems is huge. The reason behind
this problem is the high complexity of the robots hardware and the complexity of
the robot-to-robot interactions. Examples of techniques to reduce the state space
dimension have been used by Riedmiller et al. (2009). In this work, the authors
applied neural networks as function approximators together with fast learning al-
gorithms (Kalyanakrishnan and Stone, 2007). ii) The environment perception is
incomplete. This makes the search of the behavior even more complex (Kaelbling
et al., 1998). Mataric and her colleagues addressed this problem using commu-
nication (Matarić, 1998) or behavioral decomposition (Matarić, 1997). iii) The
environment, as seen from the individual robot perspective, is non-stationary due
to the fact that each robot action is influenced by the actions performed by other
robots in the same environment or by changes in the environment itself. We do
not know of any work in multi-robot learning addressing this problem.

Evolutionary Robotics. Evolutionary robotics (Nolfi and Floreano, 2000) (hence-
forth ER) is an automatic design method that applies evolutionary computation
techniques (Goldberg, 1989; Holland, 1975) to single and multi-robot systems. Evo-
lutionary computation is inspired by the Darwinian principle of natural selection
and evolution. As such, it uses a vocabulary borrowed from biology.

Within swarm robotics, ER has been used in many proof-of-concept tasks in
order to test the effectiveness of the method (Baldassarre et al., 2007; Groß and
Dorigo, 2008a; Sperati et al., 2008) or as a tool to answer some more fundamental
scientific questions (Trianni and Dorigo, 2006; Tuci et al., 2004; Pini and Tuci,
2008; Ampatzis et al., 2008). In this review, we analyze ER from an engineering
perspective, that is, we describe its strengths and weaknesses as a design method.

The ER method can be described by the following process. At the beginning,
a population of individual behaviors is generated at random. In each iteration, a
number of experiments for each individual behavior is executed. The same indi-
vidual behavior is used by all the robots in the experiment. In each experiment, a
fitness function is used to evaluate the collective behavior of the swarm resulting
from that individual behavior. At this point, a selection of the highest scoring
individual behaviors are modified by genetic operators, such as cross-over and
mutation, and used for the subsequent iterations. In the majority of the works,
the group is homogeneous (all individual behaviors are the same) and the fitness
evaluates the performance of the entire swarm. Waibel et al. (2009) introduced two
taxonomies: one of the taxonomies distinguishes works according to how fitness
is computed (individual-level vs swarm level), whereas the other one according to
how the swarm is composed (homogeneous vs heterogeneous).

In ER, the individual behavior can be represented in many ways, such as
finite state machines or virtual force functions (Hettiarachchi, 2007). Typically,
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the evolutionary method is used to find the parameters of an artificial neural
network (henceforth NN). Although several types of NN exist in the literature,
they can be roughly categorized in two main classes: feed forward NN (Fine, 1999)
and recurrent NN (Beer and Gallagher, 1992; Elman, 1990). Feed-forward NNs are
used for individual behaviors that require no memory of previous observations and
actions. Conversely, recurrent NNs are used for individual behaviors that require
a memory of previously seen input patterns. ER with recurrent neural networks
has been extensively studied in swarm robotics by Ampatzis (2008).

RL and ER have many common points. In fact, the same problems identified by
us in the application of RL to swarm robotics apply also to ER. Other problems,
many of which were identified by Matarić and Cliff (1996), are instead related only
to ER:

i) Evolution is a computationally intensive process, that does not give any
guarantees on its convergence to a solution; ii) Neural networks are black-box and
it is often very difficult to understand their behavior; iii) From an engineering
point of view, the complexity of behaviors currently synthesized through artificial
evolution is relatively low and the same results may often be achieved by designing
the behavior by hand.

Other learning and automatic design methods. In this section, we outline other
works on automatic design that can be placed neither within the RL nor within
the ER literature. In all these works, the authors design an individual behavior
with parameters to be found, and they use some algorithm to automatically find
(or learn) these parameters on-line, that is, while the robots are interacting with
the environment.

Parker (1996) proposed ALLIANCE, a multi-robot architecture that focuses
on the achievement of fault tolerant, robust and adaptive task allocation in a team
of robots. In her work, the author added the possibility to perform on-line learning
of the parameters of ALLIANCE.

Lee and Arkin (2003) extended their learning momentum framework to multi-
robot systems. With learning momentum, it is possible to learn on-line the behav-
ioral parameters according to the situations robots are facing. These parameters
are the weight assigned to vectors produced by different, virtual physics-based,
sub-behaviors.

Li et al. (2004) proposed an algorithm that enables on-line learning of some
parameters of the robot behaviors in order to achieve diversity and specializa-
tion in a swarm of robots. The learning algorithm is specifically thought for their
application, that consists of a stick pulling task.

Hettiarachchi (2007) used the virtual-physics-based design method combined
with evolutionary computation. He used genetic algorithms to learn off-line the
parameters of the Lennard-Jones potential function (see Section 2.1.1) in a navi-
gation with obstacle avoidance task.

Rosenfeld et al. (2008) studied the problem of how to obtain an adaptive
coordination behavior in a multi-robot domain. Their first contribution has been
to propose a method that enables each robot to estimate the coordination cost
over time. An example of such cost is the one needed to reduce interference. They
then proposed a learning algorithm that is able to produce a behavior mapping
the current estimate of the coordination cost to the coordination method to be
used.



Swarm robotics: A review from the swarm engineering perspective 11

Finally, Pugh and Martinoli (2007) compared the PSO (particle swarm op-
timization) algorithm against a genetic algorithm for on-line learning parameters
for a swarm of robots performing obstacle avoidance. They also defined metrics to
measure diversity and specialization, and concluded that PSO is able to achieve a
higher degree of diversity in the swarm.

2.2 Analysis

Analysis is an essential phase in an engineering process. In the analysis phase, the
swarm engineer is interested in seeing whether a general property of the designed
collective behavior holds or not. The ultimate goal to obtain is that a swarm of
real robots exhibits the desired collective behavior with the desired properties.
Properties of the collective behaviors are usually analyzed by means of models.

Swarm robotics systems can be modeled at two different levels: the individual
level, or microscopic level, that models the characteristics of the single individuals
and the interactions among them; the collective level, or macroscopic level, that
models the characteristics of the entire swarm. The development of models for
analyzing swarm robotics systems at both levels of abstraction is still a subject of
study and research. In fact, modeling both the microscopic and the macroscopic
level and their interaction is very difficult due to the nature of self-organized sys-
tems (Abbott, 2006). As a consequence, the vast majority of modeling techniques
that are used nowadays focus on one level at a time.

In this review, we classify the literature on modeling according to whether
the main concern is to capture the microscopic (Section 2.2.1) or the macroscopic
(Section 2.2.2) aspects. In the last section (Section 2.2.3), we conclude with an
overview of how the analysis with real robots is conducted.

2.2.1 Microscopic models

Microscopic models take into account each robot individually, analyzing both
robot-to-robot and robot-to-environment interactions. The level of detail consid-
ered in microscopic models can vary greatly and influences the model and the
results that can be obtained.

In the swarm robotics field, many models have been developed with different
levels of abstraction: the simplest models consider the robots as point-masses;
intermediate complexity models consider 2D worlds with kinematic physics; more
complex models consider 3D worlds with dynamic physics where the details of
each sensor and actuator are modeled. For an analysis of the different levels of
abstraction see Friedmann (2010). In microscopic models, the behavior of each
individual robot is also explicitly modeled. These individual-behavior models are
mainly used for design purposes. As such they have already been presented in
Section 2.1.1 of our review.

Microscopic models in which the elements composing a system are simulated
with the use of a computer are traditionally called simulations. Simulations are
among the most used tools to analyze and validate swarm robotics systems. The
vast majority of the works presented in Section 3 have been analyzed using simula-
tors. Simulators for swarm robotics systems have many characteristics in common
with simulators for other mobile robotics systems. However, a unique feature of
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swarm robotics is the presence of a large number of robots. Unfortunately, scal-
ability with respect to the number of robots is not the main concern for the
vast majority of multi-robot simulators. Vaughan (2008) proposed a benchmark
to study scalability in multi-robot simulators and applied it to the Stage simula-
tor. Pinciroli et al. (2012) developed a simulator for swarm robotics by focusing
explicitly on the scalability issue which was able to simulate 105 robots in real
time.

For a survey of various simulation platforms in robotics see (Kramer and
Scheutz, 2007).

2.2.2 Macroscopic models

Macroscopic models consider swarm robotics systems as a whole. The individual
elements of the systems are not taken into account in favor of a description of the
system at a higher level.

In this section we provide a broad overview of the main contributions in this
area. We classify works in macroscopic modeling into three categories. In the first
category, we consider works resorting to rate or differential equations. In the second
category, we consider works where classical control and stability theory are used to
prove properties of the swarm. In the third category, we consider other approaches.

Rate and differential equations. One of the first works that uses rate equations
for modeling swarm robotics systems is by Martinoli et al. (1999). In this and in
follow-up works, the term rate equations was used to denote such models. Rate
equations describe the time evolution of the proportion of robots in a particular
state over the total number of robots.

Rate equations can be used to derive a macroscopic model of a collective be-
havior, starting from an individual-level PFSM. The procedure is the following:
i) First, a set of variables is defined. Usually, one variable is defined for each state
of the individual-level PFSM. These variables are used to track the proportion of
the robots in the corresponding states. ii) Second, for each variable, an equation
is defined (Lerman and Galstyan, 2002). This equation is called rate equation be-
cause it is used to describe the time evolution of that variable, that is, the time
evolution of the proportion of the robots in the corresponding state. The rate
equation contains a set of parameters, one for each input and output transition of
the corresponding state. Numerically, these parameters can be derived either from
the description of the system or empirically.

The rate equations method was used to model many swarm robotics systems.
In their seminal work, Martinoli et al. (1999) used rate equations to model a clus-
tering task where robots gather objects. Lerman et al. (2001) and Martinoli et al.
(2004) used rate equations to model the stick pulling experiment, a task where
two robots need to cooperate in order to pull sticks out of their holes. Lerman
and Galstyan (2002) modeled the foraging task under the effect of interference.
In this case, the authors were correctly able to model the individual performance
in foraging to be a decreasing function of group size. Trianni et al. (2002) used
rate equations to model a chain formation behavior and an aggregation behavior,
implemented using probabilistic finite state machines. Campo and Dorigo (2007)
modeled the collective behavior of robots performing multi-foraging (i.e., foraging
with more than one food source). Winfield et al. (2008) used rate equations to
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model a swarm of robots whose goal is to stay together while avoiding collisions.
Liu and Winfield (2010) used the rate equations to model another foraging task
involving the collection of energy units. Finally, O’Grady et al. (2009b) used rate
equations to model an aggregation collective behavior. In this work a flying robot
can actively control the number of robots aggregating beneath it. The model in-
cluded probabilities to join and to leave an aggregate, that were then directly used
in the behavior design.

The main advantage of the rate equation approach is that it is a systematic
method to translate microscopic models into macroscopic models. Its main limit is
that, in general, it is difficult to model space and time: robot positions in space are
not explicitly modeled and discrete time is usually assumed; furthermore, the two
mentioned limitations imply that each robot can change its position to any other
location in the environment at each time-step. Galstyan et al. (2005) extended
the rate equations model to include spatiality in a task where robots search for
a chemical substance. However, the authors did not perform any experiments,
simulated or with real robots, to validate their approach.

A recent advancement in macroscopic modeling based on differential equations
is due to Hamann and Wörn (2008). Their models include noise, stochasticity and
spatiality. The basic building block of this modeling method are the Langevin equa-
tion and the Fokker-Plank equation, both borrowed from the statistical physics
literature.

The Langevin equation is a family of stochastic differential equations that de-
scribe the motion of a particle in a fluid. The Langevin equation is a mesoscopic
model (intermediate level between micro and macro). In fact, the motion of the
particle is modeled using two components: a deterministic component, that repre-
sents the microscopic laws of motion of that particle, and a stochastic component,
that represents the interaction of the particle with the environment (in this case
the ensemble of particles composing the fluid). In the case of a robot, the deter-
ministic component of the Langevin equation models the deterministic motion of
the robot influenced by its individual behavior, whereas the stochastic part models
the interaction of the robot with the other robots (considered as a flow) and with
the environment.

The Fokker-Plank equation can be used to describe the dynamics of the en-
tire swarm. It models the time-evolution of the probability density function that
describes the state (for example the position or the velocity) of all particles, or
robots, in the environment. The derivation of the Fokker-Plank equation starting
from the Langevin equation is possible using tools of statistical mechanics plus
some problem-dependent intuition. Hamann and Wörn (2008) applied this model-
ing method to analyze coordinated motion (which they call collective taxis), aggre-
gation (which they call collective perception) and foraging. Recently, the authors
modeled aggregation in presence of a temperature gradient in the environment, and
provided a comparison with another model called Stock & Flow (Schmickl et al.,
2009). The Fokker-Plank equation approach has the advantage that it can be used,
in principle, to model any swarm robotics collective behavior. The two main dis-
advantages, however, are the following: the Fokker-Plank equation is difficult to be
solved analytically and sometimes requires computationally demanding numerical
algorithms; communication aspects, at present, are very difficult to model.

A similar approach was adopted also by Berman et al. (2009), who used a set of
advection-diffusion-reaction partial differential equations to derive the individual
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behaviors of a swarm performing task allocation. In Berman et al. (2011b), this
approach is applied to an area coverage task. Dantu et al. (2012) compared the
results obtained in this work with those obtained from a simulation of the same
behavior. The goal of the authors was to understand the effects of noise and errors
on the collective behavior.

Another interesting study on the use of the Fokker-Plank equation was done
by Prorok et al. (2011). In their work, the authors compared four different models
of an area coverage behavior. They did it by measuring the area covered by the
robots. Each model is characterized by being microscopic or macroscopic, and
spatial or non-spatial. The predictions obtained from the models are compared
with the results of both simulated and real-robot experiments. The authors showed
that predictions of the spatial and non-spatial models differ for short time spans,
for which the results of spatial models are more accurate, but are very similar for
long time spans.

Classical control and stability theory. The second set of works uses classical control
and stability theory to prove properties of the swarm. Liu et al. (2003) and Gazi
and Passino (2005) modeled a swarm of agents in a one-dimensional space using
discrete-time discrete-event dynamical systems. Liu and Passino (2004) and Gazi
and Passino (2004b) used Lyapunov stability theory to prove that the behavior
studied was able to let a swarm achieve coherent social foraging in presence of
noise. Similarly, Gazi and Passino (2003, 2004a) proved that, in specific condi-
tions, a swarm of agents aggregates in one point of the environment. Schwager
et al. (2011) modeled a swarm of communicating robots as a linear, discrete-time
dynamical system. The authors then used their model to study how different com-
munication topologies affect the Lyapunov stability of the system. Finally, Hsieh
et al. (2008) used delay differential equations to model task-allocation (agents al-
locating and re-allocating to different physical sites), proving the stability of the
reached configuration. In the same work, the authors also proposed a method to
compute the optimal transition matrix in order to obtain a swarm that reaches
the desired configuration.

All these modeling methods have the advantage to be based on strong mathe-
matical formulations. However, the main problem with these methods is that they
rely on many assumptions that, in swarm robotics, are often violated because of
noise, asynchronicity, stochasticity and absence of global information. Extensions
of classical methods that tackle one of these elements individually do exist, but
we are not aware of any work that tackles all these elements together.

Other modeling approaches. In the third and final category we consider works in
modeling that resort to other mathematical frameworks. Winfield et al. (2005) and
Dixon et al. (2011) used linear time temporal logic to define properties of individual
robots and of the swarm. The authors defined and proved two properties of the
system: safety and liveness. The safety property is verified when the robots do not
exhibit undesirable behaviors. The liveness property is verified when the swarm
dynamics actually do evolve over time. A similar approach was used by Konur
et al. (2012) and Brambilla et al. (2012). These authors analyzed swarm robotic
systems by using probabilistic model checking, a technique that allows one to
formally verify whether a given property is satisfied by a given model.
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Massink et al. (2012) used Bio-PEPA to analyze consensus achievement in a
robot swarm. Bio-PEPA is a high level modeling language. From a description of a
system formulated in Bio-PEPA, one can automatically derive different models apt
to perform stochastic simulation, fluid flow (ODE) analysis, and model checking.
These models are guaranteed to be logically consistent.

Kazadi (2009) expressed the properties of a swarm using a mathematical lan-
guage and proved their validity. The author proposed a way to define properties
of a swarm robotics problem which he calls “model independent”, that is, they do
not depend on the actual implementation of the agent/robot. He proposed model-
independent properties for two collective behaviors: shape formation and flocking.
Soysal and Şahin (2007) modeled aggregation using Markov chains and validated
the prediction using simulation.

The work of Turgut et al. (2008b) represents one of the first modeling attempts
to bridge studies of flocking within physics with studies of flocking within robotics.
In their study, the authors modeled alignment in flocking. The model shows that
there is a phase transition from aligned to non-aligned state corresponding to a
critical value of noise. The results were validated using simulation.

Correll (2008) used a population dynamics model to find the parameters used
in two task-allocation behaviors. Using the model and an optimization algorithm,
the authors could estimate the parameters that lead to the optimal distribution
of robots.

Mathews et al. (2010) modeled a problem in which a flying robot selects one
mobile robot within a group to establish a communication channel with it. To
model the system, the authors used the theory of branching processes (Kendall,
1966), that is used in social sciences to model phenomena such as population
growth and virus spread.

Finally, Hamann (2012) developed two simple models for swarm robotics sys-
tems. In the first, the performance of a generic swarm robotics systems is explained
using the interaction between cooperation and interference. In the second, the con-
sensus achievement behavior is studied using a simple probabilistic model based
on the urn problem.

2.2.3 Real-robot analysis

The use of real robots (as opposed to simulated robots) to validate a collective
behavior is a fundamental tool. In fact, it is practically unfeasible to simulate all
the aspects of reality (Frigg and Hartmann, 2012; Brooks, 1990). Experiments with
real robots help to test the robustness of swarm robotics systems that have noisy
sensors and actuators. Working with real robots is very important also because it
helps discriminating between collective behaviors realizable in practice and those
that work only under unrealistic assumptions.

It must be noted that in all real-robot experiments presented in the analyzed
literature, the experiments are performed in controlled environments. By con-
trolled environments we mean artificial arenas in which most conditions—e.g.,
light intensity, radio interference and floor smoothness—can be controlled by the
experimenter. This is often very far from the scenarios in which swarm robotics
systems are supposed to operate. For this reason, real-robot experiments should
not be considered as a way to validate collective behaviors for their use in real-
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world applications, but rather as a way to test them against realistic noise patterns
in sensors and actuators.

In this review we present more than sixty publications dealing with collective
behaviors in the swarm robotics field (see Section 3). Slightly more than half of
these publications presented results obtained only through simulations or models.
We believe that the reason behind this choice is that, in general, it is easier, faster
and safer to perform experiments using models or simulations than using robots.

In the papers that included experiments done with real robots, the scope of
the use of the robots can be divided in two categories: proof-of-concept experi-
ments and extensive experiments. The first category includes slightly more than
half of the analyzed works that involve real-robot experiments. In these works, few
runs (typically one) of an experiment with real robots are performed. The aim of
real-robot experiments within these works is to show that the proposed collective
behavior is realizable. Examples of this kind of experiment can be found in the
works by Payton et al. (2001) and Spears et al. (2004). In the other category,
instead, several runs are executed and data is gathered to be analyzed for com-
parison with simulated runs or to show properties of the system. Examples of this
kind of experiments can be found in the works by Çelikkanat and Şahin (2010)
and O’Grady et al. (2010).

Very often in the swarm robotics literature, the reasons why robots are used
are not explicitly stated. In particular, the answer to the question “what does
the real-robot study add to the simulation or theoretical study” is almost never
explicitly answered, as it should. An effort in this sense would simplify the process
of reproducing results as it would help to clarify possible differences between the
model and the real-robot system. Moreover, clarifying the role of real robots in
experiments can help in porting a similar collective behavior to a different robotic
hardware.

3 Collective behaviors

In this section, we present a review of the main collective behaviors studied in the
literature. These collective behaviors are basic behaviors of a swarm that could
be combined to tackle complex real-world applications as, for example, foraging
or construction. We classify these collective behaviors into four main categories:
spatially-organizing behaviors, navigation behaviors, collective decision-making
and other collective behaviors.

In the first category, spatially-organizing behaviors, we consider behaviors that
focus on how to organize and distribute robots and objects in space. In the second
category, navigation behaviors, we consider behaviors that focus on how to orga-
nize and coordinate the movements of a swarm of robots. In the third category,
collective decision-making, we consider behaviors that focus on letting a group of
robots agree on a common decision or allocate among different parallel tasks. In
the last category, other collective behaviors, we consider behaviors that do not fall
into any of the categories mentioned above.

For each category, we give a brief description of the collective behavior, its
source of inspiration, the most common used approaches and the most significant
available results.
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3.1 Spatially-organizing behaviors

In this section, we describe collective behaviors that focus on how to organize and
distribute robots and objects in space. Robots can be organized and distributed
in space in several possible ways: aggregates, patterns, chains and structures of
physically connected robots. Moreover, robots can also physically move objects to
create clusters and structures.

The simplest spatial organization is the aggregate: a group of robots spatially
close to each other. The collective behavior used to obtain an aggregate is called
aggregation. Work on aggregation is presented in Section 3.1.1.

More complex spatial organizations consist in patterns or chains. Work on
pattern and chain formation is presented in Section 3.1.2 and 3.1.3.

A different, but related, kind of spatial organization is the one composed by
physically connected robots. Collective behaviors used to obtain and manage struc-
tures formed by physically connected robots are called self-assembling and mor-
phogenesis behaviors. Work on physically connected robots is presented in Sec-
tion 3.1.4.

Works that explore how robots can collectively organize objects in clusters and
assembles are presented in Section 3.1.5.

3.1.1 Aggregation

Description - The goal of aggregation is to group all the robots of a swarm in a
region of the environment. Despite being a simple collective behavior, aggregation
is a very useful building block, as it allows a swarm of robots to get sufficiently
close one another so that they can interact.

Source of inspiration - Aggregation is a very common behavior in nature. For
example, aggregation can be observed in bacteria, cockroaches, bees, fish and pen-
guins (Camazine et al., 2001). Other examples of natural systems performing ag-
gregation have been described by Grünbaum and Okubo (1994); Breder Jr (1954);
Jeanson et al. (2005); Amé et al. (2006).

Approaches - In swarm robotics, aggregation is usually approached in two ways:
probabilistic finite state machines (PFSMs) or artificial evolution.

The most common approach is based on PFSMs: the robots explore an envi-
ronment and, when they find other robots, they decide stochastically whether to
join or leave the aggregate. In this approach, a stochastic component is often used
in order to ensure that eventually only a single aggregate is formed.

In the artificial evolution approach, the parameters of a neural network are
automatically selected in order to obtain an aggregation behavior.

Results - Garnier et al. (2005) developed a system in which robots are used to
replicate the behavior observed in cockroaches by Jeanson et al. (2005). The robots
are able to collectively aggregate in a circular arena using a PFSM approach.

Another example of an aggregation behavior based on a PFSM was developed
by Soysal and Şahin (2005, 2007) (see Figure 4(a)). In their work, a robot can
be in one of three states: the repel state, in which the robot tends to get away
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(a) From Soysal and Şahin (2007),
reprinted with permission.

(b) From Trianni et al. (2003), reprinted
with permission.

Fig. 4: Examples of the aggregation collective behavior.

from other robots; the approach state, in which the robot tends to get closer to
other robots; and the wait state, in which the robot stand still. Soysal and Şahin
were able to achieve both moving and static aggregation behaviors by changing
the parameters of the system.

An example of aggregation obtained with artificial evolution was developed by
Trianni et al. (2003) (see Figure 4(b)). The authors obtained two sets of parameters
for a neural network achieving both moving and static aggregates.

Soysal et al. (2007) presented some rules of thumb for obtaining aggregation
behaviors through artificial evolution. Moreover, they proposed a comparison be-
tween the probabilistic finite state machine approach by Soysal and Şahin (2005)
and the artificial evolution approach by Bahçeci and Şahin (2005).

3.1.2 Pattern formation

Description - Pattern formation aims at deploying robots in a regular and repet-
itive manner. Robots usually need to keep specific distances between each other
in order to create a desired pattern.

Source of inspiration - Pattern formation can be found both in biology and in
physics. Some biological examples are the spatial disposition of bacterial colonies
and the chromatic patterns on some animal’s fur (Meinhardt, 1982). Some physics
examples are molecules distribution and crystal formation (Langer, 1980), and
Bénard cells (Getling, 1998).

Approaches - The most common way to develop pattern formation behaviors in
robot swarms is to use virtual physics-based design. Virtual physics-based design
uses virtual forces to coordinate the movements of robots.

Results - Bahçeci et al. (2003) presented a review of works on pattern formation
in which they analyzed centralized and decentralized behaviors. Another review
on the topic has been published in 2009 by Varghese and McKee.
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(a) From Spears and Spears (2012),
reprinted with permission.

(b) From Shucker and Bennett (2007),
reprinted with permission.

Fig. 5: Examples of the pattern formation collective behavior.

Spears et al. (2004) developed a collective behavior for pattern formation that
is one of the first applications of virtual physics-based design. In their work, they
use the virtual forces to form an hexagonal lattice (see Figure 5(a)). In the same
work, Spears et al. showed that, by creating two groups of robots with different
attraction/repulsion thresholds, it is also possible to obtain a square lattice. More
details can be found in a subsequent work (Spears and Spears, 2012).

Shucker and Bennett (2007) presented a behavior in which robots interact
via virtual springs (see Figure 5(b)). These virtual springs are used by a robot
to compute attraction/repulsion virtual forces. Differently from Spears et al.’s
work, in this work, the robots can interact in different ways (full connectivity, first
neighbors, N-nearest, . . . ). Each type of interaction has different characteristics
and gives rise to slightly different patterns. Additional theoretical work is presented
in a subsequent paper (Shucker et al., 2008).

Flocchini et al. (2008) focused on a theoretical analysis of pattern formation.
The authors were able to formally prove that with a group of fully asynchronous
robots it is possible to obtain only a subset of all possible patterns, whereas other
patterns are achievable only with some kind of global knowledge such as a common
orientation given by a compass.

3.1.3 Chain formation

Description - In the chain formation behavior, robots have to position themselves
in order to connect two points. The chain that they form can then be used as a
guide for navigation or for surveillance.

Source of inspiration - The chain formation behavior takes its inspiration from
foraging ants. Deneubourg et al. (1990) studied and modeled the behavior of Ar-
gentine ants which form chains of individuals connecting their nest with foraging
areas.
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(a) From Nouyan et al. (2009), reprinted
with permission.

(b) From Sperati et al. (2011),
reprinted with permission.

Fig. 6: Examples of the chain formation collective behavior.

Approaches - Chains of robots can be obtained in multiple ways: the most used
design approaches are probabilistic finite state machines (PFSMs), virtual physics-
based design and artificial evolution.

Results - Nouyan et al. (2008, 2009) developed a behavior, based on PFSMs, in
which the robots have two different exchangeable roles: explorer and chain member
(see Figure 6(a)). In the explorer role, the robots are searching for chain members
or for the goal area. When they find either a chain member or the goal, they switch
to the chain member role and stop. Chain members can become explorer again
according to a probability that increases over time if no other robots are perceived.
Different configurations and approaches are analyzed and presented.

Maxim et al. (2009) used virtual physics-based design to form chains of robots.
Virtual forces are used to keep a specific distance between robots and between a
robot and the walls of the environment. The developed behavior creates chains
that are strongly based on the shape of the environment, which is assumed to be
composed of narrow corridors.

Sperati et al. (2011) used artificial evolution to obtain a chain formation behav-
ior (see Figure 6(b)). In their work, the robots, by using communication through
colored LEDs, are able to follow each other forming a double chain between two
designated areas. Differently from other chain formation behaviors, in this work
the obtained chain is composed of moving robots.

Ducatelle et al. (2011a) proposed a collective behavior based on PFSMs and
network routing which was able to obtain a chain composed of moving robots. The
details of this work are presented in Section 3.2.1.

3.1.4 Self-assembly and morphogenesis

Description - In robotics, self-assembly is the process by which robots physically
connect to each other. Self-assembly can be used for different purposes. For ex-
ample, to increase stability when navigating on rough terrains or to increase the
pulling power of the robots. Morphogenesis is the process that leads a swarm of
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(a) From Christensen et al. (2008),
reprinted with permission.

(b) From Mondada (2005), reprinted with
permission.

Fig. 7: Examples of the self-assembly collective behavior.

robots to self-assemble following a particular pattern, and can be used by the
swarm to self-assemble into a structure that is particularly appropriate for a given
task. For example, self-assembling into a line can allow to pass on a narrow bridge,
while a blob-like shape will make moving on rough terrain more stable.

Source of inspiration - Self-assembly can be observed in several species of ants.
Ants are able to physically connect in order to perform different tasks. Some exam-
ples of structures created by ants are bridges, rafts, walls and bivouacs (Anderson
et al., 2002). Self-assembly and morphogenesis are studied also by developmental
biology: scientists study how cells develop and self-organize to form tissues and
organs (Turing, 1953).

Approaches - From the swarm robotics perspective, there are two main challenges:
how to self-assemble into a desired target structure (i.e., morphogenesis), and how
to control the obtained structure to tackle specific tasks. Works focusing on the
first issue are usually based on probabilistic finite state machines and rely on
communication for coordination. Works focusing on the second issue, make use
either of artificial evolution or of probabilistic finite state machines.

Results - A review of the literature on self-assembly and morphogenesis has al-
ready been presented by Groß and Dorigo (2008b). For this reason, in this paper,
we discuss only some examples of recent works.

O’Grady et al. (2009a) presented a morphogenesis behavior for self-assembling
robots that are able to signal docking points on their body to other robots using
LEDs. Different structures, such as lines, stars and circles, can be obtained by
having the robots signal docking points in different positions (see Figure 7(a)). A
related scripting language for the morphogenesis process has been presented by
Christensen et al. (2008). Both works were realized in the context of the Swarm-
Bots project (Dorigo et al., 2006).

Results on the control aspect of self-assembly depend strongly on the goal of the
system considered. O’Grady et al. (2010) demonstrated that physically connected
robots can navigate through difficult terrains better than robots that are not
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connected. In O’Grady et al.’s work, robots randomly explore an environment with
slopes. Each robot is able to measure the steepness of these slopes and when a slope
is steeper than a certain threshold, it can initiate a self-assembling procedure. Once
connected into a structure, the robots can navigate in hazardous terrains thanks to
the high mechanical stability given by the new morphology. Mondada et al. (2005)
showed that physically connected robots are able to cross a ditch that is too large
for a single robot to overcome (see Figure 7(b)). Finally Groß and Dorigo (2009)
showed that physically connected robots are able to obtain better results, in terms
of speed and distance, in the transportation of heavy objects when compared to
non-connected robots.

The Symbrion and Replicator projects tackled both the morphogenesis and
the control aspects of self-assembly (Levi and Kernbach, 2010). In these projects,
swarms of self-assembling robots capable of creating 3D structures are studied.
Such robots are able, when connected, to share energy and computational resources
with their neighbors.

Another aspect of self-assembly is how to make the swarm decide who should
assemble with whom. In the work of Ampatzis et al. (2009), a duo of robots has
to assemble to each other without prior knowledge of who will grip and who will
be gripped. The authors proposed a solution based on artificial evolution and
recurrent neural networks which can make time-dependent decisions. Mathews
et al. (2012) used a heterogeneous approach: a flying robot is used to recognize
the task to tackle and guide ground-based robots. The flying robot communicates
to the ground based robots which robots should self-assemble and what kind of
structure to create to tackle the task.

3.1.5 Object clustering and assembling

Description - In this section we present works in which robots move objects spread
in an environment. The robots can follow two kinds of behaviors: clustering and
assembling. The goal of object clustering and assembling is to group objects close
one to the other. The difference between clusters and assembles is that clusters are
composed of non-connected objects, whereas aggregates are composed of physically
linked objects. The object clustering and assembling behaviors are fundamental
components of any construction process.

Source of inspiration - The object clustering and assembling behaviors are dis-
played by many social insects. For example, ants exhibit brood clustering (Franks
and Sendova-Franks, 1992) and termites are able to deposit mud to build complex
nests (Grassé, 1959). Insects usually exploit natural occurring gradients, such as
temperature gradients, or pheromones gradients to tackle this tasks.

Approaches - In swarm robotics, object clustering and assembling are usually ap-
proached using probabilistic finite state machines. The robots explore the environ-
ment at random and react in different ways to the discovery of available objects
or of part of the cluster/assemble to create.

In almost all analyzed works, robots group objects sequentially or quasi se-
quentially. In fact, parallelism could potentially create collisions and interference
and thus is avoided. To avoid such problems, a robot usually prevents other robots
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(a) From Melhuish (1999), reprinted with
permission.

(b) From Werfel (2011), reprinted with
permission.

Fig. 8: Examples of the object clustering and assembling collective behavior.

from depositing objects at the same time, either by using communication or by
physically blocking access to the cluster site.

Object aggregates are usually obtained using blocks with some kind of self-
alignment mechanism based, for instance, on magnets.

Results - One of the pioneering work in object clustering is the one by Beckers
et al. (1994). In this work, the robots follow a very simple behavior: they explore
the environment at random and, when they find an object, they pick it up. A
robot with an object moves at random in the environment and deposits the object
with a probability proportional to the number of other objects observed. Following
these simple rules, the robots are able to create clusters of objects.

Melhuish et al. (1999b) presented a work in which robots create clusters of
object roughly in the shape of a wall (see Figure 8(a)). In this work, disks are
scattered around the environment and a specific area is marked for disk clustering.
Such area is located half way between a light and a line on the ground. The robots
measure the distance between the line on the ground and the light to recognize
the clustering area. The robots follow simple reactive rules to cluster the object
roughly in the shape of a wall. In a following work, Stewart and Russell (2006)
developed a similar mechanism in which the position of the cluster is marked by
a moving robot instead of a fixed light.

Wawerla et al. (2002) developed a behavior to create simple 2D walls made of
blocks of alternating color. A robot performs random walk in search for a block.
After collecting a block, the robot searches either for the seed block or for the
partially constructed wall. When it finds the wall or the seed block, the robot
checks if no other robot is already placing a block by using local communication,
and then places the blocks.

Werfel (2006) developed a method for creating arbitrary 2D structures with
blocks placed over a virtual grid. In this work, all robots have knowledge of a
matrix which encodes the final structure to create. Such plan is used by the robots
also as a frame of reference. The idea is the following: when a robot finds part of
the structure, it follows it counting the placed blocks. This block-counting behavior
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allows the robot to locate itself in the frame of reference of the structure to create.
Once the robot knows its position with respect to the placed blocks, it can decide
where to place the next block using its knowledge of the final structure. This
approach was also extended to create 3D structures (Werfel and Nagpal, 2008)
and tested using real robots (Werfel et al., 2011) (see Figure 8(b)).

3.2 Navigation behaviors

In this section, we describe collective behaviors that cope with the problem of
coordinating the movements of a swarm of robots. In Section 3.2.1, we review
works on collective exploration. Collective exploration is a collective behavior in
which robots cooperate to explore an environment and perform navigation. In
Section 3.2.2, we review works in coordinated motion. The coordinated motion
behavior is used to make robots move together like a flock of birds or a school
of fish. In Section 3.2.3, we review works in collective transport. In the collective
transport behavior, robots cooperate to transport an object that is too heavy to
be moved by a single robot.

3.2.1 Collective exploration

Description - In this section, we analyze two collective behaviors that, together,
can be used to achieve collective exploration of an environment: area coverage
and swarm-guided navigation. The goal of area coverage is to deploy robots in an
environment in order to create a regular or irregular grid of communicating robots.
The obtained grid can be employed, for example, to monitor the environment for
hazardous leaks or to guide other robots. We call the behavior necessary to guide
the navigation of other robots swarm-guided navigation. Since the two behaviors
are strongly linked, many works focus on both at the same time.

Source of inspiration - Area coverage and navigation are common behaviors of
social animals. For example, ants use pheromones trails to find the shortest route
between two points and bees directly communicate destinations in the environment
by means of dances (Camazine et al., 2001). Area coverage has been intensively
studied also by the wireless sensor networks (WSN) community. A survey of area
coverage behaviors in WSN was conducted by Wang et al. (2009).

Approaches - In swarm robotics, the most common way to tackle area coverage
is to use virtual physics-based design to obtain a grid covering the environment.
Works on swarm-guided navigation instead focus on communication, thus usually
employ probabilistic finite state machines and take inspiration either from network
routing protocols or natural systems.

Results - Payton et al. (2001) used robots as “virtual pheromones”. Some robots,
which are already deployed, are able to create a gradient between the source and
the target by exchanging messages. This gradient can then be exploited for navi-
gation by other robots or by a human.

Howard et al. (2002) developed a behavior using virtual physics-based design.
Each robot is repelled by other robots and by obstacles. This approach allows
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(a) From Howard et al. (2002), reprinted with
permission.

(b) From Ducatelle et al. (2011b),
reprinted with permission.

Fig. 9: Examples of the collective exploration behavior.

the robots to maximize the area covered and form a connected communication
network (see Figure 9(a)).

O’Hara and Balch (2007) presented a behavior that exploits pre-deployed sen-
sors to perform foraging in an environment that can change over time. Through a
distributed Bellman-Ford algorithm, a navigation route towards a specific goal is
found and then followed by the mobile robots.

Nouyan et al. (2009) used chain formation (see Section 3.1.3) to link an object
in the environment with the robot nest. The robots in the chain display a pattern
of repeating colors to indicate in which direction is the nest and in which direc-
tion is the object. This information is used by the other robots to navigate the
environment.

Di Caro et al. (2009) presented a work in which robots are able to navigate from
a source to a target location. The proposed behavior is based on communication
with other passive robots already available in the environment. These passive
robots are assumed busy with other collective behaviors but are able to guide the
navigating robots.

Stirling and Floreano (2010) used a swarm of flying robots to achieve area
coverage. In their work, the robots are deployed sequentially and each robot de-
termines its position according to the position of the previously deployed robots.
Only one or few robots, called explorers, are flying at the same time, whereas
the great majority is attached to the ceiling and act as communication relay. One
particular aspect of Stirling and Floreano’s approach is the ability to explore an
environment with a limited number of robots, as the robots can leave an area once
it has been visited. This work was developed for the Swarmanoid project (Dorigo
et al., 2012).

Ducatelle et al. (2011a) proposed a collective behavior based on network rout-
ing, capable of guiding a robot from a source area to a target. Similarly to what
happens in packet routing, the robots keep a table of the distance of other robots
with respect to the target. A robot can then use the entries in the table and reach
the target. Ducatelle et al. studied two different experimental setups. In the first,
only a single robot is moving while the others act as beacons to guide it. In the
second, all the robots are moving between two points, creating a dynamic chain.
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(a) From Reynolds (1987a), reprinted
with permission.

(b) From Turgut et al. (2008a), reprinted with
permission.

Fig. 10: Examples of the coordinated motion behavior.

Ducatelle et al. (2011b) studied collective exploration using a heterogeneous
robotic swarms (see Figure 9(b)). They tackled an indoor navigation task, in which
a swarm of wheeled robots move back and forth between a source and a target
location. The path of the wheeled robots are guided by a swarm of flying robots
that can attach to the ceiling and overview the progress of the wheeled robots.
Their solution is based on mutual adaptation: wheeled robots execute instructions
given by flying robots, and flying robots observe the behavior of wheeled robots to
adapt their position and the instructions they give. Ducatelle et al. developed the
system using a probabilistic finite state machine together with techniques from
network routing protocols.

3.2.2 Coordinated motion

Description - In coordinated motion, also known as flocking, robots move in for-
mation similarly to schools of fish or flocks of birds. For a group of autonomous
robots, coordinated motion can be very useful as a way to navigate in an environ-
ment with limited or no collisions between robots and as a way to improve the
sensing abilities of the swarm (Kaminka et al., 2008).

Source of inspiration - Coordinated motion behaviors are frequent in almost all
social animals. In particular, flocking in group of birds or schooling in group of
fish are impressive examples of self-organized coordinated motion (Okubo, 1986).
Through coordinated motion, animals gain several advantages, such as a higher
survival rate, more precise navigation and reduced energy consumption (Parrish
et al., 2002).

Approaches - In swarm robotics, coordinated motion behaviors are usually based
on virtual physics-based design. Robots are supposed to keep a constant distance
from one another and an uniform alignment while moving (Reynolds, 1987b).
Coordinated motion behaviors have also been obtained via artificial evolution.

Results - The first work on coordinated motion was published by Reynolds (1987b)
in the domain of computer graphics. Reynolds developed a flock of virtual birds in
which the individuals are able to sense the velocity and the range of the neighbors.
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The individuals follow three simple rules: collision avoidance, velocity matching
and flock centering (see Figure 10(a)). Collision avoidance keeps the individuals
from colliding one with the other. Velocity matching ensures that each individual
matches the speed of its neighbors and flocking centering forces each individual to
stay close to its neighbors.

Balch and Hybinette (2000) proposed a coordinated motion behavior based on
social potentials. Each robot knows the position and orientation of the robots in
its sensing range and thus it is able to compute the target position to reach. The
authors created a coordinated motion behavior that is able to avoid obstacles and
form different patterns, such as lines, diamonds and squares.

Baldassarre et al. (2003) used artificial evolution to tune the parameters of a
neural network in order to perform coordinated motion. The authors were able to
obtain three coordinated motion behaviors. These behaviors differ by how each
robot moves with respect to the others. In the first behavior, the robots keep a
constant speed. In the second one, only one robot moves, while the rest of the
swarm tries to remain close to it. In the last behavior, the robots rotate around
the center of the swarm.

Turgut et al. (2008a) developed a virtual heading sensor which allows each
robot to sense the heading direction of the other robots. With this information
and knowing the distance of the neighbors (by means of an infrared sensor), the
swarm was able to obtain coherent coordinated motion and obstacle avoidance in
absence of a common goal direction (see Figure 10(b)). The developed behavior is
one of the first true implementation of Reynolds (1987b)’s flocking behavior with
real robots. The authors evaluated the performance of their behavior by using
different metrics and validated it with the use of several robots.

Çelikkanat and Şahin (2010), extending the work of Turgut et al. (2008a),
showed that it is possible to insert some “informed” robots in the swarm in order
to direct the movement of other “non-informed” robots. The informed robots are
the only ones in the group with knowledge of the goal direction. Increasing the
number of informed robots or decreasing the individual tendency to follow other
robots increase the accuracy of motion of the group with respect to the desired
goal direction. These works have been extended by Ferrante et al. (2010b) who
developed alternative communication strategies in which some robots explicitly
communicate their headings.

Stranieri et al. (2011) first introduced the idea of coordinated motion without
the need for all robots to perceive the orientation of their neighbors. Their work
has been extended by Ferrante et al. (2012), thus we present in detail only this
most recent work.

Ferrante et al. (2012) proposed a coordinated motion behavior that, differently
from other works, does not require an explicit alignment rule: the robots in the
swarm use only attraction and repulsion rules. The key difference is in the novel
way in which the robots translate the vector computed using the attraction and
repulsion rules into wheel actuation. In fact, in all previous works, the robots
changed their angular speed according to the direction of this vector while keeping
their forward velocity fixed. In this work instead, the robots change also their
forward speed, according to the magnitude of the computed vector. Additionally,
the authors showed that the swarm is able to navigate both with and without
the presence of informed robots, that is, robots that know the desired direction to
follow.
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(a) From Campo et al. (2006),
reprinted with permission.

(b) From Baldassarre (2006),
reprinted with permission.

Fig. 11: Examples of the collective transport behavior.

3.2.3 Collective transport

Description - Collective transport, also known as group prey retrieval, is a collec-
tive behavior in which a group of robots has to cooperate in order to transport
an object. In general, the object is heavy and cannot be moved by a single robot,
making cooperation necessary. The robots need to agree on a common direction
in order to effectively move the object towards a target.

Source of inspiration - Ants often carry prey cooperatively. Kube and Bonabeau
(2000) analyzed how cooperative transport is achieved in ant colonies. When ants
find their target, they physically attach to it and then start to pull and push. If
they do not perceive any movement after a while, they change the orientation of
their body and try again. If even this does not work, they detach, re-attach at a
different point and try again.

Berman et al. (2011a) studied the same behavior observing how ants interact
with fabricated elastic structures. Using the data retrieved from these observa-
tions, the authors developed a mathematical model of how collective transport is
performed by ants.

Approaches - In swarm robotics, collective transport behaviors are obtained by
using probabilistic finite state machines or artificial evolution. Cooperation is ob-
tained either through explicit communication of the desired motion direction, or
through indirect communication, that is, by measuring the force applied to the
carried object by the other robots.

Results - Donald et al. (1997) proposed three behaviors based respectively on:
force sensing, position sensing and orientation sensing. This work was one of the
first works aimed at studying collective transport without a centralized controller
and with limited communication.

Campo et al. (2006) proposed a collective behavior in which the robots end
up moving in a common direction at the beginning of the experiment by commu-
nicating their individual direction (see Figure 11(a)). In this way the robots are
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able to drag an object towards a goal area, even if this area is not perceived by all
robots.

Groß and Dorigo (2009) used artificial evolution to tune the parameters of a
neural network to achieve collective transport. The obtained behavior was able to
cope with different prey sizes and prey weights as well as with different numbers
of robots (from 4 to 16). Various metrics and extensive simulations were used to
validate the results. In their work, Groß and Dorigo were able to obtain three
different transport strategies. In the first, the robot directly connects to the prey
and move it. In the second, the robots connect to each other and then to the prey
to move it. In the third, and last strategy the robots are not directly connected to
the prey but form a circle around the prey and push it.

Baldassarre et al. (2006) used artificial evolution and neural networks to per-
form collective transport (see Figure 11(b)). The obtained behavior exploits a
sensor able to perceive the force applied by other robots on the chassis. With this
sensor, the robots are able to perform collective obstacle avoidance while going
towards a target area.

Ferrante et al. (2010a) developed a collective transport behavior in which,
through communication, a group of robots can agree on a common moving direc-
tion towards a goal by averaging the individual desired direction. The proposed
solution is able to make robots move towards a common goal while avoiding obsta-
cles. This work was developed for the Swarmanoid project (Dorigo et al., 2012).

3.3 Collective decision-making

Collective decision-making deals with how robots influence each other when mak-
ing choices. It can be used to answer two opposite needs: agreement and special-
ization. A typical example of agreement in swarm robotics systems is consensus
achievement. The desired outcome of consensus achievement is that all the robots
of the swarm eventually converge towards a single decision among the possible
alternatives. A typical example of specialization, instead, is task allocation. The
desired outcome of task allocation is that the robots of the swarm distribute them-
selves over the different possible tasks in order to maximize the performance of a
system.

3.3.1 Consensus achievement

Description - Consensus achievement is a collective behavior used to allow a
swarm of robots to reach consensus on one choice among different alternatives.
The choice is usually the one that maximize the performance of the system. Con-
sensus is generally difficult to achieve in swarm of robots due the fact that very
often the best choice may change over time or may not be evident to the robots
due to their limited sensing capabilities.

Source of inspiration - Consensus achievement is displayed in many insect species.
For example, ants are able to decide between the shortest of two paths using
pheromones (Camazine et al., 2001). Bees have mechanisms to collectively decide
which is the best foraging area or which is the best nest location among several
possibilities (Couzin et al., 2005). These mechanisms work even if not all the
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(a) From Garnier et al. (2005), reprinted
with permission.

(b) From Montes de Oca
et al. (2011), reprinted
with permission.

Fig. 12: Examples of the consensus achievement collective behavior.

individuals in the swarm have an opinion on the best choice. Cockroaches also
display consensus achievement behaviors when performing aggregation (Amé et al.,
2006).

Approaches - In swarm robotics, the approaches used for consensus achievement
can be divided into two categories according to how communication is used. In the
first category, direct communication is used: each robot is able to communicate
its preferred choice or some related information. In the second category, instead,
indirect communication is used: the decision is performed through some indirect
clues, such as the density of the robot population.

Results - Wessnitzer and Melhuish (2003) proposed a collective behavior in which
robots “hunt” two moving targets. The robots decide which target to follow first,
follow it and block it. They then do the same for the second target. Two consensus
achievement behaviors are proposed: in the first, the robots simply follow the robot
closest to a target, resulting in a decision based on the spatial distribution of the
swarm; in the second, the robots vote, using a majority rule, to decide which target
to follow.

Garnier et al. (2005, 2009) studied consensus achievement in cockroaches by
using a swarm of robots to replicate the experiment by Amé et al. (2006) (see
Figure 12(a)). In their system, consensus achievement is obtained through indi-
rect communication. The focus of this work is both on consensus achievement
and aggregation. For this reason this work was presented also in Section 3.1.1. A
mathematical model of the same behavior was developed by Correll and Marti-
noli (2007). In a similar work, Campo et al. (2011) presented a collective behavior
in which the swarm aggregates on the smallest resource that can host the whole
group. A further extension was proposed by Francesca et al. (2012). The authors
used evolutionary robotics to replicate the results obtained by Amé et al. (2006)
comparing the two works also using a macroscopic model.

Gutiérrez et al. (2010) developed a strategy for consensus achievement through
direct communication in a swarm of robots performing foraging. The robots are
able to decide between two foraging areas. When two robots get close, they ex-
change their measured distances between the nest and the latest visited goal. Each
robot performs an average of its measured distance with the one received from the
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other robots. In this way, the robots are able to agree on which area is the closest
to the nest and discard the other one even when the measured distances are noisy.

Parker and Zhang (2011) proposed a consensus achievement behavior based
on quorum sensing. The algorithm is inspired by how ants and bees choose the
best nest over N alternatives (Couzin et al., 2005). When a robot finds a new
alternative, it evaluates its quality and sends recruiting messages to other robots
to advertise it. The frequency of these messages is proportional to the perceived
quality of the alternative. Thanks to the different message frequencies associated
with the different alternatives, over time all robots converge on the best alternative.
The behavior is implemented as a probabilistic finite state machine.

Montes de Oca et al. (2011) focused on consensus achievement in a system
where robots are performing multiple parallel executions of collective transport in
groups of three from a nest area to a goal area. The robots need to reach consensus
between two possible paths, one longer than the other (see Figure 12(b)). Each
individual robot has a preferred path. When a group of three robots is formed in
the nest, the robots choose the path that is preferred by the majority of them. The
chosen path becomes the preferred one for all the robots in the group. Since the
robots choosing the short path take less time to complete the execution, they are
more often in the nest. This results in more groups formed by robots preferring
the short path than those preferring the long path. This asymmetry eventually
makes the robots use the shortest path. A mathematical model of this system was
presented by Scheidler (2011). In this work, consensus is achieved both through
direct and indirect communication, as the robots use direct communication at
group level, and indirect communication at the swarm level.

3.3.2 Task allocation

Description - Task allocation is a collective behavior in which robots distribute
themselves over different tasks. The goal is to maximize the performance of the
system by letting the robots dynamically choose which task to perform.

Source of inspiration - Task allocation can be observed in natural systems such
as ant and bee colonies – e.g., Theraulaz et al. (1998). For example, in ant or bee
colonies, part of the swarm can perform foraging while another part looks after
the larvae. Task allocation is not fixed but can change over time.

Approaches - In swarm robotics, task allocation is mainly obtained through the use
of probabilistic finite state machines. To promote specialization, the probabilities
of selecting one of the available tasks are either different among the robots or they
can change in response to task execution or messages from other robots. In swarm
robotics, task allocation has been studied mainly on robots performing foraging.

Results - In one of the first works on task allocation, Krieger and Billeter (2000)
developed a very simple, threshold based mechanism. Robots have to collect prey
that are then converted into energy in the nest. While foraging, the robots consume
energy. To replenish this energy, the robots can draw it from a common reservoir.
Each robot decides to leave and collect prey or to stay in the nest according to
a probability. This probability depends on whether the nest energy is above or
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(a) From Liu (2007), reprinted with permission. (b) From Pini (2011),
reprinted with permission.

Fig. 13: Examples of the task allocation collective behavior.

below a given threshold. Since this threshold is not homogeneous in the swarm,
the number of robots allocated to foraging or to resting is a function of the energy
level of the nest.

Agassounon and Martinoli (2002) studied task allocation in a foraging task
similar to the one studied by Krieger and Billeter (2000). However, in this case
the probability to select the foraging task or the resting task depends on individual
observations of the environment and of other robots. Thus, the probability is a
function of the success or failure of the last foraging trial, of the frequency with
which other robots are encountered when foraging or of the perceived density
of prey. A mathematical model of a similar task allocation behavior has been
developed by Liu et al. (2007) (see Figure 13(a)).

Yun et al. (2009) studied the problem of how to allocate robots on a construc-
tion site so that the number of assembling operation to do is shared equally. Each
robot computes optimal equal-mass partitions, that is, partitions with the same
number of operations, by sharing information with its neighbors. The developed
behavior is robust to changes in the environment and scalable with the number of
robots.

Pini et al. (2009) developed a task allocation behavior in a swarm of robots
performing foraging using a bucket brigade approach. In this work, the experiment
arena is divided in three areas, the first one is the nest, the second one is an
exchange area and the third one is where the prey are. In the exchange area, the
robots have the possibility to wait for other robots in order to exchange the prey
in a bucket-brigade fashion. Through different thresholds on the waiting time, the
robots autonomously change their role between those who bring the prey from the
source to the exchange area and those who bring the prey from the exchange area
to the nest.

Halász et al. (2012) studied task allocation using robots performing stick
pulling. Robots must remove sticks scattered in the environment. To remove a
stick, two robots must cooperate performing two part of the tasks: one holds a
stick from the top and the other from the bottom. Once a robot finds a stick,
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it holds its top and waits for another robot to complete the second part of the
task. If after a certain waiting time no one helped, the robot leaves the stick and
searches for another one. This waiting time is changed dynamically according to
how well a robot performed in the past. Although the results were not conclusive,
the authors observed that, over time, the robots develop a preference for one of
the two parts of the tasks, specializing in robots holding the top part of a stick
and robots holding the bottom part.

Pini et al. (2011) considered a situation in which robots can choose between
carrying a prey directly from the source to the nest and storing it in a dedicated
two-sided structure called TAM (Brutschy et al., 2012) (see Figure 13(b)). Stored
prey can be collected by robots waiting on the other side of the structure and
carried to the nest. The authors develop a mechanism that allows the robots to
choose whether to use the structure on the basis of the cost involved.

3.4 Other collective behaviors

In this section, we present some works in swarm robotics that we consider signifi-
cant but that do not fall in any of the categories presented above.

3.4.1 Collective fault detection

Autonomous robots have still a limited reliability. Even though the quality and
robustness of the hardware is increasing, hardware failures are still quite common.
Techniques to allow robots to autonomously detect failures and faulty behaviors
have been developed exploiting the natural redundancy of swarm robotic systems.

Christensen et al. (2009) developed a swarm level fault detection behavior
based on fireflies synchronization. All the robots in the swarm are emitting a
signal in a synchronous way. The robots are able to perceive if another robot is
in a faulty state by observing if it is synchronized with them. If a robot is not
synchronized, it is assumed to be faulty and a response is initiated.

3.4.2 Group size regulation

Group size regulation is the collective capability of creating or selecting a group
of a desired size. This can be useful for many reasons. For example, Lerman and
Galstyan (2002) showed how an excessive number of robots can reduce the perfor-
mance of a system, and demonstrated for different behaviors that it is possible to
identify a group size that maximizes the performance of the swarm.

Melhuish et al. (1999a) used behavior inspired by fireflies to achieve the for-
mation of groups of the desired size. Each robot can emit, at a random time, a
signal. The robots then count the number of signals received over a period. The
obtained number can be used by the robots to estimate the size of the group
and thus to create groups of the desired size. In a related work, Brambilla et al.
(2009) improved the original behavior by introducing a more strict signaling order.
With this improvement the authors were able to obtain a more robust and reliable
estimate of the size of the group.

Pinciroli et al. (2009, 2010) studied a collective behavior able to form groups of
robots of the desired size. The swarm is composed of flying robots and terrestrial
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moving robots. The ground robots perform aggregation under the flying robots.
The probabilities used by them to join or leave a group are communicated by the
flying robots according to the size of the group itself. With this simple mechanism
the robots are able to form groups of various sizes.

3.4.3 Human-swarm interaction

Swarm robotics systems are conceived to be autonomous and to make decisions in
a distributed way. While these are in general considered to be positive features,
they also limit the degree of control of a human operator over the system. In fact,
since there is neither a leader nor centralized control, the operator does not have a
simple way to control the behavior of the system. Human-swarm interaction studies
how a human operator can control a swarm and receive feedback information from
it.

McLurkin et al. (2006) developed a simple mechanism in which robots are able
to provide information to human operators using LEDs and sound.

Naghsh et al. (2008) proposed an analysis of different possible approaches to
human-swarm interaction, classifying them in direct human-swarm interaction,
direct swarm-human interaction, and remote interaction via base station.

Podevijn et al. (2012) used a Microsoft Kinect system to give commands
through gestures to a swarm of robots. The human operator is able to command
the swarm to select, split, merge and rotate.

Giusti et al. (2012) used a similar approach approach based on gestures. The
robots observe the gestures of a human operator. Each robot is able to guess
the performed gesture, but due to its limited vision capabilities, different robots
could make a different guess. To reach consensus, the robots vote using multi-
hop communication and finally execute the order associated with the performed
gesture.

Kolling et al. (2012) presented two approaches to control a swarm. The first
approach is based on global communication: a human operator uses a central
computer to select and control a subgroup of robots. The second approach is
based on local interactions: the human operator places pre-programmed beacons
in the environment. Such beacons are used to communicate a new behavior to the
robots which are in their communication range.

4 Conclusions: limits and future directions

Swarm robotics is an approach to collective robotics that has received a great
deal of attention in recent years. Swarm robotics aims at developing systems that
are robust, scalable and flexible. In this paper, we analyzed the literature from
the swarm engineering perspective. We proposed two taxonomies to analyze the
swarm robotics literature: the methods taxonomy, in which we discussed the main
design and analysis methods, and the collective behaviors taxonomy, in which we
categorized the main collective behaviors according to their goal.

Swarm robotics has several possible applications, including: exploration, surveil-
lance, search and rescue, humanitarian demining, intrusion tracking, cleaning, in-
spection and transportation of large objects. Despite their potential to be robust,
scalable and flexible, up to now, swarm robotics systems have never been used
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to tackle a real-world application and are still confined to the world of academic
research. At the current state of development of the swarm robotics field, the fo-
cus is mostly on obtaining desired collective behaviors and understanding their
properties. In order to avoid the problems that arise in real-world applications,
researchers usually tackle simplified testbed application.

Foraging is the most used testbed application for swarm robotics systems.
Robots have to retrieve “prey” objects from an environment and bring them back
to a “nest”. Foraging, while simple, can be considered as an abstraction with many
point in common with more complex applications, such as demining and search
and rescue. Foraging is also used to investigate the effect of interference in swarm
robotics systems (Lerman and Galstyan, 2002). In particular, foraging is commonly
used as a testbed for collective exploration (see Section 3.2.1), collective transport
(see Section 3.2.3) and collective decision-making (see Section 3.3).

Another testbed application that has attracted a lot of interest recently is con-
struction. Swarms of robots could be used to build complex structures in those
cases in which humans would be unable to, such as underwater and in space.
Moreover, construction could greatly benefit from the parallelism and flexibility
of swarm robotics systems. Construction is a complex task that requires the com-
bination of several collective behaviors, such as object clustering and assembling
(see Section 3.1.5) to assemble material, collective transport (see Section 3.2.3)
to carry material, and collective decision-making (see Section 3.3) to allocate the
robots to the different sub-tasks of the construction process. A recent example
of construction performed by flying robots can be found in the work by Lindsey
et al. (2012). Even though this construction system cannot be considered a swarm
robotics system, as the robots exploit a centralized system for localization and ac-
tion planning, the presented problem can be considered as an interesting testbed
for swarm robotics systems.

There are many possible reasons for the absence of robot swarms in the real
world, such as, for instance, the hardware limitations of the available robots. We
foresee that, in the near future, swarm robotics will be used more and more fre-
quently to tackle real-world applications. With an increasing use of swarm robotics
systems, we envision an increasing need for a swarm engineering, that is, a need
for methods for: 1) requirement modeling and specification, 2) design and real-
ization, 3) verification and validation, and 4) operation and maintenance. In the
following, we analyze how these aspects of swarm engineering have been tackled
and we discuss some open problems.

Requirement modeling and specification. With the application of swarm robotics
to real-world scenarios, we foresee an increasing need for well defined processes
to help in requirement gathering and for formal languages to help in requirement
specification. Up to now, none of these processes have been studied directly in
swarm robotics. This is probably due to the lack of real-world applications. Effort
will therefore be necessary to understand whether existing requirement gathering
processes and existing requirement specification languages from other fields can be
re-used or adapted for swarm robotics or whether new ones need to be developed.

Design and realization. The design aspect of swarm engineering was discussed
thoroughly in Section 2.1. One main issue remains open: the lack of methods for
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the top-down design of collective behaviors. Automatic design methods can be con-
sidered as top-down methods because, in theory, the process is driven by the global
goal desired from the system (see Section 2.1.2). However, even if these methods
are improving, a lot of domain knowledge is still required to tackle medium to
complex applications. In the last years, some top-down methods have been pro-
posed (see Section 2.1.1). These methods have shown limited applicability at the
current stage, since they have been used only for very specific problems. Moreover,
it is not clear how well they can be extended to different scenarios or robots.

Verification and validation. Verification and validation exploit analysis methods,
which have been discussed in detail in Section 2.2. Despite the great number of
analysis methods, performing verification and validation of a swarm robotics sys-
tem and comparing one system with another are still very difficult tasks. The
reason behind this is the lack of well defined metrics and testbed applications.
Very often, metrics are too tightly related to a specific solution and thus cannot
be reused for other systems or for comparisons. The lack of common metrics is
also related to the lack of well defined testbed applications. As said, foraging and
construction are the only commonly used testbed applications. However, foraging
is limited in its use to some collective behaviors, such as task allocation or area
coverage and cannot be used in others. Moreover, as discussed in the taxonomy
presented by Winfield (2009), there is no single definition of a standard foraging
scenario. In order to promote the comparison of swarm robotics systems, it would
be necessary to define a set of standard foraging scenarios and promote the distri-
bution of open-source behaviors and public available datasets. Construction, as a
testbed, suffers from similar limitations.

Operation and maintenance. Swarm robotics systems have the potential advan-
tage, over more traditional approaches, to require less manual intervention because
of their robustness, scalability and flexibility. Although these three characteristics
might reduce the need for maintenance, this might be true only up to a given
extent. Further studies are necessary to understand when and how to perform
maintenance on a swarm robotics system. Moreover it is necessary to study if it is
possible to derive general maintenance principles or if different collective behaviors
need different maintenance approaches.

Regarding operation, one key issue is how to let humans and swarms cooper-
ate. In fact, due to the lack of a centralized controller, it is in general very difficult
to effectively control a swarm once it starts operating. This means that, for ex-
ample, it might be difficult to stop a swarm that is behaving in an unpredicted
or dangerous way. Some studies on human-swarm interaction have been recently
published (see Section 3.4.3) but this issue still remains open.

In this paper, we presented a review of the state of the art in swarm robotics
from a swarm engineering perspective. We foresee that, as swarm robotics is fur-
ther developed and as it is used to tackle real-world applications, the need for a
swarm engineering will increase. The goal of this paper was not only to present
the significant works on methods and collective behaviors in swarm robotics, but
also to propose a systematic categorization of their aspects. We think that such
categorization effort is a necessary step for the development of a swarm engineer-
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ing. In the conclusions, we also identified some open problems and underdeveloped
aspects of swarm engineering.
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H. Çelikkanat and E. Şahin. Steering self-organized robot flocks through externally
guided individuals. Neural Computing and Applications, 19(6):849–865, 2010.

A. L. Christensen, R. O’Grady, and M. Dorigo. SWARMORPH-script: a language
for arbitrary morphology generation in self-assembling robots. Swarm Intelli-
gence, 2(2–4):143–165, 2008.

A. L. Christensen, R. O’Grady, and M. Dorigo. From fireflies to fault-tolerant
swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4):
754–766, 2009.

N. Correll. Parameter estimation and optimal control of swarm-robotic systems:
a case study in distributed task allocation. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3302–3307, 2008.

N. Correll and A. Martinoli. Modeling self-organized aggregation in a swarm of
miniature robots. In IEEE International Conference on Robotics and Automa-
tion, 2007.

I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513–516,
2005.

V. Crespi, A. Galstyan, and K. Lerman. Top-down vs bottom-up methodologies
in multi-agent system design. Autonomous Robots, 24(3):303–313, 2008.

K. Dantu, S. Berman, B. Kate, and R. Nagpal. A comparison of deterministic
and stochastic approaches for allocating spatially dependent tasks in micro-
aerial vehicle collectives. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012.

J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2):159–168,



40 Manuele Brambilla et al.

1990.
G. A. Di Caro, F. Ducatelle, and L. M. Gambardella. Wireless communications

for distributed navigation in robot swarms. In Applications of Evolutionary
Computing, volume 5484 of Lecture Notes in Computer Science, pages 21–30.
Springer, Berlin, Heidelberg, 2009.

C. Dixon, A. Winfield, and M. Fisher. Towards temporal verification of emergent
behaviours in swarm robotic systems. In Towards Autonomous Robotic Systems,
volume 6856 of Lecture Notes in Computer Science, pages 336–347. Springer,
Berlin, Heidelberg, 2011.

B. R. Donald, J. Jennings, and D. Rus. Information invariants for distributed
manipulation. The International Journal of Robotics Research, 16(5):673–702,
1997.

M. Dorigo and M. Birattari. Swarm intelligence. Scholarpedia, 2(9):1462, 2007.
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