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Abstract

Overlays are reconfigurable architectures synthesized
on commercial of the shelf (COTS) FPGAs. Overlays
brings some advantages such as portability, resource ab-
straction, fast configuration time, and can exhibit features
independent from the host FPGA. This work presents the
design of a fine-grained overlay, and the implementation
of novel features easing the management of such architec-
tures in a datacenter infrastructure.

1. Introduction

Overlays are reconfigurable architectures implemented
on top of FPGAs. They are regular designs described us-
ing structural HDL, but have reconfigurable capabilities.
They may be considered as “softcore FPGA IPs”. Thus,
an overlay can be seen from two sides: i) the functional
architecture is the top view, it is the set of reconfigurable
elements available to the applications targeting the over-
lay; ii) the implementation is the bottom view, it is the
way the functional architecture is implemented and syn-
thesized (as a regular IP) on the host FPGA . The func-
tional architecture of an overlay is independent from its
implementation and from its host FPGA, and can be one
of different granularities: fine-grained overlays generally
being composed of LUTs operating at the bit level, while
function units of coarser architectures use mathematical
operators on words. Overlays are similar to the Java Vir-
tual Machine which enable the exact same bytecode to be
executed on different processors (with different instruc-
tion sets) for which the JVM has been compiled for.

Thus, overlays come with three advantages:

• they can be used to homogenize different COTS FP-
GAs by implementing the same functional architec-
ture on different hosts, bringing binary compatibility
between heterogeneous FPGAs;

• the overlay fuctional architecture may be coarser,
simpler and more abstract than the one of its host;

• the overlay designers can add features to the overlay
implementation that may not be present on the host
FPGA, such as dynamic context saving/restoring or
configuration pre-loading.

However, compared with a bare metal use of FPGA re-
sources, virtualization with overlays has a cost in terms of
resource usage and operating frequency. Therefore, over-
lays are used in applications for which their advantages
justify virtualization cost. Sekanina used coarse grained
overlays [6] for evolvable hardware research, benefiting
from shorter synthesis and configuration time. Lysecky
et al. [5] designed a fine grained overlay with extra rout-
ing resources to ease the task of their Just-In-Time syn-
thesizer. To lower compilation time, Coole and Stitt in-
troduced intermediate fabrics [2], which are application
specific coarse grained overlays. Dirk Koch et al. [4] in-
tegrated a fine-grained overlay in the datapath of a MIPS
processor to get a portable custom instruction set softcore
processor. Brant and Lemieux addressed the area over-
head problem by doing target specific optimizations on
the implementation of their fine-grained overlay named
ZUMA [1], getting down to 40 physical LUT to imple-
ment a virtual LUT. Jain et al. [3] also decreased their
overlay size down to 70 % and reached frequencies ex-
cessing 300 MHz by efficiently using the host DSP blocks
in the coarse grained virtual functional units.

Our work aims to virtualize FPGA resources in the
Cloud, available to the client as reconfigurable hardware
accelerators. Components of a datacenter infrastructure
are gradually updated and replaced over time, which re-
sults in FPGAs with different characteristics (and from
different vendors) being used at the same time. In this
context, overlays are relevant as they allow homogenizing
these resources. Clients no longer have to be aware of the
available FPGA characteristics, and their bitstreams are



no longer tied to a limited set of FPGAs from the infras-
tructure.

Moreover, overlay implementations can be tweaked to
ease the management of such architectures in datacenters.
In this work, we add novel features to allow hardware task
preemptive scheduling and live migration.

2. Overlay design and use: functional archi-
tecture

In this work, we designed a LUT based overlay. Even
though fined-grained overlays exhibit an important area
and timing overhead, they are more general purpose than
coarser architectures which are limited to data-flow appli-
cations due to the lack of control structures and are tied to
application domains by the choice of their operators.

Our proposed overlay is an island-style architecture
composed of Configurable Logic Blocks (CLBs) sur-
rounded by routing channels. CLBs are clusters of LUT-
FlipFlop pairs called Basic Logic Elements (BLEs) in
which the flip-flop can be bypassed. Routing channels are
composed of unidirectional routing tracks. These rout-
ing tracks are connected to neighboring CLBs and rout-
ing tracks from adjacent channels through Switch Blocks
(SB). Each element of this architecture is conditioned by
a multiplexer, which is configured on its select signals by
some bits from the overlay configuration register.

To ease architectural exploration, the overlay HDL de-
scription is automatically generated from a set of param-
eters, such as the size of the CLB matrix, the number of
BLE per CLB, the number of input per LUT and per CLB,
or the number or routing tracks per routing channel. The
generated HDL code is portable and can be simulated or
implemented on any COTS FPGA that fit the design.

Synthesizing an application to the overlay architecture
is done in different steps. First a RTL synthesizer trans-
forms the application description into a netlist composed
of latches and arbitrary logic gates. Then this netlist is
transformed and optimized so that none of its logic gate
has more inputs than the number of input per LUT of the
overlay. Next, the netlist is placed and routed on the over-
lay. Finally the virtual bitstream is generated by identify-
ing the overlay elements’ state for the placed and routed
netlist.

3. Implementation features

We implemented the virtual flip-flops located in BLEs
as regular registers, clocked from the fixed underlay sys-
tem clock, and thus benefit from the physical clock dis-
tribution tree. However, the D → Q transfer is enabled
only when the virtual clock signal (which is the only clock
seen by virtual applications) is active. This virtual clock
is a regular FPGA signal generated from a counter. It is
therefore possible to dynamically change the overlay vir-
tual operating frequency, to pause the execution or to run
it for a given number of virtual clock cycles.

Additionally, we paired each virtual flip-flop with a
snapshot register. Two global control signals permit to
save the value from a virtual flip-flop to its snapshot reg-
ister, or to restore the value from the snapshot register to
the virtual flip-flop. Snapshot registers are connected in
a daisy chain so that the sequential execution state of an
application can be serialy inserted or extracted from the
overlay.

The dynamic and fine control of the virtual clock plus
the ability to dynamically save or restore a snapshot of the
execution state allow performing preemptive scheduling
of different virtual applications on the same overlay, or to
migrate a running application from one overlay to another
without altering the application’s execution state.

4. Conclusion

Overlay architectures are relevant in a Cloud context as
they homogenize and abstract FPGA resources. Adding
special features to the overlay implementations such as
dynamic clock control and a state snapshot mechanism
allows performing hardware task preemptive scheduling
and live migration. This, in turn, allows using FPGAs as
multi-tenant devices and to apply dynamic infrastructure
optimization policies such as load balancing.
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