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Abstract We propose a self-adaptive communication
strategy for controlling the heading direction of a swarm

of mobile robots during flocking. We consider the prob-
lem where a small group of informed robots has to guide
a large swarm along a desired direction. We consider

three versions of this problem: one where the desired di-
rection is fixed; one where the desired direction changes
over time; one where a second group of informed robots
has information about a second desired direction that

conflicts with the first one, but has higher priority. The
goal of the swarm is to follow, at all times, the desired
direction that has the highest priority and, at the same

time, to keep cohesion.

The proposed strategy allows the informed robots
to guide the swarm when only one desired direction is
present. Additionally, a self-adaptation mechanism al-
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lows the robots to indirectly sense the second desired
direction, and makes the swarm follow it. In experi-

ments with both simulated and real robots, we eval-
uate how well the swarm tracks the desired direction
and how well it maintains cohesion. We show that, us-

ing self-adaptive communication, the swarm is able to
follow the desired direction with the highest priority at
all times without splitting.

Keywords Flocking · Communication · Self-
Adaptation · Self-Organization · Swarm Intelligence ·
Swarm Robotics

1 Introduction

Flocking, sometimes referred to as self-organized flock-

ing, is the cohesive and aligned motion of individuals
along a common direction. In flocking, the individu-
als maneuver, forage, and avoid predators as if they
were a single super-organism. Flocking is a widely ob-

served phenomenon in animals living in groups such
as crickets (Simpson et al., 2006), fish (Aoki, 1980), or
birds (Ballerini et al., 2008).

One of the main mechanisms that is being studied in
flocking is how individuals communicate directions to
their neighbors. Couzin et al. (2005) studied how infor-
mation can be transferred in flocking. They introduced

the notions of informed individuals that have a desired
direction, in the rest of the paper referred as goal direc-
tion, and non-informed individuals, not aware of the

goal direction. Couzin et al. (2005) showed that even
a minority of informed individuals are able to move
the group along the goal direction. The framework of

informed and non-informed individuals has also been
recently studied mathematically by Yu et al. (2010).
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In some situations, animals achieve flocking in pres-
ence of multiple, possibly conflicting, sources of infor-
mation with different priorities. An example is repre-
sented by the dynamics of some animals that are sub-

ject to attacks by predators. The escape direction from
a predator and the direction to a food source are two
conflicting pieces of information where the predator es-

cape direction is more important to be followed than
the direction to the food source. To deal with these
situations, animals developed communication mecha-

nisms to spread perceived information effectively and
efficiently throughout the group (Franks et al., 2007;
François et al., 2006).

In this paper, we study communication strategies
for flocking in the context of swarm robotics (Bram-
billa et al., 2013). Swarm robotics studies different self-

organized collective behaviors using groups composed
of an high number of robots. Examples of such behav-
iors are area coverage (Hauert et al., 2008), chain for-

mation (Sperati et al., 2011), collective decision-making
and task partitioning (Montes de Oca et al., 2011; Pini
et al., 2011). Recently, swarm robotics systems have
been studied also using a swarm of heterogeneous robots

(Dorigo et al., 2013; Ducatelle et al., 2011).

Here, we consider a flocking problem resembling the

prey-predator example that we defined above. The prob-
lem is motivated by the following class of concrete ap-
plications. Consider a task to be performed at a certain

location that needs several robots to be completed. An
example can be the collection of a big object present
at a particular location in the environment. In this and

in other scenarios, flocking can be used by the robots
to perform collective navigation to the desired goal lo-
cation. Additionally, the environment can be cluttered
by a number of elements, such as dangerous locations

(fire or pits), that need to be avoided constantly or for
a given amount of time. With large swarms, the direc-
tion to the goal and the dangerous locations might be

perceived by a small proportion of the robots. We can
imagine this happening practically in at least two pos-
sible ways: In the first, we might have only few robots

equipped with some expensive sensors required for get-
ting directional information. In this case, the informed
robots are randomly distributed in the swarm. In the
second scenario, all robots would be equipped with the

same sensors, but only some robots might have access
the relevant directional information due to their posi-
tion in the swarm. For example, only the robots in the

front might be able to sense the goal direction as they
can directly sense it through a camera, while the others
are shadowed by other robots. In this case, there is a
spatial correlation between the relative location of the

robots in the swarm and the information they possess.

In all these situations, a typical objective would be to

get all robots to a goal area without losing any, that
is by keeping the swarm cohesive, even when there is a
dangerous area to be avoided on the way.

The problem we tackle is an abstraction of the above
example. We define two goal directions to be followed
by the swarm: goal direction A, perceived by a small
fraction of the swarm during the whole time, and goal

direction B perceived by another small fraction of the
swarm during a limited amount of time. Goal direction
B has a higher priority with respect to goal direction A.

The swarm is decomposed into two subsets: informed
and non-informed robots, as in Couzin et al. (2005).
Informed robots possess information about one among

two possible goal directions, whereas non-informed robots
do not possess any goal direction information.

The main contribution of this paper is a self-adaptive
communication strategy (SCS) to tackle the problem

defined above. SCS extends two strategies we previously
proposed in Turgut et al. (2008) and in Ferrante et al.
(2010) and is a novel local communication mechanism

for achieving alignment control, one of the key com-
ponent of the flocking collective behavior. The other
components of the flocking behavior are based on the

same methodological framework developed by Turgut
et al. (2008). With SCS, robots informed about goal
direction A indirectly sense the presence of goal direc-
tion B by detecting the fact that conflicting information

is being communicated, and sacrifice their tendency to
follow goal direction A in favor of goal direction B, in
order to keep the swarm cohesive. Another contribution

of this paper is to show that flocking on real robots
can be done using local communication only. In fact,
in contrast with global communication, local communi-

cation allows for a more scalable on-board implemen-
tation of the alignment behavior that does not require
special and possibly expensive sensors to detect the ori-
entation of the neighbors. Additionally, our robots are

only allowed to communicate directional information.
This makes our method applicable to a vast category of
robots, including not only robots with limited commu-

nication capabilities but also robots that communicate
only using visual information (LEDs and cameras). To
demonstrate the feasibility of flocking with local com-
munication, we validated on real robots both the strat-

egy we proposed in Ferrante et al. (2010), previously
validated only in simulation, and SCS, proposed here.
To the best of our knowledge, this paper is the first to

propose an alignment control strategy that allows for a
fully on-board implementation on the robots, that can
cope with two conflicting goal directions by, at the same

time, keeping the swarm cohesive.
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We conduct experiments in simulation and with real
robots. For the sake of completeness, the experiments
are conducted in three types of environments: station-
ary environment with only one goal direction (A) which

does not change during the experiment; one-goal non-
stationary environment with only one goal direction
(A) which does change during the experiment; two-goal

non-stationary environment with both goal direction A
and goal direction B, where goal direction B is con-
flicting with goal direction A. Goal direction B is only

present during a limited time window within the exper-
iment.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the methodological framework we
used. In Section 3, we present the three communication
strategies studied in this paper, which include the pro-

posed self-adaptive communication (SCS) strategy. In
Section 4, we introduce the robots and how we ported
the flocking behavior and the communication strate-
gies to simulated and to real robots. In Section 5, we

present the experimental setup and the results achieved
in simulation. In Section 6, we describe the experimen-
tal setup and the results obtained with real robots. In

Section 7, we present a structured discussion of the re-
lated work and explain how our work can be placed in
the literature. Finally, in Section 8, we conclude and

outline possible future work.

2 Flocking control

The flocking behavior we used is based on the work
of Turgut et al. (2008). Each robot computes a flocking
control vector f . The expression of the flocking control

vector is:

f = αp + βh + γgj ,

where p is the proximal control vector, which is used

to encode the attraction and repulsion rules; h is the
alignment control vector, which is used to make the
robots align to a common direction; and gj is the goal
direction vector, where the index j = {0, 1, 2}. j = 0

is associated to the zero length vector ‖g0‖ = 0 that is
used in the case of the non-informed robots, whereas g1

and g2 are unit vectors that indicate goal direction A

or B, respectively, in the informed robots. The weights
α, β and γ are the coefficients of the corresponding
vectors.

2.1 Proximal control

The main idea of proximal control is that, in order
to achieve cohesive flocking, each robot has to keep a

certain distance from its neighbors. The proximal con-

trol vector encodes the attraction and repulsion rules:
a robot moves closer to its neighbors when the distance
to the neighbors is too high and moves away from them

when the distance to the neighbors is too low.

The proximal control rule assumes that a robot can
perceive the range and bearing of its neighboring robots
within a given range Dp. Let k denote the number of

robots perceived by a robot, whereas di and φi denote
the relative range and bearing of the ith neighboring
robot, respectively. The proximal control vector p is

computed as:

p =
k∑

i=1

pi(di)e
jφi ,

where pi(di)e
jφi is a vector expressed in the complex

plane with angle equal to the direction φi of the per-
ceived robot and magnitude pi(di). To compute the

magnitude of the vector, we use the following formula
that encodes the attraction and repulsion rule (Het-
tiarachchi and Spears, 2009):

pi(di) = −8ε

[
2
σ4

d5i
− σ2

d3i

]

The parameter ε determines the strength of the attrac-
tion and repulsion rule, whereas the desired distance

ddes between the robots is linked to the parameter σ
according to the formula ddes = 21/2σ.

2.2 Alignment control

The main idea of alignment control is that a robot
computes the average of the directional information re-

ceived from its neighbors in order to achieve an agree-
ment to a common direction with its neighbors.

Alignment control assumes that a robot can mea-
sure its own orientation θ0 with respect to the refer-

ence frame common to all robots. It can also send a
piece of information, denoted as θs0 , using a commu-
nication device. The value of θs0 depends on the com-

munication strategy that is being used, as described in
Section 3. The robot receives the information θsi sent
by its neighbors within a given range Da. The infor-
mation represents directions expressed with respect to

the common reference frame. Once received, each θsi is
converted into the body-fixed reference frame1 of the
robot (Figure 1a). In order to compute the average of

the received directional information, each direction (the

1 The body-fixed reference frame is right-handed and fixed
to the center of a robot: its x−axis points to the front of the
robot and its y − axis is coincident with the rotation axis of
the wheels.
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ones received and the one sent) is converted into a unit
vector with angle equal to θsi , and all vectors are then
summed up and normalized as:

h =

∑k
i=0 e

jθsi

‖∑k
i=0 e

jθsi‖
,

2.3 Motion control

The main idea of motion control is to convert the flock-
ing control vector that integrates the proximal control
vector, the alignment control vector and the goal direc-

tion vector, into the forward and the angular speed of
the robot.

The motion control rule that we use is the follow-
ing: Let fx and fy denote the magnitude of the flock-
ing control vector (f) projected on the x − axis and
y−axis of the body-fixed reference frame, respectively.

The forward speed u is calculated by multiplying the x
component of the flocking control vector by a constant
K1 (linear gain) and the angular speed ω by multiply-

ing the y component of the flocking control vector by a
constant K2 (angular gain):

u = K1fx

ω = K2fy.

3 Communication strategies

We consider and study three different communication
strategies in alignment control: heading communica-
tion strategy (HCS), information-aware communication

strategy (ICS) and the novel contribution of this paper,
that is, self-adaptive communication strategy (SCS).

3.1 Heading communication strategy (HCS)

In HCS, first proposed in Turgut et al. (2008), the piece
of information θs0 sent by a robot to its neighbors is
its own orientation θs0 = θ0, measured with respect

to the common reference frame. This strategy is used
to reproduce the capability of a robot i to “sense” the
orientation of a neighboring robot j, by making robot

j communicate its own orientation to robot i.

3.2 Information-aware communication strategy (ICS)

ICS was first proposed in Ferrante et al. (2010). It as-

sumes that each robot is aware of whether it is non-
informed or informed. If it is non-informed, it sends

θs0 = 6 h (6 · denotes the angle of a vector) to its neigh-
bors; otherwise, if it is informed, it sends θs0 = 6 gj. The
intuitive motivation behind this strategy is the follow-
ing: in case the robot is non-informed, it helps the dif-

fusion of the information originating from the informed
robots; if instead it is informed, it directly propagates
the information it possesses to its neighbors. Using this

mechanism, the information then eventually reaches the
entire swarm. Note that, in contrast with HCS, in ICS
(and also in SCS) the communicated angle does not

coincide with the robot’s current state (orientation).

3.3 Self-adaptive communication strategy (SCS)

This strategy is the novel contribution of this paper.

It extends ICS by introducing a parameter denoted by
wt that represents the degree of confidence of one robot
about the utility of its possessed information. The com-
municated directional information is computed in this

way:

θs0 = 6 [wtgj + (1− wt)h] .

For non-informed robots, wt = 0 (they do not possess
information about gj). For informed robots, when wt =
1, this strategy coincides with ICS. In SCS, however, we

use the following rule to change wt:

wt+1 =

{
wt +∆w if ‖h′‖ ≥ µ;

wt −∆w if ‖h′‖ < µ,

where µ is a threshold and ∆w is a step value.

The quantity:

‖h′‖ =

∥∥∥∥∥

∑k
i=0 e

jθsi

k + 1

∥∥∥∥∥

is the local consensus vector. We choose this quan-
tity because inspired by the decision-making mecha-
nism used by the Red Dwarf honeybee (Apis florea, the

European honeybee): to perform nest selection, these
bees wait to achieve locally a consensus to a given nest
location before flying off (Makinson et al., 2011; Diwold
et al., 2011).

The rationale behind SCS is the following. Informed
robots communicate the goal direction when the de-

tected local consensus is high. Local consensus mea-
sures how close the received pieces of information are
to each other and to the information sent by the robot
itself. When local consensus is 1, then the angles be-

ing communicated by the robot’s neighbors are per-
fectly identical and equal to the one sent by the robot.
When instead the local consensus is low, then there is

a conflicting goal direction in the swarm. The robots
react to this by incrementally decreasing their level
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of confidence on the goal direction, up to the point
where it reaches zero and they start behaving as the
non-informed robots. This facilitates the propagation of
highest priority directional information available to the

swarm. Note that the level of confidence, wt, is an inter-
nal variable and is never communicated by the robots.

4 Flocking with Mobile Robots

The mobile robots we use are the foot-bot robots (Bo-
nani et al., 2010), developed within the Swarmanoid
project2 (Dorigo et al., 2013) (the foot-bot robot is
shown in Figure 1a).

4.1 The hardware

The following on-board devices, depicted in Figure 1a,
are utilized: i) A light sensor, that measures the inten-
sity of the light around the robot. ii) A range and bear-

ing communication system (RAB), with which a robot
can send a message to other robots that are within 2
meters and in its line of sight (Roberts et al., 2009).

This sensor also provides each robot with information
on the relative position (range and bearing) of neigh-
boring robots. iii) Two wheels actuators, represented by

two DC motors, that control independently the speed
of the left and right wheels of the robot.

4.2 Flocking implementation

We implemented the flocking behavior described in Sec-

tion 2 and the communication strategies described in
Section 3 on both simulated and real robots. The con-
trollers used in simulation and on the real robots are

identical.
To achieve proximal control with the foot-bot robot,

we use the RAB for measuring the relative range and
bearing di and φi of the ith neighbor. For measuring the

orientation θ0 of the robot, we use the on-board light
sensor that is able to measure the direction to a light
source placed in a fixed position in the environment.

For achieving communication in alignment control, we
use the communication unit present in the RAB. The
forward speed u and the angular speed ω are limited
within [0, Umax ] and [−Ωmax , Ωmax ], respectively. We

use the differential drive model of a two-wheeled robot
to convert the forward and the angular speed into the
linear speeds of the left (NL) and right (NR) wheel:

NL =
(
u+

ω

2
l
)

,

2 Swarmanoid project, http://www.swarmanoid.org/

(February 2013)

NR =
(
u− ω

2
l
)

,

where l is the distance between the wheels.

The values of the constants that we used in our sim-

ulations are given in Table 1.

5 Experimental setup

In this section, we first introduce the metrics used to
assess the performance, both in simulation and on the
real robots. We then describe the experimental setups

used in simulation and with the real robots.

5.1 Metrics

In this study, we are interested in having a swarm of
robots that are aligned to each other and that are mov-

ing towards a goal while maintaining cohesiveness. We
use two metrics to measure the degree of attainment
of these objectives: accuracy and number of groups.

For defining the accuracy metric (Çelikkanat and Şahin,
2010; Couzin et al., 2005), we need first to define the
order metric as in (Vicsek et al., 1995; Çelikkanat and
Şahin, 2010; Ferrante et al., 2010).

Order: The order metric ψ measures the angular order
of the robots. ψ ≈ 1 when the robots have a com-

mon orientation and ψ � 1 when robots point at
different directions. To define the order, we first de-
note with b the vectorial sum of the orientations of

the N robots:

b =
N∑

i=1

ejθi .

The order is then defined as:

ψ =
1

N
‖b‖.

Accuracy: The accuracy metric δ is used to measure
how close to the goal direction robots are moving.
δ ≈ 1 when robots have a common orientation (which

corresponds also to a high value for the order metric
ψ ≈ 1) and are also moving along the goal direc-
tion. Conversely, δ � 1 when they are not ordered

(ψ � 1), when they are ordered but they are mov-
ing along a direction which is very different from the
goal direction, or when both are true. Accuracy is
defined as:

δ = 1− 1− ψcos( 6 b− 6 g1)

2
,

where 6 b is the direction of b and 6 g1 is goal di-
rection A.



6 Eliseo Ferrante et al.

Range and Bearing
sensors

Light sensors

Wheels

Body-fixed reference frame

(a)

Informed robot

Directional marker

Light source

(b)

Fig. 1: (a) The foot-bot robot, the used sensors and actuators, and the body-fixed reference frame. (b) The arena
seen from the overhead camera used for tracking: on the left we placed a light source realized by four lamps; a
carton hat with a directional marker is placed on each foot-bot robot, in order to detect its orientation for metric

measurements; the glowing robot is informed about goal direction A. Note that LEDs and the carton hats are not
used in the controller but only for debugging and for taking measuraments, respectively.

Number of groups: The number of groups at the end
of the experiments indicates whether the swarm has

split or has kept cohesion. The criteria to define a
group and to calculate the number of groups is the
following. We first find the distance between all pairs
of robots. If the distance between the robots in a

pair is smaller than the maximum sensing range of
the RAB sensor (2 meters), we set it as an equiv-
alence pair and append to the list containing the

other equivalence pairs. We then use the equivalence
class method on the list to determine the equiva-
lence class of each pair. The total number of equiv-

alence classes calculated is equal to the number of
groups. For the details of the equivalence class method
refer to Press et al. (1992).

5.2 Simulation experimental setup

We execute experiments in simulation using the ARGoS
simulator (Pinciroli et al., 2012). ARGoS3 is an open-

source, plug-in based simulator in which custom made
physics engines and robots can be added with the de-
sired degree of accuracy. We use a 2D dynamics physics

engine called Chipmunk4 and a realistic model of the

3 Carlo Pinciroli, The ARGoS Website,

http://iridia.ulb.ac.be/argos/ (February 2013)
4 Chipmunk-physics - Fast and lightweight 2D rigid

body physics library in C - Google Project Hosting,

http://code.google.com/p/chipmunk-physics/ (February

2013)

foot-bot robot. Another feature of ARGoS is the pos-
sibility to cross-compile controllers both in simulation

and on the real-robots without modifying the code. This
allowed us to seamlessly port the same controller stud-
ied in simulation to the real robot.

In the experiments, N simulated robots are placed

at random positions within a circle of variable radius
and with random orientations uniformly distributed in
the [−π, π] interval. The density of the initial placement

of the robots is kept fixed at 5 robots per square meter
and the radius is adjusted according to this density and
to the number N of robots. A light source is also placed

at a fixed position in the arena, far away from the robots
but with a very high intensity.

We conducted three sets of experiments. The first
two are used mainly to validate the new method in a

similar setting as the one considered in Ferrante et al.
(2010), while the third is new to this paper:

Stationary environment: A stationary environment is
an environment where there is only one goal di-
rection that is fixed at the beginning and does not

change over time. In stationary environments, we
randomly select a proportion ρ1 of robots and we
inform them about goal direction A. All the other
robots remain uninformed during the entire experi-

ment. Goal direction A is selected at random in each
experiment. The duration of one run is Ts simulated
seconds.

One-goal non-stationary environment: A one-goal non-
stationary environment or, in short, non-stationary
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(a) (b)

Fig. 2: Two pictures that explain the two selection mechanisms. (a) Non-spatial selection in stationary environment:
gray circles, that represent robots informed about goal direction A, are selected at random locations in the swarm
(the white circles represent non-informed robots). (b) Spatial selection during the two goal phase in two-goals
non-stationary environment: informed robots (grey and black circles) are selected at the periphery of the swarm.

Grey circles represent robots informed about goal direction A (left-pointing arrow), whereas black circles represent
robots informed about goal direction B (right-pointing arrow).

environment, is an environment where there is only
one goal direction that does not change for an amount

of time and then changes as a step function. This
process repeats four times. Thus, a non-stationary
environment consists of four stationary phases of
equal duration. The proportion of informed robots

ρ1 is kept fixed during the entire run. However,
goal direction A and the informed robots are ran-
domly re-selected at the beginning of each station-

ary phase. The duration of one run is Tn simulated
seconds.

Two-goal non-stationary environment: A two-goal non-

stationary environment is an environment where goal
direction A is present for the entire duration of the
experiment and goal directionB is present only within
a time window that lasts T∆p. In two-goal non-

stationary environments, we first randomly select
a proportion ρ1 of robots that are informed about
goal direction A. At a certain time Ts, we randomly

select a proportion ρ2 of robots that are informed
about goal direction B. To capture the most difficult
case, which corresponds to the case with maximal

conflict (angular difference) between the two goal di-
rections, we let goal direction B always point to the
opposite direction with respect to goal direction A.
At time Ts + T∆p, we reset all informed robots and

we re-sample a proportion ρ1 of robots and we make
them informed about goal direction A for additional
2Ts simulated seconds. We call the phase between

time Ts and time Ts + T∆p the two-goal phase. The
total duration of one run is Tp = 3Ts + T∆p simu-
lated seconds. The proportion ρ2 is always set to 0.1.

Note that, robots informed about goal direction B
use SCS with fixed wt = 1 as they possess the infor-

mation with the highest priority and as such they do
not need to change their confidence into their goal
direction.

Each set of experiments is further classified according to
how informed robots are selected. This selection mecha-
nism is either non-spatially or spatially correlated. Fig-

ure 2 depicts the difference between the two selection
mechanisms.

Non-spatial selection: With this selection mechanism,
the informed robots are selected at random at the

beginning of each stationary phase (see Figure 2a).
Spatial selection: With this selection mechanism, in-

formed robots are selected in a way such that they

are always adjacent to each other. Furthermore, the
selected robots are at the periphery of the swarm
and their relative position is correlated to the goal
direction (see Figure 2b).

In all the experiments, we add noise to several com-
ponents of our system: to the orientation measurement

θ0, to the proximal control vector p and to the goal
direction vector gj . We consider noise only in angle,
as commonly done in flocking studies (Vicsek et al.,

1995; Turgut et al., 2008), and we model it as a vari-
able uniformly distributed in the [−ξ2π,+ξ2π] range.
The parameter ξ is used to control the magnitude of
the noise. For each experimental setting, we execute R

runs for each of the three strategies and we report the
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Variable Description Value

N Number of robots {100, 300}
R Number of runs per setting 100
ρ1 Proportion of robots informed about 6 g1 {0.01, 0.1}
ρ2 Proportion of robots informed about 6 g2 0.1
T∆p Duration of two-goal phase 600 s
Ts Duration of experiments in stationary environments 300 s
Tn Duration of experiments in one-goal non-stationary environments 4Ts s
Tp Duration of experiments in two-goal non-stationary environments Ts + T∆p + 2Ts s
α Proximal control weight 1
β Alignment control weight 4
γ Goal direction weight 1
µ Threshold value used in SCS 0.999
∆w Step value used in SCS 0.1
U Motion control maximum forward speed 20 cm/s

Ωmax Motion control max angular speed π/2 rad/s
K1 Motion control linear gain 0.5 cm/s
K2 Motion control angular gain 0.06 rad/s
l Inter-wheel distance 0.1 m
ε Strength of attraction-repulsion 1.5
σ Distance-related proximal control parameter 0.4 m
ddes Desired inter-robot distance 0.56 m
Dp Maximum perception range of proximal control 1.0 m
Da Maximum perception range of alignment control 2.0 m
ξ Amount of noise (uniformly distributed in [−ξ2π,+ξ2π]) 0.1
∆t ARGoS integration time-step and real robot control step 0.1 s

Table 1: Experimental values or range of values for all constants and variables used in simulation. The last row

indicates the value of the integration time-step used in ARGoS, which is set to 0.1 s to reflect the hard constraint
imposed by the control step of the robots.

Variable Description Value

N Number of robots 8
R Number of runs per setting 10
ρ1 Proportion of robots informed about 6 g1 0.125
ρ2 Proportion of robots informed about 6 g2 0.125
T∆p Duration of two-goal phase 100 s
Ts Duration of experiments in stationary environments 100 s
Tn Duration of experiments in one-goal non-stationary environments 2Ts s
Tp Duration of experiments in two-goal non-stationary environments 50 + T∆p + 50 s

N/A All the other control parameters See Table 1

Table 2: Experimental values or range of values for all constants and variables used with the real robots. Note
that all the parameters related to the controllers are the same as in simulation, that is, the controller used on the
real robot is exactly the same as in simulation.

median values (50% percentile), the first and the third

quartile (25% and the 75% percentiles).

In all the experiments, we compare the strategies by
also changing the proportion of informed robots ρ1 and
the size of the swarm N . The format of the plots is al-

ways the same. On the same row we report results with
the same number of robots (N), whereas on the same
column we report results with the same proportion of

informed robots (either 1% or 10%). Table 1 reports
the value of all parameters used in simulation.

5.3 Real robot experimental setup

Eight foot-bot robots are placed in the arena depicted
in Figure 1b. The swarm is placed at the center of the

arena, each robot with a random orientation, at the
beginning of each run. At the left of the arena, a light
source area is also placed. To measure order and accu-

racy over time, we built a custom-made tracking sys-
tem. We place carton hats, having a directional marker,
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Fig. 3: Results in simulation. HCS, ICS and SCS in the stationary environment using the non-spatial selection
mechanism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions, whereas thinner
lines represent the 25% and the 75% percentiles.

on top of each robot5. This marker is detected by an

overhead camera placed on the back side of the arena, at
an height of about 3 meters and pointing to the ground
towards the arena (Figure 1b has been obtained by this

camera). We recorded a movie for each experiment and
we then analysed each video off-line using the Halcon
software6. The analysis of a video produced a file con-

5 Note that such hats are used for tracking purposes only
and are not detectable by the robot themselves.
6 http://www.halcon.de/

taining, for each frame, the orientation of every robot

detected.

Also on the real robots, we conduct three set of ex-
periments: stationary, one-goal non-stationary and two-
goal non-stationary environments. The settings are the
same as in simulation (Section 5.2), with only two ex-

ceptions: the one-goal non-stationary environment con-
sists of 2 stationary phases instead of 4 and the duration
of the phases in all three settings are different and sum-

marized in Table 2. We decided to reduce the duration
of each experiment due to the limited size of the arena,
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Fig. 4: Results in simulation. HCS, ICS and SCS in the stationary environment using the spatial selection mech-
anism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions, whereas thinner
lines represent the 25% and the 75% percentiles.

which does not allow very long experiments involving

robots that keep on going in one direction during the
entire experiment. Furthermore, since experiments in
simulation showed almost no difference in results be-

tween non-spatial and spatial selection, and due also
to the limited size of the real robot swarm, on the real
robots we consider only the non-spatial selection case.

For each experimental setting and for each of the
three strategies, we execute 10 runs and we report the

median values, the first and the third quartile. Since
we are considering only 10 runs, we also perform the

Wilcoxon rank sum test to validate the statistical signif-

icance of our claims. The statistical test is performed by
comparing vectors containing each the time-averaged
performance of a given method during a given phase

(i.e. stationary) of the experiment.

The simulated noise described in Section 5.2 is not

considered here due to the inherent presence of noise in
the real sensors. Table 2 summarizes all the parameters
of the setup. For the parameters of the controllers, see

Table 1 as they are the same as those used in simula-
tion. Since it has already been object of previous study
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(Turgut et al., 2008; Ferrante et al., 2010, 2012b), here
we did not perform any additional experiment for test-
ing the robustness with respect to paramter variation.
For what concerns the new parameters introduced by

SCS, we manually tune them to the reported values. In
particular, ∆w is set to 0.1 as larger values would pro-
duce large fluctuations of w while smaller values would

correspond to a slower convergence time, and µ is set to
0.999 as it is enough to detect low local consensus with
a very good precision. This is in turn possible due to

fact that the range and bearing communication device
is noise-free.

6 Results

In this section we present the results obtained in simu-
lation (Section 6.1) and on the real robots (Section 6.2),
and we conclude by summarizing and discussing these
results.

6.1 Results in simulation

6.1.1 Stationary environment

Figure 3 shows the results obtained in stationary en-
vironments when using a non-spatial selection mecha-
nism. Figure 3a and Figure 3c show that ICS outper-

forms the other two strategies when only 1% of the
robots are informed. When we consider the median val-
ues, SCS reaches the same level of accuracy as ICS in a
slightly larger amount of time. In the best runs (above

the 75% percentile), performance of SCS is very close to
those obtained with ICS, whereas in the worst runs (be-
low the 25% percentile), results are slightly worse. We

also observe that results with HCS have larger fluctua-
tions than the one obtained with the other two strate-
gies. These results are consistent with the results ob-

tained in Ferrante et al. (2010), in which we showed
that ICS can provide high level of accuracy with a very
low number of informed robots. Additionally, the novel
strategy SCS shows a reasonable level of accuracy com-

pared to ICS and performs much better than HCS.

When 10% of the robots are informed, ICS and SCS
have very similar performance. In all cases, HCS is out-

performed by the two strategies, that is still consistent
with the results in Ferrante et al. (2010).

Figure 4 shows the results obtained in stationary en-

vironments when using a spatial selection mechanism.
Figure 4a and Figure 4c show that, when only 1% of
the robots are informed, the median values of SCS is

slightly worse with respect to the non-spatial selection
case (Figure 3c). This can be explained by the fact that,

in this case, informed robots are at the boundaries in-

stead of being at random positions. Hence, the prop-
agation of the goal direction in the swarm takes a bit
longer. When 10% of the robots are informed (Figure 3b

versus Figure 4b and Figure 3d against Figure 4d), re-
sults with the spatial selection mechanism show a minor
difference in performance for the two selection mech-
anisms. In the supplementary material page (Ferrante

et al., 2011), we report also the time evolution of the or-
der metric and the distribution of the number of groups
at the end of the experiment. As shown in Ferrante et al.

(2011), in this case the swarm is always cohesive.

6.1.2 One-goal non-stationary environment

Figure 5 and Figure 6 show the results obtained in non-

stationary environments when using a non-spatial se-
lection and spatial selection mechanisms, respectively.
These results show two points. First, within each sta-
tionary phase, the results are all consistent with the re-

sults obtained in the stationary environment case. Sec-
ond, we find that all strategies exhibit, to some extent,
some degree of adaptation to the changes in the goal di-

rection. In all the cases, the ranking of the three strate-
gies is the same. The performance of SCS is always
comparable to the one of ICS, although slightly lower.

On the other hand, SCS is either better than HCS when
the proportion of robots is 10% (Figure 5b, Figure 6b,
Figure 5d and Figure 6d) or much better when there
is only 1% informed robots (Figure 5a, Figure 6a, Fig-

ure 5c and Figure 6c). These results are also consistent
with those obtained in Ferrante et al. (2010). In the
supplementary material page (Ferrante et al., 2011) we

report also the time evolution of the order metric and
the distribution of the number of groups at the end of
the experiment. As shown in Ferrante et al. (2011), also
in this case the swarm is always cohesive.

6.1.3 Two-goal non-stationary environment

In this setting, we report not only the accuracy over
time for the non-spatial (Figure 7) and spatial (Fig-

ure 8) selection mechanisms, but also the data regarding
the number of groups present at the end of the exper-
iment (Figure 9). Figure 7 shows the results obtained

in two-goal non-stationary environments when using a
non-spatial selection mechanism. We first focus on the
results for the 1% informed robots case (Figure 7a and
Figure 7c). In the first phase, between time 0 and Ts, we

observe similar results as those observed in stationary
environments. Subsequently, during the two-goal phase,
all strategies are able to track goal direction B (recall

that goal direction B, that has higher priority, is set as



12 Eliseo Ferrante et al.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time (s)

A
c
c
u

ra
c
y

100  robots ,  1  informed

HCS
ICS
SCS

(a)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time (s)
A

c
c
u

ra
c
y

100  robots ,  10  informed

HCS
ICS
SCS

(b)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time (s)

A
c
c
u

ra
c
y

300  robots ,  3  informed

HCS
ICS
SCS

(c)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time (s)

A
c
c
u

ra
c
y

300  robots ,  30  informed

HCS
ICS
SCS

(d)

Fig. 5: Results in simulation. HCS, ICS and SCS in the one-goal non-stationary environment using the non-spatial
selection mechanism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions,
whereas thinner lines represent the 25% and the 75% percentiles.

opposite to goal direction A), since the accuracy, always

computed with respect to goal direction A, drops to 0
during that phase. This is due to the fact that, in these
experiments, ρ2 = 0.1 > ρ1 = 0.01, so the robots in-

formed about goal direction B are able to drive the en-
tire swarm along that direction because only one robot
is opposing this trend. After time Ts +T∆p, we observe
that HCS continues tracking goal direction B, whereas

ICS and SCS are able to follow again goal direction
A. In Figure 9a and Figure 9e, we observe that the
swarm splits only when using ICS. These results show

that both ICS and SCS are preferable to HCS in terms

of accuracy, because they are both able to track the
goal directions (first A, then B, then A again). How-
ever, SCS is better than ICS because it keeps swarm

cohesion all the times whereas ICS does not.

When the proportion of informed robots is set to

10%, results are slightly different. In fact, HCS is not
able to track goal direction B. This is due to the fact
that, when ρ1 = ρ2 and the swarm already achieved

a consensus decision on goal direction A, the number
of robots informed about goal direction B is not large
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Fig. 6: Results in simulation. HCS, ICS and SCS in the one-goal non-stationary environment using the spatial
selection mechanism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions,
whereas thinner lines represent the 25% and the 75% percentiles.

enough to make the swarm change this consensus deci-

sion. However, the swarm almost never splits, as shown
in Figure 9b and Figure 9f. Figure 9b and Figure 9f
show instead that the swarm does not keep cohesion

when the strategy used is ICS. This translates into
an intermediate level of accuracy during the two-goal
phase (Figure 7b and Figure 7d), due to the fact that
when the swarm splits, part of it tracks goal direction A

and the other part tracks goal direction B. The relative
sizes of these groups change from experiment to ex-
periment, which is directly linked to the observed fluc-

tuations around the median value during the two-goal

phase of ICS. The best results in these experiments are
produced by using SCS. In fact, the swarm is able to
first track goal direction A, then track goal direction B

and then again goal direction A and the swarm cohe-
sion is always guaranteed, even in large swarms of 300
robots.

Figure 8 shows the results obtained in two-goal non-
stationary environments when using a spatial selection

mechanism. When we first focus on the experiments
with only 1% of informed robots (Figure 8a and Fig-
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Fig. 7: Results in simulation. HCS, ICS and SCS in the two-goal non-stationary environment using the non-spatial
selection mechanism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions,
whereas thinner lines represent the 25% and the 75% percentiles.

ure 8c), results show that SCS outperforms the other

two strategies, as it is the only strategy able to track
changes in goal direction (A to B and back to A). HCS
behaves as in the non-spatial selection mechanism. Con-

versely, ICS performs dramatically worse in this case,
as the swarm always splits during the two-goal phase
(Figure 9c and Figure 9g), which is due to the fact that
informed robots are always selected along the periph-

ery of the swarm. After this happens, the swarm can no
longer track the goal direction A, as robots informed
about goal direction A disconnected from the rest of

the swarm during the two-goal phase. Results with 100

robots and 10% informed (Figure 9d) are similar to
the ones reported, in the analogous case, for the non-
spatial selection mechanism. However, with 300 robots,

we observe that swarm cohesion is not guaranteed any-
more, even when using SCS (Figure 9h). This case is
in fact the most challenging one, and we included it
only to show the limits of our method. A large number

of robots placed along the periphery is stretching the
swarm in two different directions, eventually causing it
to split. As a result, the accuracy metric is also affected
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Fig. 8: Results in simulation. HCS, ICS and SCS in the two-goal non-stationary environment using the spatial
selection mechanism: effect on the accuracy. Ticker (central) lines represent the medians of the distributions,
whereas thinner lines represent the 25% and the 75% percentiles.

(Figure 8d). This case is unlikely in practice, as in a

real application information would be either randomly
distributed in the swarm (with robots having heteroge-
neous sensors) or possessed by robots sensing locally a

dangerous situation which unlikely would be the ones
on the back. For the time evolution of the order met-
ric refer to the supplementary material page (Ferrante
et al., 2011).

Figure 9 shows that the number of groups obtained

when using ICS differs between the spatial and the non-
spatial selection cases. In the non-spatial selection cases

more subgroups are formed compared to the spatial se-

lection case. This can be explained by the following
argument: when using the non-spatial selection mecha-
nism, several subgroups emerge and split from the main

group at different moments of the experiment due to the
presence of non-uniform “cluster of informed robots”;
when using the spatial selection mechanism, instead,
informed robots are spatially distributed in one unique

cluster, so that the number of emerging subgroups is
smaller and closer to two. For the time evolution of the
order metric and for the distribution of group sizes for
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Fig. 9: Results in simulation. HCS, ICS and SCS in the two-goal non-stationary environment using the non-spatial

(left plots: (a),(b),(e),(f)) and the spatial (right plots: (c),(d),(g),(h)) selection mechanism: number of groups at
the end of the experiment.

the first two environment refer to the supplementary
materials page Ferrante et al. (2011).

6.2 Results with real robots

Figure 10 reports all the results obtained in the real
robot experiments. Figure 10a shows that results ob-

tained in the stationary environment are similar to those
obtained in simulation (Figure 3 and Figure 4). Both
ICS and SCS perform very well (null hyphothesis can-

not be rejected), whereas HCS is not able to reach rea-
sonable levels of accuracy in the same amount of time,
that is, 100 seconds (p-value < 0.01). Results of ex-
periments in one-goal non-stationary environment (Fig-

ure 10b) also confirm this trend: during both phases,
ICS and SCS perform considerably well whereas, with
HCS, the informed robots (in this case one) are not able

to lead the swarm along the desired direction (p-value
< 0.01).

Figure 10c shows the results obtained in the two-
goal non-stationary environment. As it can be seen,
HCS performs poorly during all the duration of the

experiment, that is, informed robots are never able to
stabilize the swarm along one direction. This might be

due to the limited time available for real robot experi-
ments, or to the different nature of noise which prevents
the control of the direction of the swarm without an ef-

fective communication strategy. However, the swarm is
aligned along the same direction as the order metric is
high — see the supplementary materials page (Ferrante
et al., 2011). Using ICS and SCS instead introduces a

degree of control on the direction of the swarm. During
the first phase (between time 0 and Ts), the results are
consistent with the results in the stationary environ-

ment case: ICS and SCS have both good performance,
that is, they both track goal direction A, compared to
HCS (p-value < 0.01).

Figure 10c also shows that SCS has very good re-
sults, comparable to the ones obtained in simulation,
also during the subsequent phases, as it first tracks goal
direction A, then goal direction B and finally goal direc-

tion A. When using ICS, instead, the swarm continues
tracking goal direction A during the two-goal phases in
70% of the runs (7 out of 10), in which the swarm does

not split (Figure 10d). However, in the remaining runs
(3 out of 10), the swarm splits in two or more groups:
one group follows goal direction B, whereas the other
group continues following goal direction A. This causes

the accuracy metric to have the distribution depicted in
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Fig. 10: Results with real robots. HCS, ICS and SCS in all three environments. Figures (a), (b) and (c) plots the
distribution of the accuracy metric over time for stationary, one-goal non-stationary and two-goal non-stationary
environments respectively. Ticker (central) lines represent the medians of the distributions, whereas thinner lines

represent the 25% and the 75% percentiles. Figure (d) plots the distribution of the number of groups at the end
of the experiments in two-goal non-stationary environment.

Figure 10c, that shows median values close to 0.8 and
an high spread.

We performed the Wilcoxon rank sum test to com-

pare the medians of the time-average performance of
SCS against HCS and SCS agains ICS during all three
phases. The test suggested that SCS consistently out-

performs HCS during all three phases (p-value < 0.01),
outperforms ICS during the second phase (p-value <

0.01) and performs comparatively as ICS in the first
and third phase, as described above.

6.3 Summary

By executing experiments in the stationary and non-

stationary environments, we showed that the perfor-
mance of SCS is comparable to the ones of ICS in most
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of the cases. This means that, using SCS, flocking along
a goal direction is possible with a high level of accuracy
even if only few robots are informed about the goal
direction and when the desired goal direction changes

over time. This setting is the same as the one studied
in Ferrante et al. (2010), where ICS was proposed.

Results obtained in two-goal non-stationary envi-

ronments reveal the true advantage of using SCS. In
fact, SCS provides swarm cohesion in almost all cases
without sacrificing accuracy. On the other hand, ICS is

very strong in providing high level of accuracy but per-
forms dramatically worse in maintaining swarm cohe-
sion. This general message holds for both experiments

executed in simulation and with the real robots.

7 Discussion and related work

In this section, after a brief introduction on the origins
of flocking studies, we review the flocking literature in
swarm robotics. Since the main goal of this paper is

to introduce and study a novel communication strat-
egy for alignment behavior in flocking, in reviewing the
literature, we put particular attention on this behavior.
While analyzing the literature, we look at those works

where the alignment control is used and we briefly state
how it is realized in each work. We also analyze works in
flocking where the alignment control is not used, and we

explain how ordered motion is achieved in these works.
We classify the literature in three categories, and we
only include works where experiments with real robots
have been conducted or works that have the poten-

tial of being readily applied to real robots. Thus, we
omit works performed in the control theory area as,
except few cases (Regmi et al., 2005; Moshtagh et al.,

2006), they do not include experimental validation on
real robots.

In biology, flocking was first studied by Aoki, who

performed the first extensive empirical (Aoki, 1980) and
simulation-based studies (Aoki, 1982) in fish schools.
In computer science, Reynolds, following Aoki’s ideas,

was the first to implement flocking in an artificial sys-
tem based on local information (Reynolds, 1987). He
considered a set of behaviorally identical agents that
move based on three behaviors: separation: stay away

from neighbors, cohesion: stay close to neighbors, and
alignment : match orientation to the average of neigh-
bors. Later, inspired by Reynolds, similar flocking mod-

els have been considered in biology in order to study bi-
ological systems such as bird flocks or fish shoals. These
include the zone model by Couzin et al. (2002), the al-

ready mentioned study of implicit leadership (Couzin
et al., 2005) and more recent works that mapped real

data obtained from tracking to individual-based mod-

els (Katz et al., 2011; Gautrais et al., 2012).

In robotics, flocking has been studied for the last

two decades. Some of the studies followed Reynolds’
approach, based on separation, cohesion and alignment,
due to its algorithmic simplicity. Some other works, as
we will see through our literature survey, did not use

the alignment control but added extra capabilities to
the robots instead.

In Reynolds’ algorithm, it is assumed that each indi-
vidual has access to three types of information: the rela-
tive range, bearing and orientation of its neighbors. The
relative range and bearing are needed for the separation

and cohesion control, whereas the relative orientation
is needed for the alignment control. The relative range
and bearing measurements are obtained most of the

times using infra-red (IR) sensors (Spears et al., 2004;
Roberts et al., 2009). However, the relative orientation
measurement is more difficult to obtain with robots,

because in general it requires very elaborate sensing
capabilities. As explained in the following, such hard-
ware is not available on most robotic platforms, so it
is emulated through local communication or with other

techniques.

As stated above, we divide the robotics literature in

three categories. In the first category, we include works
where alignment control is not used but it is induced
by other behaviors instead. Example of these behav-
iors are: goal-following (Matarić, 1994), leader-following

(Kelly and Keating, 1996), light-following (Spears et al.,
2004) or attraction-repulsion (Moslinger et al., 2009). Matarić
(1994) proposed a flocking behavior based on a set of

“basis behaviors”: safe-wandering, aggregation, disper-
sion and goal-following. The robots are able to sense ob-
stacles in the environment, localize themselves with re-

spect to a set of stationary beacons and broadcast their
position. With the proposed set of behaviors, robots
are able to move cohesively in a goal direction. The
goal direction is known a priori by all the robots in the

swarm. Kelly and Keating (1996) proposed a flocking
algorithm based on a leader-following behavior, where
the leader is dynamically elected by the group and fol-

lows a random direction. They used a custom-made ac-
tive infra-red sensing system to sense the range and
bearing of robots and radio-frequency system for dy-
namic leader election. In their work, multiple leaders

(informed robots) could exist in the swarm but, in that
case, the swarm split to overcome obstacles. Baldassarre
et al. (2003) used artificial evolution to evolve a flock-

ing behavior with a group of four simulated robots. The
robots are equipped only with proximity sensors, to per-
ceive each others’ relative range and bearing, and with

light sensor to perceive a common goal direction. Nem-
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Authors (year) Alignment control Informed robots Results

First category: no alignment control
Matarić (1994) No Yes (all) Cohesive flocking towards a goal

direction
Kelly and Keating (1996) No Yes

(leader-following)
Non-cohesive flocking in a random
direction

Baldassarre et al. (2003) No Yes (light direc-
tion)

Cohesive flocking in a goal direction

Nembrini et al. (2002) No Yes (signal with
beacon)

Non-cohesive flocking in a goal direction
(light)

Spears et al. (2004) No All the non-
shadowed robots

Cohesive flocking in a goal direction

Barnes et al. (2009) No Yes (using GPS) Cohesive flocking along a goal (trajec-
tory) direction direction

Moslinger et al. (2009) No No Non-cohesive flocking in a random
direction

Monteiro and Bicho (2010) No Yes (leaders that
are identifiable)

Cohesive flocking in a goal direction

Ferrante et al. (2012b) No Yes and No Cohesive flocking in a random and a goal
direction

Second category: with alignment control based on global information
Hayes and Dormiani-Tabatabaei (2002) Yes

with emulated
information

Yes (all) Cohesive flocking in a goal direction

Holland et al. (2005) Yes
with emulated
information

No Cohesive flocking in a random direction

Regmi et al. (2005) Yes with
communication of
absolute informa-
tion

Yes (virtual
leader)

Cohesive flocking in a goal direction

Third category: with alignment control based on local communication
Campo et al. (2006) Yes with local

communication
Yes (all have noisy
goal direction)

Collective transport in a goal direction

Gökçe and Şahin (2010) Yes with local
communication

Yes (all robots) Cohesive flocking in a goal direction

Turgut et al. (2008) Yes with local
communication

No Cohesive flocking in a random direction

Çelikkanat and Şahin (2010) Yes with local
communication

Yes (few robots) Cohesive flocking in a goal direction

Ferrante et al. (2010) Yes with local
communication

Yes (few or very
few)

Cohesive flocking in a fixed or changing
goal direction

Stranieri et al. (2011) Yes (some of the
robots)

No Cohesive flocking in a random direction

This work Yes with local
communication

Yes (few or very
few)

Cohesive flocking in presence of a fixed,
changing or two goal directions

Table 3: State of the art review summary. Works are grouped according to categorization explained in the text.
The first column contains a reference to the work itself. The second column shows whether the alignment control

is used and, when it is so, how it is achieved. The third column shows whether informed robots are present in the
swarm. The fourth column describes briefly the results achieved.

brini et al. (2002) proposed a minimalistic algorithm
for achieving flocking with a local communication de-

vice, an obstacle and a beacon detector. Some robots
are informed about a target direction and signal their
status through their beacon. The robots communicate
basic (their presence) or more elaborate information

(neighbor list) via radio and perform U-turn maneuvers
when they loose sight of the majority of neighbors or

of the informed, signaling robots. The authors achieved
a swarming behavior with robots dynamically discon-

necting and reconnecting to the swarm. Spears et al.
(2004) proposed a flocking algorithm based on attrac-
tion/repulsion and viscous forces. The robots first form
a regular lattice structure using the range and bearing

measurements of their neighbors and then move in a
goal direction indicated by a light source. Due to robots
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shadowing, few of the robots in their small swarm could
not see the light, and hence can be considered non-
informed, whereas the rest of the swarm is informed.
Barnes et al. (2009) developed a method based on arti-

ficial potentials to form an elliptical shape with a group
of unmanned ground vehicles and to move the center of
mass in a desired trajectory. They performed experi-

ments with four real robots where all robots received
the precise GPS position of the other robots and also
the desired coordinates of the center of mass. Monteiro

and Bicho (2010) developed a leader-following control
architecture that is used to move a swarm in forma-
tion in a goal location. The goal location is accessible
to the leaders (informed robots), and the other robots

follow the leaders which are assumed to be identifi-
able in the swarm. Antonelli et al. (2010) developed
a behavior-based control method which they call null-

space-based behavioral control. The developed control
scheme is composed of the following behaviors: lattice
formation, move to rendez-vous and obstacle avoidance.
Additionally, another component called “supervisor” is

used to select which of the behaviors should be executed
at a given moment. The authors performed experiments
with seven real robots in which a centralized computer

and a tracking system was used to broadcast the posi-
tions to the robots. Moslinger et al. (2009) proposed
a flocking algorithm based on setting different thresh-

old levels for attraction and repulsion zones assumed
to exist around the robot. By adjusting these thresh-
old levels, they achieved flocking with a small group of
robots in a constrained environment. In their work, no

robots has access to neither the goal direction nor to
alignment information. However, the flocking behavior
accomplished was limited in the sense that the group

could not stay cohesive the whole time. Recently in Fer-
rante et al. (2012b), we proposed a novel motion control
method called MDMC and we showed how, paired only
with proximal control and without alignment control,

it is able to produce cohesive flocking in a random di-
rection. We also showed that, when informed robots
are introduced, MDMC outperforms the method used

in Turgut et al. (2008) in that it is able to move the
swarm further in the goal direction.

In the second category, we include studies where
alignment control is used and in which alignment con-

trol is realized by relying on global information. In fact,
the authors of these studies either emulate an orienta-
tion sensing (Holland et al., 2005) or estimate relative

orientation by tracking movement (Hayes and Dormiani-
Tabatabaei, 2002). Hayes and Dormiani-Tabatabaei (2002)
proposed a flocking algorithm based on collision avoid-
ance and velocity-matching behaviors that use local

range and bearing measurements. These measurements

are emulated and broadcasts to the robots. Robots based

on this information compute the center of mass of their
neighbors and move towards this point for cohesion.
They also compute the velocity of the center of mass
and align to the direction of the velocity vector. Fur-

thermore, each robot is informed about the direction to
a goal area. Holland et al. (2005) proposed a flocking
algorithm for unmanned aerial vehicles based on sepa-

ration, cohesion and alignment control. All the sensory
information (range, bearing and orientation of robots
neighbors) is emulated and broadcast to each robot

individually. In their work, the goal direction is not
present and thus all robots are non-informed. Regmi
et al. (2005) proposed a flocking algorithm where robots
are able to measure their position and orientation with

a global positioning system and transmit this informa-
tion to their neighbors via a high speed communication
link. In this way, each robot has the exact absolute po-

sition and velocity information of the other robots.

In the third category, we include studies where align-
ment control is present and realized on-board. All these
works have a common characteristic: an alignment con-

trol that uses local communication either to emulate
orientation sensing (Turgut et al., 2008; Çelikkanat and
Şahin, 2010; Stranieri et al., 2011) or for signaling (Campo

et al., 2006; Ferrante et al., 2010). Campo et al. (2006)
in the context of collective transport used robots equipped
with an LED ring and an omni-directional camera. The
robots communicate their estimates of the nest direc-

tion to their neighbors by forming a specific pattern
in their LED rings. In Turgut et al. (2008) robots are
equipped with proximity sensors for obstacle/robot de-

tection and a virtual heading sensor for orientation mea-
surement. Their sensor works as follows: each robot
measures its orientation using a digital compass and
broadcasts it periodically using a wireless communica-

tion unit so that the orientation is sensed “virtually”
by its neighbors. This strategy of communication is the
one referred as HCS in this paper. The authors achieved

flocking in a random direction, since all robots in the
swarm are non-informed. In a follow-up study, Gökçe
and Şahin (2010) introduced a goal-following behav-

ior and studied the effect of noise in sensing the goal
direction on the long-range movement of swarms. In
their work, all robots are informed about the goal direc-
tion. Çelikkanat and Şahin (2010) resorting to HCS and

inspired by the work of Couzin et al. (2005) provided a
goal direction to some of the robots, and showed that
a large swarm can be guided by only a few informed

robots. In Ferrante et al. (2010), we proposed a novel
communication strategy for heading alignment called
information-aware communication strategy (ICS) where
informed robots communicate the goal direction and
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the non-informed robots send the average orientation of
their neighbors. We executed experiments in stationary
and non-stationary environments with only one goal
direction, and we observed a dramatic increase of per-

formance when compared to HCS. We also observed
that, in both cases, the group preserved its cohesion
all the time. Recently, in Stranieri et al. (2011), we

studied flocking in a heterogeneous swarm of robots.
Some robots in the swarm use alignment control, im-
plemented via HCS, whereas the rest of the swarm does

not. The swarm is able to achieve cohesive flocking by
the use of a motion control method that is a prelim-
inary version of the one considered in Ferrante et al.
(2012b).

Table 3 summarizes the works we reviewed above.
The table reveals how this work compares with the rest

of the literature. We can see that, when alignment con-
trol is not used, flocking is achieved by having most
of the robots or all robots informed about the goal di-
rection. In fact, if all robots have information about

a common goal direction, they do not need to align
with each other. On the other hand, without informa-
tion about a goal direction, alignment control can facil-

itate the agreement process to a common direction of
motion, needed for flocking. Exceptions to this are the
work of Moslinger et al. (2009) and the one we recently

published in Ferrante et al. (2012b), where no robot is
informed on the goal direction nor uses alignment con-
trol. Compared to this category, our work considers up
to to two goal directions and few or very few informed

robots.

In the second category, alignment control is present

but all the information needed by this behavior is em-
ulated and provided through an external device. Com-
pared to this category, our work considers an alignment
control where all the information needed is obtained

directly by the robots through an on-board sensing de-
vice.

In the third category we analyzed the use of local
communication. Local communication, to the best of
our knowledge, has been so far the only method to re-

alize alignment control by using only robot’s on-board
sensing devices. These works and also our work be-
long to this third category. In this paper, we extend
the work done in the literature in several ways. Com-

pared to all of them, which considered either no goal
direction (Turgut et al., 2008; Stranieri et al., 2011)
or one goal direction (Campo et al., 2006; Çelikkanat

and Şahin, 2010; Gökçe and Şahin, 2010) at a time, we
are the first to consider a problem where two conflict-
ing goal directions are present at the same time, and
where one goal direction has an higher priority with re-

spect to the other one. In another sense, our work can

be considered an extension of Ferrante et al. (2010). In

fact, SCS is studied and compared to HCS and ICS,
proposed for the first time in Ferrante et al. (2010). Fi-
nally, both Çelikkanat and Şahin (2010) and Ferrante

et al. (2010) assumed that informed individuals are se-
lected uniformly at random within the group. This is
not the only possible situation in swarm robotics since,
in some cases, one needs to take into consideration the

local aspect of sensing. In this paper, additionally to
the random selection method, we also used and studied
what we call the spatial selection method, where in-

formed individuals are selected in a spatially correlated
way, that is, they are close to each other and close to
the periphery of the swarm.

8 Conclusions and future work

In this paper, a communication strategy called self-
aware communication strategy (SCS) is proposed. The

strategy is used to tackle flocking with a swarm of
robots in stationary, one-goal and two-goal non-stationary
environments. In the stationary environment, one goal
direction exists and is always constant and perceived

only by a small proportion of the swarm. In the one-goal
non-stationary environment, the goal direction and the
robots informed about it change over time. In the two-

goal non-stationary environment, there are two goal di-
rections: goal direction A is present throughout all the
experiments, whereas goal direction B, conflicting and

with higher priority with respect to the first, is present
in the swarm during a limited time window. With the
proposed communication strategy SCS, robots informed
about the goal direction A are aware of the presence of

goal direction B by measuring the level of local disorder
in the information communicated by their neighbors.

We executed experiments both in simulation and
with real robots. We evaluated flocking performance in
terms of accuracy with respect to the desired goal di-

rection and group cohesiveness. We compared SCS with
the state of the art strategies ICS, proposed in our ear-
lier study, and HCS, which is used to emulate orien-

tation sensing on robots. Our experiments showed that
SCS can guarantee close to the same level of accuracy of
ICS in both stationary and one-goal non-stationary en-
vironments. However, we showed that in two-goal non-

stationary environments, SCS can both guarantee high
levels of accuracy and group cohesiveness, which differ-
ently is not very high when using ICS in the same envi-

ronments. As such, SCS represents an improvement as
it achieves two conflicting objectives at the same time.
These results were fully confirmed by real robot exper-

iments, where the same controller was used.
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In the future, we plan to address a more general ver-
sion of the problem studied in this paper. In Ferrante
et al. (2012a), we already considered flocking with two
conflicting goal directions and in which the priority of

the two is the same (and as such the desired direction
to follow is the average between the two). Here, we sys-
tematically studied the effect of the difference between

the two goal directions, as done in Couzin et al. (2005).
In a more general version, two or more goal directions
exist but the priority between them is not known by the

swarm. In this scenario, we would like to devise com-
munication strategies that are able to select one of the
goal directions, according to some criteria available on-
line to the robots and not known a priori. The study

of this generalized version of the problem enables the
study of flocking in a foraging scenario. In such a sce-
nario, the swarm has to collect as many resources as

possible in a minimum amount of time while moving
cohesively as a group to maximize sensing and discov-
ery of new resources. We believe that endeavors in this
direction might bridge the gap between lab-based ex-

periments and challenging real-world applications such
as exploration and collection of resources in space.
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