
HAL Id: hal-01405890
https://hal.science/hal-01405890

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overlay Architectures for Heterogeneous FPGA Cluster
Management.

Théotime Bollengier, Mohamad Najem, Jean-Christophe Le Lann, Loïc
Lagadec

To cite this version:
Théotime Bollengier, Mohamad Najem, Jean-Christophe Le Lann, Loïc Lagadec. Overlay Archi-
tectures for Heterogeneous FPGA Cluster Management.. DASIP 2016, Oct 2016, Rennes, France.
�hal-01405890�

https://hal.science/hal-01405890
https://hal.archives-ouvertes.fr

Demo: Overlay Architectures For Heterogeneous
FPGA Cluster Management

Théotime BOLLENGIER
b<>com

Brest, France
theotime.bollengier@b-com.com

Mohamad NAJEM, Jean-Christophe LE LANN, Loı̈c LAGADEC
Lab-STICC MOCS
ENSTA Bretagne

Brest, France
{mohamad.najem, jean-christophe.le lann, loic.lagadec}@ensta-bretagne.fr

Abstract—Overlays are reconfigurable architectures synthe-
sized on commercial of the shelf (COTS) FPGAs. Overlays bring
some advantages such as portability, resources abstraction, fast
configuration, and can exhibit features independent from the host
FPGA. We designed a fine-grained overlay implementing novel
features easing the management of such architectures in a cluster
of heterogeneous COTS FPGAs. This demonstration shows the
use of this overlay in an FPGA cluster, performing a hardware
application live migration between two nodes of a cluster. It also
illustrates fault tolerance of the cluster.

I. INTRODUCTION

Overlays are reconfigurable architectures implemented on
top of FPGAs. They are regular designs described using
structural HDL, but have reconfigurable capabilities. They may
be considered as “softcore FPGA IPs”. Thus, an overlay can
be envisioned from two levels of abstraction: i) the functional
architecture is the top view, it is the set of reconfigurable
elements available to the applications that target the overlay;
ii) the implementation is the bottom view, it is the way the
functional architecture is implemented and synthesized (as a
regular IP) on the host FPGA. The functional architecture of
an overlay is independent from its implementation and from
its host FPGA. Different granularities can be considered: fine-
grained overlays are generally composed of LUTs operating
at the bit level, while function units of coarser architectures
use mathematical operators on words. Overlays are similar
to the Java Virtual Machine which enables the exact same
bytecode to be executed on different processors (with different
instructions sets) for which the JVM has been compiled for.

Thus, overlays have three advantages:
• they can be used to implement the same functional

architecture on different hosts, bringing bitstream com-
patibility between heterogeneous COTS FPGAs;

• the overlay functional architecture may be coarser, sim-
pler, or offer more complex macro blocks than the one
offered by the architecture of its host;

• the overlay designers can add features to the overlay im-
plementation that may not be present on the host FPGA,
such as dynamic context saving/restoring or configuration
pre-loading.

However, compared with a bare metal use of FPGA re-
sources, FPGA virtualization with overlays has a significant

cost in terms of resources usage and operating frequency.
Therefore, overlays are used in applications for which their
advantages justify virtualization cost. Sekanina used coarse
grained overlays [1] for evolvable hardware research, bene-
fiting from shorter synthesis and configuration time. Lysecky
et al. [2] designed a fine grained overlay with extra routing
resources to ease the task of their Just-In-Time synthesizer.
To lower compilation time, Coole and Stitt introduced in-
termediate fabrics [3], which are application specific coarse
grained overlays. Dirk Koch et al. [4] integrated a fine-
grained overlay in the datapath of a MIPS processor to get
a portable custom instructions set softcore processor. Brant
and Lemieux addressed the area overhead problem by doing
target specific optimizations on the implementation of their
fine-grained overlay named ZUMA [5], getting a ratio down
to 40 physical LUT per virtual LUT, which is less than one
third of a none optimized implementation. Jain et al. [6]
also decreased their overlay size down to 70 % and reached
frequencies excessing 300 MHz by efficiently using the host
DSP blocks in the coarse grained virtual functional units.

Our work aims at virtualizing reconfigurable resources from
a heterogeneous set of COTS FPGAs (i.e. from different
vendors, and with different characteristics), interconnected as
a cluster. Over the lifetime of its infrastructure, components of
such an FPGA cluster are gradually updated and replaced (to
follow technology evolution over time, and FPGAs sales and
trends). This results in FPGAs with different characteristics
and from different vendors being used at the same time. How-
ever, a bitstream generated for a given FPGA cannot be loaded
into a FPGA of a different model. In this context, overlays
are relevant as they allow homogenizing these resources: an
application design targeting the overlay is no longer tied to
a limited set of FPGAs from the cluster, and can run on any
node implementing the overlay.

Moreover, overlay implementations can be instrumented to
ease the management of such a cluster. In this work, we add
novel features to extract or inject the execution state of an
overlay, to allow hardware task preemptive scheduling on a
node, and application live migration between nodes. This, in
turns, allows to perform load balancing or consolidation, to
manage application priorities and to provide fault tolerance.

II. OVERLAY DESIGN AND USE

In this work, we designed a LUT based overlay. Even
though fined-grained overlays exhibit an important area and
timing overhead, they are more general purpose than coarser
architectures which are limited to data-flow applications due
to the lack of control structures, and are tied to application
domains by the choice of their operators.

The overlay HDL description is automatically generated
from a set of architectural parameters. The generated HDL
code is portable and can be simulated or implemented on any
COTS FPGA. The top part of Fig. 1 shows the synthesis flow
from the overlay generation to its physical implementation on
FPGA.

Synthesizing an application design to the overlay archi-
tecture is done in different steps. First a RTL synthesizer
transforms the application description into a netlist composed
of latches and arbitrary logic gates. This netlist is then
transformed, optimized and mapped to the overlay resources.
Next, it is placed and routed on the overlay. Finally, the virtual
bitstream is generated by extracting the configuration of each
one of the overlay’s resources according to the placed and
routed netlist. These four synthesis steps are gathered in one
step called “synthesis targeting the overlay” at the bottom of
Fig. 1.

Overlay

architecture

model (txt)

Application

(HDL)

Overlay IP

(HDL)

Architecture

generation

FPGA

bitstream

Synthesis

targetgin

the FPGA

Overlay

con guration

vBbitstream

Synthesis

targeting

the overlay

Fig. 1. Two flows: overlay synthesis on the FPGA, and application synthesis
on the overlay.

III. OBJECT OF THE DEMONSTRATION

We propose a demonstration that illustrates:
• how to offer an homogeneous view of a heterogeneous

set of FPGAs;
• the live migration of a hardware application design be-

tween two nodes;
• fault tolerance of an overlay cluster.

The setup includes two FPGAs from two vendors (Xilinx and
Altera) as compute nodes, and a host PC as a controller. The
hardware application design is an image filter. It is synthesized,
placed an routed for the proposed overlay. The generated
virtual bitstream (vBitstream) is a job to be executed on a
compute node. A screen is attached to each FPGA node,
displaying the result of the image being filtered, so that the
audience can visualize the progress of the job execution. Fig. 2
shows the experimental setup. The two FPGAs are connected
to the host PC through Ethernet, each one is attached to an
ARM processor running a local hypervisor whose part is to
transfer the host management requests to the FPGA. For this
demonstration, the processors are also used to display the
image being processed.

The first goal is to show the execution of the same ap-
plication design (from the exact same vBitstream) on two
different FPGAs. This is done by deploying the same overlay
architecture on both Xilinx and Altera FPGAs. Then the host
PC is used to dispatch the vBitstream of the synthesized filter
application on both FPGAs.

Live migration is demonstrated by running the filter applica-
tion on one node, halting the application execution, capturing
the execution state of the node’s overlay, and then restoring
the state on the overlay of the second node. The application
resumes on the second node.

Fault tolerance at the cluster level is illustrated by running
the filter application on one node. The host controller regularly
backups the execution state of the running node. Then the
power of the running node is shut down. When the host
controller notices that the running node have disappeared
(the node does not respong to heartbeat pings anymore), the
host sends the vBitstream of the interrupted application along
with the last execution state backup to the second node. The
execution resumes on the second node at the last backup.

FPGA

ALTERA
Cyclone V

Processor

ARM

PCIe

APF6

FPGA

XILINX
Artix 7

Processor

ARM

USB

Nexys 4

Raspbery PI

Ethernet

switch

Fig. 2. Experimental setup.

REFERENCES

[1] L. Sekanina, “Virtual reconfigurable circuits for real-world applications of
evolvable hardware,” in Evolvable Systems: From Biology to Hardware,
5th International Conference, ICES 2003, Trondheim, Norway, March 17-
20, 2003, Proceedings, 2003, pp. 186–197.

[2] R. L. Lysecky, K. Miller, F. Vahid, and K. A. Vissers,
“Firm-core virtual FPGA for just-in-time FPGA compilation,” in
Proceedings of the ACM/SIGDA 13th International Symposium on
Field Programmable Gate Arrays, FPGA 2005, Monterey, California,
USA, February 20-22, 2005, 2005, p. 271. [Online]. Available:
http://doi.acm.org/10.1145/1046192.1046247

[3] J. Coole and G. Stitt, “Intermediate fabrics: virtual architectures for circuit
portability and fast placement and routing,” in Proceedings of the 8th
International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2010, part of ESWeek ’10 Sixth Embedded
Systems Week, Scottsdale, AZ, USA, October 24-28, 2010, 2010, pp.
13–22. [Online]. Available: http://doi.acm.org/10.1145/1878961.1878966

[4] D. Koch, C. Beckhoff, and G. G. F. Lemieux, “An efficient FPGA overlay
for portable custom instruction set extensions,” in 23rd International
Conference on Field programmable Logic and Applications, FPL 2013,
Porto, Portugal, September 2-4, 2013, 2013, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/FPL.2013.6645517

[5] A. Brant and G. G. F. Lemieux, “ZUMA: an open FPGA overlay
architecture,” in 2012 IEEE 20th Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2012, 29
April - 1 May 2012, Toronto, Ontario, Canada, 2012, pp. 93–96.
[Online]. Available: http://dx.doi.org/10.1109/FCCM.2012.25

[6] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented fpga
overlays using dsp blocks,” 2016.

