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Abstract

We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules

of probability, we present the Bayes’ theorem and its applications. In particular we discuss about how to calculate simple and

joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different

hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases.

In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine

the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to

calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling.

For these two studies, we implement the program Nested fit to calculate the different probability distributions and other related

quantities. Nested fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by

the name, it is based on the nested algorithm, which is presented in details together with the program itself.

Keywords: Bayesian data analysis, atomic physics, nested sampling, model testing

1. Introduction

Commonly, a data analysis is based on the comparison be-

tween a function F(a) used to model the data that depends on a

set of parameters a (ex. a1 → amplitude, a2 → position, etc.)

and the data them-self that consist in recorded number of counts

yi at each channel xi. The estimation of the parameter values

describing at best the data is generally obtained by the maxi-

mum likelihood method (and its lemma, the method of the least

squares), which consists to find the values abest that maximize

the product of the probabilities for each channel xi to observe yi

counts for a given expected value F(xi, a
best).

Even if very successfully in many cases, this method has

some limitations. If some function parameter is subject to con-

straints on its values (as ex. one model parameter could be a

mass of a particle, which cannot be negative), the correspond-

ing boundary conditions cannot be taken into account in a well

defined manner. With the likelihood function we are in fact cal-

culating the probabilities to observe the data {xi, yi} for given

parameter values and not the probability to have certain param-

eter values for given experimental data.

An additional difficulty for the maximum likelihood method

is the impossibility to assign probabilities to different hypoth-

esis, represented for example by two possible modeling func-

tions FA and FB, in view of the acquired data. In simple cases,

the determination of the best models can be obtained with the

maximum likelihood ratio (or chi-square ratio) or other criteria

(Akaike information criterion [1], deviance information crite-

rion [2], etc.), but no quantified probability can be assigned to

each model.
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Another important and fundamental problem of the common

data analysis approach is the requirement of repeatability for

the definition of probability itself. In classic data analysis man-

uals we can find sentences as:

“Suppose we toss a coin in the air and let it land.

There is 50% probability that it will land heads up

and a 50% probability that it will land tails up. By

this we mean that if we continue tossing a coin re-

peatedly, the fraction of times that it lands with heads

up will asymptotically approach 1/2 . . . ” [3]

This definition is completely inadequate to rare processes as

those encountered for example in cosmology, where several

models are considered to describe one unique observation, our

universe, and more recently in gravitational-wave astronomy,

where at present only two observations are available [4, 5].

To overcome these problems, a different approach has to be

implemented with a new and more general definition of prob-

ability, This approach is the result of the work of Th. Bayes,

P.-S. Laplace, H. Jeffreys and of many others [6, 7, 8, 9] and is

commonly called Bayesian statistics.

Bayesian methods are routinely used in many field: cos-

mology [10, 11, 12], particle physics, nuclear physics, parti-

cle physics, . . . . In atomic physics the implementation of these

data analysis approach is not yet common. Nevertheless, in

some cases their use is required. For example, when we want to

determine the correct shape of a instrumental response function

we are actually testing hypotheses, as in the case of the deter-

mination of the presence or not of possible line contributions in

a complex or statistically poor spectrum.

The goal of this article is to present a basic introduction of

Bayesian data analysis methods in the context of atomic physics
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spectroscopy and to introduce the program Nested fit for the

calculation of distribution probabilities and related quantities

from the application of these methods. The introduction to

Bayesian statics is based in the extended literature on this do-

main, and in particular on Refs. 11, 8, 13, 14, 15. For a clear and

practical presentation, we will present two simple applications

of data analysis where we implemented a Bayesian approach

using the Nested fit program. The first example is about the

probability evaluation of the presence of a satellite peak in a

simple atomic spectrum. The second one deals with the anal-

ysis of a statistically poor spectrum in which one or multiple

peaks contributions has to be considered and where possible

aberrations in the response function have also to be taken into

account. We will in particular show how to assign probabili-

ties to the different models from the experimental data analy-

sis. Moreover, we will see how to extract the probability distri-

bution of the main peak position without the need to uniquely

choose between the different models.

The article is organized as following. A general definition of

probability and Bayesian statistic concepts as the Bayes’ theo-

reme and Bayesian evidence are present in Sec. 2, together with

a very general and axiomatic definition of probability deduced

from simple logic arguments. In Section 3 we present in de-

tails the nested algorithm for the calculation of the Bayesian

evidence and in Sec. 4 we will see its implementation in the

program Nested fit, which is also presented. These two sec-

tions are quite technical and they could be skipped in a first

reading. Section 5 is dedicated to the Bayesian data analy-

sis applications to two real data sets and Sec. 6 is our conclu-

sion. Two appendixes are also proposed: one about the intro-

duction of information and complexity concepts in the context

of Bayesian statistics, and a second about the evaluation of the

uncertainty of the Bayesian evidence calculated by the nested

sampling method.

2. Probability

2.1. Probability axioms

A very general definition of probability P(X, I) can be ob-

tained by trying to assign real numbers to a certain degree of

plausibility or believe than assertions X, Y, etc., would be true.

X and Y assertions are very general. They can be assertions

of specific statements (ex. “In the next toss the coin will land

heads”) or implying values (ex. the parameter b is in a certain

range [bmin, bmax]). When basic logic and consistency are re-

quired, the form of the probability P is ensured by the axioms

[13, 16, 9, 15, 14]

0 ≤ P(X|I) ≤ 1, (1)

P(X|X, I) = 1, (2)

P(X|I) + P(X̄|I) = 1, (3)

P(X, Y |I) = P(X|Y, I) × P(Y |I). (4)

In the equations above, X̄ indicates the negation of the asser-

tion X (not-X); the vertical bar “|” means “given” and where I

represents the current state of knowledge. The joint probability

P(X, Y |I) means that both “X AND Y” are true (equivalent to the

logical conjunction ‘∧’). The deduction of these axioms have

been obtained for the first time in 1946 by Richard Cox using

Boolean logic [13]. The first three axioms are compatible with

the usual probability rules. Here we have an additional axiom

that, as we will see, plays a very important role.

From these axioms the following rule (sum rule) is deduced

[14]

P(X + Y |I) = P(X|I) + P(Y |I) − P(X, Y |I). (5)

Here the symbol ‘+’ means here the logical disjunction (X+Y ≡
X ∨ Y ≡ “X OR Y is true”).

The fourth axiom determines the rule for inference probabil-

ities (product rule) for conditional cases. If X and Y are inde-

pendent assertions, this is reduced to the classical probability

property

P(X, Y |I) = P(X|I) × P(Y |I). (6)

When a set of mutual exclusive assertions are considered {Yi},
with P(Yi|Y j,i) = 0, we have the so-called marginalization rule

P(X|I) =
∑

i

P(X, Yi|I) (7)

that in the limit of continuous case Yi+1 − Yi → dY becomes

P(X|I) =

∫ ∞

−∞
P(X, Y |I)dY. (8)

2.2. Bayes’ theorem and posterior probability

Another important corollary can be derived from the fourth

axiom (Eq. (4)) and the similar expression with exchange be-

tween X and Y:

P(X|Y, I) =
P(Y |X, I) × P(X|I)

P(Y |I)
. (9)

This is what is called the Bayes’ Theorem, named after Rev.

Thomas Bayes, who first [6] formulated theorems of condi-

tional probability and rediscover in 1774 and further developed

by Pierre-Simon Marquis de la Laplace [7].

For a better insight in the implication of this theorem, we

consider the case where X represent the hypothesis that the pa-

rameter values set a truly describes the data (via the function

F(x, a)) and where Y correspond to the recorded data {xi, yi}. In

this case Eq. (9) becomes

P(a|{xi, yi}, I) =
P({xi, yi}|a, I) × P(a|I)

P({xi, yi}|I)
=

L(a) × P(a|I)

P({xi, yi}|I)
,

(10)

where I includes our available background information and

where P({xi, yi}|a, I) is by definition the likelihood function

L(a) for the given set of data. Differently from the common

statistical approach where only the likelihood function is con-

sidered, we have here the additional term P(a|I) that includes

the prior knowledge on the parameters a or possible bound-

aries. The denominator term P({xi, yi}|I) can be considered for

the moment as a normalization factor but it plays an important

role when different hypothesis are considered and compared

(see next section).
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The priors can look as an unsuitable input due to the possi-

ble subjectivity in their choice; this is actually the main crit-

ics to Bayesian statistics. On the contrary, the priors reflects

our knowledge or ignorance in a quantify way. If two scientists

have different choices of priors, and uses some common experi-

mental data, the posterior probability distributions are generally

not significantly different. If the posteriors are different because

of the different choice of priors, this means that the data are not

sufficient to analyze the problem.

From P(a|{xi, yi}, I), the probability distribution of each pa-

rameter P(a j|{xi, yi}, I) or joint probabilities P(a j, ak|{xi, yi}, I)

can be obtained from the marginalization (Eq. (8)), i.e. the in-

tegration of the posterior probability on the unconcerned pa-

rameters.

2.3. Model testing and Bayesian evidence

An important consequence of the Bayes’ theorem is to have

the possibility to assign probabilities to different hypothesis

(models) with a simple and well-defined procedure. In this

case, in Eq. (9) X represent the hypothesis that the model M
describes well the observations and Y represent the data, as in

the previous section. From Bayes’ theorem we have that the

posterior probability of the modelM is [9, 15, 11]

P(M|{xi, yi}, I) ∝ P({xi, yi}|M, I) × P(M|I), (11)

where the first term of the right part is the so-called Bayesian

evidence E of the model and the second term is the prior prob-

ability assigned to the model from our background knowledge.

Using the marginalization rule to the parameter values and the

probability properties (Eqs. (1–4)), we have

E ≡ P({xi, yi}|M, I) =

=

∫

P({xi, yi}|a,M, I)P(a|M, I)dJ a =

=

∫

LM(a)P(a|M, I)dJ a, (12)

where J is the number of the parameters of the considered

model, and where we explicitly show the likelihood function

LM(a) relative to the modelM. The Bayesian evidence, also

called marginal likelihood or model likelihood, is the the inte-

gral of the likelihood function over the J-dimensional parame-

ter space under the priors for a specific model choice. The ev-

idence is also the denominator of Eq. (9), which now assumes

a more clearly signification than a simple normalization factor

(withM included in I). Considering equal priors, the probabil-

ity of a model is higher if the evidence is higher, which means

that the average of the likelihood function over the model pa-

rameter space is higher. To note, this does not implies that the

maximum of the likelihood function is larger, as in the case

of the likelihood ratio test used to compare the goodness of fit

of two models (where however we do not assign probabilities

to the models themselves but where we define only a criterion

to choose between two models). Models with higher number

of parameters are generally penalized because of the higher di-

mensionality of the integral that corresponds to a larger param-

eter volume Va (and then to a lower average value of the likeli-

hood function). In fact, the calculation of the model probability

via the Bayesian evidence includes, in some sense, the Ock-

ham’s razor1 favoring simpler models when the values of the

likelihood function are similar.

If we have to choose among only two different models

M1,M2, the comparison between model probabilities is related

to the calculation of the simple ratio

P(M1|{xi, yi}, I)

P(M2|{xi, yi}, I)
=

P({xi, yi}|M1, I)

P({xi, yi}|M2, I)
× P(M1|I)

P(M2|I)
. (13)

If the prior probabilities of the models are equal, this proba-

bility ratio is given by the Bayes factor B12 = E1/E2 that is

nothing else than the ratio of the evidences [8, 15, 11]. Values

of B12 larger or smaller than one indicate a propensity forM1

orM2, respectively. In the literature several tables are available

to assign, in addition to probabilities, degree of propensity of

favor to one or other model [8, 17] with a correspondence to

the p-value and the standard deviation [18].

For models with similar values of evidence, another criterium

to decide between them is the Bayesian complexity C, which

measures the number of model parameters that the data can sup-

port [11]. This quantity is related to the gain of information (in

the Shannon sense) and it is discussed in Appendix A. When E

are similar, we should favour the simplest model, i.e. the model

with the smallest value of C.

The possibility to assigning probabilities to models has an-

other important advantage. In the case we are interested to

determine the probability distribution of a common parameter

a j without the need to identify the correct model among the

available choices Mℓ, we can obtain the probability distribu-

tion P(a j|{xi, yi}, I) from the weighted sum

P(a j|{xi, yi}, I) =
∑

ℓ

P(a j|{xi, yi},Mℓ, I) × P(Mℓ|, I), (14)

where P(a j|{xi, yi},Mℓ, I) are the probability distributions of a j

for each model and P(Mℓ|, I) are the probabilities of the differ-

ent models. As we will see in Sec. 5.2, this capability plays an

important role in the case where the models have comparable

probabilities.

3. The nested sampling algorithm

3.1. The evidence calculation problem

The major difficulty to calculate hypothesis probabilities is

the substantial computational power required for the evaluation

of the Bayesian evidence. Contrary to the maximum likeli-

hood method, where only the maximum of a function has to be

1“Non sunt multiplicanda entia sine necessitate” , ”Entities must not be

multiplied beyond necessity” from William of Ockham’s (1287-1347), which

can be interpreted in a more modern form as “Among competing hypotheses,

the one with the fewest assumptions should be selected”.
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Figure 1: Visualisation of the integral of L(X) and corresponding volumes on

the parameter space (two parameters only, ai, a j are considered with a 2D rep-

resentation).

found, we have to calculate an integral over the J-dimensional

space of parameters. Except in very few cases, there is not

analytical solution of Eq. (12). The numerical integration by

quadrature is not efficient due to the span of different order

of magnitude of the likelihood function and the high dimen-

sionality of the problem. The calculation of the evidence is

generally done via the Monte Carlo sampling of the product

P({xi, yi}|a,M, I)P(a|M, I).

A common approach to produce good sampling is the use of

the Markov chain Monte Carlo (MCMC) technique. A Markov

chain is a sequence of random variables such that the probabil-

ity of the nth element in the chain only depends on the value

of the (n − 1)th element. The purpose of the Markov chain

is to construct a sequence of points an in the parameter space

whose density is proportional to the posterior probability distri-

bution. Different probabilistic algorithms are applied to build

these chains like Metropolis-Hasting algorithm, Gibbs sam-

pling, Hamiltonian Monte Carlo, etc. (see as example Ref. [19]

and references their-in). Another method is the nested sam-

pling where a subdivision of nested volumes in the parameter

space is used to calculate the multi-dimensional integral. On

this method is based the program Nested fit we present in

this article.

The nested sampling algorithm is based on the subdivision of

the parameters space volume V(a), delimited by the parameters

prior probabilities, into J-dimensional nested volumes that get

closer and closer to the maxima of the likelihood function. With

this method, the calculation of the evidence (Eq. 12) is reduced

to one-dimensional integral from the original J-dimensional

problem. This method has been originally developed by John

Skilling in 2004 [20, 15, 21].

To reduce to an one-dimensional integral, we define the vari-

able X (real and positive) corresponding to the volume of the

parameter space, weighted by the priors, for which the likeli-

hood function is larger than a certain value L:

X(L) =

∫

L(a)>L
P(a|I)dJ a, (15)

where I is the background information we have. A schematic

visualisation of this relation is presented in Fig. 1. X(L) is by

construction monotonic and invertible, with L = L(X). When

L = 0, the whole parameter volume Va is considered and then

X = 1 because of the prior probability normalization. When

L ≥ max[L(a)], X is equal to zero. The infinitesimal volume

dX is

dX = P(a|I)dJ a, (16)

where P(a|I)dJ a corresponds to the infinitesimal weighted vol-

ume of the parameter space where L(X) < L({xi, yi}, a) <

L(X + dX).

With the above definitions, we can then rewrite Eq. (12) as a

simpler one-dimensional integral in X:

E =

∫ 1

0

L(X)dX. (17)

3.2. The algorithm for the numerical integration

The one-dimensional integral in the above equation and rep-

resented on the left part of Fig. 1 can be numerically calculated

using the rectangle integration method subdividing the [0, 1] in-

terval in M + 1 segments with an ensemble {Xm} of M ordered

points 0 < XM < ... < X2 < X1 < X0 = 1. Equation (17) is

approximated by the sum

E ≈
∑

m

Lm∆Xm, (18)

where Lm = L(Xm) and ∆Xm = Xm − Xm+1. The difficulty is

now the determination ofLm and ∆Xm because we do not know

a priori the relation between X and L.

The evaluation of Lm values is obtained by the exploration

of the likelihood function via a Monte Carlo sampling. For

this, we use a collection of K parameter values {ak} that we

call live points. At the beginning, these values are randomly

chosen from the prior probability distribution P(ak |I) and they

evolve during the computation steps described in the following

paragraphs.

To clearly present the different stages of the algorithm, we

consider a real analysis of a very simple case. We assume a

Gaussian peak plus a flat background (four parameters in total)

as model and a very statistical poor data set. The data refer

to a high-resolution X-ray spectrum of the helium-like uranium

1s2p 3P2 → 1s2s 3S 1 intrashell transition and is obtained from

Bragg diffraction from a curved crystal [22]. The data and the

best guess (maximum likelihood) of Gaussian peak profile are

shown in Fig. 2.

For each computation step m of the algorithm we indicate

with {am,k} the live points of the step, with k = 1, . . . ,K.

The corresponding likelihood function values are indicated by

Lm,k = L(am,k) and we define Lm = min(Lm,k). The re-

lated X values are indicated by ξm,k = X(Lm,k) and we define

Xm = max(ξm,k). Considering Eq. (15) and Fig. 1, we see that

Xm is equal to the integral of the volume where all {am,k} are

contained. In other words, the volume VL≥Lm
in the parameter

space corresponds to the segment [0, Xm] in the X axis. Let us

see the different steps in details.
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Figure 2: High-resolution X-ray spectrum of the helium-like uranium

1s2p 3P2 → 1s2s 3S 1 intrashell transition from Ref. [22] and corresponding

fit with one Gaussian peak (plus a flat background).

Step 1: The initial {a1,k} live points are sorted considering

P(ak|I) and L1 = min(L1,k) is found. From ξm,k = X(L1,k) we

have X1 = max(ξ1,k) and the ∆X1 = X0 − X1, where X0 = 1. We

have now our first pair of values for the sum in Eq. (18).

Step 2: We built now a new ensemble of live points {a2,k},
which is the same as {a1,k} but where we remove the k′-th ele-

ment with the lower value of likelihood (corresponding to the

higher value of X, i.e. where L1 = L(a1,k′) with X1 = ξ1,k′

and we store its value with the name ã1 = a1,k′ . We replace

this point with a new a value, randomly chosen with the only

condition L(a) > L1. With this requirement we impose that

this point is inside the volume VL≥L1
. From this new ensembles

{ξ2,k} and {L2,k} we define X2 = max(ξ2,k). The interval [0, X2]

correspond to the volume of the parameter space VL≥L2
nested

in the volume VL≥L1
(see Fig. 1). We have then the element

L2,∆X2 of the sum in Eq. (18) and we store the value of the

discarded live points.

Step m: We continue the iteration as in the step 2, storing

at each step the values Lm,∆Xm and ãm. All new live points

{am,k} are enclosed in smaller and smaller parameter volumes

defined by L(a) > Lm that correspond to the intervals [0, Xm]

(see Fig. 1) with Xm = max(ξm,k).

Step M, the end: After M iterations, the estimated error

ErrM on the evidence E evaluation due to the truncation of

the sum in Eq. (18) is less than the target accuracy ∆E and

we stop the calculation. For each step m, Errm is upper lim-

ited by the product LmaxXm where Lmax = max[L(am,k)]. When

LmaxXm < ∆E, we have Errm < ∆E, the main iteration loop of

the nested algorithm stops and the main calculation is finalized.

The likelihood function value associated to the last live points

is the average LM = 〈L(aM,k)〉.

Figure 3: Evolution of the sampled parameter value relative to the peak over

the algorithm step.

In addition to the final live points {aM,k} and their likelihood

function values, all intermediate Lm,∆Xm, ãm are stored and

used for the calculation of the posterior probability distributions

as presented in Sec. 3.3.

For the specific example where we consider the analysis of

the data in Fig 2 and a Gaussian peak as model, we show in

Fig. 3 the evolution of the values of the ãm component rela-

tive to the peak position as function of the algorithm step num-

ber. Starting from a sampling range corresponding to our priors

(here a flat distribution between channel 300 and 600), the al-

gorithm explores smaller and smaller ranges corresponding to

nested volumes of the parameter space. The product Lm∆Xm

relative to each steps are shown in both plots of Fig. 4 via the

value weight = Lm∆Xm/E (see next section for further expla-

nation).

We have now a recipe for calculating Lm values but not the

Xm. In the previous paragraphs we defined Xm = max[X(Lm,k)]

using Eq. (15). But we do not know the function X(L) and

neither its inverse L(X). We can, however, estimate the val-

ues of Xm from some statistical consideration. The extraction

of a set of K live points am,k in the parameter volume VL(a)>Lm

correspond to sort K random numbers in the interval [0, Xm]

(with ξm,k = X[L(am,k)]). For each step, when we pass from the

[0, Xm−1] interval to the [0, Xm] interval, we shrink the volume

(one-dimensional here) by a factor tm = Xm/Xm−1. The proba-

bility distribution for each tm is equal to the probability for hav-

ing a maximum value t given K random numbers ∈ [0, 1]. The

statistical distribution of t is (see Appendix B for more details)

P(t) = KtK−1, with 〈ln t〉 = −1/K. (19)

For the first and second step we have X1 = t1 (X0 = 1) and

X2 = t2X1 = t1t2. For a generic step, considering Eq. (19), Xm

5



Figure 4: Weights associated to discarded value at each step, which are propor-

tional to the product Lm∆Xm)].

is given by the product

Xm =

m
∏

i

ti and then Xm ≈ e−m/K . (20)

From this equation, the values of ∆Xm can be estimated, with

∆XM = e−M/K for the last live points. This approximation intro-

duces an error in the evidence calculation that is proportional to

K−1/2, where K is the number of the employed live points. A

detailed discussion of the evidence uncertainty is presented in

Appendix B.

We note that for the final calculation of the evidence, the

terms Lm,∆Xm in Eq. (18) are not equally important. ∆Xm val-

ues are monotonically decreasing with m where Lm values are

increasing. As we can see from Fig. 3, the product Lm∆Xm

(which defines the step weight as we will see next section) has

a maximum. ãm corresponding to this maximum will strongly

influence the posterior probability distributions and the value of

the evidence.

The bottleneck of the nested sampling algorithm is the search

of new points within the J-dimensional volume defined by

L > Lm. Different methods are commonly employed to accom-

plish this difficult task. One efficient method is the ellipsoidal

nested sampling [23]. It is based for each step on the approx-

imation of the iso-likelihood contour defined by L = Lm by

a J-dimensional ellipsoid calculated from the covariance ma-

trix of the live points. The new point is then selected within

the ellipsoidal volume (times an user-defined enlargement fac-

tor). This methods, well adapted for unimodal posterior distri-

bution has been also extended to multimodal problems [24, 12],

i.e. with the presence of distinguished regions of the parameter

space with high values of the likelihood function. Other search

algorithms are based on Markov chain Monte Carlo (MCMC)

methods [25], as in particular the lawn mower robot method,

developed by L. Simons [26], and the recent Galilean Monte

Figure 5: Histogram of the Gaussian peak position built from the values

Lm,∆Xm, and ãm (see text). Red, yellow and green regions indicate 68%, 95%

and 99% confidence intervals (credible intervals).

Carlo [27, 28], particularly adapted to explore the regions close

to the boundary of VL>Lm
volumes. Nested fit program is

based in an evolution of Simons’ algorithm and is presented in

Sec. 4.

Additional material on the nested sampling can be found in

Refs. 20, 15, 21, 23, 12, 25. In particular in Ref. 29, the different

search algorithms, their efficiency and accuracy are discussed.

3.3. Posterior probability distributions

The posterior probability distributions are built from the dis-

carded live points ãm, the final set of K live points aM,k and their

associated Lm,∆Xm values.

Once the evidence E ≡ P({xi, yi}|I) is determined, poste-

rior inference can be easily generated from the {ãm} and {ak}M
values. Each ãm is in the infinitesimal parameter volume

∆VLm<L(ãm)<Lm+1
that correspond to the interval ∆Xm. Consider-

ing the discrete form of Eq. (16) and Eq. (10), we can calculate

the probability associated to the parameter values ãm, in other

words the step weight named in the previous sections:

P(ãm|{xi, yi}, I) = P(Xm) ≈ Lm∆Xm

E
. (21)

From Eq. (21), the probability distribution of any single param-

eter a j is obtained by marginalization (Eq.(8)), i. e. integrat-

ing of the posterior probability P(a|{xi, yi}, I) over the other pa-

rameters. In our case, if the parameter of interest corresponds

to the jth component, its probability distribution can be built

from (ãm) j values and their corresponding weights defined by

Eq. (21).

For our specific example with a Gaussian distribution as

a model, this corresponds to take (ãm) j values showed in

Fig. 3 (top) and built a weighted histogram (with the weights

Lm∆Xm/E showed by the different color intensities in Fig. 3

and in Fig. 4). From the marginalization on J − 2 parameters
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Figure 6: Joint probability distribution of the parameters relative to the peak

position and width (in terms of sigmas of the Gaussian profile). Red, yellow

and green regions indicate 68%, 95% and 99% confidence intervals (credible

intervals).

also joint probabilities can be built, as that one presented in

Fig. 6 corresponding to the position and width distribution of

the peak.

4. The program

4.1. General considerations

Nested Fit has been developed in Fortran90 for the calcu-

lation of the Bayesian evidence and posterior parameters prob-

ability distributions for a given set of data and selected model.

The core of Nested Fit is the algorithm used for the calcu-

lation of the Bayesian evidence which is, as indicated by its

name, the nested sampling developed by Skilling and presented

in Sec. 3, but with an original method to find new live points.

Due to the large span of the values of the different calculated

element (likelihood function, evidence, Xm, etc.), all computa-

tions are done with respect to their logarithms, as many pro-

grams based on the nested sampling. The data input are pro-

vided in the form {xi, yi}, where xi are real numbers and yi are

necessarily counts detected at the channels xi. To analyze statis-

tical poor (but also not-poor) data sets, the likelihood function is

built considering a Poissonian statistics (which tend to the nor-

mal distribution for large number of counts) for each channel,

leading to

L(a) =
∏

i

F(xi, a)yi e−F(xi ,a)

yi!
, (22)

where for each channel, yi is the recorded number of counts

and F(xi, a) is the expected value of the modeling function that

depends on the parameters a. A large library of functions is

available and new ad hoc functions can easily be added.

Outputs of Nested Fit include the evaluation of the

Bayesian evidence, the corresponding information gain and

complexity and the information to build parameter probability

distributions. The different probability histograms and other

plots are produced via a series of functions of a dedicated

python library. The figures of this article are examples of

their typical outcomes. Additionally to the graphically out-

puts, Python library functions can be used to recursively mod-

ify the input file nf input.dat and to read the results in the

output files. These functions are particularly useful for auto-

mated analysis and systematic surveys.

Several set of data can analyzed at the same time. For exam-

ple, distinct spectra with a same response function can be an-

alyzed, and common parameters such as the profile width can

be extracted by correctly taking into account the correlations

between data sets.

4.2. Computation algorithm of the Bayesian evidence

The calculation of the Bayesian evidence is made with the

nested sampling following the steps presented in Sec. 3, sim-

ilarly to other programs based to the same algorithm [15, 23,

24, 12, 25]. Even if the basic structure is practically identi-

cal to existing codes, the algorithm for the search of new live

points is substantially different. The searching algorithm is a

Makov chain Monte Carlo method to explore the parameter vol-

ume VL>Lm
. To cancel the correlation between the starting point

and the final point, a series of N jumps are done in this volume.

The different stages of the algorithm are

1. Choose randomly a starting point an=0 = a0 from the avail-

able live points {am,k} as starting point of the Markov chain

where n is the number of the jump. The number of tries nt

(see below) is set to zero.

2. From the values an−1, find a new parameter sets an where

each jth parameter is calculated by (an) j = (an−1) j+ f r σ j,

where σ j is the standard deviation of the live points {am,k}
relative to the jth parameter, r ∈ [−1, 1] is a sorted random

number and f is a parameter defined by the user.

(a) If L(an) > Lm and n < N, go to the beginning of step

2 with an increment of the jump number n = n + 1.
(b) If L(an) > Lm and n = N, an=N is new live point to

be included in the new set {am+1,k}.
(c) If L(an) < Lm and n < N and the number of tries

nt is less than the maximum allowed number Nt, go

back to beginning of step 2 with an increment of the

number of tries nt = nt + 1.

(d) If L(an) < Lm and n < N and nt = Nt a new pa-

rameter set a0 has to be selected. Instead than choos-

ing one of the existing live points, a0 is built from

distinct jth components from different live points:

(a0) j = (am,k) j where k is randomly chosen between

1 and K for each j. Then an=0 = a0 and go to the

beginning of step 2.

The last step makes the algorithm well adapted to prob-

lems with multimodal parameter distributions allowing to easily

jump between high-likelihood regions. An example of presence

of several maximal likelihood regions is presented in Fig. 7

where we plot the joint probability of the position and ampli-

tude of one of the four Gaussian peaks of the considered model.
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Figure 7: Joint probability distribution of the parameters relative to the position

and amplitude of one peak in a four Gaussian peaks model. Eight distinct like-

lihood maxima can be identified. Red, yellow and green regions indicate 68%,

95% and 99% confidence intervals.

The value of Nt is fixed in the code (Nt = 10000 in the present

version). The other parameters can be provided by the input

file.

4.3. Inputs

All input parameter required by Nested fit are provided in

the file nf input.dat The most important inputs are:

The maximum number of jumps N and the real number f :

These parameters are important for efficiency of the search

of the new live points and for the non-correlated and ef-

ficient exploration of the parameter space. Higher value

of f guarantee a better independence between the current

live points and the new point but a minor efficiency for

finding it because of the higher probability to jump in the

volume region L < Lm. The same reasoning is applied for

the total number of jumps N.

The number of live points K: The choice of K influence di-

rectly the expected accuracy of the evidence δE ∝ 1/
√

K,

and also provides a better sampling of the parameter vol-

ume. As counterpart, an increasing of K increases the

computation time.

The required final evidence accuracy ∆E: A too large value

of the accuracy will bias the evidence calculation. A too

small value can make the evidence computation signifi-

cantly long. For a given problem, the optimal value is ob-

tained by looking a posteriori at the evolution of Lm∆Xm.

The caclulation has to stop significantly far from the region

where the product Lm∆Xm is large, i. e. far from the most

influent values of X ∼ exp(−H) where H is the extracted

information (in the sense of Shannon, see Appendix A and

Appendix B). Good and efficient values are generally be-

tween 10−3 and 10−5 as also discussed in Ref. 25.

The number of trials sets of live points NLPS: Besides theo-

retical considerations, the best strategy to estimate the ev-

idence accuracy is to calculate E several times with differ-

ent starting sets of live points (with different seed for the

random generator) and to extract the mean and standard

deviation of the logarithmic values of the computed evi-

dence, which is the pertinent quantity for the uncertainty

evaluation (see Appendix B). In addition this method pro-

vides more sampling points of the parameter space for

a better evaluation of the posterior probability distribu-

tions, especially important when multimodal distributions

are present.

The parameter priors Priors of the different parameters can

be selected between two options: (i) an uniform prior

where the parameter value boundaries have to be provided

or (ii) a normal distribution where a main value and the

associated standard deviation have to be provided (as ex-

ample from a past experiment).

Except for the priors, for each case the different parameters

have to be tuned by looking the output in order to have valuable

results (to uniformly and randomly cover the entire parameter

space) but also to have a fast calculation (a good efficiency to

find new live points). For this goal, the most sensitive param-

eters are the number of live points K, the number of jumps N

and the real number f .

4.4. Outputs

Once ended, the program provides four major output files

described below.

• nf output res.dat contains the details of the computa-

tion (n. of live points trials, n. of total iteration), the final

evidence value and its uncertainty E ± δE, the parameter

values â corresponding to the maximum of the likelihood

function, and the mean, the median, the standard deviation

and the confidence intervals (68%, 95% and 99%) of the

posterior probability distribution of each parameter. More-

over, the information gain H , the Bayesian complexity

C and the theoretical minimal value of iteration deduced

from the extracted information value are also provided. δE

is calculated only if NLPS > 2.

• nf output data.dat contains the original input data to-

gether with the model function values corresponding to the

parameters â with the highest likelihood function value,

the residuals and the uncertainty associated to the data.

• nf output tries.dat is present only if NLPS > 2. For

each live points trial, it contains the final evidence, the

number of iterations and the maximum value of the likeli-

hood function.

• nf output points.dat contains all discarded and fi-

nal live points values ãm and {aM,k}, their associated

likelihood values L({xi, yi}, a)} and posterior probabilities

P(a|{xi, yi}, I) ≈ Lm∆Xm/E. From them, the different pa-

rameter probability distributions, as shown in Fig. 5, or
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Figure 8: Pionic nitrogen 5 − 4 transitions. Possible additional transitions from

the presence of one remaining electron in the K shell are indicated

joint probabilities, as shown in Figs. 6 and 7, can be built

from the marginalization (Eq. 8) of the unretained param-

eters.

5. Two examples

In this section we will present two practical applications of

the of the statistical analysis methods described above. In the

first one, we calculate the probability of the presence or not of

a satellite line in a spectrum at a well defined position but with

unknown intensity. The second, more complex, consists in the

analysis of a statistically poor set of data for which we would

like to determine the most probable model among different pos-

sibilities and to extract the position of the main component.

5.1. Satellite line contamination

We consider a common case in spectroscopy where we would

like to test the presence or not of an unresolved weak spectral

line close to a intense line. In this specific example, we con-

sider the 5g−4 f transition in pionic nitrogen, an hydrogen-like

atom formed by a nitrogen nucleus and a negatively charged

pion. During the formation of the pionic atoms, all electrons

are expected to be ejected. The presence of a remaining elec-

tron in the K shell cannot completely be excluded. Its pres-

ence can cause a shift of the main tradition energy due to the

Coulomb screening and then an appearance of a new compo-

nent in the spectrum. To determine the probability of such a

scenario, we have to calculate the evidence for the two possible

models: Model 1 without remaining electrons (a pure H-like

pionic atom) and Model 2 with the possible presence of one re-

maining electron. More details on the physics case can be found

in Refs. 30, 31.

The examined data consist in seven distinct spectra simi-

lar to the one represented in Fig. 8 for a total of about 60000

recorded counts. Each spectra is obtained by a Bragg spec-

trometer equipped by a spherically bent crystal. The evidence

and probability distributions of both models are computed with

Nested fit taking into account all seven spectra at the same

time. For this specific propose we used K = 1000 live points

and an accuracy requirement δE = 10−5. For the search of the

new points we choose the values J = 20 jumps and f = 0.1.

These parameters insure an efficient and complete exploration

of the parameter space and an accurate evaluation of the evi-

dence. For a rough estimation of the evidence uncertainty we

consider NLPS = 8 different live point trial sets. For both mod-

els, we chose flat prior probability distributions for the different

parameters. Compared to model 1, model 2 has only as addi-

tional free parameter the satellite line intensity whose relative

position with respect to the main line has been fixed by the the-

ory.

Since we have to choose among two models only, the relevant

quantity to calculate is the Bayes factor B12, defined in Sec. 2.3,

from which we can determine the criterium in favor to one of

the two hypothesis.

From the output of Nested fit, we have ln B12 = 6.6± 1.8,

which correspond to a probability of 99.98% in favor to the

model without remaining electrons (between 99.86% and 100%

when the Bayes factor uncertainty is taken into account). This

Bayes factor value indicates a decisive support for the M1 hy-

pothesis considering any considered scale (“decisive” in the Jef-

freys scale [8], “very strong” in the Kass scale[17] or “strong”

in the Gordon-Trotta scale [18]) with an equivalent p-value of

about 10−5 for Model 2 [18].

In conclusion, the presence of remaining electrons can be

safely excluded and the main line position can be reliably eval-

uated. Additional discussion on this analysis can be found in

Ref. 31.

5.2. A nasty peak

In this second example we consider the experimental data al-

ready presented in Sec. 4 corresponding to the helium-like ura-

nium 1s2p 3P2 → 1s2s 3S 1 intrashell transition obtained from

a Bragg diffraction spectrometer equipped by a curved crystal

[22]. As can be seen in Fig. 9, the experimental peak is statisti-

cally poor, quite broad and asymmetric. We do not know where

this asymmetry comes from. Eventually, it might be related

to the presence of several spectral components or from spec-

trometer’s aberrations. From the Bayesian analysis we would

like i) to determine the most probable model that describes the

data and ii) to determine the probability distribution of the main

spectral component position, independently on the choice of the

model.

For each model, we calculate with Nested fit the evidence,

the probability distributions and the complexity using the same

parameters as in the previous example except for the number of

live points and the number of trial sets. Here we use K = 2000

live points and NLPS between 8 and 32 depending on the model.

For all models, we chose flat prior probability distributions.

First we consider the simple case where we can have only

Gaussian peaks, between one and four, with the same width σ,
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Figure 9: Profile curves corresponding to the likelihood maxima of the different

models (1–4 Gaussian peaks and Gaussian-exponential peak).

which we know to be a priori between 10 and 30 channels, and

a flat background. From these working hypotheses, we would

like to determine which model is the most probable. i.e. how

many peaks are present, and what is the position of the main

peak. To note, the model with four Gaussian peaks requires

for any single trial set much more computation time than the

single peak due to the presence of several high-value likelihood

regions (see Fig. 7). This is in fact the practical reason why

we consider a maximum of four components. Similar examples

have been presented in the past by Sivia [32, 15]. With respect

to these works, here we consider the analysis of a statistically

poor data set from a real experiment instead of a simulation,

where we do not know the real nature of the spectra.

To visually compare the outcome of the different models, we

present in Fig. 9 the corresponding curves relative to each like-

lihood function maximum. As it can be observe, the profile

maxima are close to each other except for the single Gaussian

peak profile. In the particular case of the 4-peak model, two

Gaussian component are unresolved (as suggested by Fig. 11).

The quantitative results obtained from Nested fit are sum-

marized in Table 1 and Fig. 10 where we report values of the

evidence (in the logarithmic scale), of the model complexity

and the probability of the model (in the table only). The model

with a single Gaussian peak results to have a very low probabil-

ity. From the results of the other hypotheses, we cannot clearly

determine how many peaks are present because models with 2,

3 and 4 components have the same evidence (within the asso-

ciated uncertainty). As suggested by Trotta [11], a criterium to

choose between different models with similar evidence is the

Bayesian complexity C value (see Sec. 2.3 and Appendix A).

When different hypotheses have similar evidence values, we

should choose the model with the lower value of C to favor once

more simple models versus complex models, in agreement to

the Ockham’s razor principle. In our case, the two-peak model

is the favorite with a low complexity value, only slightly higher

Figure 10: Evidence and complexity of the different considered models.

Table 1: Evidence, model probability and complexity of the different models: a

series of n Gaussian peak or a Gaussian-exponential (left side) peak.

Model ln E Relative

probability

Comp-

lexity

1 G. peak −572.37 ± 0.15 4.9 × 10−8 2.7

2 G. peaks −557.00 ± 0.62 23.1% 3.8

3 G. peaks −556.55 ± 0.31 36.0% 12.3

4 G. peaks −556.43 ± 1.30 40.9% 8.4

1 G.-exp. peak −554.28 ± 0.21 – 3.5

than the one-peak model complexity, and high probability.

If we are not interested to determine the number of peaks,

but only to the main peak position component µ0, we can built

the correspondent probability distribution P(µ0|{xi, yi}, I) from

the output of the each model analysis. As in Eq. (14), we can

build P(µ0|{xi, yi}, I) from the different P(µ0|{xi, yi},Mℓ, I) dis-

tributions using as weight the model probabilities summarized

in Table 1. The final probability distribution of the main peak

position (around channels 450–480) is presented in Fig. 11. It is

quite complex, with the presence of several maxima mainly due

to the four-peak model contribution. These maxima correspond

in fact to the high-likelihood regions visible in Fig. 7. Because

of the low probability, the one-peak model does not contribute

significantly to the final distribution. As comparison its contri-

bution is presented in Fig. 11 with a magnification factor.

Alternatively to the presence of several Gaussian peaks, a

valid hypothesis is the presence of some kind of aberration due

to the spectrometer characteristics. A spectrometer with cylin-

drically bent crystal in the Johann geometry is in fact used. To

take into account this possibility, we model the aberration effect

by a line profile resulting from the convolution between a Gaus-

sian and an exponential function [33]. As we can see in Fig. 9,

the curve corresponding to the likelihood maximum reproduces

well the data, with a maximum very close to the multi-Gaussian
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Figure 11: Probability distribution of the main peak position from the single

probabilities of the models with one-to-four Gaussian peaks. For the single

peak model, we magnify its weighted probability (in grey) to compare the dis-

tributions.

peaks models (with exclusion of the single peak model). From

Table 1 and Fig. 10, we can observe more quantitatively that

the associated evidence is significantly higher than any other

model. With respect to the two-Gaussian peaks, the probability

for the Gaussian-exponential profile is in fact 98.3%. At the

same time the associated complexity remains small, intermedi-

ate between single and double Gaussian peak models, indicat-

ing that, together with the model probability, the presence of an

aberration as explanation of the asymmetry experimental data

distribution is the most valid hypothesis.

In the previous paragraphs we show how evidence and com-

plexity evaluations can help to determine the most plausible

model to describe a set of data. In this specific example, we

remember that we consider a strong assumption on the number

of the possible Gaussian peaks to mainly limit the computa-

tional time. Other hypotheses could be considered but always

taking into account our prior knowledge coming from previous

experiments or general physical considerations. Formally this

prior knowledge should be included in the model prior proba-

bility that, once multiplied to the evidence, gives the final prob-

ability for the different models. For this point, critics could

be addressed about the objectivity. But again, the meaning of

such dependency on the priors should be pragmatically be in-

terpreted as a message saying that the data quality is not suffi-

cient to correctly analyze the problem and choose among dif-

ferent hypotheses. Nevertheless, this approach provide a well

defined procedure to exclude unrealistic models with the com-

parison with the data via the evidence computation (as for the

single-peak model) or, via prior probabilities, models that are

not consistent with our present knowledge of physics and sim-

ply common sense, on which our logic is based.

6. Conclusions

The main intent of this article is to provide an useful start-

ing point for the atomic physics community to use Bayesian

methods for data analysis. For this propose, we provide a

very synthetic and basic introduction to Bayesian statistics. We

show how, from basic logic reasoning with requirement of con-

sistency, a very general definition of probability can be con-

structed. This definition automatically implies the Bayes’ theo-

rem, which plays the central role for the prior probability inclu-

sion. From this approach, we see how posterior probabilities

can be simply calculated as well as probabilities for different

hypotheses.

To visualize the practical consequences of the use of these

new concepts, we show two atomic spectra analysis examples.

In the first one we see how we can determine the presence or not

of an unresolved spectral line. In the second, more complex, we

calculate the probability of different possible models (different

number of peaks and peak shape) and we see how to extract

valuable information (the main peak position in our case) from

equiprobable hypotheses.

For hypothesis testing, the calculation of the Bayesian evi-

dence from the experimental data is essential. Different meth-

ods are available in the literature to evaluate the Bayesian evi-

dence. In this article we present in detail the nested sampling

technique developed originally by J. Skilling in 2004 based

on a particular for of Monte Carlo sampling of the model pa-

rameter space. We also present the newly developed program

Nested fit based on such method but with a new parameter

exploration algorithm. We show its capabilities and typical in-

puts and outputs.
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Appendix A. Information and complexity

The gain of knowledge we obtain from the analysis of exper-

imental data can be quantified in terms of informationH , in the

Shannon sense [34, 35], that we gain in the process by the com-

parison between the posterior probability P(a|{xi, yi}, I) and the

prior probability P(a|I). The information gain, in units of nat2,

2nat is the unit of information when the normal logarithm is used, similarly

to the bit, the unit where the base-2 logarithm is employed.
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is given by the so-called Kullback-Leibler divergence [36]

H ≡ DKL =

∫

P(a|{xi, yi}, I) ln

[

P(a|{xi, yi}, I)

P(a|I)

]

dD a. (A.1)

Considering Eq. (10), DKL can be written as

DKL = − ln E +

∫

P(a|{xi, yi}, I) ln L(a)dDa, (A.2)

which is nothing else that the negative logarithm of the evidence

plus the average of the logarithmic value of the likelihood func-

tion.

From DKL there is a interesting quantity can be derived

that provides an additional criterion to compare models: the

Bayesian complexity C. C is calculated from the difference be-

tween the DKL, i.e. the average of ln(L), and the “expected sur-

prise” [11] from the data represented by the value D̂KL, where

D̂KL = − ln E + ln L(â), (A.3)

where â usually correspond to the posterior parameter mean

values, or other possible estimators (ex. the likelihood function

maximum or the posterior distribution medians) depending on

the details of the problem3. The complexity is then defined as

C = −2(DKL − D̂KL) = −2 [〈ln L(a)〉 − ln L(â)] , (A.4)

where the symbol 〈 〉 indicates the mean value [2, 11]. C gives

in practice a measurement of the number of parameters that the

data can support for a certain modelM for a defined set of data

and parameter priors [2, 37].

For equiprobable models (similar evidence values), the com-

parison of Bayesian complexity could determine the choice in

favor to one model or the other. Considering two different mod-

elsM1 andM2 with E1 ≈ E2 and different number of parame-

ters J1 < J2, we can have to cases [11]:

C1 < C2 : The quality of the data is sufficient to measure the

additional parameters of the more complicated model, but

they do not improve its evidence by much. We should pre-

fer model with less parameters.

C1 ≈ C2: The quality of the data is not sufficient to measure

the additional parameters of the more complicated model

and we cannot draw any conclusions as to whether extra

parameters are needed.

Appendix B. Theoretical uncertainty of the evidence calcu-

lation by nested sampling

The main uncertainty of the final evaluation of the evidence

calculated by the nested sampling is, as stated by the author of

this method J. Skilling, related to the probabilistic nature of the

terms ∆Xm in Eq. (18) [15, 21, 38, 25]. The choice of numeri-

cal integration of Eq. (17) (rectangle method, trapezoidal rule,

3For multimode posterior probability distributions, the likelihood function

maximum is more adapted. In fact the mean value can easily be far from the

parameter region corresponding to high values of the likelihood function.

etc.) does not influence very much the final result. Instead, the

statistical glittering of ∆Xm in Eq. (18) introduces an error.

The interval values are calculated from Xm =
∏m

i ti
(Eq. (20)), where ti are the shrinking of the considered inter-

val of X. The statistical distribution of the shrinking values ti
can be obtained from simple probabilistic considerations. For

each step m, the shrinking value is derived from the {ξm,k} val-

ues of X that correspond to the K considered live points. The K

randomly sorted live points correspond the K values {ξm,k} that

are uniformly distributed in the interval [0, Xm]. To pass to the

m + 1 step, we have to identify the maximum value of {ξm,k}
to determine the shrinking factor tm+1 = max(ξm,k/Xm). This

correspond to find the maximum of K values {xk} uniformly

distributed in the interval [0, 1] (where xk = ξm,k/Xm).

Considering a certain xk′ = t, the probability that all other

values are less than t is
∏

k,k′ P(xk ∈ [0, t]) = tK−1. Because

this is valid for any xk′ ∈ {xk}, then

P(t = max{xk}) = KtK−1. (B.1)

This probability distribution has the following properties.

The average and standard deviation of ln t are

〈ln t〉 = − 1

K
and σln t =

1

K
. (B.2)

From the above equation, we evaluate the Xm values

ln Xm = −
m

K
±
√

m

K
. (B.3)

If the main value of Xm is taken into account (as in Sec. 3),

we introduce an error of the order of
√

m/K in the evidence

evaluation via ∆Xm values.

As we can see in Fig. 4, not all m steps contribute equally

to for the final value of E. The calculated evidence is domi-

nated by the region where the productLm∆Xm is maximal. The

maximum position can correlate to the information gainH as-

sociated to the data (and the model) by Eq. (A.1).

To estimate this position, we have to make some approxima-

tion. Considering Eqs. (A.1), (16) and (17), we have that the

information in terms of L(X) is

H =
∫ 1

0

L(X)

E
ln

[

L(X)

E

]

dX =

∫ 1

0

P(X) ln P(X)dX. (B.4)

If we assume the extreme case of a likelihood function with

a core with a constant value L(X) = L̂ for X < X̂ and zero

elsewhere [38], we have that E = L̂X̂ and then P(X) = 1/X̂ for

X < X̂ and zero otherwise. In this case we have

H =
∫ X̂

0

1

X̂
ln

(

1

X̂

)

dX = − ln X̂ (B.5)

and then X̂ = e−H (see also Refs. 15, 21, 38, 25 for further

considerations).

From Eqs. (B.3) and (B.5), we see that the m value associated

to this region, the most influent region for the value of E, is

m = KH and

ln X̂ = H ±
√

H
K
. (B.6)
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The dominant uncertainty associated to the evidence is then

δ(ln E) ≈ δ














ln















∑

m

∆Xm





























≈
√

H
K
. (B.7)

Many approximations in this evaluation have been done but

the dependency of δ(ln E) ∝ 1/
√

K emerges. This dependency

has been confirmed by computational studies [25] that also in-

vestigate the influence of the search algorithm parameters for

the new live points in the nested sampling.

A more pragmatic and practical way to evaluate the accuracy

of E, which is employed in Nested Fit program (see Sec. 4),

is to calculate the evidence for different trials with different sets

of live points and calculate then the average and the standard

deviation of the different values of ln E. From the consider-

ation above, this is in fact the natural estimation to study the

uncertainty of E [38, 39].
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