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Robust Design of Parameter Identification

Aurélien Massein, David Daney and Yves Papegay

Abstract Quality of results computed during parameter identification problems re-
lies on the selection of system’s states while performing measurements. This choice
usually does not take into account the uncertainty of states and of measures. For
identifiability, classical methods focus only on the contribution of model errors on
the uncertainty of parameters. We present an alternative approach that tackles this
drawback: taking into account influence of all uncertainty sources in order to im-
prove parameter identification robustness to uncertainties. A robotic application ex-
ample that showcases the differences between approaches is developed as well.

Key words: parameter identification, optimal design, observability index, uncer-
tainties, localisation.

1 Introduction

Design of experiments [2] is a way to improve results of a generic parameter identi-
fication problem. It is applied namely in robotics [8], for calibration [1], and in GPS
area through dilution of precision [9].

In such identification problem, unknown parameters are related with states of the
system, and with measured outputs through a model prone to uncertainties. Inaccu-
racy sources of the model are model discrepancy, measurement errors and inexac-
titude of system’s states. Observation of different sets of measurements for differ-
ent states of the system provides a way to compute unknown parameters through
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a regression analysis process. In this process choice of states is crucial to enhance
parameters identification. It refers to identifiability of the model and identifiability
criteria.

In the non-linear case [5], unknown parameters are classically computed by an
iterative optimisation algorithm, starting from an initial estimation. During this it-
erative process, states and measures remain unchanged and influence of their un-
certainties are neglected. At the end of the process, all uncertainties have the same
order of magnitude. Despite this last remark, in the literature, choice of states is done
with the same assumption that uncertainties on states and measures are negligible,
by evaluating identifiability criteria to the so-called identification matrix. In this pa-
per, we promote the idea to take into account the different sources of inaccuracy
–namely all uncertainty sources– when selecting states for parameter identification.
Hence, we are applying similarly identifiability criteria to what we call the uncer-
tainty matrix, a matrix describing the contribution of all uncertainties to errors of
the model.

In the next section, we are describing with more details the parameter identifi-
cation problem, the regression analysis process, the iterative optimisation process,
and identifiability criteria. We carefully define the identification matrix and the un-
certainty matrix, and how they are used for selection of identification states of the
system. The last section is devoted to a pedagogical application, that clearly shows
the difference between the classical and the proposed approach of states selection.

This application concerns the localisation of a source by a mobile robot. In this
application, measures are taken at regular time step, and the selection of states corre-
spond to a trajectory determination, that can be easily visualized. Another interest of
this example is the ability to perform the states selection incrementally, that allows
some enhancements of the identification method.

2 Parameter Identification

2.1 Model Definition

We consider a system in step k = 1 . . .K, depending on unknown parameters x, sys-
tem’s states u =

[
u1 . . . uk

]T , and measured outputs m =
[
m1 . . . mk

]T , through
the following model:

fk (uk,x,mk) = 0 (1)

As we consider that system’s states and measured outputs are prone to uncertain-
ties, we distinguish each variable x of its actual value x∗, and denote uncertainty on
it by ∆x. Once plugged into the model, the k-th observation of the system provides
a set of Dim( f ) equations:

fk (u∗k ,x
∗,m∗k) = fk (uk +∆uk,x∗,mk +∆mk) = 0 (2)
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We need to acquire p system observations, such that the number of equations
will be greater than the number of unknown parameters (K ·Dim( f )> Dim(x)). The
resulting system is usually widely over-constrained.

2.2 Regression Analysis

Based on the set of these observations leading to residual errors,

fk (uk,x∗,mk) = εk with k = 1 . . .K (3)

a regression analysis estimator provides a solution x̂ minimizing a given criterion.
In the classical case of a Non-Linear Least Squares estimator, the criterion is the sum
of the squares of residual errors:

K

∑
k=1

fk (uk, x̂,mk)
T · fk (uk, x̂,mk) (4)

Method of optimisation is based on a first-order linear approximation of the
model:

f (u+∆u,x+∆x,m+∆m)≈ f (u,x,m)+ Ju ·∆u+ Jx ·∆x+ Jm ·∆m
or

∆ f ≈ Ju ·∆u+ Jx ·∆x+ Jm ·∆m
(5)

with ∆u = [∆u1, . . . ,∆up]
T , ∆m = [∆m1, . . . ,∆mp]

T and ∆ f = [∆ f1, . . . ,∆ fp]
T .

Starting from an initial estimate x0 of x, the Non-Linear Least Squares method
performs several solving steps to reduce ∆x. As Ju ·∆u+ Jm ·∆m is assumed to be
negligible compared to Jx ·∆x, see [4], j-th step consists in solving the following lin-
ear system –with ∆ f and Jx computed from previous estimation x j– in the unknown
variables x j+1:

∆ f [x j] = Jx[x j] ·∆x j+1 with ∆x j+1 = x j+1− x j (6)

Iterative process ends when ∆x is sufficiently small, and is the same order of mag-
nitude of ∆u and ∆m - see [4] for the stop condition.

At the end of this iterative process, one classically considers that the quality
of the final estimation x̂ relies on the numerical quality of the Jacobian matrix Jx,
denoted by Identification Matrix. Numerical quality is precisely defined in terms
of identifiability criteria (see below). As identification matrix depends on system’s
states, poses of the system for measurements are selected by optimisation of these
criteria.
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2.3 Identifiability Criteria

Identifiability criteria have been widely studied in optimal design of experiments
-being called optimality criteria- and in robotics calibration problems -being called
observability criteria-. Sun and Hollerbach have synthesized in [10] those criteria
and showed their similarities as some observability indexes have an optimality cri-
terion counterpart.

Given a rectangular matrix M such that Y = M ·X , identifiability criteria quanti-
fies how uncertainties on X propagate to uncertainties on Y through M. The objective
is to minimize some observability -or optimality- indexes, denoted O, associated to
M, by choosing the state variable û which parametrize the matrix M, such that:

û = argmin
u

O(M(u)) (7)

Three criteria are popular, related to the singular values of the matrix M, obtained
and sorted by a Singular Value Decomposition (and denoted by σL ≤ . . .≤ σ1):

• D-Optimality: O1 = ∏
L
l=1 σl

1/(np). This index corresponds to the determinant of
MT .M here,

√
det(MT .M) = ∏

L
l=1 σl . The sensitivity of Y with respect to X is

decreased when O1 is minimized.
• Inverse of the condition number: O2 = σL/σ1
• E-Optimality: O3 = σL

Sun and Hollerbach argued that O1 (D-optimality) is the best criterion for a pa-
rameter estimation of an unscaled model or a model without a convincing scaling
approach has to be minimized [10]. Fedorov and Leonov stated that D-optimal (O1)
designs are most popular among theoretical and applied researchers in optimal ex-
perimental designs [2].

We can denote briefly that O2 which related to condition number is for balancing
parameter uncertainties importance, whereas O3 is for reducing the worst parame-
ter’s uncertainty.

2.4 Uncertainty Matrix

At the end of the iterative process, a linear approximation of f in the neighborhood
of the final estimation x̂ of x is given by the p following equations:

fk (u∗k ,x
∗,m∗k)≈ f (uk, x̂,m)+ Ju ·∆uk + Jx ·∆x+ Jm ·∆mk (8)

that can be written synthetically :

∆ f ≈ Ju ·∆u+ Jx ·∆x+ Jm ·∆m (9)

or by introducing what we denote by U , the Uncertainty Matrix such that:
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∆x =−J+x ·
[
Ju Jm −Id

]
·

∆u
∆m
∆ f

=U ·

∆u
∆m
∆ f

 (10)

J+x being the pseudo-inverse of Jx.
We then claim that it is interesting to apply identifiability criteria to this uncer-

tainty matrix U –minimizing O(U)– when selecting states. To be efficient, at this
point, we would benefit of normalizing the uncertainties as done in [6,7] or alterna-
tively [3].

3 Source Localisation Application

In this section, we illustrate the difference between using the identifiability matrix
and using the uncertainty matrix in the previously described states selection process,
on a pedagogical two-dimensional source localisation application.

3.1 Problem Statement

We aim to localize accurately and step-efficiently a fixed source with the help of a
mobile robot.

The mobile robot we consider has an embedded sensor measuring its direction
with respect to a source x =

[
xS yS

]T , with a fixed sampling frequency and prone
to bounded uncertainties. Our workspace is two dimensional and free of obstacle:
wherever we are we can get a measure at each sampling step k and move anywhere.
Speed of the robot is supposed constant and a constant distance r separates two
consecutive measurement positions.

We describe the robot motion in polar coordinates. To move robot from position
uk =

[
xk yk

]T at step k onto the next position uk+1, we need a leading direction
αk+1 as written belowf:

uk+1 = r
[

cosαk+1
sinαk+1

]
+uk (11)

At each measurement step, the goniometric sensor on the robot provides the az-
imuth mk –with respect to a fixed reference frame– such that[

sinmk
−cosmk

]
· (x−uk) = 0 (12)

In the equations of the model, the position of the source x, the position uk and the
measured azimuth mk play respectively the roles of unknown parameters x, states u
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and measures m. Expressed at the k-th step, the model fk is precisely given by the
previous equations. Please note that uk depends on αk.

Hence first-order linear approximation of the model expressed as:[
sinmk
−cosmk

]
·∆x+

[
−sinmk
cosmk

]
·∆uk +

[
cosmk
−sinmk

]
·(x−uk) ·∆mk (13)

The difference between robot and source position x− uk is equal to ρk, the dis-
tance between uk and x, modulo cos(m∗k −mk) which approximation is considered
equal to 1.

3.2 States Choices

The expressions of the identifiability matrix and of the uncertainty matrix are re-
spectively (at the k-th step):

Jxk =

 jx1
. . .
jxk

 with jxk =
[
sinmk,−cosmk

]
(14)

Uk = J+xk
·Nk (15)

where Nk =


n1 0 . . . 0

0 n2 0
...

... 0
. . . 0

0 . . . 0 nk

 with nk =
[
sinmk −cosmk −ρk 1

]
(16)

Then, the optimal next direction αk+1 for the mobile robot, is defined with the help
of the identifiability criterion O1 using either Jxk+1 or Uk+1.

3.3 Experiment and Results

In our experiment, source x is at position x =
[
0 1

]T , and the initial mobile robot
position is u1 =

[
0 0

]T . The fixed motion step is r = 0.01, with a relative error
lower than 1% and we have the same error on the direction αk about 0.1◦. Finally,
the uncertainty of the measured angle ∆m is uniformly distributed and bounded by
∆m =±10◦.

In a first experiment, we select each step αk+1 according to the maximization of
O1(Jxk+1). In the second, we select it to minimize O1(Uk+1).

The obtained results are presented in figures (1a) and (1b).
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The first one displays the motion of the mobile robot into the euclidean workspace
step-by-step: blue motion curve stands for a gradient determinant optimisation on
identification matrix Jx and orange motion curve for one on uncertainty matrix U .

The second one presents the error ‖x∗− x̂‖ as a function of the number of steps
in the two experiments with the same color code.
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Fig. 1: Source Localisation Application

Note that the blue motion favours a circle approach centered on the source po-
sition whereas the orange motion favours a spiral approach on it: By neglecting
uncertainties on measures (blue case), we intuitively want to change the angle m as
much as possible between two measurement positions, see [11], for a better condi-
tioning of Jxk . On the orange trajectory, we also take into account the measurement
errors, so we try to become closer to the source to minimize the influence of such
errors.

4 Conclusion

We have introduced a new matrix to improve parameter estimation robustness to
all uncertainties, in complement to classical identification optimisation. We applied
our matrix optimisation in a source localisation application and demonstrated its
possible application in a practical case. Results outperformed classical identification
optimisation.

This application highlights that, to improve parameter estimation accuracy, we
need to take into account more uncertainties than classically ones held in the identi-
fication matrix. Our proposed uncertainty matrix can be used in design of parameter
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identification problems, can improve significantly estimations accuracy and their
robustness to uncertainties.
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