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The problem of directional sensor placement and orientation is considered when statistical information about the source direction-of-arrival is available. We focus on two-sensor arrays and form a Cramer-Rao-Bound based cost function that depends on the probability distribution of the coplanar source direction. Proper positioning and orientation of the sensors enable the two-sensor array to have an accuracy comparable to that of a 3 or 4 sensor uniform circular array.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a major topic of antenna arrays signal processing, studied extensively over decades [START_REF] Krim | Two decades of array signal processing research[END_REF]. Source parameters (range, polarization, and, most notably, DOA) are extracted from the array manifold with an accuracy that depends on the estimation algorithm, but also on the array geometry. The potential of array geometry adaptation has been recently demonstrated [START_REF] Lange | Optimization of array geometry for directionof-arrival estimation using a priori information[END_REF], [START_REF] Gazzah | Optimum antenna arrays for isotropic direction finding[END_REF], [START_REF] Gazzah | Direction finding antenna arrays for the randomly located source[END_REF], [START_REF] Gazzah | CRB based-design of linear antenna arrays for near-field source localization[END_REF] to reduce the Cramer Rao Bound (CRB) on the DOA of deterministic/random far/near sources. For instance, (near) optimum nontrivial antenna array geometries were found that improve DOA estimation accuracy by 36% to 85%, depending on the a priori information available about the source, compared to the more regularly used Uniform Circular Array (UCA) [START_REF] Gazzah | Direction finding antenna arrays for the randomly located source[END_REF].

Similarly to previous work [START_REF] Lange | Optimization of array geometry for directionof-arrival estimation using a priori information[END_REF], [START_REF] Gazzah | Optimum antenna arrays for isotropic direction finding[END_REF], [START_REF] Gazzah | Direction finding antenna arrays for the randomly located source[END_REF], [START_REF] Gazzah | CRB based-design of linear antenna arrays for near-field source localization[END_REF], we continue to consider narrow-band sources. However, in this paper, sensors are not omni-directional, posing the problem of sensor orientations, in addition to sensor positions. We continue to refer to the CRB as our performance measure, both because it is algorithm-independent and achievable by a number of popular techniques [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], [START_REF] Gazzah | Spectral efficiency of beamforming-based parameter estimation in the single source case[END_REF]. The CRB is different from a look direction to the other, so we use the Expected CRB (ECRB) to build a geometric cost function that also depends on the Probability Density Function (PDF) of the source DOA [START_REF] Lange | Optimization of array geometry for directionof-arrival estimation using a priori information[END_REF], [START_REF] Gazzah | Direction finding antenna arrays for the randomly located source[END_REF], [START_REF] Oktel | A Bayesian approach to array geometry design[END_REF]. Optimization of the analytically intractable CRBbased cost function is achieved by means of a systematic search, preferably to heuristic techniques [START_REF] Lange | Optimization of array geometry for directionof-arrival estimation using a priori information[END_REF], [START_REF] Oktel | A Bayesian approach to array geometry design[END_REF], [START_REF] Bevelacqua | Optimizing antenna array geometry for interference suppression[END_REF]. In order to reduce the computation burden, a minimal number of two sensors is considered. This is relevant to a number of applications that can accommodate only short aperture arrays, Houcem Gazzah is with the Department of Electrical and Computer Engineering, University of Sharjah, 27272, UAE. E-mail: hgazzah@sharjah.ac.ae, Tel.: (971) 6.5050.917, Fax.: (971) 6.5050.872. Jean Pierre Delmas is with Telecom SudParis, Departement CITI, CNRS UMR 5157, Evry, France. Email: jean-pierre.delmas@it-sudparis.eu. Sérgio M. Jesus is with LARSyS, Universidade do Algarve, 8005-139 Faro, Portugal. Email: sjesus@ualg.pt.

notably Autonomous Underwater Vehicles (AUV) used, e.g., in adaptive sampling networks [START_REF] Schmidt | Mobile underwater arrays[END_REF], [START_REF] Wang | Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment[END_REF].

We focus on DOA estimation accuracy and, for instance, do not take array ambiguities into consideration. First, array ambiguities are less frequent when using arrays of directional sensors [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF]. Second, they can be avoided by an appropriate choice of the spacing between adjacent sensors [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], which is allowed by the proposed algorithm. We, also, assume a source in the array plane. This is meaningful to a number of terrestrial applications [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], [START_REF] Demmel | Practical Aspects of Design and Application of Direction-Finding Systems[END_REF], [START_REF] Liao | Frequency invariant uniform concentric circular arrays with directional elements[END_REF] and amounts to prioritize the azimuth angle. With the azimuth as our unique parameterof-interest, we develop a scalar-valued performance measure and conduct an optimization in this perspective.

When the response of the directional sensors is not specified, the CRB has a non interpretable expression [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF]. It is only once we assume a specific type of sensors, as in [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], [START_REF] Liao | Frequency invariant uniform concentric circular arrays with directional elements[END_REF], that performance analysis (and optimization) can be conducted. In our tests, we consider cardioid-type sensors for both the proposed geometry-optimized two-sensor array and the reference larger-sized UCAs. In the pessimistic case when there is no information about the source DOA, a scenario studied in [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], we find that sensors should be pointing at different directions, so that the CRB is finite at every possible look direction and the subsequent ECRB is finite as well. If the source DOA is known with (moderate) uncertainty, the optimized two-sensor array has a better accuracy than the three-sensor UCA. The fact that we can achieve with two sensors an accuracy normally achievable by (a UCA of) three sensors implies significant reduction of the size, weight, power and cost of the system [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], since every single sensor requires a separate receiver channel.

The paper is organized as follows. In Sec. II, we introduce the observation model and develop expressions of the CRB. In Sec. III, the CRB of the array of two directional sensors is studied in detail and a subsequent array geometry procedure is defined. In Sec. IV, tests are conducted using cardioid-type sensors to compare the optimized array to larger-sized UCAs. Finally, a conclusion is given in Sec. V.

II. SIGNAL MODEL AND GENERAL RESULTS

A narrow-band source is emitting a signal s(t) of wavelength λ in the direction of an array of M co-planar sensors.

In the [O, x, y) plane, sensor m is placed at point P m with a distance OP m = ρ m λ from the origin O and an angle φ m between the [O, x) axis and [O, P m ). The far-field source is seen at the antenna array under the DOA angle θ, restricted to be in [-π, π], w.r.t the [O, x) axis. All angles are measured counter-clockwise. The array output at time index t x(t) = a(θ)s(t) + n(t), t = t 1 , ..., t N , is a scaled and noise-corrupted replica of the DOA-dependent Array Response Vector (ARV) a(θ). The ARV is an extension of the array steering vector that incorporates gains of the sensors [START_REF] Balanis | Introduction to Smart Antennas[END_REF]. Its m-th component is given by

[a(θ)] m = g m (θ) exp [j2πρ m cos (θ -φ m )] , (1) 
where we have assumed that sensor m, not necessarily omnidirectional, has a directional response described by the function g m (θ) 1 . Snapshots (x(t)) t=t1,...,tN are used to estimate the parameter θ using a variety of techniques. The CRB [START_REF] Porat | Analysis of the asymptotic relative efficiency of the MUSIC algorithm[END_REF] often serves as a benchmark to compare estimation performance of the different estimation algorithms. It represents the lowest mean square error achievable by any unbiased estimator. The CRB is also of practical importance [START_REF] Demmel | Practical Aspects of Design and Application of Direction-Finding Systems[END_REF] because (in the single source case considered here) is achieved (asymptotically, as the number of snapshots increases) by both the high-resolution MUSIC algorithm [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] and the low-resolution beam-forming techniques [START_REF] Gazzah | Spectral efficiency of beamforming-based parameter estimation in the single source case[END_REF]. The following statistical properties are often assumed about s(t) and n(t): (i) s(t) and n(t) are independent, (ii) (n(t)) t=t1,...,tN are independent, zero-mean circular Gaussian distributed with covariance E n(t)n H (t) = σ2 n I, I being the M × M identity matrix, (iii) (s(t)) t=t1,...,tN are assumed to be either deterministic unknown parameters (the so-called conditional or deterministic model), or independent zero-mean circular Gaussian distributed with variance σ 2 s (the so-called unconditional or stochastic model). The above conditions, while of common use in performance analysis (see e.g., [START_REF] Porat | Analysis of the asymptotic relative efficiency of the MUSIC algorithm[END_REF]), do not account for some practical aspects (spatially/temporally correlated noise, mutual coupling, . . . ) whose impact is to be evaluated empirically, rather than analytically, which is beyond the scope of this study. The CRBs associated with both models have been proved in [START_REF] Gazzah | CRB based-design of linear antenna arrays for near-field source localization[END_REF] to be proportional (one to the other) 2 . For instance, the CRB associated with the first model is given by

CRB(θ) = σ 2 n 2N σ 2 s F -1 (θ), (2) 
where, given a ′ (θ) =da(θ)/dθ, the scalar-valued

F (θ) = a ′ (θ) 2 - |a H (θ)a ′ (θ)| 2 a(θ) 2 (3) 
is a convenient design criterion because it is independent from the noise/signal power and the number of snapshots. Consequently, we will be referring to the above expressions throughout the paper.

III. THEORETICAL DEVELOPMENT

A. Optimization Criterion

The array is made of two directional sensors [START_REF] Kamkar-Parsi | Improved noise power spectrum density estimation for binaural hearing aids operating in a diffuse noise field environment[END_REF]. One is placed at the origin, while the position of the other one, characterized by distance ρ =ρ 2 and angle φ = φ 2 , is to be determined, along with the orientation of each sensor. Given the following expression of the ARV

a(θ) = [g 1 (θ), g 2 (θ) exp [j2πρ cos (θ -φ)]] T , (4) 
we prove in Appendix A that

F (θ) = g 2 1 (θ) [h ′ (θ)] 2 + 4π 2 ρ 2 h 2 (θ) sin 2 (θ -φ) 1 + h 2 (θ) , (5) 
where h(θ) =g 2 (θ)/g 1 (θ), assuming none of the sensors has a strictly zero gain at any direction. Here, h ′ (θ) can be interpreted as a measure of the mismatch between the two sensors' directivity patterns. Based on (5), we can make the following two remarks: (i) If the two sensors are identical and pointing in the same direction, In practice, we are likely to use identical sensors pointing at different directions, i.e.

g(θ) = g 1 (θ) = g 2 (θ), then F (θ) = 2π 2 g 2 (θ)ρ 2 sin 2 (θ -φ) is
g m (θ) =g(θ -ψ m ), m = 1, 2.
As illustrated in Fig. 1, the array configuration is, now, parameterized by geometrical parameters ρ, φ, ψ 1 and ψ 2 , in function of which F (θ) is expressed, as follows

F (θ) = g ′ (θ-ψ1) g(θ-ψ1) -g ′ (θ-ψ2) g(θ-ψ2) 2 + 4π 2 ρ 2 sin 2 (θ -φ) 1 g 2 (θ-ψ1) + 1 g 2 (θ-ψ2) . (6)
This function is to be interpreted as the ability of the antenna array to accurately localize a source with the specific DOA θ. Since the source DOA cannot be (exactly) known in advance, the overall array performance is more suitably measured in terms of the so-called expected CRB [START_REF] Lange | Optimization of array geometry for directionof-arrival estimation using a priori information[END_REF], [START_REF] Gazzah | Direction finding antenna arrays for the randomly located source[END_REF], [START_REF] Oktel | A Bayesian approach to array geometry design[END_REF] defined as ECRB =E [CRB(θ)]. By adopting the ECRB as a performance criterion, we, implicitly, allow the CRB to be high at directions where the source is less likely to show up. The a priori information about the source DOA is available in the form of a PDF f (θ), leading to

ECRB = σ 2 n 2N σ 2 s π -π f (θ) F (θ) dθ.
Minimizing the ECRB for fixed powers σ 2 n and σ 2 s and number N of snapshots is tantamount to minimizing

2N σ 2 s σ 2 n ECRB = π -π f (θ) F (θ) dθ. (7) 

B. Optimization Procedure

Inter-sensor spacing ρ is assumed to be fixed based on considerations other than estimation accuracy (e.g. coupling and ambiguity considerations), independently from ψ 1 , ψ 2 and φ, which remain to be determined by minimization of the above ECRB criterion. This is to be achieved by means of a 3D systematic search. It will be possible to reduce the search area thanks to some properties of the cost function. In fact, [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] 

is unchanged if i) φ is replaced by φ + π; or ii) (ψ 1 , ψ 2 ) is replaced by (ψ 2 , ψ 1 ). Consequently, the systematic search can be restricted to φ in [-π/2, π/2], ψ 1 in [-π, π], ψ 2 in [-π, π] and ψ 1 ≤ ψ 2 .
Notice that, for the sake of numerical stability, configurations where ψ 1 = ψ 2 are not tested because, then, the function 1/F (θ) is divergent (at θ = φ), and so is the ECRB.

Further simplification is possible if both the sensor response and the DOA PDF are even, i.e. respectively g(-θ) = g(θ) and f (-θ) = f (θ). Under these assumptions, we have

2N σ 2 s σ 2 n ECRB = π 0      1 g 2 (θ-ψ1) + 1 g 2 (θ-ψ2) g ′ (θ-ψ1) g(θ-ψ1) -g ′ (θ-ψ2) g(θ-ψ2) 2 + 4π 2 ρ 2 sin 2 (θ -φ) + 1 g 2 (θ+ψ1) + 1 g 2 (θ+ψ2) g ′ (θ+ψ1) g(θ+ψ1) -g ′ (θ+ψ2) g(θ+ψ2) 2 + 4π 2 ρ 2 sin 2 (θ + φ)      f (θ)dθ,
so that the ECRB is unchanged if ψ 1 , ψ 2 and φ are replaced by -ψ 1 , -ψ 2 and -φ, respectively. It follows that, for such a case, we can further restrict φ to be in [0, π/2].

IV. OPTIMIZATION RESULTS

The proposed array (to which we refer as CAM 3 ) is compared to larger-sized UCA arrays. In all examples, half-awavelength inter-sensor spacing is assumed, in order to avoid (first-order) array ambiguities [START_REF] Godara | Uniqueness and linear independence of steering vectors in array space[END_REF], [START_REF] Gavish | Array geometry for ambiguity resolution in direction finding[END_REF]. The optimization problem depends on (i) the type of sensors (assumed in Sec. IV-B to be of cardioid-type) and (ii) the distribution of the source azimuth angle (assumed in Sec. IV-C and Sec. IV-D to be uniform and normal to describe worst case and realistic scenarios, respectively). The resolution of the systematic search grid is set to 2 [DEG]. We, first, start by presenting some results about the reference UCA.

A. The reference UCA

We test our geometry-optimized two-sensor array simultaneously with the commonly used UCA, made of M = 3, 4, 5, • • • directional sensors. For the UCA, sensors are placed uniformly along the circle, i.e. at angles

φ m = 2π(m -1)/M, m = 1, • • • , M . The circle radius is Rλ where R = ρ/ [2 sin(π/M )]
ensures an inter-sensor spacing equal to ρ. As pointed out in [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], one can avoid array ambiguities in a UCA by appropriately choosing the inter-sensor spacing ρ. The directional sensors are pointed in the same direction as the sensors, i.e. g m (θ) = g(θ -φ m ), a fixed-geometry design previously proposed in [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], [START_REF] Liao | Frequency invariant uniform concentric circular arrays with directional elements[END_REF], [START_REF] Biguesh | On proper antenna pattern for a simple source detection and localization system[END_REF]. The UCA geometry is special in that it verifies, for all k not multiple of M ,

M m=1 exp(kφ m ) = 0, (8) 
which will be useful to obtain the compact CRB expressions [START_REF] Schmidt | Mobile underwater arrays[END_REF] and ( 13)- [START_REF] Porat | Analysis of the asymptotic relative efficiency of the MUSIC algorithm[END_REF].

Isotropy is a desired feature of antenna arrays that is fulfilled by UCAs when they are composed of omni-directional sensors [START_REF] Gazzah | Optimum antenna arrays for isotropic direction finding[END_REF]. Interestingly enough, we prove that the UCA isotropy may be preserved even when the constituent sensors are not isotropic. We focus our attention on sensors with arbitrary but symmetrical (even) pattern g(θ), which are widely encountered in practice. For such sensors, we can write

g(θ) = g 0 1 + K k=1 β k cos(kθ) , (9) 
where (β k ) k=1,..,K satisfy 1 + K k=1 β k cos(kθ) ≥ 0 for all θ and, also, β 1 ≥ 0, ..., β K-1 ≥ 0, β K > 0, hence ensuring a maximum gain in the (zero degrees) look direction. Coefficients β k , k = 1, • • • , K, can be easily computed by means of a (truncated) Fourier cosine expansion of g(θ) whether g(θ) is available in analytical or numerical form.

We prove in Appendix B the following result: If the directional sensor has a symmetric response g(θ) as in [START_REF] Bevelacqua | Optimizing antenna array geometry for interference suppression[END_REF], then the UCA made of M such sensors is isotropic if M > 2(K + 1), and, then, it verifies

F (θ) = M g 2 0 2 K k=1 k 2 β 2 k + π 2 R 2 4 + β 2 1 -4β 2 δ K>1 + 2 K k=2 β 2 k δ K>1 -2 K-2 k=1 β k β k+2 δ K>2 , (10) 
where δ A = 1 if condition A is satisfied and 0, otherwise. Before we interpret this result, we first mention that there is no direct relationship between directivities of the sensors (defined as D = max θ g 2 (θ) / 1 2π π -π g 2 (θ)dθ ) and isotropy of the UCA, except for specific families of patterns. For example, let's consider sensors from [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF] with response g(θ) = g 0 [1 + cos(θ)] K , whose directivity, proved in Sec. C to be equal to

D = 2 4K / K ℓ=0 (2K)!2 2(K-ℓ) (ℓ!) 2 (2(K -ℓ))! , (11) 
increases with K (D = 1, 2.66, 3.66, 4.43 and 5.68 for K = 0, 1, 2, 3 and 4, respectively). By application of (10), a minimum of 1 + 2(K + 1) such sensors is needed to make the so-composed UCA an isotropic one. Result [START_REF] Schmidt | Mobile underwater arrays[END_REF] contrasts with the UCA of omni-directional sensors that is isotropic if M > 2 [START_REF] Gazzah | Optimum ambiguity-free directional and omni-directional planar antenna arrays for DOA estimation[END_REF]. It proves that a UCA with directional sensors (regardless of how much directional they are) can still be isotropic if the number of sensors is sufficiently large. Of special interest are cardioid sensors of frequent use in acoustic systems [START_REF] Del Val | Analysis of Directive Sensor Influence on Array Beampatterns[END_REF]. They are characterized by a directional response of the form [START_REF] Ellis | Effect of cardiod and limac ¸on directional sensors on towed array reverbation response[END_REF] 

g(θ) = g 0 [1 + β cos(θ)], (12) 
parameterized by constants g 0 and β. Application of [START_REF] Schmidt | Mobile underwater arrays[END_REF] implies that the UCA is isotropic if populated with 5 or more such sensors. Then, it verifies

F (θ) = M g 2 0 2 β 2 + π 2 R 2 (4 + β 2 ) ,
consistently with [START_REF] Gazzah | Optimum ambiguity-free directional and omni-directional planar antenna arrays for DOA estimation[END_REF] for omni-directional sensors (β = 0). For completeness, in order to also address non-isotropic UCA of cardioid sensors, we prove in Appendix D the following expressions for arbitrarily sized UCA of cardioid sensors

2F (θ) g 2 0 = 4 sin 2 (θ) β 2 + cos 2 (θ) π 2 ρ 2 4 + β 2 -β 2 β 2 + 4π 2 ρ 2 1 + β 2 cos 2 (θ) , M = 2 (13) = π 2 ρ 2 4 + β 2 -4β cos (3θ) - β 4 sin 2 (3θ) 2 + β 2 +3β 2 , M = 3 (14) = 4β 2 + 4π 2 ρ 2 2 + β 2 sin 2 (2θ) , M = 4 (15) = M β 2 + π 2 ρ 2 1 + β 2 4 sin 2 π M , M > 4. (16) 

B. Sensors

In our tests, we consider cardioid-type sensors as defined in [START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], parameterized by constants g 0 and, more importantly, β that controls the sensor directivity D found to be equal to (1 + β) 2 / 1 + β 2 /2 , which increases from 0 to 2.66 when β increases from 0 to 1 . Substituting ( 12) into (6) leads to the following update of F (θ)

F (θ) g 2 0 = β 2 sin(θ-ψ1) 1+β cos(θ-ψ1) -sin(θ-ψ2) 1+β cos(θ-ψ2) 2 +4π 2 ρ 2 sin 2 (θ-φ) 1 [1+β cos(θ-ψ1)] 2 + 1 [1+β cos(θ-ψ2)] 2 , ( 17 
)
where the right-hand side, advantageously, depends on β only, as long as the sensor is concerned. Hence, we adapt the initial criterion [START_REF] Gazzah | Spectral efficiency of beamforming-based parameter estimation in the single source case[END_REF] to minimize, instead, We consider the case of a source DOA uniformly distributed over [-π, π]. There is, actually, an infinity of equivalent solutions. In fact, because 1/F (θ) is being integrated over one period, it can be shown that C is unchanged by a translation of φ. Hence, we assume φ = 0 within this section. A sample (for β = 0.8) cost function C is presented in Fig. 2, showing optimality is met at ψ 1 = -ψ 2 = π/2, which is verified for all possible values of β. In general, optimality is met with the two sensors pointing in opposite directions, orthogonally to the axis linking the two sensors. This axis, however, can be randomly oriented. We denote as CAMU the two-sensor array depicted in Fig. 3 and characterized by φ = 0, ψ 1 = π/2 and ψ 2 = -π/2. It is optimal for a source with a uniformly distributed DOA. Contrarily to the two-sensors UCA, the CAMU array does not have an infinite CRB at any direction, as is clear from Fig. 4. As a consequence, its accuracy (in terms of the ECRB) is finite, of the same order as that of the three-sensor UCA. Also, Fig. 4(a) shows that, as β of the constituent sensors increases, the CRB is reduced in the endfire direction and is increased at broadside. A good compromise seems to be attained for β around 0.5, where the CRB fluctuates the least and the CAMU is closest to be isotropic. This would be the best design for those applications requiring (more or less) the same accuracy at all possible look directions.

2g 2 0 N σ 2 s σ 2 n ECRB given by the β-dependent C = π -π 1 [1+β cos(θ-ψ1)] 2 + 1 [1+β cos(θ-ψ2)] 2 f (θ) β 2 sin(θ-ψ1) 1+β cos(θ-ψ1) -sin(θ-ψ2) 1+β cos(θ-ψ2) 2 +4π 2 ρ 2 sin 2 (θ-φ) dθ.

C. No a priori

As can be concluded from Fig. 5, the use of directional sensors is more beneficial to CAMU than to UCA. With this particular configuration of the CAMU array, substituting φ = 0, ψ 1 = π/2 and ψ 2 = -π/2 into (17) results into

F (θ) 2g 2 0 = β 2 cos 2 (θ) 1 + β 2 sin 2 (θ) + π 2 ρ 2 sin 2 (θ) 1 -β 2 sin 2 (θ) 2 1 + β 2 sin 2 (θ) , (18) 
which is not zero in any direction, as long as β is not zero. Again, from Fig. 5, best performance is obtained using sensors with β slightly larger than 1/2. To be concluded from Fig. 5, the optimally-configured two-sensor array is outperformed by the larger three-sensor UCA. However, this is true only because, disadvantageously, this PDF expresses no a priori about the source DOA. As shown in the next section, the situation is more profitable to our design if (more) information is available about the source DOA.

D. Normal a priori

In some realistic scenarios, the source DOA is expected to appear in a given direction Ω assumed, without loss of generality, to be 0. The DOA is modeled as a centered normal random variable and the optimal two-sensor array is studied as function of the standard deviation σ. Geometry and performance of the optimal CAM array are shown in Fig. 6 for σ not exceeding 40 [DEG] in order to ensure that the PDF

f (θ) = 1 √ 2πσ exp -θ 2 /(2σ 2 ) is almost zero for any θ not in [-π, π].
Results shown in Fig. 6(a) suggest that there is a range of σ where the optimized two-sensor array performs closely to (better and worse than) the three-sensor UCA. In this case, the two sensors of the optimized array are placed orthogonally (φ = π/2) to the expected source DOA and are pointing into symmetric (w.r.t. DOA) directions (ψ 1 = -ψ 2 ). The larger the uncertainty σ about Ω, the larger the offset |ψ 1 | = |ψ 2 |, as shown in Fig. 6(b). However, for an excessively large σ (i.e. limited a priori information), geometry optimization is less beneficial and performance is not much better than that of the CAMU array.

E. Arbitrary a priori

A more general PDF model is that of a mixture of Gaussian distributions with different means (that express the different look directions) and variances (that express the uncertainty about the look directions). Strictly speaking, we let P be the number of look directions. We let κ p , Ω p and σ p be the weight, the mean and the standard deviation relative to the p-th distribution, so that

f (θ) = P p=1 κ p σ p √ 2π exp - (θ -Ω p ) 2 2σ 2 p ,
for any θ in [-π, π], where P p=1 κ p = 1. We assume -π < Ω p -3σ p and Ω p + 3σ p < π for all p in order to have In a first set of simulations, and in order to explore the potential of the proposed optimized array for arbitrary PDFs, we assume two possible look directions Ω 1 and Ω 2 . Without loss of generality (and in order to obtain an even PDF), we choose Ω 1 = -Ω 2 ranging from 10 to 90 [DEG]. As illustrated in Fig. 7, we compare the performance of the optimized twosensor array (CAM) to those of the non-optimized arrays (the two-sensor CAMU and UCAs of 3, 4 and 5 sensors). We realize that, overall, the optimized two-sensors array performs closely to the 3-sensor UCA. The CAMU array, who has a minimum size and a non-adaptive geometry, is distinctively the one with the lowest performance.

P p=1 κp σp √ 2π exp -(θ -Ω p ) 2 /(2σ 2 
To illustrate a more irregular PDF, we consider the example where with β = 0.8 are to be used, then it is found that the sodistributed source is best localized using the optimized twosensor array characterized by φ = -40, ψ 1 = 48 and ψ 2 = 50 [DEG]. Such array achieves a performance, in terms of C, equal to 0.092. Naturally, it performs much better than the CAMU array for which C equals 1.2245. Interestingly, performance is in-between those of the 3-sensor UCA (for which C equals 0.1536) and the 4-sensor UCA (for which C equals 0.0792).

V. CONCLUSION

We form an array of two directional sensors and use it to estimate the DOA of a distant coplanar source. Sensors are positioned and oriented in order to take benefit from the a priori information about the DOA angle and, subsequently, reduce the estimation error. If no a priori is available, a by-default (CAMU) geometry has the advantage of having a finite precision in every direction. If some (normal) a priori is available, the optimal array geometry (calculated off-line) delivers an accuracy comparable to that of a 3 or 4 sensor UCA.

APPENDIX

A. Proof of (5)

Derivation of the ARV, as expressed in (4), leads to a

′ (θ) = [g ′ 1 (θ), g ′ 2 (θ) exp [2jπρ cos (θ -φ)] - g 2 (θ)2jπρ sin (θ -φ) exp [2jπρ cos (θ -φ)]] T , so that we obtain a(θ) 2 = g 2 1 (θ) + g 2 2 (θ) and a ′ (θ) 2 = [g ′ 1 (θ)] 2 + [g ′ 2 (θ)] 2 + g 2 2 (θ)4π 2 ρ 2 sin 2 (θ -φ). Also, a ′ H (θ)a(θ) = g 1 (θ)g ′ 1 (θ) + g 2 (θ)g ′ 2 (θ) + 2jπρg 2 2 (θ) sin (θ -φ) results into a ′ H (θ)a(θ) 2 = g 2 1 (θ) [g ′ 1 (θ)] 2 + g 2 2 (θ) [g ′ 2 (θ)] 2 + 2g 1 (θ)g ′ 1 (θ)g 2 (θ)g ′ 2 (θ) + 4π 2 ρ 2 g 4 2 (θ) sin 2 (θ -φ).
After substitution into (3), we update a(θ) 2 F (θ) as follows

g 2 1 (θ) + g 2 2 (θ) F (θ) = g 2 1 (θ) [g ′ 1 (θ)] 2 + g 2 1 (θ) [g ′ 2 (θ)] 2 +g 2 1 (θ)g 2 2 (θ)4π 2 ρ 2 sin 2 (θ -φ) +g 2 2 (θ) [g ′ 1 (θ)] 2 + g 2 2 (θ) [g ′ 2 (θ)] 2 +g 4 2 (θ)4π 2 ρ 2 sin 2 (θ -φ) -g 2 1 (θ) [g ′ 1 (θ)] 2 -g 2 2 (θ) [g ′ 2 (θ)] 2 -2g 1 (θ)g ′ 1 (θ)g 2 (θ)g ′ 2 (θ) -4π 2 ρ 2 g 4 2 (θ) sin 2 (θ -φ) = [g 1 (θ)g ′ 2 (θ) -g 2 (θ)g ′ 1 (θ)] 2 +4π 2 ρ 2 g 2 1 (θ)g 2 2 (θ) sin 2 (θ -φ) , which is equivalent to g 2 1 (θ) + g 2 2 (θ) g 4 1 (θ) F (θ) = g 2 (θ) g 1 (θ) ′ 2 +4π 2 ρ 2 g 2 2 (θ) g 2 1 (θ) sin 2 (θ -φ)
and so to [START_REF] Gazzah | CRB based-design of linear antenna arrays for near-field source localization[END_REF].

B. Proof of (10)

For the considered UCA, the ARV [START_REF] Krim | Two decades of array signal processing research[END_REF] given by [a(θ)] m = g(θ -φ m ) exp [j2πRλ cos (θ -φ m )] =g m exp(jτ m ) results in (3) being transformed into

F (θ) = M m=1 g ′2 m + M m=1 g 2 m τ ′2 m - ( M m=1 g m g ′ m ) 2 + ( M m=1 g 2 m τ ′ m ) 2 M m=1 g 2 m .
Using property (8), we prove the following identities: we can reach the final result in [START_REF] Schmidt | Mobile underwater arrays[END_REF].

C. Proofs of [START_REF] Wang | Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment[END_REF] First, max θ g 2 0 (1 + cos(θ)) 2K = 2 2K g 2 0 . By applying the binomial equality twice to (1 + cos(θ)) 2K = 1 2 2K [2 + (e jθ + e -jθ )] 2K , we obtain:

(1+cos(θ)) 2K = 1 2 2K 2K k=0 k ℓ=0 2 2K-k 2K k k ℓ e j(2l-k)θ .
Using the Euler relationship (8), D. Proofs of ( 13)-( 16)

By extensive use of (8), we can prove, after tedious manipulations, that where δ ij = 1 if i = j, 0 otherwise. The above can be used to calculate the exact CRB of the UCA, as expressed by ( 2) and ( 3), leading to expressions ( 13)-( 16).
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 21 Fig. 1. Positions and orientations of the two directional sensors for an arbitrarily-shaped sensor response g(θ). The lines show individual responses for each sensor.
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 22 Fig. 2. The cost function C for β = 0.8. Global minima are shown as '+' dots.

Fig. 3 .

 3 Fig. 3. Sensor orientations of CAMU and UCA2 arrays in the (x, y) plane. Sensors positions, shown as circular dots, are the same for both arrays. The lines show individual responses for each sensor when β = 0.8.

Fig. 4 .

 4 Fig. 4. g 2 0 /F (θ) (which is proportional to the CRB), for all possible source DOAs, for both the CAMU array, in (a) and (b), and the reference UCAs in (b). In (b), sensors are such that β = 1/2.

Fig. 5 .

 5 Fig. 5. Compared performance of CAMU and UCA in terms of the cost function C (proportional to the ECRB) as function of β (expressing the directivity of the cardioid sensor), for a uniformly distributed source DOA.

  p ) ≃ 0 for any θ not in [-π, π]. In the simulations, we have assumed equally likely look directions, i.e. κ 1 = • • • = κ P = 1/P and the same uncertainty σ 1 = • • • = σ P = 10 [DEG].

  Ω 1 = 20, Ω 2 = 50 and Ω 3 = 80 [DEG]. If sensors

Fig. 6 .

 6 Fig. 6.Performance (a) and shape (b) of the optimized CAM array, comparatively to non-adaptive fixed-geometry CAMU and UCA arrays, for a zero-mean normally distributed source DOA with a standard deviation as shown along the horizontal axis.

Fig. 7 .

 7 Fig. 7. Performance of the optimal array, comparatively to the nonadaptive CAMU and UCA arrays for a source PDF characterized by two look directions ±Ω, with Ω = 10, 20, . . . , 90 [DEG]. Sensors are such that β = 0.4 in (a) and β = 0.8 in (b).

M 2 = 0 M/ 4

 204 m=1 sin[k(θ -φ m )] = 0 for M > k ≥ 1, M m=1 sin[k(θ -φ m )] cos[l(θ -φ m )] = 0 for M > k + l ≥ 2 and M m=1 sin(θ -φ m ) cos[k(θ -φ m )] cos[l(θ -φ m )] = 0 for M > 1 + k + l ≥ 3.In turn, this allows us to prove, after simple algebraic manipulations, that for M > 2K + 1.Now, using the following equalitiesM m=1 sin[k(θ -φ m )] sin[l(θ -φ m )] = M m=1 cos[k(θ -φ m )] cos[l(θ -φ m )] = M/2 for M > k + l ≥ 2 and k = l 0 for M > k + l ≥ 2 and k = l M m=1 cos[2(θ -φ m )] cos[k(θ -φ m )] = M/2 for M > k + 2 ≥ 3 and k = 2 0 for M > k + 2 ≥ 3 and k = 2 M m=1 cos[2(θ -φ m )] cos[k(θ -φ m )] cos[l(θ -φ m )] = for M > k + l + 2 ≥ 4 and k = l = 1 M/4 for M > k + l + 2 ≥4 and |k -l| = 2 0 for M > k + l + 2 ≥ 4, |k -l| = 2, l = 1 and k = 1

  a-b)! concludes the proof.

π 2 R 4 = β 2 2 + π 2 R 2 2 + β 2 2 - 3 = β 2

 2422232 2 2 + β 2 sin 2 (2θ) , M = 2β cos (3θ) , M = sin 2 (θ) + π 2 R 2 4 + β 2 sin 2 (2θ) , M = 2

Similarly as in[START_REF] Jackson | Direction of arrival estimation using directive antennas in uniform circular arrays[END_REF], the sensor response gm(θ) is a voltage or current gain, different from the sensor power response g

m (θ). 2 They are equal if a(θ) 2 σ 2 s ≫ σ 2 n .

So-named in reference to the chameleon whose eyes can rotate and move independently from each other.
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