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Abstract. This paper presents a novel method for developing and eval-
uating intelligent robot behavior for joint human-robot activities. We
extended a physical simulation of an autonomous robot to interact with
a second, human-controlled agent as in a computer game. We have con-
ducted a user study to demonstrate the viability of the approach for adap-
tive human-aware planning for collaborative everyday activities. The pa-
per presents the details of our simulation and its control for human sub-
jects as well as results of the user study.

1 Motivation

Robots that are to interact with humans need to be highly adaptive towards their
environment. They have to adapt their behavior to different human individuals,
have to respect social rules and respond to human expectations, react to unex-
pected human actions, and show a high degree of safety, even for unanticipated
events. In our research we aim to develop adaptive, model-based planning and
plan-execution mechanisms for autonomous robots that are to collaborate with
a human partner, for example in assistive scenarios like helping elderly people
in their daily chores.

With the current state of the art in robotics research on such topics using
real robots is extremely limited. There are only a few projects worldwide where
complete robotic systems are available with stable state estimation, reliable low-
level actions, knowledge processing and high-level planning. Even the best of
these systems only support rudimentary additional capabilities needed in human-
robot interaction like tracking human poses, and recognizing human activities.
Besides, state-of-the art robot hardware is still relatively slow (or is slowed down
for safety reasons) compared to human movements. Because of these limitations,
researchers have started to use realistic physics-based simulations of robots to
facilitate the development of autonomous robots.

In this paper we propose to extend the simulation-based development to
robots interacting with humans by transforming a robot simulator into a simple
computer game and letting people control an agent on the screen. We have im-
plemented such an environment based on a physical simulation with two robots.
One of these robots is autonomous, the other is controlled by a human operator.
∗ This work was partially funded by the cluster of excellence CoTeSys.



The human’s control of the robot is not prerecorded, but happens at the same
time while the autonomous robot is working, allowing all problems of misunder-
standings and unexpected activities of the human that could occur in the real
world.

For evaluating this simulation, we have performed a user study, where we
investigated the usability of our simulation and compared human behavior in
real life and in simulation. We had subjects perform a household task (setting
and clearing the table) both in reality and simulation.

In the next section we argue for the use of simulation for research on human-
robot collaboration. After that we present related work. Then we introduce our
simulator and the interface for humans to control an agent. This description is
followed by an account of the user study we performed to evaluate the viability
of using simulation for HRI research.

2 Simulation-based Robot Development

In robotics, simulation-based development is often rejected with the comment
“in the real world everything is different than in simulation”. This statement
might be true for low-level control loops, but mostly stems from a time when
good physical simulations were unavailable. Meanwhile, some extremely success-
ful researchers use realistic simulation for robot development [9], carrying over
the techniques developed in simulation to real robots.

The question is also what you want to develop. If the goal is to program a
robot performing a certain well-defined job, you engineer this task to the real
hardware, simulation would not help much here. But in our research we are rather
interested in general, adaptive methods for autonomous robots. Our hypothesis
is that if we develop techniques that enable a simulated robot to adapt to several
simulated environments, it will also be able to adapt to real-world environments.

Simulation gives us the chance to move the development of adaptive robots
from the area of “art” into that of “science”:
– Simulation allows us to focus research on a particular aspect of robot behav-

ior. Especially, inaccuracy of the state estimation can be ignored or simulated
in varying degrees of complexity.

– Experiments can be repeated. When using real robots it is extremely hard to
get the same conditions for each experiment (e.g. lighting conditions, battery
charging level, object positions).

– Simulation makes available different environments and robots at low costs.
Beside the “simulation-is-different” objection, HRI researchers often reject

simulation claiming that “you can never replace the real user experience”. In
our case, we are more interested in developing adaptive execution mechanisms
and testing them with the dynamics and uncertainty of real user interaction than
in the realistic perception of the scene by subjects. We rather rely on the ability
of humans to interpret the abstracted view in the simulation than to sacrifice
realism for the robot. This is also the reason why we use a physical simulation
rather than a virtual rendering machine.



Taking these requirements into account there are good reasons to use simu-
lation for interaction experiments as opposed to working with real robots:

– In the simulator, humans and robots operate on the same time scale, which
means both are quite slow. Even the best available robots are very slow
in sophisticated tasks like pick-and-place actions. In a realistic scenario, a
human would perform a “collaborative” task mostly on her/his own.

– Interaction in simulation is a lot safer than that with real robots. We’re not
thinking of Wizard of Oz experiments where the robots are controlled by
humans, but of experiments with autonomous robots, whose behavior can
be hard to predict, even by the developers themselves.

Over time, we expect real robots to become faster and safer. We will then be
able to carry over the adaptive methods developed in simulation to real robot
applications.

3 Related Work

Ueda et al. [9] report on a realistic simulation of deformable objects for a hu-
manoid robot. The simulation works with the normal robot code and can addi-
tionally be used by the robot for predictions and planning of its actions. This
work demonstrates how a realistic simulation of the robot and its environment
directly enhances the performance of autonomous robots.

For research on social imitation learning, Buchsbaum et al.[1] use two virtual
characters, where one character learns motoric movements from the other.

The Restaurant Game [6] is a computer game developed at MIT Media Lab,
which people can play over the Internet. The goal of this research was the obser-
vation of communication and collaboration patterns to develop a kind of social
common sense. Plan networks trained on data acquired from this game could
distinguish typical restaurant situations from unusual ones [6]. Moreover, the
data was used to generate plans for interaction in the Restaurant Game [7]. The
Restaurant Game demonstrates very well, how virtual agents can involve a much
larger number of subjects than user studies with robots.

There are other approaches of using virtual reality worlds for research on
human-robot interaction [2, 10]. But our goal is to support adaptive plan exe-
cution for human-robot collaboration. We are mostly interested in the robot be-
havior than in the human reaction, which is in the focus of the well-established
Wizard-of-Oz experiments. But still we want our simulated robot to face the
dynamic behavior of a human collaborator.

In a similar line Steinfeld et al. describe the “Oz of Wizard” method [8]
for HRI research. It shifts the focus from studying humans as practiced in the
Wizard of Oz methodology towards the development of robot skills using models
of humans.

The OpenRobots Simulator project1 follows similar goals as our approach
to enable human-robot collaboration. This simulator is based on the Blender
1 https://launchpad.net/openrobots-simulator



software to create virtual worlds including the animation of humans. But it
also allows physical interaction between robots, humans and objects to make
the robot control realistic. The OpenRobots Simulator will be more versatile
than the simulation we have developed for our purposes. In the simulation we
introduce, we wanted a low-cost solution using an existing robot simulator.

4 The Simulator

For implementing our HRI simulation platform, we made use of an existing phys-
ical simulation of an autonomous household robot [5]. For inserting a human in
this simulation, it would be desirable to model a human shape and provide it
with human-like movements. But as our simulation is based on realistic physics,
we would need a very accurate model and would have to provide accurate motor
commands to this human to move realistically. Currently, there is no such simu-
lation available. Therefore, we resorted to using the model of the robot that we
already have and let it be controlled by a human operator.

We use the Gazebo simulator, which includes the physical simulation engine
ODE. The kitchen is a copy of a real kitchen containing furniture such as cup-
boards, a table, and a sink. The available objects include cutlery (forks, spoons
and knives), dinnerware (plates and cups), and objects necessary for cooking
such as pots, colanders and wooden spoons. Beside solid objects, the simulation
includes water, which can emerge from the tap and disappear into the sink.

We use the same simulated hardware for the human-controlled robot as for
the autonomous one. Our robot is modeled after a B21 robot, which origi-
nally comes without arms. We added two arms, which are constructed along
the PUMA robot arm, used in industrial environments. To make the arms more
agile and expand their operating region, we added four more joints: two joints in
the shoulder and two slider joints in the upper and lower arms. The additional
joints make the arms more agile and extend the robot’s work space.

The user interface for manually controlling one of the robots is a stand-alone
program written in C, which uses Player interfaces to control the robot and
objects in Gazebo. It uses the GTK library for its graphical user interface and
for accessing the keyboard and mouse commands from the user. Figure 1 shows
the complete user interface. Currently the graphical interface is only necessary
for choosing an object for gripping or a position to put an object down. In the
future, we intend to expand it for communication like agreeing on a common
goal or giving instructions to the robot.

The robot’s position can be controlled by the arrow keys to move the robot
forward and backward and turn it. Simultaneous rotation and movement is pos-
sible, too.

The user can manipulate objects by using preprogrammed arm routines.
Gazebo is not designed for identifying objects by clicking on them on the 2D
rendering of the scene. Adding this functionality would have been extremely la-
borious. Therefore, we present all available objects in a list from which the user
can select an object to grasp. When the automatic gripping routine fails to find
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Fig. 1. The simulation and the control GUI. The entity choice window is opened upon
command by the user.

a solution, the user is informed about the error. This happens mostly when the
robot is positioned too far away from the object.

For the put-down process, the user can choose among some predefined areas
where to put an object. In each area, there are predefined positions for a plate,
a cup, a knife, a spoon and a fork, where the robot will automatically put them.
Also for putting down, the robot has to be navigated to an appropriate position
where the simulation control can find waypoints for the arm.

Although these predefined routines have nothing to do with real human move-
ments, they provide a usable interface. The alternative of letting the users control
the arm joints would have resulted in a very difficult user interface, which would
rather hinder than enhance the interaction with the robot.

5 User Study

When developing adaptive robot behavior in simulation, we must be sure that the
(high-level) behavior of humans is comparable in simulation and reality. We also
verify that results are not corrupted by different skills in controlling the simulated
agent. More specifically, we conducted a pilot study [4] to answer the following
questions: (1) Is our simulation control usable for subjects who were previously
untrained in handling the simulation? (2) Do subjects show comparable behavior
in simulation and the real world when performing everyday activities?

For the second question, we have to keep in mind the kind of research we want
to conduct with this simulation. In this user study, we concentrated on the topic,
which is most interesting to us: model-based planning and plan execution of joint
human-robot tasks in everyday activities. As real-world tasks for this study, we
used table setting and table clearing. The actions allowed by the simulation give
the users the freedom to move to any spot in the kitchen at any time and to
grasp and put down objects. Although the positions for putting down objects
are restricted to a few predefined positions, we believe they did not influence the
humans’ behavior significantly assuming the subjects complied with the task
they were given.

In our experiment we only had one agent, the one controlled by the hu-
man. The goal is to use this simulation for studies on human-robot collaboration



(which in fact we have done for proof-of-concept trials). However, for a human-
robot scenario, we have no chance to compare the simulated behavior with that
in the real world for the reasons given in Section 2. This is why in this user study
(simulating robots with the Gazebo simulator is a generally accepted method).

Nine subjects participated in the study, four female and five male. Eight
participants work with the computer regularly, six of which are IT professionals
(including students of computer science or related subjects).

The study consisted of two parts for each subject: tasks in the real world and
control of the robot in simulation. Five subjects performed the real-world tasks
first, the others started with the simulation part. To make the data comparable
the subjects were asked in the real world to carry only one item per hand, which
corresponds to the capabilities of the simulated agent.

We defined six tasks for the subjects to perform (both in reality and in
simulation), three consisted in setting the table, three in clearing it. The order
was randomized. The available objects (marked with different colors) were plates,
cups, knives and in some tasks also spoons and forks. In total, there were three
complete sets available (red, blue and yellow), but not all objects were used in
every task.

The trials in the real world were recorded with four cameras from different
angles for later evaluation. In the video data we can measure durations and ob-
serve which objects were used and placed at which positions. In the simulation,
we made use of the data acquisition capabilities of the Robot Learning Language
[3] to record the robot’s position and orientation 20 times per second, the com-
mands given by the person, failures in the manipulation actions and the original
and end positions of objects in the grasping and put down tasks. Beside the
quantitative measures, the participants filled out a questionnaire.

We evaluated the ability of the subjects to control the simulation along two
criteria: speed and failure rate. The speed of fulfilling the tasks can only be
evaluated in comparison to the other subjects. For each scenario we calculated
the ratio of the time tn it took for subject n divided by the average time t̄ needed
for this scenario by all subjects (tn/t̄). The maximum deviation from the average
for a single scenario is 48%. The average score for each participant was up to
16% higher (i.e. slower) than the average and 22% lower than average.

This deviation seems to be high, but we compared the values to those ob-
served in the real world. The values for the real-world tasks are on a different
time scale than those from simulation. Therefore, we compared the deviation for
each task normalized by the average duration of all tasks in reality and simula-
tion respectively. This normalized deviation ranged from 16% to 25% in reality
and was between 14% and 21% in simulation. The average of this value over
all six tasks was 19% both for reality and simulation. So the deviation of times
from the average time taken in simulation can be explained by the variance with
which people execute real-world tasks.

The variance in the failure rates among subjects is a lot higher than for the
speed. We plan to give users more advice on the physical properties of the robot



to help them evaluate the chances of success. But the different failure rates didn’t
cause a strong effect in the times people needed for completing the tasks.

As a counter check for the measured data, we asked users how they felt
about the simulation using a five-level Likert scale2. On average, the participants
“partially agreed” that they could handle the simulation well and that they
could achieve the tasks as quickly as the simulation allows. However, participants
were not too happy about the absolute time scale. The average opinion for “the
simulated robot executes the actions fast” was rated with an average value of 3.7.
Indeed, the scaling factor between the times in reality and simulation is about
20. The relatively high failure rate was not perceived too bad by the participants.
The statement “The simulated robot executes the actions without errors.” was
answered with an average score of 2.7.

For planning joint human-robot activities, we are mostly interested in the
actions and the manipulated objects. The actions for table setting as such are
not too interesting and don’t differ in reality and simulation (moving, grasping,
putting down objects); more interesting are the manipulated objects.

We grouped the execution of a task into carrying tasks, which involves the
gripping of two objects, carrying them and putting them down. We identified
preferences of people to carry the same or similar kinds of objects at a time
(similar means cups and plates form one class and cutlery another) or objects of
the same color and compared them in reality and simulation (Figure 2).

75%
76%Color or object preference

54%
42%

Color

39%
33%Similar object type

15%
28%Same object type

Simulation

Reality

Fig. 2. Comparison of preference types over all subjects. The last line shows the per-
centage of actions in which any kind of preference (same or similar object or color
preference) was applied.

Taken together, these preferences account for 76% of all carry tasks observed
in reality and 75% of carry tasks in simulation. Interestingly, when asked about
their strategies, the subjects answered that in reality they try to carry objects
of the same type or put the plates and cups before they get the cutlery, but
that they sacrificed these preferences for the sake of efficiency in simulation.
In contrast, our observations suggest that these preferences are also applied in
simulation. However, the frequency of each preference is slightly different. In
simulation, the subjects carried similar object types slightly more often than in
reality and the preference to carry objects of the same type was only visible
about half as frequently as in real-world execution. This is compensated by a
higher color preference in simulation as compared to reality.
2 1: fully agree, 2: partially agree, 3: don’t know, 4: partially disagree,5: fully disagree



Overall, the way people set and clear the table in the simulator is not very
different from how they do it in reality. For example, our simulated robot could
have learned from observing the subjects in the experiments that people like
to carry objects of the same color. Although this preference is not as strong in
reality, it is still a valid observation. As the models of humans have to be adapted
for each individual anyway, the development of adaptive planning techniques can
very well be done in our simulation testbed.

6 Conclusion

We have presented an implemented approach of using a physical simulation to
integrate human behavior in the development cycle for research on human-robot
collaboration. The user study we have performed has shown that on an abstract
level people show similar behavior patterns when they control a simulated robot
as when they perform an activity on their own. Taking into account the current
state of the art in robotics and the limited capabilities of complete robot systems,
there are good reasons to develop high-level methods for human-robot interaction
in such a simulation.
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