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Abstract

This report presents a user study, in which we compare the behaviour for setting and
clearing the table in reality and in a simulated, computer-game-like environment. The
aim was to examine the potential of using a computer-game-like simulation for user studies
on cognition, in particular for robot-centred studies on human-robot interaction, but also
other areas such as studies about context-specific and context-independent behaviour.
A simulation allows the creation of a large number of environments at low cost and
enables comparisons of behaviour in reality and simulation. In the present pilot study
we have considered three points of interest: 1) the differences in user skills with the
used simulation, 2) comparison of human behaviour in simulation and reality performing
everyday activities, and 3) comparison of behaviour in different simulated environments.
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1 Motivation

This report describes in detail a user study, in which the subjects took the role of a robot in a
computer-game-like simulation of a kitchen. They performed the everyday activities setting
and clearing the table in their role as a robot in the simulation and executed the same tasks
by themselves in reality.

The background for this study is the development of a testbed for research on human-robot
interaction. Most studies on human-robot interaction currently use the Wizard of Oz method
[2], where a human controls the robot to interact with a subject. This allows interesting
studies on humans, but not for robot research.

An alternative approach is to develop an autonomous robot stepwise and check for human
acceptance using this robot [3]. However, these robots are mostly restricted to navigation
and communication behaviour. Aspects such as planning, plan execution, joint execution
of complex tasks (involving manipulation), on-line model learning and high-level intention
recognition are currently not studied.

These higher-level aspects are currently only partially implemented on a handful of robots
worldwide. Even with a robot that integrates the state of the art on all of these issues,
there would still be the problem of safety. Robots with adequate manipulators for real-world
activities and the respective size are currently in an experimental stage and not designed to
fulfil safety criteria like industrial robots. Another difficult point is the speed of state-of-
the-art robots. Our autonomous, simulated robot needs about five minutes to set the table
for two people (only plates and cups) and our real robot is even slower. In contrast, in the
present user study, all subjects needed less than a minute to set the table for two persons
(including cutlery) in reality. This difference in timing doesn’t allow interesting joint tasks
on a planning level for a human and a robot.

High-level skills for robots are mostly developed in realistic, physical simulations of robots
[7, 4, 8]. For adding the human factor into the simulation, we added a computer-game-like
control to the simulation, which allows the manual control of a simulated robot. An alternative
could be to model human behaviour in the simulation. This, however, is only possible for
highly abstract simulations. But as we are interested in complete robot systems, we use a
physical simulation, where the realistic modelling of a human would involve human motion
models and exact behaviour predictions. If such a model existed, the behaviour of autonomous
robots would be much more advanced as it could be used to control a robot in a natural way.
Besides, a predefined model of a human can never be as unpredictable and natural as the
live interaction with a human, which is provided by our simulation approach with human
interaction.

In the user study, we wanted to assess the potentials and limitations of using a physical
simulation with the additional option to control one of the robots for conducting human-
robot experiments. But the simulation approach might also be useful for other research
interests. With experiments in reality and simulation, it might be possible to differentiate
abstract cognitive capabilities from behaviour influenced by personal physical capabilities.
The simulation doesn’t only make it possible to compare reality and simulation, but also
offers different environments in which behaviour differences might be observed. In particular,
the pilot study focuses on three aspects:

Usability of our simulation. Although this evaluation is specific for the simulation we
are using, it is an important prerequisite for the other results. We assume that any
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Table 1: Answers of participants about their affinity to computers and technical devices. The
numbers in the table denote the number of participants giving the respective Likert score.
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I work with computers regularly. 8 1
I work in the IT industry or are a student of informatics. 6 3
I often play computer games. 5 4
I like to try new technical devices. 3 3 1 2

experiment in simulation is only valuable if all subjects are equally skilled in handling
the simulation and if the results don’t contain too much noise caused by failures.

Comparison of human behaviour in reality and simulation. The subjects performed
table setting and clearing tasks in six situations in reality and controlled a robot in the
same scenarios (in a simulation of the same kitchen). We examined the speed differences,
cognitive aspects with respect to used objects, and the participants’ own perception of
the differences.

Comparison of behaviour in two simulated worlds. We considered two additional sce-
narios in another kitchen in simulation for demonstrating the transferability of the re-
sults to other simulated scenarios. This aspect might also serve as an inspiration for
further, more focused studies on general and environment-specific behaviour of humans.

The paper proceeds with a description of the method employed in the study, which contains
a short description of the simulator and its control. We then show the results of the three
aspects of the study, followed by a discussion.

2 Method

2.1 Participants

The user study was performed with nine subjects, four of them female. Five of the participants
were aged between 25 and 30, two were between 31 and 40, one was between 19 and 24 years
old and one participant was older than 40. Table 1 shows the answers to some questions
regarding the subjects’ familiarity with computers and computer games. It shows that most
participants are used to working with computers and a majority is an IT professional or
student. About half of the participants partially agree to play computer games often, the rest
partially disagree. The interest in new technical devices is distributed more or less equally,
but no one was completely disinterested in new technology.
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2.2 Procedure

The study was conducted in two parts for each participant: one real-world part and one
in simulation. The order of the two parts was randomised, five participants performed the
real-world tasks first, the others started with the simulation part.

The trials in the real world consisted of six scenarios, three for setting and three for
clearing the table (see Section 2.2.2). The tasks were given to the subjects in the form of
pictures as in Figures 6 and 7 together with the written description shown below the pictures.
The start configurations were provided by the experimenter. The subjects all started from a
predefined starting position marked on the floor and then had to achieve the end configuration
given in the task specification. The order of the scenarios was randomised.

In the first two trials, the subjects were asked to perform the tasks as they would do them
normally. For the last four trials, the instructions were changed and the subjects were asked
to carry only one object per hand to mimic the restrictions of a robot. Two subjects who
had performed the simulation trials first, only carried one object per hand, even though they
were given no restrictions. In these cases, the first four trials were the “robot-like” ones and
after that the subjects were explicitly asked to perform the task as they would do them at
home for the last two trials.

For preparing the subjects for the keyboard control of the simulation and as an additional
measurement for their ability in computer games, the first task at the computer was playing
the game Tetris (the implementation in Emacs) for two minutes. After that, they were
instructed in the use of the simulation, which is described below. The subjects were only told
how to control the robot in the simulation, but they were not given any details on the robot’s
abilities and good positions to stand for grasping. The subjects were then given five minutes
to test the commands of the simulation and to get familiar with the control.

Then the trials in simulation started. The first four trials consisted in simple scenarios,
where only one single object had to be moved. The order of these scenarios was randomised.
In the last part, the participants had to perform the same tasks for setting and clearing the
table as in the real world (in a simulation of the same kitchen) as well as two additional tasks
in another kitchen. Again, the order of these trials was randomised.

Before the start of the study, we asked each participant to fill in a questionnaire asking
about personal data and experience with computers and computer games (the data sum-
marised in Section 2.1). After all trials including simulation and reality, the subjects filled
in another questionnaire asking about their personal experience with the simulation and the
differences they felt between simulation and reality.

2.2.1 The Simulation Environment

For the physical simulation of the environment we use the Gazebo simulation environment,
which makes use of the Open Dynamics Engine (ODE) — a library for simulating physical
processes. The robot we use is a B21 robot, which we also use in reality (see Figure 1)
[1]. The original B21 comes without arms. Whereas in reality our robot is equipped with
two Powercube arms with 6 degrees of freedom, in simulation we can choose between the
Powercube arms and a pair of arms modelled after the Unimation PUMA robot (having 6
degrees of freedom) with two additional slider joints in the upper and lower arms to make
them extendable and an additional joint in the shoulder to make the arms more dexterous.

There is currently no physical model and respective control available for simulating a
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Figure 1: Simulation (left) of the real kitchen environment (right).
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Figure 2: The robot and its kitchen environment.

human in this simulation environment. An alternative could be a non-physical simulation,
but the present study is intended as a foundation for later studies on human-robot interaction,
where we are interested in the implementation of the robot’s behaviour. Abstracting away
from the physics would make the robot research less interesting and realistic. Therefore, we
opted for using the robot with the agile arms as a substitute for a human in this simulation.

The simulation offers two kitchens: Kitchen 1 is modelled after the real experimental
kitchen used in the study (Figure 1). Kitchen 2 is designed after another real kitchen (Figure
2). In both kitchens there is a table, several cupboards, a sink and different objects an agent
can grip: plates, cups, forks, knives and spoons (other objects were not used for this user
study).

Figure 3 shows the interface of the simulation and its control. The top right window shows
the outside view of the world. The small window to the left of the world view shows the local
view of the robot. The window in the bottom right corner is the additional user interface for
controlling the robot. It usually is an empty window, which must be active for controlling
the robot.

In certain situations, additional windows of the control GUI can open like the one shown
on the left to the control window in Figure 3. This window opens, when the button “E” is
pressed (for “Entities”) and it lists all available objects that the robot can grip. By choosing
an object from the list either by mouse click or with the keyboard, the gripping process is
started. Before the robot acts, it asks the user which arm it should use unless one arm is
already holding an object.

For putting down objects, the user has to press the button “D” (for “put Down”). Then
another window appears as shown in Figure 4, where several predefined areas are offered
to the user. The exact position of each object within these areas are chosen by the robot
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Figure 3: The simulation windows and the user interface.

automatically.
Both for gripping and putting down, the user first needs to move the robot to a position

from where it can perform the manipulation task. Only the arm movement is performed
automatically. If the robot is unable to perform the desired manipulation action, it responds
with a message that the action is impossible.

The movement of the robot in the kitchen is controlled by the arrow keys. In the im-
plementation used in this study, pressing an arrow key started the robot’s movement (for-
ward/backward or turning). The robot had to be stopped explicitly by pressing the Space
key. Stopping only the rotation, but maintaining the forward or backward movement was
possible by pressing the key “V”.

The simulation we use is one of the best realistic simulation frameworks available and the
ODE library for simulating physics is a widely used tool. Still, some processes in the simulation
can be unexpected. Especially when two objects touch with strong forces, the simulation can
overreact, which leads for example to the robot falling or objects flying through the air. These
failures can be avoided to some extent by careful control of the robot and the choice of good
positions for the manipulation actions. However, the subjects were not instructed explicitly
on these details.

2.2.2 Scenarios

All tasks were given to the subjects in visual and written textual form as presented in Fig-
ures 6–8. In simulation and in reality, the objects were coloured (in simulation they were
covered completely by one colour, in reality white dishes and metal cutlery were furnished
with coloured markers as shown in Figure 5).

5



Figure 4: Predefined areas in one of the available kitchens.

Figure 5: Marked objects in the real-world trials.

In simulation, the subjects were given four simple tasks that were performed as a first
exercise in the study. In two of them, the subject had to move a plate, in the others a cup
was to be manipulated. The simple tasks were all performed in Kitchen 2.

The complex tasks that were performed both in reality and simulation are numbered
ct-1-1 through ct-1-6. Three tasks were to set the table (Figure 6) and three to clear the
table (Figure 7). There were two tasks in which the subjects had some freedom in the choice
of objects and their positions. In scenario ct-1-6 the final positions of the objects could be
chosen by the subjects, the objects to be used were given by the task itself. Setting the table
in scenario ct-1-3 allowed the choice of two complete place settings out of three available place
settings and the goal positions were only specified without colours.

In simulation, there were two additional scenarios, which are presented in Figure 8: one
is setting the table, the other clearing it. In both tasks the object positions were completely
specified.

In total, we collected data of 54 trials in the real world and 108 in simulation (36 simple
tasks, 72 complex tasks). Because of unrecoverable failures, 8 trials of complex tasks had to
be repeated. We only consider the successful trials in our evaluation.

2.3 Data Analysis

For all trials in simulation and reality we analysed data of complete tasks and particular
subtasks. Moreover, we evaluated data over all trials, which includes user feedback.
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(a) Task ct-1-1: place red breakfast cover (plate, cup, knife) at left long side of the table
and blue breakfast cover at the other long side of the table.

(b) Task ct-1-2: place red breakfast cover (plate, cup, knife) at left long side of the table
and blue breakfast cover at bottom short side of the table.

(c) Task ct-1-3: place two complete covers (plate, cup, knife, fork, spoon) on the long sides
of the table.

Figure 6: Table setting tasks to be performed in real and simulated kitchen.

7



(a) Task ct-1-4: put items from table next to the sink, back row: blue items, front row:
red items.

(b) Task ct-1-5: put items from table next to the sink, back row: blue items, front row:
red items.

(c) Task ct-1-6: put items from table next to the sink.

Figure 7: Tasks for clearing the table to be performed in real and simulated kitchen.
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(a) Task ct-2-1: place complete red cover (plate, cup, knife, fork, spoon) at
right short side of the table and complete blue cover at the bottom long side
of the table

(b) Task ct-2-2: put items from table next to the sink, back row: blue items,
front row: red items.

Figure 8: Complex tasks to be performed in second simulated kitchen.
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2.3.1 Data of Basic and Compound Actions

We considered some data on the level of actions. This includes the basic actions grip and
put-down provided as an action to the user. Besides, we defined a carry task as taking two
objects, carrying them, and putting them down. In simulation, a carry task is characterised
by the following data:

• object carried in left hand: object type otypel, object colour ocoll;

• object carried in right hand: object type otyper, object colour ocolr;

• hand which was used for the first grasp;

• hand which was used for the first put-down action.

Almost all actions in the simulated trials can be assigned to a carry task. One exception is a
trial in which the subject only used one hand for fulfilling a task, showing only “semi-carry
tasks”. This trial was not used in the evaluation of carry tasks. Another behaviour shown by
one subject also fell out of the carry task schema: presumably to avoid failures, some objects
were not carried to their goal positions directly, but were put at an intermediate position
and moved later for finishing the complete task. In this case, the first manipulation of the
object was counted in the respective carry task and the second movement was not used in
the analysis.

For the tasks performed in reality, we only identified carry tasks in those trials where the
subjects were restricted to take only one object per hand. Because in reality, people grip and
put down objects at the same time, the carry tasks are only defined by

• object carried in left hand: object type otypel, object colour ocoll; and

• object carried in right hand: object type otyper, object colour ocolr.

Object Preferences We identified specific preference types for the objects used in a carry
task:

1. Object preference: Carrying objects of the same or similar type together.

(a) Strong object preference: Taking objects of the same type in a single carry task:
typeeq ⇔ otypel = otyper

(b) Weak object preference: Taking objects of similar type in one carry task:
typesim ⇔ ∃c.typeclass(c) ∧ member(otypel, c) ∧ member(otyper, c), where the
type class c can be either of the two sets dishes = {cup, plate} or cutlery =
{knife, spoon, fork}

2. Colour preference: Taking objects of the same colour in a single carry task:
coleq ⇔ ocoll = ocolr

The predicates typeeq, typesim and coleq were determined for each carry task, as well as the
compound preferences typeeq∨typesim (some object preference) and typeeq∨typesim∨coleq
(colour or object preference).
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Failures Except for the occasional disregard of the restrictions asked of the participants in
the real-world trials, failures only occurred in the simulated trials. For the analysis of failures
in the simulation, we also considered single grip and put-down actions as well as complete
carry tasks. For all three kinds of actions, we counted the number of tasks nm

p of this kind (m
can take the values G for grip, P for put down and C for carry) observed over all trials of one
participant p. Then we counted the number of failed tasks fm

p and calculated the percentage
of failed actions for each action type and participant:

Fm
p =

fm
p

nm
p

The average value for each action type is denoted as F̄m, the standard deviation as F̂m.

Gripping Parameters In the simulation data, we evaluated some parameters of the grip
action. One parameter is the distance do,p between the hand-controlled robot and the object
to be gripped. o is the object type (plate, cup, knife, spoon or fork) and p the participant.
From this data, we calculated the average distance d̄ over all objects and participants as well
as the standard deviation d̂.

Besides, we calculated the absolute value of the rotation angle φo,p of the simulated robot
relative to the line of sight between the robot and the object. Again we used the average φ̄
and standard deviation φ̂.

2.3.2 Task Data

We used quantitative and qualitative measures for complete tasks, i.e. the execution of one
scenario until its goal configuration was reached. This analysis of the behaviour in reality and
simulation included the duration needed for completing the tasks and the objects that were
chosen for the partially defined goal configurations of Scenarios ct-1-3 and ct-1-6. Besides,
for real-world execution, we considered the unconscious violations of the restriction to carry
only one object per hand. Finally, we classified the paths on which the subjects navigated
the robot in simulation.

Duration of Tasks For analysing and comparing the durations of tasks, we measured
the times tms,p for each scenario s performed by each subject p. The parameter m can take
the values Sc for complex tasks in simulation, Ss for simple tasks in simulation, Rn for all
scenarios performed in reality, and Rr for those trials in reality where the subjects handled
only one object per hand. For each scenario s, we calculated the average value t̄ms and standard
deviation t̂ms both for reality and the real world.

From these values, we calculated several parameters for different evaluations:

• the time needed by each participant p normalised by the average for a certain scenario
s: Tm

s,p = tms,p/t̄
m
s ;

• the average of the weighted time values for each participant p:

T̄Rn
p =

(
ct−1−6∑

s=ct−1−1

TRn
s,p

)
/6 , T̄Rr

p =

(
ct−1−6∑

s=ct−1−1

TRr
s,p

)
/4 ,
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T̄Sc
p =

(
ct−2−2∑

s=ct−1−1

TSc
s,p

)
/8 , T̄Ss

p =

(
st−4∑

s=st−1

TSs
s,p

)
/4

• the weighted time of each participant for each scenario normalised by the participant’s
average performance τm

s,p = Tm
s,p/T̄

m
p

• the standard deviation needed for each scenario normalised by the average time of this
scenario: T̂m

s = t̂ms /t̄
m
s

Object Choices For the two scenarios in which the goal positions of the objects were
not completely specified (ct-1-3 and ct-1-6), the goal configurations were classified along two
criteria:

1. Order strategy: Move a place setting as laid out in the original position. For example,
in scenario ct-1-3 a popular combination was a place setting made from red plate, blue
cutlery and red cup together with a place setting composed of yellow plate, red cutlery
and blue cup (which corresponds to the first row of objects in the original configuration).

2. Sorting strategy: Sort objects according to their colour.

(a) Strong sorting strategy: Put only dishes of the same colour in one place setting.

(b) Weak sorting strategy: Use at most two colours for setting two place settings (only
relevant in ct-1-3).

Restriction Violations In the restricted trials (carrying only one object per hand) exe-
cuted in reality, we evaluated if this restriction was violated. Because of the low number of
trials (36 restricted trials over all subjects) and the different severity of violating these con-
straints (carrying more than two objects at a time is further away from the instructions than
taking only two objects, but changing the hand for an object), this data was only used as
evidence for qualitative evaluation of the need for additional actions for the human-controlled
robot.

Navigation Paths We analysed the paths that the subjects used in both kitchens qualita-
tively along three categories:

C1. the subject takes the direct way;

C2. the subject accepts a long way (in Kitchen 1 around the table, in Kitchen 2 next to the
narrow side of the table);

C3. no clear assignment to category 1 or 2 possible: for example when the subject moves a
slightly longer way than the direct path, but not all the way around the table.

Figure 9 shows some examples for the classifications. The paths in scenario ct-2-1 were
not classified, because they were very similar for all participants and would all have fallen
into category 3.

12



(a) C1: direct (b) C2: long way (c) C2: long way (d) C3: mixed

Figure 9: Qualitative classification of paths — examples for both kitchen environments.

2.3.3 User Data over all Trials

Apart from aggregated data of single trials or carry tasks, we obtained the evaluation of
users concerning their own experiences over all tasks in simulation and reality. The data
consisted of statements to be evaluated on a five-level Likert scale (see Figure 12) and four
open questions:

1. What was difficult in using the simulation control?

2. Which actions, except the available ones grip and put down, should the robot in the
simulation be able to perform?

3. In your opinion, which differences are there between the execution of the tasks in the
simulator compared to the real world? What did you do differently?

4. Which strategy did you have for setting and clearing the table? Was the one in the
simulation different from the one in the real-world execution?

3 Results

We first present the results for the usability of our simulation environment. These results are
highly dependent on the underlying simulation software and its control options. They are the
foundations for the more abstract results on the comparison of how people perform household
tasks in reality and simulation, where we compare the high-level behaviour in scenarios ct-
1-1 to ct-1-6. These results are more general and could probably be reproduced using other
simulation environments. Third, we provide a brief comparison of the tasks performed in
simulation in the two different kitchens.

3.1 Usability

The first part of the evaluation considers the usability of the used simulation control. In this
section, we use the data of all scenarios performed in simulation.

3.1.1 Agility in using the simulation control

We evaluated the skillfulness of the subjects in handling the simulation along two dimensions:
speed and failures.

13



0.64 1.00 1.48

Figure 10: Relative times TSs,p needed by users for the trials compared to the average time
subjects needed to fulfil the same scenario (light grey squares) and the average per participant
T̄Sp (dark dots).

Speed The speed with which users achieved the tasks can only be compared between the
users. Ideally, there should be only a small difference in the times needed to fulfil a task
for each user. Figure 10 shows the normalised times TSs,p indicating the deviation of each
participant p from the average performance for each scenario s (square marks). The maximum
deviation is 48%, the variance of the whole data set is 18%. Shown as darker dots in Figure 10
are the average deviation values T̄Sp for each subject. The maximum average score is 16%
slower than average, the fastest subject was 22% faster than average.

Even though a variance of around 20% seems a lot, we compared the variance in simulation
to that of table setting and clearing in the real world for the scenarios that were performed
in both worlds (see Section 3.2.2) and found that the deviation in reality amounts to the
same relative variance. This means that the differences in speed can be attributed to the
variance in thime that is normal for t he kinds of tasks we observed. Therefore, the usability
of controlling the robot seems satisfactory with respect to speed.

Failures For the evaluation of failures in the execution we have to consider the underlying
software. The realistic simulation of physical processes is still subject to research. Therefore,
it is not surprising that the ODE library we are using sometimes produces events that would
not occur in the real world. In particular, when the robot hits the table with its arm, the
simulation “overreacts” and the robot can fall down and lose the object, even after seemingly
small impacts. These kinds of failures can only partially be avoided by a careful control of
the robot and a good estimation of its capabilities.

Besides, the implementation of the robot’s grip and put-down actions is not based on
sophisticated path planning algorithms, but makes heavy use of heuristics. This works well
most of the time, but can cause failures that are not expected by the user. And the robot
doesn’t take care at all to avoid collisions with its arms.

With these words of caution in mind, Table 2 gives an overview of the failures for grip-
ping and putting down objects as well as for complete carry tasks. Activating the gripping
behaviour failed on average in about 4% of all gripping tasks. The reason for a failed gripping
task is most of the time that the robot is in a position from where it cannot grip the object
(i.e. the automatic gripping routine doesn’t find a path), usually it’s too far away. It can also
happen that the robot crashes into a piece of furniture and falls down before it can grip the
object.

With an average of 9%, the failure rate for put down tasks is more than twice as high as
for gripping. The causes for failing are similar to those when gripping with the additional
problem that the object positions near the wall are very hard to reach and the robot sometimes
hits the wall with the objects.

Even though the failure rates for single grip and put-down actions are not too high, they
sum up when considering complete carry tasks. Taken over all subjects about one in five
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Table 2: Percentage of failed actions. The columns min and max show the minimum and
maximum failure rates of the individual subjects.

min max average standard deviation
grip 0.0% 9.4% 4.18% 3.31%

put down 4.4% 15.2% 9.46% 3.49%
carry 9.7% 28.1% 20.97% 5.45%

carry tasks included at least one failure. Sometimes these failures could easily be recovered
by repositioning the robot and retrying the action. This was not possible when the robot had
lost objects in the attempt to put them down. Considering the subjects’ own impression of
their behavior (Section 3.1.3) and the object-related observations (Section 3.2.1) the failures
didn’t have a strong effect on the overall behavior and planning schemes of the subjects.

Overall, the failure rate is acceptable for a study investigating high-level behaviour like
the present one, but shows potential for improvement. We expect the failure rate to be
lower when users are instructed explicitly on the physical abilities of the robot. And after
the findings of the user study we have implemented a warning mechanism that tells the user
before an action that the robot might hit the furniture.

3.1.2 Improvement

For using the simulation in further experiments, we wanted to know if the ability to use the
simulation increases over time and how much training people need until they can handle the
simulation sufficiently well. The first four tasks to be performed in simulation contain only
one object and the instruction to bring it to another predefined place. Since it only contains
one carry task, these trials are less noisy with respect to failures. Besides, they are the first
trials for all subjects and can give an indication on how long it takes until subjects converge
to their full capabilities with the simulation.

Figure 11a shows the relative trial durations weighted with each participant’s own average
τSs
s,p for all participants. The scenario s differs for each trial depending on the participant,

because the trials were performed in random order. Time deviation values above 1 indicate
that a task was performed slower than the subject’s average, values below one are faster than
the personal average. The dashed line shows the average over all participants for each trial
number (which corresponds to different scenarios for different subjects).

For all participants, the performance decreases at some trial. This can be explained by the
fact that the subjects had very little experience in handling the simulation (5 minutes try-out
time for each participant before the start of the experiment and no instruction indicating
good grasping positions and other parameters). It seems that when people felt sure enough
with the basic functionality, they started to try new things. One instance for this is the use of
the functionality to stop only the robot’s rotation and keep its translational velocity. Several
subjects didn’t use this functionality in the first run, but started to try it later. The fourth
trial has a value below their average performance for almost all subjects. This might indicate
that after four trials most people have adapted well to the simulation.

Overall, these results for the development of skills in the simple tasks should be taken
with a grain of salt. The scenarios were very short and small detours in controlling the robot
could have huge effects in these statistics. And we don’t know how the development would
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(a) First four trials (simple tasks).
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(b) Complex tasks.

Figure 11: Time needed for each participant pi compared to average performance of this
participant pi per trial. Note that the trial numbers don’t correspond to the same scenario
for each participant, since the trials were chosen randomly. This means that scenario st-1 can
be the first trial for one participant and the third for another. The dashed line indicates the
overall trend (average value for all subjects per trial number).

have been in further trials of this kind of tasks.
Figure 11b shows the same type of diagram for the eight complex tasks τSc

s,p. In these
scenarios, deviation from the average can have many reasons apart from the user’s ability to
handle the simulation, like failures caused by errors in the physical simulation or distractedness
of the participant. Still, the results indicate a stable ability to handle the simulation with a
slight improvement over time.

Even though the measurements are noisy, we conclude from these observations that people
should perform several pick and place tasks to get accustomed to the control. It seems helpful
to provide subjects with some insight into the robot’s capabilities and limitations. For this
experiment, we only explained the pure workings of the simulation, but let the users find out
where they have to position the robot in order to grasp an object or put it down. Especially
the fact that the robot’s arms are extendable is not obvious and the learning process for users
could probably be accelerated by telling them these facts.

3.1.3 User Self-Evaluation and Satisfaction

After performing the tasks in reality and simulation, we asked the subjects about their expe-
rience with the simulation. Figure 12 shows the range and average value of answers obtained.
Besides, we asked what the subjects considered as most difficult in handling the simulation.

Most participants felt that they can handle the simulation well and achieve the tasks
quickly. Only two subjects didn’t agree (scores higher or equal 3) that they handled the
simulation well (Question 1) and three disagreed to having achieved the tasks quickly (Ques-
tion 2). The data didn’t show any significant relationship between the recorded data and the
self-evaluation of the subjects. However, the subjects who rated their abilities very low were
in fact among the slower participants.
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Q1

Q2

Q3

Q4

1 2 3 4 5

Q1) I feel that I can handle the simulator well.
Q2) I think that I was able to achieve the tasks in the

simulator quickly (as quickly as the simulated robot
allows).

Q3) The simulated robot executes the actions (grip and
put down) without errors.

Q4) The simulated robot executes the actions fast.

Figure 12: Answers to questions about the subjects’ own evaluation of their skills (questions
1 and 2) and their assessment of the simulated robot’s skills (questions 3 and 4). The Likert
values were labeled: 1=fully agree, 2=partially agree, 3=don’t know, 4=partially disagree,
5=fully disagree.

When asked about the difficulties in handling the simulation, a common answer was the
difficulty in estimating the robot’s capabilities, especially its gripping radius. Some people
explicitly mentioned that it would have helped them to get more explanation before the
experiment.

Two participants had problems steering the direction from the robot’s point of view.
Although there is a window with the robot’s view of the world, everyone concentrated on the
bigger window where the whole scene was shown from an outside view (cp. Figure 3). But
the measurements didn’t show any significant disadvantages for these subjects, because they
often reconsidered their actions quickly and were able to control the robot satisfactorily. It
would be interesting to investigate if providing a bigger window of the robot’s own view can
help people who have difficulty with the geometry.

The results on the question about the robot performing tasks reliably was surprisingly
good. Considering the that on average every fifth carrying task contained at least one failure
(of varying severity), four subjects fully or partially agreed that the robot performs actions
without errors and there was no complete disagreement to the statement. This indicates that
the failures in the pick and place tasks didn’t have a strong effect on the overall strategies of
the subjects. The average score of 2.7 is in line with the measured values for failures — not
disastrous, but with potential for improvement.

The question about the robot’s speed was rated clearly between “don’t know” and “fully
disagree”. Only one participant could “partially agree”. This result is not surprising when
considering that table setting in the simulation takes about 20 times as long as in reality. The
most boring parts for the participants are the grasping and putting down actions, where the
user can only wait until the robot has finished.

To sum up, the usability of the used simulation was sufficient for abstract behaviour obser-
vation in the present study. For more focused studies, the failure rate could be problematic and
should be minimised by better instructions and more sophisticated action execution. Besides,
the slowness of the simulation must be taken into account when designing an experiment.

3.2 Comparison of Task Execution in Simulation and Reality

For the comparison of the results in the real world and in simulation, we only use scenarios ct-
1-1 to ct-1-6. And we only use those trials of the real-world data where people were restricted
to carry one object per hand.
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Figure 13: Comparison of preference types over all subjects.

3.2.1 Preferences in Object Handling

Object Preferences in Carry Tasks Our subjects showed certain preferences for the
objects they take in a single carry task. We examined the preferences defined on page 10 and
compared their applicability in the real-world task execution to the one in simulation.

Figure 13 shows the proportion of carry tasks that can be explained by each of the pref-
erences, using the data of all subjects and scenarios ct-1-1 through ct-1-6.

It shows that preferences in carry tasks vary only little between execution in reality and in
simulation. In the real world, people prefer to carry identical objects, whereas in simulation
objects of the same type are more often carried at the same time. But in both cases carrying
objects of the same or similar kind can explain about half of the observed carry tasks, being
slightly stronger in real-world execution. An explanation might be that in real-life execution
it is easier to grasp objects of the same kind at the same time than taking two objects with
different grasps. In simulation, this motorical preference doesn’t play a role for efficiency.
However, it seems that people still like to carry objects of the same kind (one subject even
complained in scenario ct-2-1 that it was not possible without loss of efficiency to stick to the
weak object preference).

Similarly, taking objects of the same colour can explain about half of the carry tasks, in
the real world slightly less. Taken together about three in four carry tasks can be explained
by object or colour preferences — both in reality and in simulation. Taking into account that
the control of the simulated robot is a lot slower than acting in the real world, it is quite
surprising that the preferences in simulation account for approximately the same percentage
as in real-world execution. The preference for taking objects of the same or similar kind that
are sacrificed in simulation for efficiency reasons seems to be compensated by the urge to take
objects of the same colour.

Another indication that the preference types we defined matter in the task execution of
humans are the observations from the real-world trials in which the subjects were allowed to
use all their abilities to fulfill the task. There were three principle strategies:

1. carrying all objects at once, either by arranging them in one stack or by building a
partial stack of plates and cups and carrying the cutlery together with the stack;
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2. carrying all objects at once using both hands separately;

3. going the way between the worktop and the table several times.

In strategies 2 and 3, we can observe object and color preferences in addition to the joint
carrying of objects belonging to one place setting. When using the second strategy, in one
trial the subject carried the a stack of all red objects in one hand and a stack of all blue
objects in the other. In two cases, the plates and knives were carried in one hand, the cups
in the other, indicating a type preference.

When using strategy 3 a common pattern was to carry all objects of one color first and
the remaining objects in the second move. This behavior was an instance of carrying the
objects of one place setting at a time. No subject ordered the objects by color before carrying
them. In one trial for scenario ct-1-3 the subject carried the plate and cutlery of the first
place setting first, in the second move both cups were transferred and in the last move, the
second place setting was completed. This behavior also indicates a preference of types as well
as the completion of place settings.

Of course, the observed preferences are no surprise. But for a robot it is interesting
to learn such human preferences. And if these are similarly strong in simulation and real-
ity, the simulation turns out to be an appropriate testbed for our research on human-robot
collaboration.

Strategies for Object Choices Similarly to preferences of carry tasks, we examined which
objects were chosen and at which places they were put when the goal position was not fully
specified, i.e. in scenarios ct-1-3 and ct-1-6. In scenario ct-1-3 the subjects could choose two
complete place settings out of three complete place settings to put on the table, in ct-1-6
the two place settings on the table were to be put at places to be chosen next to the sink.
For classifying the choice of objects we use the strategies “order” and “sorting” explained on
page 12.

Again, both kinds of strategies are found in the real world and in simulation. When
confronted with material for three place settings and only setting the table for two people
(scenario ct-1-3), the impulse for setting place settings of one colour is stronger in the real
world. In simulation, only the weak sorting strategy could be observed. One reason might
be that people wanted to change their behaviour on purpose in order not to repeat what
they had done in the real world, possibly with the additional condition that setting the table
in simulation is more boring and leaves more time to think about such things. Another
explanation, which was also mentioned by the subjects themselves, could be the intricacies
in handling the simulation and the slowness of the manually controlled robot. In simulation,
people tried to speed things up as much as they could.

Although most subjects showed an observable strategy, only a minority employed the
same strategy in both worlds. Possibly, both strategies are regarded as similarly natural and
people don’t care which of them they use. However, this point can only be clarified in further
experiments with repeated trials.

Another interesting detail is that in the simulated trials of scenario ct-1-3 three subjects
chose exactly the same goal configuration using mixed place settings of red and yellow dishes
and cutlery. Only one subject produced the same result configuration (with only changing
the sides of the table) for simulation and real world in this scenario.
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Table 3: Comparison of strategies in real world and simulation for choosing objects and their
positions in scenarios ct-1-3 and ct-1-6. The table contains the number of subjects choosing
each of the strategies. The bottom part shows how many subjects used the same strategy in
simulation and the real world without necessarily using the same objects (“Keep strategy”)
and those who employ different strategies in both worlds. The “Keep strategy” criterion also
holds when a person changes from strong to weak sorting strategy. Note that in some cases
the subject didn’t follow any of those strategies.

Order
Strong sorting
Weak sorting

Some strategy
Keep strategy

Change strategy

ct-1-3
real simulation

3 3
5 0
0 4
8 7

2
5

ct-1-6
real simulation

5 6
4 3

9 9
4
5

3.2.2 Comparison of Time Scales

To get an intuition of the different time scales in reality and simulation we compared the
durations and their variances needed for completing table setting or clearing tasks. Figures 14a
and 14b show for each task ct-1-1 through ct-1-6 the range of normalised times TSc1

s,p and
marks the average of these values per scenario1. Table 4 shows some quantitative measures
for comparing the deviation of the candidates.

Our data shows that even with errors occurring in the simulation and different skills in
navigating the robot, the overall results are very similar to those observed in the real world.
Qualitatively looking at Figures 14a and 14b shows that scenarios ct-1-1, ct-1-2, ct-1-4 and
ct-1-5 are approximately on one time scale (which is not surprising as they involve the same
number of objects) and scenarios ct-1-3 and ct-1-6 (involving more objects than the other
scenarios) share another time scale and larger variances.

For the scenarios ct-1-3 and ct-1-6, which involve more objects, there is an obvious differ-
ence in the timing. Whereas in reality ct-1-3 took a lot longer to complete than ct-1-6, the
reverse is true for simulation. Since in both scenarios the same number of objects had to be
moved, it is surprising that there were any visible differences at all. It is possible that in the
real-world trials scenario ct-1-3 was more complex, because the objects to be moved had to
be chosen by the subjects, whereas in ct-1-6 only the goal positions had to be decided on.
Any such complexity of object choice in ct-1-3 would disappear in simulation, because the
subjects had lots of time to choose objects compared to the slowness of executing the actions.
The longer duration of ct-1-6 in simulation might be due to a higher failure rate, because the
goal positions of the objects near the wall were generally harder to reach for the robot than
goal positions on the table. This would also explain the high variance in completion times
for ct-1-6 in simulation.

Table 5a shows the average times t̄Rr
s and t̄Sc1

s and the standard deviations t̂Rr
s and t̂Sc1

s

1The parameter indicating the world Sc1 denotes the complex tasks performed in Kitchen 1 (i.e. scenarios
ct-1-1 – ct-1-6). Likewise, Sc2 means scenarios ct-2-1 and ct-2-2 in Kitchen 2.
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(a) Measurements in reality (using only data of those trials where only one object per hand was to be
carried).
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(b) Simulation results.

Figure 14: Times for completing tasks ct-1-1 through ct-1-6 in the real world and simulation
showing the range of times (bar) and the average time (diamond-shaped mark).

Table 4: Comparison of time deviation for completing tasks in reality and simulation. For
the real world the times are used only from those trials where the person was restricted to
using the hands like a robot.

real world simulation
(seconds) (minutes)

average time 31.78 9.93
standard deviation 10.2 3.51

relative deviation 32.1% 35.4%
(a) Comparison of average time t̄m

s , standard deviation t̂m
s

and relative deviation t̂m
s /t̄m

s for m = Rr and m = Sc1.

ct-1-1 ct-1-2 ct-1-3 ct-1-4 ct-1-5 ct-1-6
real 17.6% 18.8% 13.4% 24.7% 16.6% 13.6%

simulation 13.7% 21.1% 19.9% 18.0% 18.5% 21.1%

(b) Comparison of relative deviation T̂Rr
s and T̂Sc1

s for each scenario.
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over all scenarios and subjects. Those measures are only very rough numbers, because the
scenarios vary in the number of objects. Still, the relative deviation shows that in both cases
the relative variance is around 30–35%. The more detailed numbers in Table 5b show a similar
picture. All relative variations are around 10-20%, both in reality and in simulation.

These results show that — taking into account a large scaling factor — the relative times
of activities are comparable between real-world behaviour and simulation. However, the
durations of the single actions cannot be expected to scale in this manner. This detail could
only be clarified in a more focused study where the start and end of actions is clearly defined.

3.2.3 User Experience

Beside the quantitative measurements, we also wanted to know how the subjective feelings
of the participants were towards the differences of acting in the real and simulated world. In
this section, we consider the answers given to questions 2, 3 and 4 shown in Section 2.3.3 on
page 13. In addition, we asked to evaluate the remark “Because the simulation doesn’t allow
stacking of objects, the whole activity becomes very unnatural.” on a five-level Likert scale.

Indeed, people missed the ability to stack objects. The average Likert score was 2.2 (2
corresponds to “partially agree”). In the open question about desired additional actions,
four people named stacking and three mentioned this difference in question 3 (which might
however be influenced by the explicit question about stacking). In the same direction, three
subjects would like the robot to grip two objects at once (which is indeed what all subjects
did in the real world) and some subjects mentioned during the trials that it would be helpful
if the robot could hold more than one object in a hand and would be able to hand over objects
from one hand to the nother.

Comparing these opinions to the execution of the tasks in the real kitchen is somewhat
surprising. Some people complained about not being able to stack objects in simulation,
although they didn’t stack the objects when performing the tasks in reality (the two trials in
which they could choose their actions freely). And no one tried to stack objects when they
were asked not to do so, which indicates that stacking is a conscious activity that people can
live without easily. In contrast, the urge to grasp several objects at a time or handing them
over was violated more or less heavily nine times in 36 trials and the subjects mostly weren’t
aware of the rule violation.

When asked about the perceived differences of reality and simulation and the different
strategies, the most common answer was that it was a lot harder to estimate the physical
constraints and the robot’s actions in the simulation. Besides, a common impression was that
people stray from their preferences of taking objects of the same type or colour when working
in simulation.

The first point can definitely be confirmed by the observations. As described above, the
physics engine ODE can overreact to collisions between objects, which can quickly lead to the
robot falling down or losing objects. Besides, even though the robot’s arms are designed for
simulation and are more agile than most real currently available arms, it is still a lot harder
to evaluate good positions for a robot to stand compared to human abilities. Although
this provides a nice showcase for educational purposes (i.e. demonstrating non-scientists how
difficult the control of autonomous robots is), it makes the control of the robot difficult.

The second comment on the preferences includes self-observations such as “In real exe-
cution I always take things which are of the same colour. But for the robot I always try to
do it as easily as possible.” or “I normally put the biggest objects first: plates, cups and
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so on. I tried to do the same in the simulator, but in the simulator (to save some time) I
tried to be aware of the hand with which I was grasping the objects and which would be
its last position.” Interestingly, the results in Figure 13 suggest that people do not change
those habits significantly, even though the control of the robot in simulation is more difficult.
However, Figure 13 also shows that people tend to grasp objects of the same type in the
real world, whereas in simulation, similar objects are more often carried together. And the
colour preference is even more pronounced in simulation than in real-world execution. Also
the strategies of which objects to put on the table as shown in Table 3 suggest that there is
some more emphasis on efficiency in the simulation, but that similar strategies (in this case
weak sorting strategy as opposed to strong sorting strategy) are employed in simulation as
well.

One explication for this discrepancy between felt and observed differences might be that
people would like to take some constellation of objects, but “replan” their activity when
they realise that this might not be efficient in the simulator. And then the new course of
action does show some preferences, but not the ones that the subjects had originally intended.
Furthermore, in the simulated world people have much more time to think about their actions.
Whereas in real life, activities are performed unconsciously, there might be an attempt to find
an “ideal” way in the simulation.

In all, the behaviour of people setting and clearing the table is comparable in simulation
and reality with respect to the object choices and the time scale of the whole task. The main
difference seems to be the more conscious execution of the tasks in simulation, which seems
to be due to the slowness of the simulator.

3.3 Comparison of Behaviour in two Simulated Worlds

One of the advantages of using simulation for human-robot experiments is the possibility to
create different virtual worlds for the user to act in. Our experimental scenarios ct-2-1 and
ct-2-2 are in a different kitchen than the ones in ct-1-1 through ct-1-6. In the following we
compare the results in the two kitchens. Given the scarcity of the data (only two scenarios
in Kitchen 2), these results can only be indicative.

3.3.1 Carry preferences

Parallely to the comparison between reality and simulation, we considered the preferences for
similar objects in carry tasks for the two kitchens. Figure 15 shows the ratios of tasks, where
a specific preference was shown.

The general picture of users having preferences to carry objects of the same or similar
type or of the same colour can also be observed in the second kitchen. But the differences
in preferences are higher between the two simulated environments than between reality and
simulation in Kitchen 1 (cp. Figure 13). Especially the preference for carrying objects of the
same colour, is a lot more pronounced in Kitchen 2.

This might be explainable with the specific configuration of objects, especially in sce-
nario ct-2-1, where most of the blue objects are grouped at one place. It would be interesting
to investigate this phenomenon more closely in a more focused study.
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Figure 15: Comparison of preference types over all subjects in the simulated kitchens.
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Figure 16: Comparison of average relative times T̄Sc1
p in Kitchen 1 and T̄Sc2

p

in Kitchen 2 for each subject.

3.3.2 Time comparison

We compared the relative average time T̄m
p of each subject in the scenarios performed in

Kitchen 1 (ct-1-1 – ct-1-6) and those in Kitchen 2 (ct-2-1, ct-2-2). Figure 16 to visualises the
relative duration in both kitchens to show if the efficency of a subject depends on a specific
environment. The grey line indicates the values where the relative efficiency in both kitchens
would be equal.

The maximum difference for one participant compared to its own average time (|T̄Sc1
p −

T̄Sc2
p |/T̄Sp ) is 16%, the average is 8%. Overall, subjects who performed tasks very efficiently

in one kitchen, were also among the faster performers in the second kitchen and vice versa.
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Table 5: Qualitative categorisation of navigation behaviour over all trials in Kitchen 1 and
scenario ct-2-2 in Kitchen 2. The table shows the number of subjects falling in each of the
categories.

C1 C2 C3

C1
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C3

Kitchen 1
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1

1
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C1: direct way
C2: long way
C3: mixed behaviour

3.3.3 Navigation paths

We also examined the paths on which the subjects navigated the robot to fulfil tasks. In
Kitchen 1, an object could be placed on the far side of the table either by reaching over the
table (quite a challenge with the robot’s capabilities) or moving around the table (which takes
longer). Similar options can be identified in Kitchen 2 as shown in Figure 9.

Table 5 shows a qualitative analysis of the paths in each kitchen using the categories
defined on page 12. We show the aggregated results over all trials in each kitchen (for Kitchen 2
only scenario ct-2-2 was evaluated). In the aggregated case, category 3 also contains those
participants who showed different behaviour in different scenarios in Kitchen 1.

Table 5 suggests some general tendencies of some subjects to choose the long way in both
kitchens (three participants). Five participants seem to avoid long ways, using the direct way
or showing a mixed behaviour. Only one subject who chose long navigation paths in Kitchen 1
seemed to seek more efficient paths in Kitchen 2. The possibility of the simulation to define
arbitrary worlds could be very beneficial to study human navigation behaviour by abstracting
from personal physical skills (like size and agility) and concentrating on the cognitive aspects
and the configuration of different worlds.

3.3.4 Gripping parameters

Finally, we compared the parameters of gripping tasks in both kitchens by measuring the
robot’s relative position to the objects. Figures 17a and 17b illustrate the average values of
the position parameters (distance d and absolute angle φ) for each object type and Figures 17c
and 17d show the average values and standard deviations for the trials in both kitchens.

The average values over all object types are almost identical in both kitchens: the average
distance differs by 2 cm and the angle by 0.1◦. Likewise, the variances are very similar.
Figure 17 suggests that in Kitchen 1 all object types were gripped from about the same
distance, whereas in Kitchen 2 there are visible differences in the position from which the
objects were gripped. This might be due to the different topologies of the kitchens or the
executed tasks. Another likely explanation is the lower number of samples in Kitchen 2, where
accidental differences have a higher influence on the average value than in Kitchen 1.

Overall, the parameterization of gripping actions is comparable in the two kitchens. An
interesting question would be how far the standard parameterization is changed when objects
in hard-reachable positions need to be gripped.

25



d̄ = 0.78m

φ̄ = 11.76◦

(a) Kitchen 1.

d̄ = 0.80m

φ̄ = 11.66◦

(b) Kitchen 2.

average d̄ st. dev. d̂
Kitchen 1 0.78 0.18
Kitchen 2 0.80 0.15

(c) Distance.

average φ̄ st. dev. φ̂
Kitchen 1 11.76 9.10
Kitchen 2 11.66 8.35

(d) Angle.

Figure 17: Illustration of average gripping parameters in both kitchens. The average over
angles works with average values, which means that the object can also be at the right side
of the robot. The ellipse around the objects indicates the standard deviation of the distance
and angles. For clarity, the scaling of robot and objects are different.

4 Discussion and Conclusions

The user study has provided us with valuable observations on the usability of our current
implementation of the simulation control. Our subsequent enhancement of this module has
concentrated primarily on reducing failures by adding a warning mechanism when the robot
is too near a piece of furniture when the user asks it to grasp an object. Because many
failures are caused by problems in the underlying physics engine, this prediction will never
be completely reliable, but might reduce the failure rate.

Even though the subjects of this study were no passionate computer gamers, several
of them criticised the control of the robot not following the industry standard, where an
explicit stop of the movement is not necessary and the character moves only as long as the
respective arrow keys are pressed. We have by now changed the control mode and will verify
its acceptance in subsequent studies.

Another aspect criticised by the users was the speed of the robot. The simulation can be
accelerated to some extent, but this is restricted by computing power. Besides, we could make
the grasping faster by violating some constraints of the arm joints. However, we cannot change
these restrictions for an autonomous robot, only the manually controlled one. To keep the
benefit of the similar time scale of the two robots, we will only accelerate the hand-controlled
robot slightly and observe in further experiments if this affects human-robot collaboration.

The observations of the user study also indicate that more information and better training
before starting the trials would help the users to avoid failures. In subsequent studies we will
provide such information and prepare the users with explicit training tasks.

The results of the user study indicate that humans show similar behaviour when executing
tasks in reality and simulation. The preferences of users to carry similar objects (by type or
colour) at the same time is almost the same in simulation and reality. The difference that
users in reality tend to prefer the carrying of objects of the same type in contrast to the more
pronounced colour preference in simulation, is not a problem for the kind of research we are
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interested in. We develop adaptive technology, so that a robot can observe human behaviour,
derive general concepts and adapt to specific users. Even though the concepts observed in
simulation are not exactly the same as in reality, the learning technology can be developed
in sumulation to be used in reality to acquire the specific models there. The emphasis of our
research is the development of general techniques, not specific models.

Also the subjects’ preferences for placing objects when the goal positions are not prede-
fined, show a similar picture in simulation and reality. Again, the simulated results show
somewhat weaker preferences (using two colours for two place settings vs. complete sorting
of colours), they are sufficiently similar for a robot to develop adaptive behaviour.

The relative time scales of performing table setting and clearing tasks are on the same
level and show similar variances in simulation and real-world execution. The similar timing
ensures to some extent the generalisability of simulated results, although it is doubtful that
the same scaling can be observed on an action level.

The subjective evaluation of the users confirms the observed differences in preferences
for handling objects. However, the subjects seem not to be aware that they show similar
patterns in simulation. The results indicate that the users are more aware of their actions in
simulation than in reality. For experiments, where unconscious behaviour is of importance,
one might add extra stress factors to the experiment, for example by initiating a competition
as in real computer games or by providing a second task, which the subjects should complete
while performing the simulated household tasks.

The few trials in the second simulated kitchen indicate that the usability of the simulation
depends more on the individual subject than on the world, which means that behaviour
differences observed in different kitchen environments are due to the environments rather
than different control capabilities. These trials have also shown that differences in higher-
level behavior result more from the different kitchen environment than the differences observed
between real-world execution and simulation in the same kitchen set-up.

With this user study, we could show that a simulator with a manually controlled character
is a useful testbed for developing and testing human-robot interaction. It follows the idea of
the “Oz of Wizard” approach [6], which claims to focus not only on human behaviour, but also
to allow robot development by modelling the human. A similar approach to our simulation
is the restaurant game [5] developed at MIT Media Lab and used for research on high-level
interaction patterns. The restaurant game concentrates on high-level cognitive capabilities
such as planning and communication, but without the underlying embodied hardware. In
contrast, as we are interested in the development of complete robot systems, we don’t want
to abstract from the underlying physics.

Overall, this user study has provided insight into behaviour patterns for table setting and
clearing tasks and how these patterns appear in a non-embodied environment such as our
simulation. The results show the feasibility of studying human-robot interaction in simulation,
allowing the development of realistic robot behaviour while at the same time being able to
interact with humans. Moreover, such a simulation environment can be an interesting testbed
for studies on cognitive behaviour, because it allows to separate the physical embodiment
from pure cognitive behaviour. In addition, experiments in simulation allow the execution of
arbitrary worlds at low cost and facilitate the data collection significantly.
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