
HAL Id: hal-01405664
https://hal.science/hal-01405664

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robot learning language
Alexandra Kirsch

To cite this version:
Alexandra Kirsch. Robot learning language: Integrating programming and learning for cognitive
systems. Robotics and Autonomous Systems, 2009, 57 (9), pp.943-954. �10.1016/j.robot.2009.05.001�.
�hal-01405664�

https://hal.science/hal-01405664
https://hal.archives-ouvertes.fr

NOTICE: This is the author’s version of a work accepted for publication
by Elsevier. Changes resulting from the publishing process, including peer
review, editing, corrections, structural formatting and other quality control
mechanisms, may not be reflected in this document. Changes may have been
made to this work since it was submitted for publication. A definitive version
was subsequently published in Robotics and Autonomous Systems Journal,
[57, 9], 23 June 2009, doi:10.1016/j.robot.2009.05.001.

Robot Learning Language — Integrating Programming
and Learning for Cognitive Systems

Alexandra Kirsch
Intelligent Autonomous Systems Group, Technische Universität München

Boltzmannstr. 3, D-85748 Garching
kirsch@in.tum.de

Abstract

One central property of cognitive systems is the ability to learn and to improve
continually. We present a robot control language that combines programming and
learning in order to make learning executable in the normal robot program. The
language constructs of our learning language RoLL rely on the concept of hier-
archical hybrid automata to enable a declarative, explicit specification of learning
problems. Using the example of an autonomous household robot, we point out
some instances where learning — and especially continued learning — makes the
robot control program more cognitive.

Key words: robot learning, robot control language, hybrid automata, cognitive
systems

1. Motivation

There are strong research efforts going on to develop complex technical sys-
tems for use in everyday life — car assistant systems, intelligent household de-
vices, assistive systems for the elderly, mobile office applications — that are easy
to use and react flexibly to changes in their requirements and environment. Such
agents should learn constantly by observing their own behavior and adapting it
to their requirements. We propose to consider learning as an integral part of the
control program by special learning constructs in a programming language. This
idea was described by Mitchell (2006) as one of the long-term goals in the devel-
opment of machine learning:

Can we design programming languages containing machine learning
primitives? Can a new generation of computer programming lan-

Preprint submitted to Robotics and Autonomous Systems May 22, 2009

Figure 1: An autonomous household robot. We use a B21 robot in simulation (left) and the real
world (right). The simulated arms are an imitation of the RX90 robot, whereas the real robot is
equipped with two Powercube arms.

guages directly support writing programs that learn? In many current
machine learning applications, standard machine learning algorithms
are integrated with hand-coded software into a final application pro-
gram. Why not design a new computer programming language that
supports writing programs in which some subroutines are hand-coded
while others are specified as “to be learned.” Such a programming
language could allow the programmer to declare the inputs and out-
puts of each “to be learned” subroutine, then select a learning algo-
rithm from the primitives provided by the programming language.

Mitchell (2006)

We consider an autonomous household robot as shown in Figure 1 as an in-
teresting instance of a complex system that needs learning capabilities to adapt
its behavior while doing its job. One challenge in implementing such a robot is
that the outcome of actions in the real world strongly depends on lots of small
parameters to be adjusted in an uncertain world like the direction from which to
approach an object, where to stand in order to grasp it, the point at which to grasp
it, etc. Additionally, a cognitive system needs prediction models for its own ac-
tions and how the world will evolve (with special focus on humans acting in the
environment) and in the case of autonomous robots individual skills must also be
learned and updated continually.

The sheer number of parameters, actions and models a robot needs suggests
that they should be acquired automatically. Besides, dynamic environments re-
quire a robot to adapt to changing conditions by re-learning. In this article, we

2

present the language RoLL (Robot Learning Language), which provides means
to specify which part of the program is to be learned, how experiences are to be
acquired, which ones are to be used for learning and which learning algorithm
should be used. With RoLL, learning and programming can be combined to use
the best solutions of both worlds.

Combining programming and learning — and thereby enabling continual im-
provement of the robot behavior — does not only speed up the development of
some modules of a cognitive system. The modules and layers of abstraction of
such a system depend strongly on other parts of the program. Therefore, when
one part evolves, other program parts have new chances of enhancement as well.
For example, when our robot improves its primitive navigation and grasping skills,
this enables the robot to perform pick-and-place tasks more dexterously. However,
before the pick-and-place tasks will work with the new underlying skills, the pa-
rameters of these tasks have to be adapted. Better pick-and-place skills enable the
robot to perform more sophisticated activities. Instead of only setting the table, it
can now start to learn how to load a dishwasher. Once the robot performs these
new high-level activities, it experiences new situations, which will help to improve
its low-level skills. Here the cycle starts again with the improvement of naviga-
tion and manipulation skills. In the course of this development, the robot has to
adapt its models of its own skills constantly. For instance, before improving its
low-level skills, the prediction model would have warned the robot that a certain
grasping action will not succeed. This warning is superfluous when the skill has
been enhanced.

This vision of a continually improving robot is the driving force of our re-
search on the Robot Learning Language (RoLL). To our knowledge it is the first
approach to integrate learning as a general concept into a programming language.
We will point out the main challenges in implementing such a language and how
we solved some of them. The next section gives an overview of RoLL’s main
concepts. Its declarative syntax heavily relies on the formal concept of hybrid
automata. The relationship between hybrid automata and automatic learning is
described in Section 3. After that, we present RoLL in more detail, first the auto-
matic detection of experiences and then the learning operation. We then illustrate
the declarative and elegant syntax of RoLL in a comprehensive example. We
have evaluated the language with several learning problems, some of which are
presented in Section 7. The article ends with a section on related work and a
conclusion.

3

2. Overview

When learning is included into a control program, the program should still be
easily readable and not show extensive traces of the learning mechanisms. RoLL
offers declarative constructs for defining learning problems independently of the
control program. Only two procedural commands were added for starting the
experience acquisition and the learning process.

Figure 2 demonstrates how RoLL works. On the left-hand side it depicts the
learning procedure in RoLL. On the right side of Figure 2 the declarative spec-
ifications are shown as pseudo code pieces that generate the respective behavior
illustrated on the left.

A typical learning problem is specified and solved in two steps: first acquire
the necessary experience, then use this experience to learn and enhance the control
program. This process is usually repeated to make the learning result better and
adapt the control program to changed environmental situations. The activity of
these two steps is invoked by calling the commands acquire-experiences and
learn. One possible top-level control program could be the following:
do-continuously

do-in-parallel acquire-experiences re
execute top-level-plan

learn lp

This program executes some top-level plan, e.g. doing household work. In
parallel it observes the experiences, which are specified declaratively in another
part of the program. RoLL also supports the observation of several experiences in
parallel. Here we assume that the top-level plan ends at some point, let’s say in
the evening of each day. Then the experiences observed during the day are used
for learning and improving the top-level plan before it is executed again.

2.1. Experiences
One of the central concepts in our learning approach is the term “experience”.

In our framework, an experience is more than the data stored in log files, which
is commonly used for learning. We define experiences in terms of episodes in the
following way:

An episode is a stretch of time and all observable data available during
this time. An experience is a summary of the internal and external
state changes observed during and associated with an episode. By
summary we mean that not all available information is recorded, but
only necessary experiences for learning. State changes include events

4

experience gathering step

experience
recording

monitor-
ing

plan ex-
ecution

raw experience

experience
abstraction

learning step

experience
preparation

learning

integration

raw experience: re

observe execution of plan p

recording variables

(x,y) continuously

(a,b,c) in case of success

abstract experience: ae

of class aec

abstract from raw experience re

learning problem: lp

learn target function

specified as lps

using experience of class lec

abstracted from experience ae

applying learning system ls

Figure 2: Learning process in RoLL. On the right-hand side the corresponding code defining the
learning process is shown.

5

in the environment, the robot’s control commands, its internal beliefs,
decisions and intentions, as well as failures and the robot’s reaction
to them.

This notion of experiences enables operations on them, which are needed to
reduce the number of experiences to be acquired and make the learning more
efficient. One such operation is the abstraction of an experience into a form more
suitable for learning. We call the directly observed experiences raw experience
and the converted ones abstract experience. When the context of the experience is
preserved, semantically sound methods for deciding which experiences are most
useful can be applied to learn only with the most expressive experiences, thus
enhancing the learning process as a whole (Kirsch et al., 2005).

To implement this notion of experiences in a control language, our approach
is based on the concept of hybrid automata for a theoretically grounded, well-
understood underpinning of experiences and their impact throughout the learning
process, which is explained in the next section.

The upper part of Figure 2 shows how experiences are acquired in RoLL. The
programmer defines declaratively which parts (i.e. global or local variables and
program states including failures) of the program are to be recorded as experience
at which times. From this specification RoLL computes code that can be run
in parallel to the normal program using acquire-experiences and writes the
observed experience data to a data structure.

With a similar specification, the programmer defines the abstract experience
— a feature language that makes the raw experience more suitable for learning.
With this specification, an observed raw experience is converted directly to an
abstract experience, which is stored in a database for offline learning or is used
directly for online learning.

2.2. Learning
The second step — the learning step — starts with the last operation on expe-

riences by transforming them to a format accepted by the learning system. Then
the actual learning takes place by applying a specified learning algorithm to the
experiences. The final step is to integrate the learning result into the program.

After that the program runs with the modifications induced by integrating the
learning result. The cycle starts again for more enhancements to the program.

2.3. Implementation
Our learning language RoLL is implemented as an extension to the Reactive

Plan Language (RPL) (McDermott, 1993, 1992). RPL is a concurrent reactive

6

control language. It provides conditionals, loops, program variables, processes,
and subroutines as well as high-level constructs (interrupts, monitors) for syn-
chronizing parallel actions. To make plans reactive and robust, it incorporates
sensing and monitoring actions, and reactions triggered by observed events. It
makes success and failure situations explicit and enables the specification of how
to handle failures and recover from them. RPL is implemented as an extension to
LISP and therefore provides all its functionality beside the planning constructs.

RPL is not only a sophisticated representation for plans. Since it was designed
for plan transformations, it provides explicit access to its internal control status
from within the program, so that a planner can understand the program and modify
it during its activity.

The explicit structure of RPL plans and the possibility to have access to the
execution status from within the program are vital for the experience acquisition
in RoLL. Because of the RPL task network and the information kept therein, the
experience acquisition can take place completely independent from the rest of
the program. With the concept of fluents changes in state variables are noted
instantaneously by other processes.

3. Hybrid Automata as a Model for Robot Learning

All components of a learning problem are specified explicitly and declaratively
in RoLL: the identification of program parts that can be learned, the acquisition,
abstraction, and management of experiences, the learning process itself, and the
integration of the learned function into the control program. The specifications
needed for learning are comprehensible and universal so as to comprise all possi-
bilities arising in arbitrary learning problems.

The biggest challenge was the definition schema of experiences, how to de-
scribe their acquisition in terms of observations and how to abstract them for
learning. Experiences are composed of external and internal observations. The
first correspond to the agent’s belief state, the latter comprise its execution sta-
tus (i.e. which goals and routines are currently active or a failure state) and its
internal state (i.e. all program variables). Another dimension lies in the timely
distribution of data that is to be recorded. For some experiences, one-time obser-
vations are necessary, like “How many people were in the room at the beginning
of the meal?”. In other cases, continuous observations are more appropriate, for
example “How often does the robot lose the knife while it is cutting something?”.
Of course, combinations of those two cases are required as well.

7

The basic idea for describing the experience acquisition is to define an abstract
model of the execution of the agent program within the environment using a hier-
archical hybrid automaton. On the basis of this model of the program execution,
the programmer specifies which experiences are to be observed at which moment
in the modeled program.

3.1. Hybrid Systems
We have seen that it must be possible to model both discrete changes (the meal

starts) and continuous processes (the cutting activity). A hybrid system is charac-
terized exactly by these two aspects (Branicky, 1995), so that the description of
the outside happenings as well as the agent’s internal state can be modeled in a
natural way by the notion of hybrid systems. The external process contains dis-
crete state jumps in the form of events like going through a door. Here the state of
being in one room changes abruptly to the state of being in the next room. Inside
the robot, discrete changes correspond to procedure calls of any kind. Continu-
ous effects are numerous in the environment, for example the process of boiling
water. The water constantly changes its temperature until it reaches its maximum
temperature, from where on it remains steady. Inside the program, the execution
of a plan or routine is a continuous process.

In the context of RoLL we are neither interested in formal properties of hybrid
systems in general nor in proofs about the behavior of a hybrid system. What
we need is a well-understood, comprehensible framework for modeling a hybrid
system. One way of specifying hybrid systems are hybrid automata (Alur et al.,
2001; Henzinger, 1996), which we chose as the underlying framework for RoLL.

The concept we need for experience acquisition are hierarchical hybrid au-
tomata. The example in the upper part of Figure 4 shows an automaton with two
sub-automata that each contain another sub-automaton. The hierarchy allows the
modeling of processes to an arbitrary depth as well as the option to describe pro-
cesses at a very high level of abstraction.

3.2. Hybrid Automata for Robot Learning
Figure 3 illustrates the use of hybrid automata in the learning process. The

first step in the learning procedure is the acquisition of raw experiences, which
are then converted to abstract experiences. An example illustrating the steps of
experience acquisition is shown in Figure 4. It shows the experiences for the
learning problem of a function deciding which of its two grippers a kitchen robot
should use for grasping an object.

8

experience automaton
Control
Program

anchoring

experience acquisition
ra

w
ex

pe
ri

en
ce

. . .
experience abstraction

ab
st

ra
ct

ex
pe

ri
en

ce

. . .

Functionlearning

in
te

gr
at

io
n

model automaton

?
?

fg

Figure 3: Use of hybrid automata in the learning process. We use hybrid automata as a means
of modeling the control program and defining the desired raw and abstract experience. With the
information of how this model relates to the real program, the specification is transformed to
executable code. Learned models can also be considered as a partly specification of a hybrid
automaton.

For defining a raw experience, an experience automaton is defined and an-
chored to the control program, which is executed in the environment (for example
the automaton shown at the top of Figure 4). Each detected run of the experience
automaton is identified as an episode. Data associated with the episode can be
recorded once at the beginning or end of the automaton execution or constantly
during the interval the automaton is active. The data can stem from external ob-
servations (global state variables) or from internal information about the program
execution (active processes and local variables). In Figure 4 the angles of each
robot joint are recorded while the goal entity-at-place is being achieved. Mean-
while, each time the goal grip is invoked, the poses of the entity to be gripped
and the robot, the used arm and the current time are recorded. Other values are

9

entity-at-place

pick-up entity

grip

put-down entity

drop

entity-at-placeinterval → joint angles
gripbegin → entity pose, robot pose,used arm, timestep
pick-upend → timestep
dropbegin → entity goal pose,timestep
put-downend → entity pose, robot pose, timestep

model

modelbegin → entity robot distance, handle orientation, used arm
modelend → time difference

Figure 4: Experience abstraction for the learning problem of determining which hand to use for
gripping. The assignment of data to an event (begin or end of automaton execution) is marked
with vertical bars in the automata. Every experience consists of a hybrid automaton and data. The
automaton structure is depicted above the data associated with it.

recorded at the beginning or end of the goals pick-up, drop and put-down.
The hierarchical nesting of hybrid automata provides a rich description for

the observed data. In Figure 3 different episodes of data are shown in different
shades of gray. The vertical lines separate the data observed during the run of sub-
automata and can therefore be thought of as sub-episodes. The thin zigzagging
lines visualize external data, the thick straight lines the data gathered from the
program execution status.

In the experience abstraction step the structure of the hybrid automaton is
maintained or adapted to a structure that is semantically sound in the abstracted
experience. Not only the automaton structure is changed in the abstraction pro-
cess, but also the data representing an automaton run. This transformation of au-
tomata gives a very expressive language for abstracting experiences. In Figure 3,
the hierarchical structure of the abstract experience is changed and internally and
externally observed values are combined (indicated by wider zigzags).

The lower part of Figure 4 shows one way of abstracting the raw experience
for the gripping problem. Whereas the automaton structure of the raw experience

10

corresponds directly to the processes of the program, the structure of the abstract
experience can best be seen as a function mapping the initial situation and the
arm used to some objective function for evaluating the gripping process. In Fig-
ure 4 this objective is the time needed. The value of the variables in the abstract
automaton are defined on the basis of the ones in the raw experience, for example

time difference@modelend = timestep@put-downend − timestep@gripbegin.

In the current implementation of RoLL the learned function is integrated into
the control program without any more reference to hybrid automata. However, the
things we want to learn in RoLL are mostly models of the robot behavior. These
models can best be represented in the light of hybrid systems. For closing this
gap, one would only have to model the control program with a hybrid automa-
ton skeleton, i.e. specify the structure, but omit quantitative details as shown in
the model automaton in Figure 3. This automaton can then be replenished with
learned prediction models to make accurate behavior predictions possible and al-
low a uniform access for using the models.

If we describe our program as a hierarchical hybrid system, we soon realize
that the system can be modeled in several ways. One way would be to describe the
top-level program by a sequence of several continuous processes. The processes
correspond to sub-plan invocations, which are typically extended over a period of
time. Here we have one hybrid system, where the discrete changes occur when one
sub-plan has finished and another one starts and continuous processes are captured
as a black box in the sub-plans. However, we might want a deeper understanding
of why a sub-plan produces the continuous behavior we observe. This can be
done by having a look inside the sub-plan, which is built up in the same way as
the top-level plan: it contains calls to sub-plans, which again show continuous
behavior. This means that the continuous behavior of plans can either be specified
by a black box view or by opening the box and having a look at the hybrid system
contained inside.

The possibility of modeling the program in the hierarchical automaton struc-
ture to arbitrary levels of detail provides a very flexible and convenient way for the
programmer to declare experiences. If the modeling were restricted to an abstract
level, some details of the program execution could not be observed. Contrarily, if
the programmer were forced to model the program on the lowest level, experience
definitions would be extremely hard to define and read.

In sum, we can understand the robot’s program and its execution in the world
as a hierarchical hybrid system, which we want to use as a basis for specifying the

11

experience that should be acquired. Of course, for this specification it would be
unmanageable to model the whole program as a completely expanded hierarchy of
hybrid systems, and it isn’t necessary after all. We allow to specify the interesting
parts of the agent program and its execution as a hybrid system with subsystems
to an arbitrary granularity. The hybrid automaton model then serves as a basis for
describing the desired experiences and the whole learning process.

4. Experiences

This section and the next explain the RoLL language in detail. Code examples
are presented in Section 6, which can also be used as a reference for the next
two sections. In order to separate the learning code from the rest of the program,
it is extremely important to have declarative constructs for defining the learning
process. We present how RoLL achieves a high level of expressiveness without
having to modify the original code of the robot program.

Experiences play a central role in the learning process. First, experiences must
be observed while the robot is acting. After a useful observation has been made,
the experience is abstracted and stored in the experience database.

We have defined experiences to be learning problem specific summaries of
problem-solving episodes. This is mirrored in the data structure used for storing
experiences in RoLL. The programmer specifies an episode by defining the struc-
ture of a hybrid automaton. The summary of information is filtered according to
the definition of the desired data at special points in the automaton.

4.1. Raw Experience Detection
Raw experiences are the direct observations of beliefs and internal robot pa-

rameters during execution.
The robot is controlled by some program, which can either be the robot’s stan-

dard control program or one specially designed for experience acquisition. An in-
dependent monitoring process observes internal and external parameters that are
changed by the control program. It records relevant data and passes the whole ex-
perience on for abstracting or using it. The controlling and monitoring processes
operate without direct process communication. The monitoring process starts in
a sleeping state and is activated by certain events given in the raw experience
specification.

12

environment
environment process

raw experience

program

Figure 5: Description of the HHA structure for raw experience acquisition. The arrows indicate
how the experience automaton can be anchored in the automaton defined by the robot program
and in the environment process.

4.1.1. Experience Automaton and Anchoring
We represent an experience by a combination of an automaton defining an

episode and the data associated with it. The automaton for raw experiences is
defined along two dimensions: the hierarchical structure and its correlation to the
program being executed. For an example of such a definition see Listing 6.1.

The automaton structure itself is described by a hierarchy of subautomata. as
shown in Figure 4 on page 10. The automaton with the name entity-at-place has
two subautomata: pick-up and put-down. The order in which these automata are
expected to be activated is not specified. Each subautomaton contains one other
subautomaton.

For identifying interesting episodes in the program execution, the automaton
specification of the experience must be associated with events inside and outside
the robot program during its execution. We call this process “anchoring”.

There are two sources of anchoring as illustrated by Figure 5: events in the
environment and events inside the program. We have shown in Section 3 how
the control program can be modeled in the framework of hybrid automata. This
means that we can associate a subautomaton of the program with the specified
experience automaton. To do this, we access the RPL task network and navigate
through it to find the desired automaton represented in it.

Possible introductory points to the task network supported by RoLL are the

13

activation of a goal to be achieved, the execution of a routine, or the execution
of any task that has been marked by a global tag. After addressing an RPL task
via the goal, routine or a global tag, all other program parts are accessible by
navigating through the task tree. For most purposes, the standard introductory
points are sufficient, like observing each time a certain goal is to be achieved.
For acquiring experiences that need more detail of the program, for example the
duration of the first step in a plan execution, the specification of the experience
relies strongly on the actual program structure. When the program is changed, the
experience definition might have to be changed too. A more robust alternative is
the definition of a tag to mark the interesting part of the control program.

Other experiences rely more on the state of the environment, for example when
learning models of user preferences. In this case, the experience automaton should
be described in terms of state variables, which are the internal representation of
the environment in the program. In the light of hybrid automata, we represent
“environment automata” by giving an invariant. Thus, the environment activity
can also be described as an automaton whose activity lasts as long as the invariant
stays intact. For example, we might be interested in the automaton that is active
while a human is in the room. This automaton is described by the invariant con-
dition of someone being inside the kitchen. In the code this condition is given by
a fluent variable1, which is always true when a human is in the room and switches
to false when no person is present.

In sum, the hierarchical structure of an experience automaton can be anchored
to the control program in two ways: (1) by connecting it to the program structure,
which corresponds to matching the automaton structure to parts of the program
and (2) by associating it with environmental conditions, which corresponds to
matching it with an imaginary environment automaton. Both the environment and
program automaton can be modeled to an arbitrary level of detail. Of course, both
methods can be combined so that for instance experiences can be recorded for
navigation tasks where people are present in the room.

4.1.2. Experience Data
Having defined the episode in the form of a hybrid automaton, we now have

to add the specification of the desired data points. Variable values can either be
stored once at the beginning or end of the automaton execution or continuously

1A fluent in RPL is a variable whose changes are notified automatically to other processes. For
an invariant the fluent must represent a Boolean value.

14

during its activation. For the events and the interval there can be different sets of
variables to be recorded.

The values to be recorded can stem from global variables like state variables,
which are accessible from all over the program (e.g. the robot’s position). Another
source of data are local variables that are changed during program execution, for
example the path a robot has chosen for navigation in the current situation or the
arm it uses for a manipulation task. This is possible, because the local variables
are accessible via the RPL task tree. The addressing of local variables therefore
involves navigating through the task tree like in the specification of anchoring the
experience automaton to the program.

The question of which data should be recorded in an experience lies with the
programmer and depends on the learning problem(s). In general it is a good idea to
observe more aspects of a problem than seems to be necessary for a given learning
problem. In most cases, the outcome of a learning problem relies strongly on the
abstract feature language that is used for the learning process. With more data,
it is easier to modify the later steps of experience abstraction without the need to
observe new experience. Besides, it can be reasonable to acquire raw experience
that is to be used for several learning problems. For example, when a routine needs
models about the time needed to achieve the goal and about its success rate, the
necessary data is almost identical. In this case it makes sense to observe only one
raw experience with the information for both learning problems and later generate
two abstract experiences out of it.

4.1.3. Failures
The execution of a robot plan can always fail. This may or may not affect a

specific experience acquisition process, it might even be an event to observe as an
experience.

There are two kinds of failures that can happen during experience acquisi-
tion: a plan failure leading to the current plan being stopped or a condition that
is not recognized as a failure in the program, but makes the currently observed
experience uninteresting. Failures in the control program are detected in the main
program code and are either handled to recover from the failure or lead to the
interruption of the plan. Undesirable conditions for a specific experience can be
given in the experience specification.

No matter how the failure was detected, the programmer decides for each ex-
perience what should happen to the possibly incomplete data that has been ac-
quired for the failed episode. Possible reactions include discarding the data or
using it nevertheless. In the latter case, the data can be modified before being

15

raw
experience

learning
experience

abstract
experience

ex
pe

ri
en

ce
da

ta
ba

se

Figure 6: Typical experience abstraction steps. The raw experience is abstracted to an intermediate
step, which is stored permanently. This experience can be retrieved from the experience database
for different learning problems and be abstracted again for learning.

stored as an experience by adding, deleting or replacing parts of the experience
data. For deciding on an appropriate reaction, RoLL offers information about
which data points have already been stored before the failure occurred, thus al-
lowing conditional reactions.

4.2. Experience Abstraction
Up to now we have only described the first step in getting experiences for

learning, that is to say, the gathering of the raw experiences. Usually unsuitable
for learning, these experiences must be converted to a more abstract form. In
principle, the raw experience can directly be transformed to an abstract experi-
ence, which can be passed to the learning system. But there are several practical
reasons why the abstraction should take place in several stages, depending on the
problem. One consideration is that experiences should be stored permanently so
that the learning process can be repeated and build on former experience. Be-
sides, because experiences are valuable, they should be used for several learning
problems. These requirements suggest to store the experiences permanently in an
intermediate state that is abstract enough not to contain too many unnecessary de-
tails, but detailed enough to be usable for different learning problems. Therefore,
the abstraction process usually looks as shown in Figure 6: The first conversion
is performed directly after the observation, its result being stored in a database or
some other storage device. When a problem is to be learned the experiences are
retrieved from the permanent storage and adapted further to the learning problem
and the learning system. The whole process can include an arbitrary number of
abstraction stages.

Experiences can be stored in different ways, for example in an array, a log
file or a database. RoLL has the concept of experience classes, which hide the

16

implementation of the storage medium from the programmer who specifies an
experience. An experience class provides an interface for storing and retrieving
experiences in a uniform way.

An abstract experience thus contains (1) a raw experience, whose data is used
as input, (2) a hybrid automaton specifying the data transformation and (3) the
experience class. The syntax for specifying an abstract experience is very simi-
lar to that of a raw experience, also relying on the concept of hybrid automata.
The language is general enough to allow all algebraic and conditional translations
between experience data. An example is shown in Listing 6.2.

4.3. Example
To give a flavor of the things that can be observed with the experience acquisi-

tion mechanisms in RoLL, Figure 7 shows an execution trace of a plan to prepare
pasta. This example was used for monitoring and assessing a plan, but the data
could also be used for learning prediction models of each subplan. The raw expe-
rience models the execution of the preparing pasta plan by including subautomata
for frequently used plans like navigation, gripping and putting down an object.
For each plan it observes generic data such as the duration of the plan, how often
it was invoked during the pasta preparation plan, the robot’s position, parameters
of the plan execution like the arm the robot chose, and failures.

The raw experience can be used to provide information about the plan exe-
cution. The upper left picture of Figure 7 depicts the way the robot has moved
during the plan execution. For evaluating the quality of the plan, we calculated
some statistics like the overall time and the duration of each subplan, the distance
moved and how far the robot turned in the whole plan.

The same values could be used for learning prediction models about the du-
ration of each subplan or the expected space the robot will be occupying for a
given task. This experience definition is very complex and extensive so that it
would provide abstract experiences for a wide variety of learning problems. For
the learning problems we describe in Section 7, we used smaller experience def-
initions, which only observe specific aspects of the control program that were
interesting for each learning problem.

5. Learning Programs

We have described in detail the RoLL language constructs concerned with ex-
periences. Now we explain the learning part. The specification of learning prob-
lems is declarative, like that of experiences and the declarations are then trans-

17

pick-up colander put-down colander pick-up cooking-pot put-down cooking-pot

fill with tap water pick-up cooking-pot put-down cooking-pot wait for boiling water

pick-up pasta put-down pasta pick-up pasta put-down pasta

pick-up wooden-spoon wooden-spoon lost pick-up wooden-spoon stir content and wait

put-down wooden-spoon pick-up cooking-pot transfill content put-down cooking-pot

both both both both

both both

right right right right

left right

left both both

(0.67 m,-109.4◦) (0.69 m,-90.3◦) (0.56 m,77.0◦) (0.75 m,89.0◦)

(0.75 m,89.0◦) (0.58 m,89.8◦) 3.7 min

(0.44 m,-109.3◦) (0.58 m,-22.7◦) (0.52 m,-111.7◦) (0.63 m,-20.2◦)

(0.74 m,-127.5◦) failure (0.84 m,-0.1◦) 8.2 min

(0.74 m,-127.5◦) (0.62 m,89.0◦) (0.58 m,76.7◦)

duration count sum
plan 1138.10 s
navigation 195.75 s 17 21.96 m
turning 52.21 s 15 820.55◦

left arm 145.39 s 79 17.44 m
right arm 191.41 s 99 23.29 m

Figure 7: Trace of an experience acquisition process. The experience includes the current action
(in the left corner of each small image), the robot’s position (bottom right corner) and its decision
on which hand it uses (bottom left corner). On the left, some abstractions from these observations
are shown: the ways the robot moved in the world (picture on top) and some statistical measures
from the plan observation (table on the bottom).

formed to executable code automatically. The main components of a learning
problem — apart from the experiences to be used — are the type and identity of
the function to be learned and the learning algorithm. An example for a learning
problem definition is shown in Listing 6.3.

5.1. Learning Problem Classes
A robot control program includes a variety of function types to be learned, e.g.

prediction models, parameterization functions, decision rules, control routines,
etc. RoLL offers the specification of different kinds of learning problem classes.
This is important for the integration of the learning results into the program. A
prediction model must be added to the program in a different way than a routine (in
the latter case, the function must be embedded into a control loop, for instance).

Because not all classes of learning problems can be foreseen, RoLL offers
a way to add new ones. Learning problem classes differ in their signature (the
parameters they take and the result they return) and the way the resulting function
is integrated into the control program.

18

5.2. Learning Algorithms
RoLL is not designed for a specific learning paradigm. Any experience-based

learning algorithm can be used with RoLL. In fact, the core layer of RoLL doesn’t
include any learning system. This means that learning can only take place after at
least one learning system has been added. In our experiments we have used two
external programs as learning systems: SNNS (Stuttgart Neural Network Sim-
ulator) (Zell et al., 1998) for neural network learning and WEKA (Witten and
Frank, 2005) for different kinds of decision tree learning (classical decision trees,
regression and model trees).

Each learning system uses a specific class of experiences. We have mentioned
experiences that are stored in databases. RoLL can be extended with arbitrary
experience classes that store their data in different formats. For a learning system,
this means that the experience class stores the learning data in a way that the
learning system can use it.

A learning system may assume a certain structure of the abstract experience
automaton, for example a neural network learner may require a flat automaton
without subautomata and may assume that the data representing the beginning of
the automaton execution contains the input values of the network and the data
associated with the end of the automaton run represents the output value.

Beside the experience type, a learning system in RoLL must provide the call
to an external program or a learning algorithm implemented in LISP. Usually,
learning algorithms can be adapted to the problem by a set of parameters. The
learning system can specify a set of such parameters and use them when calling
the learning algorithm.

External learning systems usually provide their results in a form other than
a LISP function. The learning system has to take care to convert this format to
executable LISP code.

5.3. Integration of Results
Beside the main components of a learning problem — experiences, function

to be learned and learning algorithm — there is another tricky part to be specified
for enabling the integration of the learning result as a callable function into the
program.

Consider a low-level navigation routine to be learned. The raw experiences
might be gathered by controlling the robot in a random way and recording pairs
of start and end points together with the low-level navigation commands, which is
a vector of the form 〈x0, y0, ϕ0, x1, y1, ϕ1, rot0, trans0〉 with the robot’s position at
time 0, its position at time 1 and the commands given at time 0. After observing

19

distance
ϕ′0
ϕ0

ϕ′1
ϕ1

offset-angle

x0

y0

x1

y1

Figure 8: Illustration of experience abstraction for learning a navigation routine. The original state
space 〈x0, y0, ϕ0, x1, y1, ϕ1〉 is transformed to 〈distance, ϕ′0, ϕ

′
1〉.

such a vector, we can expect the robot to reach position 〈x1, y1, ϕ1〉 from position
〈x0, y0, ϕ0〉 if it gives the command 〈rot0, trans0〉.

For learning, we define a feature space 〈distance, ϕ′0, ϕ
′
1, rot0, trans0〉 that is

invariant with respect to rotations and shifts in 2D space. The correlation of the
original experiences and the abstract feature space is depicted in Figure 8. Now
the signature of the learned function is distance×ϕ′0 ×ϕ

′
1 → rot0 × trans0. This is

not the only possible state space representation and the decision which features to
use for learning is part of the learning problem specification, not the function to be
learned. This resulting function will be called in a straightforward way giving the
goal position 〈x, y, ϕ〉 and expecting a rotational and translational velocity com-
mand without caring about the abstractions performed for the learning process.

Figure 9 illustrates this phenomenon. The function F is the one that is in-
tended to be learned with the signature x×y×z→ v×w, whereas f is the function
produced by the learning algorithm with the signature h × i → j × k. The expe-
rience data is prepared for learning by a multi-step abstraction process involving
abstractions A0, A1 and A2.

When F is called, it gets the originally intended input values x, y and z, which
must be converted with the same abstractions as the learning experience and can
then be used to call f . The output of f is not exactly what the caller of F expects.
Therefore, the output values 〈 j, k〉 must be transformed to 〈v,w〉 by applying the
abstraction chain A0, A1, A2 backwards. This whole procedure has two tricky
parts: (1) How can the original abstraction definitions be used, i.e. how do the
values 〈x, y, z〉 correspond to the values of the raw experience? and (2) How can
the reverse abstractions be calculated?

To illustrate the first question, consider again the example of the navigation

20

〈x, y, z〉 F

〈a, b, c〉

〈e, f 〉

〈h, i〉 f 〈 j, k〉

〈g〉

〈d〉

〈v,w〉

A0

A1

A2 A−1
2

A−1
1

A−1
0

Figure 9: Abstraction in the context of the whole learning process.

routine to be learned. The position 〈x1, y1, ϕ1〉 is obtained by random control of
the robot. In contrast, for the resulting function, these values come from the goal
position, which is given as the input. Thus, for applying the abstractions, which
have already been specified, RoLL must be told that the pose 〈x1, y1, ϕ1〉 of the
raw experience corresponds to the goal position of the function F. The position
〈x0, y0, ϕ0〉 needn’t be specified further, because in both cases it denotes the robot’s
current position. Then the abstraction steps for the input values of f are generated
automatically.

For an automatic back transformation that converts 〈 j, k〉 to 〈v,w〉 (in Figure 9
indicated by the dashed arrow) it would be necessary to invert functions. There
is no straightforward way to do this in a general case — for example, when a
LISP function is used that includes conditionals and recursion to produce a result.
Therefore, in RoLL the back transformation has to be specified manually by the
programmer. Although this specification requires some repeated work by the pro-
grammer (in the state space specification for learning and in the integration part
of the learning problem definition), this solution avoids unnecessarily complicated
syntax for difficult cases in the back transformation. Besides, the transformation
of the output value is usually very simple and straightforward, so that the extra
specification doesn’t require a lot of work.

6. Example

To illustrate the RoLL language we present the learning problem of a time
prediction model for a navigation routine, which is called go2pose-pid-player.
It takes the robot from its current position to a goal position, which is specified

21

by 2D coordinates and an orientation. We learn a mapping to the time needed to
fulfill a navigation task using regression trees as our learning system. We present
the learning process according to the steps in Figure 2 on page 5.

6.1. Raw Experience Acquisition
The first step is the observation of raw experiences. The definition of the raw

experiences for this problem are shown in Listing 6.1. The experience automaton
consists of one automaton without children and is anchored to the control program
by defining the activity of the routine go2pose-pid-player as an episode (line
4). For describing the task at hand, the start and goal positions must be known
(lines 6–8). In addition, the time stamps of the starting and stopping time points
are recorded (lines 5, 9). The goal position is stored in the local routine descrip-
tion, which is bound in the lexical scope of the RPL task corresponding to the
navigation routine (line 7, 8). When the navigation task is aborted or has failed,
the data is discarded (lines 10, 11).

1 (roll:define-raw-experience navigation-time-exp
2 :specification
3 (: anonymous-automaton
4 :rpl (: routine-execution ’go2pose-pid-player)
5 :begin ((timestep [getgv ’statevar ’time-step])
6 (start-pose [getgv ’statevar ’pose])
7 (goal-pose
8 (pose (goal (: internal-value "ROUTINE" :this)))))
9 :end ((timestep [getgv ’statevar ’time-step])))

10 :experience-handling (((or (:event :abort) (:event :fail))
11 :discard)))

Listing 6.1: Raw experience definition for a time prediction model of the naviga-
tion routine go2pose-pid-player. Each time this routine is active, the start and
goal poses are recorded as well as the time at the start and end of the execution.
The data of incomplete runs is discarded.

For observing these experiences, we let the robot perform its usual duties. In
our case, this is a plan for setting the table. The two processes — observation of
the experience and the plan for table setting — are executed in parallel:
(pursue
(roll:acquire-experiences

(getgv :experience ’navigation-time-exp))
(execute (make-instance ’set-the-table)))

22

1 (roll:define-abstract-experience navigation-time-abstract-exp
2 :parent-experience navigation-time-exp
3 :specification
4 (roll:with-binding
5 ((p1 (:var start-pose :begin))
6 (p2 (:var goal-pose :begin))
7 (timediff (- (:var timestep :end) (:var timestep :begin)))
8 (offset-angle (angle-towards-point p1 p2)))
9 (: anonymous-automaton

10 :begin
11 ((dist (euclid-distance p1 p2))
12 (start-phi (difference-radian [az p1] offset-angle))
13 (end-phi (difference-radian [az p2] offset-angle)))
14 :end ((navigation-time timediff))))
15 :experience-class roll:database-experience
16 :experience-class-initargs
17 (: database (make-instance ’roll:mysql-database
18 :name "..." :user "..." :user-pw "...")))

Listing 6.2: Abstract experience and conversion specification for the navigation
time model. Using intermediate variables as shown in Figure 8, the resulting
feature space is dist× start-phi×end-phi→ navigation-time. The experience data
is to be stored in a database.

The acquire-experiences command can be used anywhere in the program.
However, one motivation for using RoLL is not to modify the program for the
purpose of experience acquisition. Therefore, it is best to run the observation
process in parallel to the top-level control program. It identifies the interesting
parts of the execution automatically.

6.2. Experience Abstraction
The position values in the raw experience are absolute values. We make the

simplifying assumptions that objects in the kitchen don’t affect the navigation
time and that the robot has means to decide if a location is accessible. With these
premises, learning with absolute positions is not advisable, because navigation
tasks that are shifted or rotated on the 2D plane are treated as different cases,
but should return the same result. Therefore, we use the abstraction depicted in
Figure 8 on page 20, which uses the distance of the two points and the angles
relative to the connecting line between the two points.

In the definition in Listing 6.2, we use the construct with-binding for calcu-
lating intermediate values (lines 4–8). It contains successive variable declarations,

23

corresponding in syntax and functionality to the LISP let*. The binding of in-
termediate values is not necessary, but makes the definition better readable. The
auxiliary values include the start and goal point from the raw experience, the du-
ration of the navigation task, and the offset angle indicated in Figure 8. Based on
these values, the distance of the two points and the normalized orientations are
calculated (lines 10–13).

We store the abstracted experience in a database, which must be specified in
the experience (lines 17–18). The access to the database is performed by the
experience class database-experience and is hidden from the programmer of
the abstract experience specification. Likewise, the data is retrieved automatically.

6.3. Learning Problem Definition
Finally, we define the learning problem as shown in Listing 6.3. The func-

tion to be learned is the time model of the routine go2pose-pid-player (line 2),
which is a function that is associated to the routine as a predictor for the expected
duration. From this specification, RoLL automatically assigns this learning prob-
lem the unique identifier go2pose-pid-player-time-model. As an experience
we use the same abstraction as the one presented in the last section (lines 5–10).
But the experience type of the former was a database experience, which doesn’t
comply with the format required by the WEKA learning system. Therefore, the
experience used for learning is defined to be of class weka-experience (line 11).
The WEKA experience type requires the specification of the WEKA types for the
input and output variables (lines 12–16).

As a learning system we use the WEKA M5’ algorithm, which supports model
and regression tree learning. Beside some path specifications (lines 19–20), we
adjust the algorithm to learn a regression tree instead of a model tree (line 21).

The input to a routine model is always the routine object addressed by the vari-
able routine. For calling the learned function, the same abstractions as for the
experiences must be performed. In the learning problem specification we inform
RoLL that this abstraction can be used for calling the learned function, but in the
raw experience definition the variable goal-pose is not obtained from the local
variable of a certain process, but should be set to the goal pose as contained in the
routine variable given to the model (lines 23–25). The result value of the regres-
sion tree is exactly what the learned function should provide, so no conversion is
necessary (line 26).

To initiate the learning process, the learning problem must be executed by
calling the function learn:

24

1 (roll:define-learning-problem
2 :function (: model go2pose-pid-player :time)
3 :use-experience
4 (: parent-experience navigation-time-abstract-exp
5 :specification
6 (: anonymous-automaton
7 :begin ((dist (:var dist :begin))
8 (start-phi (:var start-phi :begin))
9 (end-phi (:var end-phi :begin)))

10 :end ((navigation-time (:var navigation-time :end))))
11 :experience-class weka-experience
12 :experience-class-initargs
13 (: attribute-types ’((dist numeric)
14 (start-phi numeric)
15 (end-phi numeric)
16 (navigation-time numeric))))
17 :learning-system
18 (roll:weka-m5prime
19 :root-dir (append *root-dir* ’("learned" "src"))
20 :data-dir (append *root-dir* ’("weka"))
21 :build-regression-tree T)
22 :input-conversion (: generate
23 (: in-experience navigation-time-exp
24 :set-var goal-pose
25 :to (pose (goal routine))))
26 :output-conversion (navigation-time))

Listing 6.3: Learning problem definition for the navigation time model. The func-
tion to be learned is the time model of the routine go2pose-pid-player using
the experience as defined in Listing 6.2. As a learning algorithm it uses the M5’
algorithm for regression trees.

(roll:learn
(getgv :learning-problem ’go2pose-pid-player-time-model))

After the learning has been completed, the learned model is loaded at once and
then every time with the rest of the robot program and can for instance be used as
a time-out criterion for the execution of the navigation routine.

The call of the learn command can be added at arbitrary places of the code.
This enables the learning of multiple, interacting problems by specifying an order
in which the problems are to be learned. Besides, the robot’s primary activity can
be considered. For example, idle times can be used for performing the learning
tasks. When idle times are identified automatically, the learning can be added to

25

the program by plan transformations.
Currently all parts of the learning process — experiences and the learning

problem definition — have to be specified by the programmer. But having such
an explicit representation paves the way to generate some of the specifications.
Vilalta and Drissi (2002) provide a survey of meta-learning algorithms, which
could be used as a starting point to automate the choice of the bias or the learn-
ing system. Another interesting question is how to generate a good state space
abstraction, which has been studied to some extend by Herrera et al. (2006) and
Stulp et al. (2006), for instance. In further steps, the robot itself should be able
to decide which parts of its program it wants to (re-)learn and when. In Section 7
we describe a method to execute two activities in parallel. This interleaving of ac-
tions relies on learned predictions about the duration of each action. The learning
problems for these prediction models were generated after a common pattern for
several robot actions.

7. Evaluation

The strength of RoLL lies in observing experiences for and learning lots of
small learning problems at the same time. This enables the robot to evolve over
time. In the following we describe some problems we have learned with RoLL and
then demonstrate how learned models can be used to optimize the robot’s overall
behavior. None of the problems in itself is particularly difficult to solve. That’s
why we don’t explain them to great detail. The important point is to show how the
robot can improve its overall behavior by learning and adapting continually. The
learning problems described in the following are summarized in Table 1.

For enabling cognitive behavior, a robot needs expectations about the world
and must make predictions about its own plans. To do so, we implemented learn-
ing problems for learning prediction models such as the one for the navigation task
explained in Section 6. We also learned prediction models for single grasping ac-
tions and more complex pick-and-place activities. With such prediction models,
the robot can monitor its own behavior and detect errors that are outside of its
control like hardware failures. We used the model of the navigation routine to
define a timeout condition for navigation tasks depending on the specific task in
a specific situation. When the predicted time is exceeded significantly, the robot
aborts the navigation task with a failure, because it can assume that something
went wrong, although it cannot observe what it was.

For manipulation activities, two important questions for our robot are “Where
should I stand?” and “Which arm should I use?”. For choosing an arm for picking

26

Learning Problem Experience Learning Algorithm Use of Result

Prediction Models — Duration of Actions

navigation current and goal
pose, time stamp at
start and end

regression tree timeout condition
for failure
recognition

grasping,
complete
pick-and-place task

original and goal
position of object,
original (and goal)
position of robot,
used arm,
timestamp and start
and end

neural network decision which arm
to use

10 different
subtasks of
preparing pasta and
setting the table
(e.g. time to put the
pot on the cooker)

start and end time
of each task

average value parallel execution of
activities

Routines — Navigation with Bézier Curves

parameters of
Bézier curve

start and goal
position, used curve
parameters,
duration, success

neural network navigation in the
RoboCup domain

following
waypoints

start and goal
position, given
command for
rotational and
translational
velocity, duration,
success

neural network following a Bézier
curve for navigation

“Meta-Learning” (search was performed manually)

time prediction for
navigation

current and goal
pose, time stamp at
start and end

neural network,
regression tree,
model tree

choice of learning
system for this
specific problem

Table 1: Overview of learning problems solved with RoLL.

27

up (and later putting down) a cup, we used prediction models for picking up a
cup and putting it down at its goal position for both arms. At run time, the robot
compares the predicted time needed with the left and the right arm and chooses
the more efficient one.

Instead of single parameters, it is also possible to learn complete control rou-
tines with RoLL. Our robot learned how to navigate by using two learning prob-
lems: a high-level problem for determining the parameters of a Bézier curve the
robot is to follow and a low-level problem for following that Bézier curve (Kirsch
et al., 2005). In this context we experimented with choosing a good set of experi-
ences for learning from all the acquired experiences.

Because RoLL makes all the components of a learning problem explicit, it is
an ideal framework for meta-learning. As meta-learning is not our research focus,
we didn’t implement a complete meta-learning cycle. However, when learning
the prediction model of the navigation routine, we used RoLL’s abilities to use
several learning algorithms for comparing different algorithms and different pa-
rameterizations. In several iterations, we learned the prediction model with the
same experience using different learning algorithms (model tree, regression tree
and neural network). We then compared the outcome by again collecting experi-
ences, but using them as a test set instead of learning data. In this specific case,
regression trees had the lowest error rates.

More interesting than single learning problems is the use of learned models in
the context of parallel plan execution. Our robot has a plan for setting the table
and one for preparing pasta. Especially the latter task leaves unused time that the
robot could use to set the table. For interleaving the execution of the two plans,
the robot needs predictions of how long plan steps will take, and knowledge about
idle times during plan execution. To make the approach general, the experience
needed for these two problems was acquired with automatically generated defini-
tions of raw experiences. First, the plan was analyzed with respect to its subplans.
For all subplans, raw experience definitions were generated to acquire data about
the duration of the action. The learning consisted in a simple averaging of the
durations observed for all the subtasks. Then the predicted times were used to
transform the sequential execution of two plans into a parallel execution. With
this transformation instead of 907 s when executing the plans sequentially, the
robot needed only 708 s for both plans, which is only 12 s more than for the pasta
plan alone.

Learning is not the only necessary component to make a cognitive robot pro-
gram. We are also exploring transformational planning techniques for improving
the robot’s behavior. In this context, we also used the experience acquisition ca-

28

pabilities in RoLL to evaluate plans and observe their execution in order to find
appropriate transformation rules for improving them.

In all, these examples show that RoLL is very versatile. It can be extended
with learning algorithms, by defining new types of learning problems and by stor-
ing experiences in different ways. Because of its declarative nature, it is even
possible to generate learning problems such as the prediction models needed for
executing the two high-level plans in parallel. By learning more and more parts
of the program and integrating the learned parts with programmed ones, systems
can adapt dynamically to their environment and constantly enhance their abilities.

8. Related Work

There are only few projects where the issue of combining programming and
learning is addressed. Thrun (2000) has proposed a language CES offering the
possibility to leave “gaps” in the code that can be closed by learned functions. Be-
sides the learning capabilities, CES supports reasoning with probabilistic values
and the gradient descent learning algorithm implemented in CES computes prob-
abilistic values. The main motivation for CES was to allow a compact implemen-
tation of robot control programs instead of explicit learning support. Therefore,
CES only uses a gradient descent algorithm and doesn’t offer explicit possibili-
ties to integrate other learning algorithms. Besides, the training examples have
to be provided by the programmer, experience acquisition is not supported on the
language level (Thrun, 1998).

Andre and Russell (2001) propose a language with the same idea as CES of
leaving some part of the program open to be replaced by learning. In this case
reinforcement learning is used to fill in the choices that are not yet specified by
programming. Since this work only considers reinforcement learning as the only
learning technique, the issue of experience acquisition gets straightforward: The
agent executes the program, when it encounters a choice that has to be learned
it selects one option according to the current rewards assigned to actions and the
exploration/exploitation strategy, watches the reward to be gained by this choice
and adapts its reward function on actions. Although programmable reinforcement
learning agents are a powerful approach to integrate reinforcement learning into
the normal control flow, it cannot be generalized to other learning techniques.

The language IBAL proposed by Pfeffer (2001) is motivated by representing
the agent’s belief in terms of probabilistic models. Bayesian parameter estimation
and reinforcement learning are offered as an operator in such a program. Markov
Decision Processes (MDPs) are defined explicitly and declaratively and they can

29

be solved by updating the reward after every run similar to the approach by Andre
and Russell (2001). The focus of IBAL is not on learning in general, but on pro-
gramming with probabilistic models. Learning is merely an additional operation
and only supports a certain class of learning algorithms.

DTGolog (Boutilier et al., 2000) is a decision-theoretic extension of Golog.
Like in IBAL MDPs are specified explicitly and the solution of them is left to the
program. The space of policies can be restricted by programming, so DTGolog
supports a very close interaction between programming and learning. Boutilier
et al. (2000) also emphasize that the best results can be obtained by a smooth
interaction of programming and learning compared to learning or programming
alone.

The idea of constantly enhancing the robot’s knowledge also occurs in the
work of Schultz et al. (1999). They use a common representation of the envi-
ronment in the form of evidence grid maps for robot exploration, localization,
navigation and planning. These maps are updated each time new evidence is ob-
served, thus enabling the robot to recognize changes in the environment and to
build very accurate maps. In contrast to RoLL, the approach is restricted to map
learning.

Beside the learning capabilities, RoLL’s constructs for specifying and acquir-
ing experiences from the program execution are very useful for self-inspection
and plan transformation. The acquisition of data has been studied in the context
of monitoring and debugging. In the XAVIER project (O’Sullivan et al., 1997) of
Carnegie Mellon University all available input and output to the robot is recorded
at runtime and replayed for analysis later. However, the execution context of the
program is lost when the data is replayed. This allows only an outside view of the
robot by way of the control commands, but it cannot explain why the robot came
to the decision.

The Common Lisp Instrumentation Package (CLIP) (Anderson et al., 1994) is
a Lisp package for inspecting and testing programs. Its goal is to provide a stan-
dardized framework for data collection, where the functionality of the program is
clearly separated from the data acquisition part. This separation, however, only
goes as far as the collection code is clearly identifiable, whereas it is still inside
the actual program code. CLIP is not addressed especially for learning data, but
for any kind of experiments like debugging or giving user feedback.

30

9. Conclusions

The central characteristic of a cognitive system is its ability to evolve and adapt
to unknown situations. Although learning has been used to enhance the capabil-
ities of autonomous robots, it has mostly been used for function optimization in
the design phase.

We have presented the robot control language RoLL that includes learning ca-
pabilities on the level of programming to enable experience acquisition and con-
tinual adaptation during the robot’s operation. RoLL proposes a general frame-
work for all kinds of experience-based learning methods, which allows to use
arbitrary learning algorithms. It provides declarative programming constructs for
the whole learning process. In particular, we have presented a declarative way of
defining experiences for learning based on the concept of hybrid automata, allow-
ing the acquisition of training data without modifying the main robot program.
We have also pointed out the difficulties in integrating the learned function into
the program independent of the feature space defined for learning.

Currently, RoLL doesn’t make learning less complex. The design of a learning
problem with RoLL involves the same decisions as in the conventional way. But
RoLL makes the learning process executable and allows to repeat it during the
operation of the robot. Even though the learning problem definition is fixed, the
behavior of the robot will improve with more experiences and adapt to changes in
the environment.

Capturing the whole learning process in explicit specifications also helps in
the engineering process of a learning problem. RoLL allows to change the set
of experiences, the feature space and the learning algorithm without much ef-
fort. The experience acquisition also allows to monitor the performance of dif-
ferent learned behaviors, which enables the comparison of different definitions of
a learning problem. Similarly, RoLL can serve as a tool to develop and compare
different learning algorithms for autonomous robots.

Once one has a system such as RoLL, a lot of new research questions come up
for making the learning process more automatic. The specifications that currently
have to be provided by the programmer could be generated automatically with
meta-learning algorithms and automatic feature extraction methods. Moreover,
a robot could decide which skills it needs to improve and when, which involves
the well-known exploration-exploitation problem that has been investigated in the
area of reinforcement learning. Finally, a robot could even define new learning
problems when it finds that it needs more models or has to improve a certain
skill. These research questions only get interesting when learning is defined as an

31

executable process and RoLL provides a means to start tackling them.
In sum, the thorough integration of learning into robot control programs is an

important step towards cognitive systems. On the one hand, it allows to adapt the
control program automatically to changes in the environment. On the other hand,
it provides an efficient way to acquire and update models of the environment,
which the robot needs to make sound decisions in a the physical world. Besides,
the explicit specification of learning problems allows to develop new methods to
generate some of the definitions.

We believe that the embedding of learning capabilities into a control language
in the way it is implemented in RoLL is a necessary prerequisite in develop-
ing cognitive systems. Such a language doesn’t solve all the problems of self-
awareness and adaptation in a cognitive system, but it is an essential step for the
development of these methods.

References

Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., Rubin, H.,
Schug, J., 2001. Hybrid modeling and simulation of biomolecular networks. In:
Fourth International Workshop on Hybrid Systems: Computation and Control.
pp. 19–32.

Anderson, S. D., Westbrook, D. L., Hart, D. M., Cohen, P. R., January 1994.
Common Lisp Interface Package CLIP.

Andre, D., Russell, S., 2001. Programmable reinforcement learning agents. In:
Proceedings of the 13th Conference on Neural Information Processing Systems.
MIT Press, Cambridge, MA, pp. 1019–1025.

Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S., 2000. Decision-theoretic,
high-level agent programming in the situation calculus. In: Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on on Innovative Applications of Artificial Intelligence. pp. 355–362.

Branicky, M. S., 1995. Studies in hybrid systems: Modeling, analysis, and control.
Ph.D. thesis, Massachusetts Institute of Technolgy.

Henzinger, T., 1996. The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS ’96). New
Brunswick, New Jersey, pp. 278–292.

32

Herrera, L. J., Pomares, H., Rojas, I., Verleysen, M., Guilén, A., 2006. Effec-
tive input variable selection for function approximation. In: International Con-
ference on Artificial Neural Networks. Lecture Notes in Computer Science.
Springer, pp. 41–50.

Kirsch, A., Schweitzer, M., Beetz, M., 2005. Making robot learning controllable:
A case study in robot navigation. In: Proceedings of the ICAPS Workshop on
Plan Execution: A Reality Check.

McDermott, D., 1992. Transformational planning of reactive behavior. Research
Report YALEU/DCS/RR-941, Yale University.

McDermott, D., 1993. A reactive plan language. Tech. rep., Yale University, Com-
puter Science Dept.

Mitchell, T. M., July 2006. The discipline of machine learning. Tech. Rep. CMU-
ML-06-108, Carnegie Mellon University.

O’Sullivan, J., Haigh, K. Z., Armstrong, G. D., April 1997. Xavier.

Pfeffer, A., 2001. IBAL: A probabilistic rational programming language. In: IJ-
CAI. pp. 733–740.
URL citeseer.nj.nec.com/447186.html

Schultz, A. C., Adams, W., Yamauchi, B., 1999. Integrating exploration, local-
ization, navigation and planning with a common representation. Autonomous
Robots 6 (3), 293–308.

Stulp, F., Pflüger, M., Beetz, M., 2006. Feature space generation using equation
discovery. In: Proceedings of the 29th German Conference on Artificial Intelli-
gence (KI).

Thrun, S., 1998. A framework for programming embedded systems: Initial design
and results. Tech. Rep. CMU-CS-98-142, Carnegie Mellon University, Com-
puter Science Department, Pittsburgh, PA.

Thrun, S., 2000. Towards programming tools for robots that integrate probabilis-
tic computation and learning. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, San Francisco, CA.

Vilalta, R., Drissi, Y., 2002. A perspective view and survey of meta-learning. Ar-
tificial Intelligence Review 2 (18), 77–95.

33

Witten, I. H., Frank, E., 2005. Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann, San Francisco.

Zell, A., et al., 1998. SNNS User Manual. University of Stuttgart and University
of Tübingen, version 4.2.

34

