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CONTROLLABILITY OF A 2D QUANTUM PARTICLE IN A

TIME-VARYING DISC WITH RADIAL DATA

IVÁN MOYANO

Abstract. In this article we consider a 2-D quantum particle confined a disc
whose radius can be deformed continuously in time. We study the problem of
controllability of such a quantum particle via deformations of the initial disc,
i.e., when we set the time-dependent radius of the disc to be control variable.
We prove that the resulting system is locally controllable around some radial
trajectories which are linear combinations of the first three radial eigenfunc-
tions of the Laplacian in the unit disc with Dirichlet boundary conditions.
We prove this result, thanks to the linearisation principle, by studying the
linearised system, which leads to a moment problem that can be solved using
some results from Nonharmonic Fourier series. In particular, we have to deal
with fine properties of Bessel functions.

Keywords– Schrödinger equations; controllability; Control Theory; bilinear
control; Bessel functions; Moment problem; Riesz basis; Nonharmonic Fourier se-
ries.
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1. Introduction

1.1. Physical background. We consider a d−dimensional quantum particle, for
d ≥ 1, of mass m, under no external forces. According to Quantum Mechanics, the
state of such a particle can be described by a complex-valued wave-function (see
[5, Secs 2.2.1, 2.2.3])

ψ : R+ × R
d → C, with

∫

Rd

|ψ(t, x)|2 dx = 11, ∀t ∈ R
+,

satisfying the Schrödinger equation

i∂tψ = − ~

2m
∆xψ, (t, x) ∈ R

+ × R
d,

where ~ stands for normalised the Planck constant. In some instances (e.g., po-
tential wells [5, Sect.4.3.4]), it is possible to confine the dynamics of a quantum
particle within a region of the space, namely a regular open set Ω ⊂ Rd, which
leads to a boundary-value problem for the associated wave-function, of the form

{

i∂tψ = − ~

2m∆xψ, (t, x) ∈ R+ × Ω,
ψ = 0, (t, x) ∈ R+ × ∂Ω,

and the condition
∫

Ω

|ψ(t, x)|2 dx = 1, ∀t ∈ R
+.

This allows to consider a time-dependent confinement regions, namely a family
of smooth open sets {Ω(t)}t≥0, varying continuously with respect to time, within
which the particle is confined. This question has attracted attention in Physics
literature, as the works [14, 26, 20] or the survey [17] account for.

In terms of the wave function, a quantum particle confined in {Ω(t)}t≥0 must
satisfy

(1.1)

∫

Ω(t)

|ψ(t, x(t))|2 dx = 1, ∀t ∈ R
+,

and the Schrödinger equation

(1.2)

{

i∂tψ = − ~

2m∆x(t)ψ, (t, x(t)) ∈ R+ × Ω(t),
ψ = 0, (t, x(t)) ∈ R+ × ∂Ω(t),

which implies that a time-dependent boundary condition must be taken into ac-
count. In [4, 22] it is shown that, when d = 1, such a system can be handled by

1The measure |ψ(t, x)|2 dx is interpreted as a probability density, what explains the constraint.
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a suitable change of variables, which transforms the original problem into a sys-
tem posed on a fixed domain, with a time-dependent potential. In particular, the
works [21, 2] show that, even in the case d = 1, keeping the particle confined in
a time-varying box during the whole time-evolution can be extremely difficult, as
some unexpected instability phenomena can appear.

From the perspective of Control of Partial Differential Equations, the seminal
paper by P. Rouchon [29] has raised the question of how to find a convenient family
of deformations in order to control the dynamics of a confined quantum particle,
for example to pass from the ground state to an excited state in a given time. This
problem has been understood in one-dimensional situations, both for the linear free
evolution (see [7]) and the nonlinear regime describing a Bose-Einstein condensate
(see [11]). The goal of this work is to explore the same question in a two-dimensional
setting.

1.2. Controllability of a 2-D quantum particle confined in a disc via do-

main deformations. Let, us consider for some T ∗ > 0, R ∈ C 0([0, T ∗];R+
∗ ). We

define the time-varying open discs

DR(τ) :=
{

(z, w) ∈ R
2; z2 + w2 < R(τ)2

}

, ∀τ ∈ [0, T ∗],

and we set the Schrödinger equation on this variable domain, according to (1.2),
which in adimensionalised form (i.e., we set m = 1, h = 2) reads

(1.3)

{

i∂τφ = −∆z(τ),w(τ)φ, (τ, z, w) ∈ (0, T ∗)×DR(τ),

φ = 0, (τ, z, w) ∈ (0, T ∗)× ∂DR(τ).

REMARK 1.1. An appropriate notion of solution of this problem will be defined
in Section 2, thanks to a convenient change of variables, described in Section 1.3,
that transforms (1.3) into a system set on a fixed domain.

This is a control system whose state variable is the wave function φ(τ, z, w),
which, according to (1.1), must satisfy

∫

DR(τ)

|φ(τ, z, w)|2 dz dw = 1, ∀τ ∈ [0, T ∗].

We choose the time-dependent radius of the disc DR(τ) to be the control variable,
with the condition

(1.4) R(0) = R(T ∗) = 1.

We are interested in the following notion of controllability.

DEFINITION 1.2 (Controllability via domain transformations). System (1.3)
is controllable in the space X if for any φ0, φf ∈ X, there exists T ∗ > 0 and R ∈
C

0([0, T ∗];R+
∗ ) satisfying (1.4) and such that the solution of (1.3) with initial datum

φ|t=0 = φ0 satisfies φ|t=T∗ = φf .

The controllability of the Schrödinger equation via domain transformations has
been treated, in the one-dimensional case, by K. Beauchard in [7]. The goal of
this article is to explore the analogous question in the disc, as a first example of a
two-dimensional case. Indeed, we shall prove a controllability result, according to
Definition 1.2, for regular enough radial data.

More precisely, assuming that all data are radial, system (1.3) writes

(1.5)

{

i∂τφ = −∆ρ(τ)φ, (τ, ρ) ∈ (0, T ∗)× (0, R(τ)),
φ(τ, R(τ)) = 0, τ ∈ (0, T ∗),
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where ∆ρ(τ) := ∂2ρ(τ)+
1

ρ(τ)∂ρ(τ) is the Laplacian operator in polar coordinates with

radial data.

1.3. Change of variables. Following [4, 7, 11], let us introduce the new variables

(1.6) ξ(t, r) := φ(τ, ρ), with r :=
ρ

R(τ)
, t :=

∫ τ

0

dσ

R(σ)2
,

and the change of phase

ψ(t, r) := ξ(t, r) exp

(

−iu(t)r2 + 4i

∫ t

0

u(s) ds

)

,

where

(1.7) u(t) :=
1

4
Ṙ(τ)R(τ),

∫ T

0

u(s) ds.

This change of variables transforms system (1.5) into the following one, posed on a
fixed domain,

(1.8)

{

i∂tψ = −∆rψ +
(

u̇(t)− 4u(t)2
)

r2ψ, (t, r) ∈ (0, T )× (0, 1),
ψ(t, 1) = 0, t ∈ (0, T ),

for T :=
∫ T∗

0
dσ

R(σ)2 and

(1.9) ∆r := ∂2r +
1

r
∂r.

System (1.8) is a bilinear control system in which the state is the function ψ with
ψ(t) ∈ S, for any t ∈ [0, T ], where S is the unit sphere of L2(D;C), and the control

is the real-valued function u ∈ Ḣ1
0 (0, T ;R), with

Ḣ1
0 (0, T ;R) :=

{

u ∈ H1
0 (0, T ;R),

∫ T

0

u(s) ds = 0

}

.

Thanks to the change of variables described above, we find that the controllability
of system (1.8) implies the controllability of system (1.5), according to Definition
1.2, via the application u 7→ R. Indeed, this can be proved thanks to the following
result (see [11, Proposition 1] for a proof).

PROPOSITION 1.3 ([11]). Let T > 0, u ∈ L∞(0, T ;R) extended by zero in

(−∞, 0) ∪ (T,∞) and such that
∫ T

0
u(s) ds = 0. The unique maximal solution of

the Cauchy problem
{

g′(τ) = 4e−2
∫ g(τ)
0 u(s) ds,

g(0) = 0,

is defined for every τ ≥ 0, strictly increasing and satisfies

lim
τ→∞

g(τ) = +∞.

Thus, T ∗ = g−1(T ) is well-defined and if R is defined by

R(τ) := e
∫ g(τ)
0 u(s) ds,

then (1.4) and (1.7) are satisfied.
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1.4. Functional setting. Let D be the unit disc of R2. We shall work on the
space L2(D;C), with the scalar product

(1.10) 〈f, g〉L2(D) :=

∫

D

f(x, y)g(x, y) dxdy, ∀f, g ∈ L2(D;C).

Let (A,D(A)) be the operator defined by

(1.11)

{

D(A) := H2 ∩H1
0 (D;C),

Aψ := −∆ψ, ∀ψ ∈ D(A).

Let us recall that the eigenfunctions of this operator write, in polar coordinates, as
follows ([13, Ch.6, p.130])

(1.12) ϕν,k(r, θ) :=
Jν(jν,kr)e

ikθ

√
π|Jν+1(jν,k)|

, ∀(r, θ) ∈ [0, 1]× [0, 2π),

for every (ν, k) ∈ N× N∗, with eigenvalues

(1.13) λν,k := j2ν,k, ∀(ν, k) ∈ N× N
∗,

where Jν is the Bessel function of the first kind and order ν ≥ 0 and {jν,k}k∈N∗
is

the sequence of its zeros (see Appendix A for details and notation).
Since the radial case will be particularly important in this article, we shall note,

for simplicity,

(1.14) ϕk := ϕ0,k, λk := λ0,k, ∀k ∈ N
∗.

Thus, from (1.9), one has

−∆rϕk = λkϕk, ∀k ∈ N
∗.

According to (1.11), we introduce the spaces

Hs
(0)(D;C) := D(A

s
2 ), ∀s > 0,

endowed with the norm

(1.15) ‖f‖Hs
(0)

:=





∑

(ν,k)∈N×N∗

|jsν,k〈f, ϕν,k〉L2(D)|2




1
2

, ∀f ∈ Hs
(0)(D;C),

where 〈·, ·〉L2(D) is given by (1.10). In the case s = 1, we simply write H1
0 (D), as

usual, as well as H−1(D) for its dual space. In the radial case, we set

Hs
(0),rad(D;C) :=

{

f ∈ Hs
(0)(D;C); f is radial

}

, ∀s > 0,

and L2
rad(D) when s = 0. Furthermore, if f ∈ Hs

(0),rad(D;C), by changing variables,

the norm (1.15) reduces to

‖f‖Hs
(0),rad

:=

( ∞
∑

k=1

|jsk〈f, ϕk〉|2
)

1
2

,

up to a universal constant, with the scalar product

(1.16) 〈f, g〉 :=
∫ 1

0

f(r)g(r)r dr, ∀f, g ∈ L2(D) radial.

We observe that Hs
(0),rad is a closed subspace of Hs

(0).
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1.5. Main result. The main result of this article is a local exact controllability
result of system (1.8) around a well-chosen trajectory. To describe these states, let
us introduce the set

(1.17) D :=
{

(θ2, θ3) ∈ R
2; θ2, θ3 > 0, θ2 + θ3 < 1

}

,

and the family of states

(1.18) ϕ♯ :=
√

1− θ2 − θ3ϕ1 +
√

θ2ϕ2 +
√

θ3ϕ3, (θ2, θ3) ∈ D,
according to (1.14). In this setting, we consider the associated wave packets

(1.19) ψ♯τ := e−iλ1τ
√

1− θ2 − θ3ϕ1 + e−iλ2τ
√

θ2ϕ2 + e−iλ3τ
√

θ3ϕ3, τ ≥ 0.

Thus, ψ♯0 = ϕ♯ and let ψ♯t = e−it∆ϕ♯, for t ≥ 0.
With this notation, the main result of this article is the following one.

THEOREM 1.4. Let T > 0. There exists δ > 0 and a C 1−map

Γ : V0 × VT → Ḣ1
0 (0, T ;R),

where

V0 :=
{

ψ0 ∈ S ∩H3
(0),rad(D;C); ‖ψ0 − ϕ♯‖H3

(0)
< δ
}

,(1.20)

VT :=
{

ψf ∈ S ∩H3
(0),rad(D;C); ‖ψf − ψ

♯
T ‖H3

(0)
< δ
}

,(1.21)

such that Γ(ϕ♯, ψ♯T ) = 0 and for any (ψ0, ψf ) ∈ V0 × VT , the solution of (1.8) with
ψ|t=0 = ψ0 and control u = Γ(ψ0, ψf ) satisfies

ψ|t=T = ψf .

REMARK 1.5. The choice of the states (1.18) will be clear un Section 4, as the
choice of more straightforward trajectories may lead to a linearised system which is
not controllable (see Remark 4.2 for more details).

1.6. Previous work. The problem of the controllability of a confined quantum
particle via domain deformations has been solved in the one-dimensional case by
K. Beauchard in [7] for the free evolution and by K. Beauchard, H. Lange and
H. Teismann in [11] for a Bose-Einstein condensate. In both cases, the problem
of controllability via domain transformations can be handled thanks to a suitable
change of variables, which reduces the problem into a bilinear control system under
constraints. Let us point out that in 1-D the bilinear control of the Schrödinger
equation has received much attention (we can mention the works [3, 30, 12, 6, 9]
among others). In particular, the techniques developed by K. Beauchard and C.
Laurent in [8] allow to prove local exact controllability results thanks to the Inverse
Mapping Theorem and a certain smoothing effect. Let us observe that this approach
simplifies the original proofs in [7], which use the Nash-Moser theorem.

Let us point out that, contrarily to the 1D case, in the 2D setting, much less
results on bilinear control are known (see [10, 28]). Let us emphasise that, in par-
ticular, the results of [28] cannot be applied to our case because of the geometric
constraint (1.4), which imposes a restriction in the control (see 1.7) for the bilinear
problem (1.8). We refer to remark 4.2 for more details. Consequently, the con-
trollability problem via domain deformations in a 2D setting is technically much
more involved that in 1D, as the geometry of the deformations plays a major role.
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In the case of the disc, we can handle this by exploiting some fine properties of
Bessel functions, through spectral decompositions (see Section 4 for details), which
is the major novelty of our work. Indeed, this article represents the very first step
in the exploration of the 2D problem, which should lead to other developments in
the future (see Section 6 for comments and perspectives).

1.7. Strategy and outline. In this work, we shall follow the linearisation principle
to prove a local exact controllability result, exploiting the connection with bilinear
control problems under constraints, in the spirit of [7, 8]. More precisely, the
strategy of the proof of Theorem 1.4 has three main ingredients:

• we prove first that the linearised system around (ψ♯t , u ≡ 0) is controllable,
• secondly, we prove that the end-point map (see Section 3 for the definition)
is of class C 1 between some adequate spaces,

• finally, we deduce the local exact controllability from the Inverse Mapping
Theorem.

1.7.1. Outline of the article. In Section 2 we recall the well-posedness of system
(1.8) and state a smoothing effect. In Section 3 we use the smoothing effect to prove
that the end-point map is of class C 1. In Section 4 we show that the linearised

system around (ψ♯t , u ≡ 0) is controllable, thanks to the resolution of a suitable
moment problem, that can be solved through the construction of an adequate Riesz
basis in Section 4.2.3 and a key asymptotic result proven in Section 4.2.4. In Section
5 we conclude the proof of Theorem 1.4 thanks to the Inverse Mapping theorem.
In Section 6 we gather some comments and perspectives. In Appendix A we gather
some results on Bessel function. In Appendix B we gather some results on abstract
and trigonometric moment problems that are useful in Section 4.

2. Well-posedness and smoothing effect

The goal of this section is to prove a well-posedness result in an appropriate
functional setting for the system

(2.22)

{

i∂tψ = −∆rψ + u(t)r2ψ + f(t, r), (t, r) ∈ (0, T )× (0, 1),
ψ(t, 1) = 0, t ∈ (0, T ),

where ∆r is given by (1.9).
Let us recall that the Schrödinger operator iA, where A is given by (1.11),

generates a group of isometries in Hs
(0)(D;C), for s ≥ 0, that we denote

(

e−it∆
)

t≥0
.

Furthermore, thanks to (1.14), for any ψ0 ∈ Hs
(0),rad(D;C), one has

(2.23) e−it∆ψ0 :=

∞
∑

k=1

e−iλkt〈ψ0, ϕk〉ϕk.

PROPOSITION 2.1. Let T > 0. For every ψ0 ∈ H3
(0),rad(D), f ∈ L2(0, T ;H3 ∩

H1
0,rad(D)), u ∈ L2((0, T );R), there exists a unique weak solution of system (2.22)

with ψ|t=0 = ψ0, i.e., ψ ∈ C 0([0, T ];H3
(0),rad(D)) such that

(2.24) ψ(t) = e−i∆tψ0 + i

∫ t

0

e−i∆(t−s) [u(s)r2ψ + f(s, r)
]

ds, ∀t ∈ [0, T ].
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Furthermore, for every M > 0 there exists a constant C1 = C1(T,M) > 0, such
that if ‖u‖L2(0,T ) < M , then

(2.25) ‖ψ‖C 0([0,T ];H3
(0),rad

) ≤ C1(T,M)
(

‖ψ0‖H3
(0),rad

+ ‖f‖L2(0,T ;H3∩H1
0,rad

)

)

,

and such that C1(t,M) is uniformly bounded on any bounded interval. Moreover,
if f = 0, we have

(2.26) ‖ψ(t)‖L2(D) = ‖ψ0‖L2(D), ∀t ∈ [0, T ].

The proof of this result relies on the smoothing effect of next section.

2.1. Smoothing effect. As it was shown by K. Beauchard and C. Laurent in
the one-dimensional case in [8, Proposition 2], a certain smoothing effect can be
expected for

(

e−it∆
)

t≥0
in a suitable functional framework. This has been extended

to a large class of smooth domains in any space dimension by J.P. Puel in [27]. To
be precise, in the case of the unit disc D ⊂ R2, let

(2.27)

{

i∂tψ = −∆ψ + f(t, x, y), (t, x, y) ∈ (0, T )×D,

ψ = 0, (t, x, y) ∈ (0, T )× ∂D.

Then, the following has been proved (see [27, Theorem 2.1]).

PROPOSITION 2.2 ([27]). Let T > 0. For every ψ0 ∈ H3
(0)(D) and for every

f = g + h, where

(2.28) g ∈ L1(0, T ;H3
(0)(D))

and

(2.29) h ∈ L2(0, T ;H2 ∩H1
0 (D)), ∆2h = 0, ∆h|∂D ∈ L2(0, T ;L2(∂D)),

the solution of (2.27) with ψ|t=0 = ψ0 satisfies ψ ∈ C 0([0, T ];H3
(0)(D)) and there

exists a constant C > 0, independent of ψ0, g or h, such that
(2.30)

‖ψ‖C 0([0,T ];H3
(0)

) ≤ C
(

‖ψ0‖H3
(0)

+ ‖g‖L1(0,T ;H3
(0)

) + ‖∆h|∂D‖L2(0,T ;L2(∂D))

)

.

Proof of Proposition 2.1. Let T > 0, ψ0 ∈ H3
(0),rad(D) and f ∈ L2(0, T ;H3 ∩

H1
0,rad(D)). We consider the map

(2.31)

∣

∣

∣

∣

F : C 0([0, T ];H3
(0),rad(D)) → C 0([0, T ];H3

(0),rad(D))

ψ 7→ ξ,

where ξ is the solution of
(2.32)







i∂tξ(t, r) = −∆rξ(t, r) + u(t)r2ψ(t, r) + f(t, r), (t, r) ∈ (0, T )× (0, 1),
ξ(t, 1) = 0, t ∈ (0, T ),
ξ(0, r) = ψ0(r), r ∈ (0, 1).

Our aim is to prove that this map has a fixed point. We divide the proof in several
steps.

Step 1. We show that (2.31) is well-defined.
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By direct computation, we observe that, as u ∈ L2(0, T ;R), for every ψ ∈
C 0([0, T ];H3

(0),rad(D)), we have u(t)r2ψ ∈ L2(0, T ;H3 ∩H1
(0),rad(D)). As a result,

f̃ := u(t)r2ψ + f belongs to L2(0, T ;H3 ∩H1
(0),rad(D)).

We can decompose f̃ as in Proposition 2.2. Indeed, let us consider, for a.e.
t ∈ (0, T ) the following elliptic problem

(2.33)

{

∆2g(t) = ∆2f̃(t), in D,
g(t) = ∆g(t) = 0, on ∂D,

where ∆2 stands for the Bilaplacian operator. Since ∆2f̃(t) ∈ H−1(D) for a.e.
t ∈ (0, T ), by elliptic regularity results (see [19, Th. 5.1, p. 166]), we deduce

(2.34) g ∈ L2(0, T ;H3
(0)(D)).

Let us define next

(2.35) h := f̃ − g.

Since ∆f̃ ∈ L2(0, T ;H1(D)), and using (2.34), we have

h ∈ L2(0, T ;H2 ∩H1
0 (D)),(2.36)

∆rh ∈ L2(0, T ;H1(D)).(2.37)

Hence, from (2.33),

(2.38) ∆2h(t)|∂D = 0 and h(t)|∂D = 0, a.e t ∈ (0, T ).

Moreover, using trace results (see [19, Th.8.3, p.44]), (2.37) implies

(2.39) ∆h ∈ L2(0, T ;L2(∂D)).

Thanks to (2.35), (2.34) and (2.36)–(2.39), we can apply Proposition 2.2 to system
(2.32). This implies in particular that, as all data are radial and ∆2 is invariant by
rotations, we deduce ξ ∈ C

0([0, T ];H3
(0),rad(D)).

Step 2. We derive an appropriate energy estimate for system (2.32). We claim
that

(2.40) ‖ξ‖C 0([0,T ];H3
(0),rad

) ≤ C(T )
(

‖ψ0‖H3
(0),rad

+ ‖f̃‖L2(0,T ;H3∩H1
(0),rad

)

)

,

for some constant C(T ) > 0 which is bounded on bounded intervals (0, T ).
Indeed, according to (2.30), we have

‖ξ‖C 0([0,T ];H3
(0),rad

)

≤ C
(

‖ψ0‖H3
(0),rad

+ ‖g‖L1(0,T ;H3
(0),rad

) + ‖∆h|∂D‖L2(0,T )

)

.

We treat the two last terms separately. For the first one, we observe that, us-
ing (2.33), elliptic regularity (see [19, Th. 5.1, p. 166]) and the Cauchy-Schwarz
inequality, it follows

‖g‖L1(0,T ;H3
0,rad

) ≤ C1‖∆2f̃‖L1(0,T,H−1)

≤ C2‖f̃‖L1(0,T ;H3∩H1
0,rad

)

≤ C3

√
T‖f̃‖L2(0,T ;H3∩H1

0,rad
).



10 I. MOYANO

For the other term, using (2.33), (2.38) and the continuity of the trace map (see
[19, Th.8.3, p.44]),

‖∆h|∂D‖L2(0,T ) = ‖∆f̃|∂D‖L2(0,T )

≤ C4‖∆f̃‖L2(0,T ;H1
rad

(D))

≤ C5‖f̃‖L2(0,T ;H3∩H1
(0),rad

(D)).

Putting these estimates together, we obtain (2.40).

Step 3. We show that F is a contraction in C
0([0, T ];H3

(0),rad(D)).

Let ψ1, ψ2 ∈ C 0([0, T ];H3
(0),rad(D)). Then, by linearity of system (2.32), η :=

ψ1 − ψ2 satisfies
(2.41)







i∂tη(t, r) = −∆rη(t, r) + u(t)r2(ψ1 − ψ2)(t, r), (t, r) ∈ (0, T )× (0, 1),
η(t, 1) = 0, t ∈ (0, T ),
η(0, r) = 0, r ∈ (0, 1).

Using (2.40), we deduce

‖F [ψ1]− F [ψ2]‖C 0([0,T ];H3
(0),rad

(D))

= ‖η‖C 0([0,T ];H3
(0),rad

(D))

≤ C(T )‖u(t)r2(ψ1 − ψ2)‖L2(0,T ;H3∩H1
0,rad

(D))

≤ C′(T )‖u‖L2(0,T )‖r2(ψ1 − ψ2)‖L∞(0,T,H3∩H1
0,rad

(D))

≤ C′′(T )‖u‖L2(0,T )‖ψ1 − ψ2‖C 0([0,T ];H3
(0),rad

(D)),

where C′′(T ) > 0 is a constant which remains bounded on bounded intervals.
If C′′(T )‖u‖L2 < 1, this estimate shows that F is a contraction in the Banach

space C 0([0, T ];H3
(0),rad(D)), as H3

(0),rad(D) is closed in H3
(0)(D). The Banach

fixed-point theorem gives then the existence of a unique fixed point of F . Moreover,
(2.40) gives (2.25) in this case.

In order to extend the result to arbitrary u ∈ L2(0, T ;R), we chooseN ∈ N∗ and a
partition of [0, T ], namely 0 = T0 < T1 < · · · < TN = T and such that ‖u‖L2(Ti,Ti+1)

is small enough ∀i ∈ {1, . . . , N}. We then apply the preceding arguments in each
interval [Ti, Ti+1].

Finally, whenever f ≡ 0 and u ∈ C 0([0, T ];R), identity (2.26) follows by classical
arguments. This allows to extend (2.26) to the case u ∈ L2(0, T ;R) by density.

�

3. C 1-regularity of the end-point map

In order to define the end-point map, we shall need the following definitions.
Let, for s > 0,

(3.42) X
s := Hs

(0),rad(D;C) ∩ S.

Setting T > 0, let us fix ξ ∈ S and let us consider the tangent space

(3.43) TξS :=
{

f ∈ L2(D;C); Re〈f, ξ〉L2(D) = 0
}

.
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Then, we consider, thanks to Proposition 2.1, the end-point map

(3.44)

∣

∣

∣

∣

ΘT : Ḣ1
0 (0, T ;R)× X 3 → X 3 × X 3,

(u, ψ0) 7→ (ψ0, ψ|t=T ),

where ψ is the solution of (1.8) with control u and initial condition ψ0.
Let

(3.45) X0 := H3
(0),rad(D;C) ∩ Tϕ♯S, XT := H3

(0),rad(D;C) ∩ T
ψ

♯
T
S.

Then, we have the following.

PROPOSITION 3.1. Let T > 0. The map ΘT defined by (3.44) is of class C 1.

Moreover, for all (v,Ψ0) ∈ Ḣ1
0 (0, T ;R)×X0, we have

(3.46) dΘT (0, ϕ
♯).(v,Ψ0) =

(

Ψ0,Ψ|t=T
)

∈ X0 ×XT ,

where Ψ is the solution of the linearised system around (0, ϕ♯), i.e.,

(3.47)







i∂tΨ = −∆rΨ+ v̇(t)r2ψ♯t , (t, r) ∈ (0, T )× (0, 1),
Ψ(t, 1) = 0, t ∈ (0, T ),
Ψ(0, r) = Ψ0, r ∈ (0, 1),

and (ψ♯t)t∈(0,T ) is given by (1.19).

The proof of this result can be carried out as in [8, Proposition 3, p.531], with
minor modifications, thanks to Proposition 2.1. We omit the details.

4. Controllability of the linearised system around (ϕ♯, u ≡ 0)

The goal of this section is to prove the following result.

PROPOSITION 4.1. Let T > 0. There exists a continuous linear map

L : X0 ×XT → Ḣ1
0 (0, T ;R)

(Ψ0,Ψf) 7→ v,

such that for any Ψ0 ∈ X0 and Ψf ∈ XT , the solution of system (3.47) with initial
condition Ψ0 and control v = L(Ψ0,Ψf ) satisfies Ψ|t=T = Ψf .

The proof of this result relies on the resolution of a suitable moment problem. We
shall first explain in Section 4.1 the heuristics leading to such a moment problem.
Secondly, we derive in Section 4.2 the mathematical tools needed to handle it, which
mainly consist in the construction of a suitable Riesz basis of Nonharmonic Fourier
series. We finally prove Proposition 4.1 in Section 4.3 thanks to the tools developed
in the previous sections.

4.1. Heuristics leading to a moment problem. Since (3.47) is a linear system,
we may suppose, w.l.o.g., that Ψ0 ≡ 02. Thus, the solution of system (3.47) admits

2Indeed, suppose that ∀Ψ̃f ∈ XT , there exists v ∈ Ḣ1
0
(0, T ;R) such that the corresponding

solution of (3.47) with Ψ̃0 = 0 satisfies Ψ̃|t=T = Ψ̃f . Thus, if we are given Ψ0 ∈ X0 and

Ψf ∈ XT , it suffices to choose Ψ̃♯ = −e−iT∆Ψ0 +Ψf , which provides a control w ∈ Ḣ1
0
(0, T ;R),

such that the solution Ψ̃ of (3.47) with Ψ̃|t=0 = 0 and control w satisfies Ψ̃|t=T = Ψ̃♯. Then,

Ψ(t) = e−it∆Ψ0 + Ψ̃(t) satisfies system (3.47) with control w, initial datum Ψ|t=0 = Ψ0 and

verifies Ψt=T = Ψf .
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the following expansion, for any t ∈ [0, T ],

Ψ(t) = −i
√

1− θ2 − θ3

∞
∑

k=1

∫ t

0

v̇(s)ei(λk−λ1)s ds akϕke
−iλkt(4.48)

− i
√

θ2

∞
∑

k=1

∫ t

0

v̇(s)ei(λk−λ2)s ds bkϕke
−iλkt

− i
√

θ3

∞
∑

k=1

∫ t

0

v̇(s)ei(λk−λ3)s ds ckϕke
−iλkt,

where (λk)k∈N∗ and (ϕk)k∈N∗ are given by (1.14) and

(4.49) ak := 〈r2ϕ1, ϕk〉, bk := 〈r2ϕ2, ϕk〉, ck := 〈r2ϕ3, ϕk〉, ∀k ∈ N
∗.

Given a state Ψf ∈ XT , for XT given by (3.45), we look for a control v ∈ Ḣ1
0 (0, T ;R)

such that

(4.50) Ψ|t=T = Ψf .

We shall traduce this condition into a trigonometric moment problem as follows.
Firstly, since the control v belongs to Ḣ1

0 (0, T ;R), we must impose

(4.51)

∫ T

0

v̇(s) ds = 0,

∫ T

0

sv̇(s) ds = 0.

Next, in order to satisfy equation (4.50) we shall decompose Ψf in Fourier expan-
sion, which yields

(4.52) Ψf =
∞
∑

k=0

〈Ψf , ϕk〉ϕk,

and then rephrase (4.50) in terms of each Fourier mode. We can do this by sepa-
rating low and high frequences.

High frequencies. Let k ≥ 4. We observe that (4.50) implies, according to (4.48)
and (4.52), that

ieiλkT 〈Ψf , ϕk〉 =
√

1− θ2 − θ3ak

∫ T

0

v̇(s)ei(λk−λ1)s ds

+
√

θ2bk

∫ T

0

v̇(s)ei(λk−λ2)s ds

+
√

θ3ck

∫ T

0

v̇(s)ei(λk−λ3)s ds.

Since the frequencies (λk − λj)k≥4 for j = 1, 2, 3 are distinct (see Proposition 4.4
below), we can prescribe the following moment values, for any k ≥ 4,

∫ T

0

v̇(s)ei(λk−λ1)s ds =
i
√
1− θ2 − θ3

ak
〈Ψf , ϕk〉eiλkT ,(4.53)

∫ T

0

v̇(s)ei(λk−λ2)s ds =
i
√
θ2

bk
〈Ψf , ϕk〉eiλkT ,(4.54)

∫ T

0

v̇(s)ei(λk−λ3)s ds =
i
√
θ2

bk
〈Ψf , ϕk〉eiλkT .(4.55)
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Low frequencies. We observe that 0 ∈ {λk − λj , k, j = 1, 2, 3}. In that case,
since the restriction on the control (4.51) must be taken into account, we need
to separate the low frequences in such a way we could recover the Fourier modes
(〈Ψf , ϕk〉)k=1,2,3 from

(

ei(λk−λj)t
)

k,j=1,2,3
. This can be done by imposing the fol-

lowing conditions
∫ T

0

v̇(s)ei(λ2−λ1)s ds =
i〈Ψf , ϕ2〉eiλ2T −

√
θ3c2C

a2
√
1− θ2 − θ3

,(4.56)

∫ T

0

v̇(s)ei(λ3−λ1)s ds =
i〈Ψf , ϕ3〉eiλ3T −

√
θ2b3C

a3
√
1− θ2 − θ3

,(4.57)

∫ T

0

v̇(s)ei(λ3−λ2)s ds = C,(4.58)

where C ∈ C satisfies

2ib3
√

θ2θ3 ReC =
√

1− θ2 − θ3〈Ψf , ϕ1〉eiλ1T(4.59)

+
√

θ2e
−iλ2T 〈Ψf , ϕ2〉+

√

θ3e
−iλ3T 〈Ψf , ϕ3〉.

Note that the choice of C ∈ C is possible, since Ψf ∈ T
ψ

♯
τ
S.

Conclusion. Putting together (4.51), (4.53)–(4.55) and (4.56)–(4.58), we obtain
the following moment problem

(4.60)



























































∫ T

0
v̇(s) ds = 0,

∫ T

0
sv̇(s) ds = 0,

∫ T

0
v̇(s)ei(λ2−λ1)s ds = 1

a2
√
1−θ2−θ3

(

i〈Ψf , ϕ2〉eiλ2T −
√
θ3c2C

)

,
∫ T

0
v̇(s)ei(λ3−λ1)s ds = 1

a3
√
1−θ2−θ3

(

i〈Ψf , ϕ3〉eiλ3T −
√
θ2b3C

)

,
∫ T

0 v̇(s)ei(λ3−λ2)s ds = C,
∫ T

0
v̇(s)ei(λk−λ1)s ds = i

√
1−θ2−θ3
ak

〈Ψf , ϕk〉eiλkT , ∀k ≥ 4,
∫ T

0
v̇(s)ei(λk−λ2)s ds = i

√
θ2
bk

〈Ψf , ϕk〉eiλkT , ∀k ≥ 4,
∫ T

0 v̇(s)ei(λk−λ3)s ds = i
√
θ3
ck

〈Ψf , ϕk〉eiλkT , ∀k ≥ 4.

Indeed, if (4.60) is satisfied, then (4.50) holds.

REMARK 4.2. At this point, we can justify further the choice of the family of
states ϕ♯ given by (1.18). Indeed, choosing, for instance, (θ2, θ3) = (0, 0) 6∈ D, we
get ϕ♯ = ϕ1. However, in this case, the corresponding linearised system around
(0, ϕ1) is not controllable with controls in Ḣ1

0 (0, T ;R), because of the constraint
∫ T

0
v̇(s) ds = 0.

4.2. Towards the resolution of the moment problem. The goal of this section
is to develop the necessary mathematical tools leading to the proof of Proposition
4.1. In order to do this, we shall rewrite the moment problem given by (4.60) in an
abstract form that could be handled by the classical results on moment problems
consisting in the use of Riesz basis (see Appendix B for details and notation).

4.2.1. Reinterpretation of the moment problem. We observe that (4.60) can be
rewritten in the form

〈v̇, e−iωks〉L2(0,T ;C) =

∫ T

0

v̇(s)eiωks ds = dk,
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for the family of frequencies

(4.61) {ωk; k ∈ N} = {0} ∪
{

j20,n − j20,p; p = 1, 2, 3, n ≥ p+ 1
}

,

rearranged in increasing order and

(4.62) dk :=















































0, if k = 0,
1

a2
√
1−θ2−θ3

(

i〈Ψf , ϕ2〉eiλ2T −
√
θ3c2C

)

, if k = 1,
1

a3
√
1−θ2−θ3

(

i〈Ψf , ϕ3〉eiλ3T −
√
θ2b3C

)

, if k = 2,

C, if k = 3,
i
√
θ3
ck

〈Ψf , ϕk〉eiλkT , if k ∈ 4 + 3N,
i
√
θ2
bk

〈Ψf , ϕk〉eiλkT , if k ∈ 5 + 3N,
i
√
1−θ2−θ3
ak

〈Ψf , ϕk〉eiλkT , if k ∈ 6 + 3N,

for C given by (4.59), {ak, bk, ck}k∈N∗ given by (4.49) and {〈Ψf , ϕk〉}k∈N∗
given

by (4.52). Thus, according to Appendix B, let us consider, for a given T > 0, the
family

(4.63) F :=
{

t 7→ e−iωnt;n ∈ N
}

⊂ L2(0, T ;C)

and let us consider the moment set associated to F , i.e.,

ML2(0,T ;C)(F) =
{

{

〈w, e−iωnt〉L2(0,T ;C)

}

n∈N
, w ∈ L2(0, T ;C)

}

.

Then, we shall prove that

ℓ2r(N,C) :=
{

{dk}k∈N
∈ ℓ2(N,C); d0 ∈ R

}

⊂ ML2(0,T ;C)(F).

More precisely, we have the following result.

PROPOSITION 4.3. Let {ωk}k∈N
be the increasing sequence defined by (4.61).

Then, for any T > 0, there exists a continuous linear map

M : R× ℓ2r(N,C) → L2(0, T ;R),

such that for every d̃ ∈ R and d = {dn}n∈N
∈ ℓ2r(N,C), the function w := M(d̃, d)

satisfies

(4.64)

{

∫ T

0 w(t)eiωkt dt = dn, ∀n ∈ N,
∫ T

0 tw(t) dt = d̃.

For the proof of this result, we combine arguments coming from [8, Appendix B,
Corollary 2] and [24, Appendix, Proposition 6.1]. Firstly, we show in Section 4.2.2
that the frequencies {ωk}k∈N∗ are non resonant. Secondly, we construct in Section
4.2.3 a suitable Riesz basis and then we prove Proposition 4.3.

4.2.2. A non-resonance property.

PROPOSITION 4.4. Let λn := j20,n for any n ∈ N∗. Then, for any n,m ∈ N∗

and p, q ∈ {1, 2, 3}, we have

(4.65) λn − λp 6= λm − λq , ∀n 6= m, p 6= q.
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Proof. Let us assume that n,m ≥ 4, property (4.65) being obvious otherwise.
Working by contradiction, let us suppose that there exist m,n ≥ 4 and p, q ≤ 3

such that

(4.66) λn − λp = λm − λq.

Moreover, we may assume, without loss of generality, that

(4.67) n > m > p > q.

We shall distinguish two cases.

Case 1. Let us suppose that p = q + 1.
Then, thanks to (A.85), we have

λn − λm = (j0,n − j0,m) (j0,n + j0,m)

=

n−1
∑

k=m

(j0,k+1 − j0,k) (j0,n + j0,m)

> (n−m) (j0,p − j0,q) (j0,n + j0,m) .

Thus, combining this with (4.66), we get

λp − λq > (n−m) (j0,p − j0,q) (j0,n + j0,m) .

This implies

j0,p + j0,q > j0,n + j0.m,

which is incompatible with (4.67), which shows (4.65) in this case.

Case 2. Let us suppose that p = q + 2.
Firstly, let us assume that n = m + 1. Then, by claim (4.66) and using (A.85)

twice, this yields

j0,m+1 + j0,m <
(j0,p − j0,q)(j0,p + j0,q)

j0,m+1 − j0,m

<
(j0,p − j0,q)(j0,p + j0,q)

j0,p − j0,q+1

<

(

1 +
j0,q+1 − j0,q

j0,p − j0,q+1

)

(j0,p + j0,q) < 2 (j0,p + j0,q) .

But this is impossible, since j0,4 + j0,3 > 2(j0,3 + j0,1), as can be seen from the
exact values of these zeros.

Secondly, let us suppose that n −m ≥ 2, i.e., ⌊n−m2 ⌋ ≥ 1, where ⌊·⌋ stands for
the floor function. Thus,

j0,n − j0,m >

⌊n−m
2 ⌋−1
∑

i=0

(

j0,m+2(i+1) − j0,m+2i

)

≥ ⌊n−m

2
⌋ (j0,p − j0,q) ≥ (j0,p − j0,q) .

Thus, (4.66) yields

j0,n + j0,m < j0,p + j0,q,

which is in contradiction with (4.67).
�
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4.2.3. Construction of a Riesz basis.

PROPOSITION 4.5. Let us set, according to (4.61), ω−n := ωn, for any n ∈ N

and ω0 = 0. Let us define, for a given T > 0, the families

FT :=
{

t 7→ eiωnt;n ∈ Z
}

⊂ L2(0, T ;C),

and

F∗
T :=

{

t 7→ eiωnt;n ∈ Z
∗} ⊂ L2(0, T ;C).

Then, we have that (see Definition B.1 for details)

(1) F∗
T is a Riesz basis of HT := AdhL2(0,T ;C) (spanFT ).

(2) FT is a minimal family in L2(0, T ;C).

Proof. Step 1. We prove point (1).
We observe that (A.82) and (A.85) imply that, for any k ∈ Z∗,

ωk+1 − ωk+1 = j20,N(k+1) − j20,N(k)

=
(

j0,N(k+1) − j0,N(k)

) (

j0,N(k+1) + j0,N(k)

)

≥ (j0,2 − j0,1)(j0,2 + j0,1) = j20,2 − j20,1 > 0,

for some bijection N : N∗ → N∗. Thus, (B.92) and (B.93) are satisfied and Theorem
B.5 can be applied for any T ≥ 2π

j20,2−j20,1
. Thus, combining this with Theorem B.3,

we deduce that F∗
T is a Riesz basis of HT for any T ≥ 2π

j20,2−j20,1
.

Moreover, we notice that, thanks to Beurling’s theorem (see Theorem B.6), we
can extend the validity of this statement to every T > 0. Let us consider D+(ω),
the upper density of the sequence {ωn}n∈Z

, according to (B.96). We shall prove
that D+(ω) = 0.

Indeed, let us observe that (A.83) and (A.84) imply that

(4.68) ωn → ∞, as n→ ∞.

Moreover, we observe that, for a sufficiently large n0 ∈ N, the frequencies {ωn}n≥n0

can be gathered in successive three-element packets of the form

j20,n0+n − j20,3 < j20,n0+n − j20,2 < j20,n0+n − j20,1.

Consequently, the gap between the elements of each packet must be

γ̃ = min
{

j20,3 − j20,2, j
2
0,2 − j20,1

}

> 0.

In addition, the gap between the elements of successive packets must be

j20,n0+n+1 − j20,n0+n + j20,1 − j20,3,

which tends to ∞ as n → ∞, thanks to (A.83) and (A.84). In addition, the non-
resonance property (4.65) ensures that ωk 6= ωn, for any n 6= k. We then deduce
from this that the frequencies ωk do not concentrate, i.e.,

inf
k∈N

(ωk+1 − ωk) ≥ γ̃ > 0.

On the other hand, let r > 0 be large enough. According to (4.68) and the previous
discussion, we must have

max
I⊂R interval |I|=r

# {ωk ∈ I} ≤ 3#
{

ωk ≤ r + j20,3
}

≤ 3#
{

j20,k ≤ r + j20,3
}



CONTROLLABILITY OF A 2D QUANTUM PARTICLE IN A VARYING DOMAIN 17

≤ 3#
{

k2 ≤ r + j20,3
}

≤ 3
√

r + j0,32 ,

as k2 ≤ j20,k for any k ∈ N∗, according to (A.84) and (A.85). Thus,

D+(ω) = lim
r→∞

maxI⊂R interval |I|=r# {ωk ∈ I}
r

= lim
r→∞

3
√

r + j20,3

r
= 0.

Theorem B.6 allows to conclude.

Step 2. We prove point (2).
Working by contradiction, let us assume that FT is not minimal in L2(0, T : C),

for some T > 0. Then, the previous step implies (see Remark B.2) that

t 7→ t ∈ AdhL2(0,T ;C) (spanF∗
T ) .

Then, by successive integrations, one checks that

t 7→ tj ∈ AdhC 0([0,T ]) (spanFT ) , ∀j ∈ N, j ≥ 2.

On the other hand, the Stone-Weierstrass theorem guarantees that the family de-
fined by

{

t 7→ 1, t 7→ tj ; j ∈ N, j ≥ 2
}

is dense in C 0([0, T ]). Thus, we deduce that

(4.69) spanFT is dense in L2(0, T ;C).

Let us choose some ω ∈ R \ {ωn}n∈Z
. The previous step, combined with theorem

(B.5), entails that
{

t 7→ eiωt
}

∪ FT is minimal in L2(0, T ;C). But then, we must
have

t 7→ eiωt 6∈ AdhL2(0,T ;C) (spanFT ) ,
which is a contradiction with (4.69).

�

Once we have obtained a suitable Riesz basis, we can prove Proposition 4.3.

Proof of Proposition 4.3. Let us set dk := d−k, for any k ∈ Z∗ with k < 0. Let
{

ξ̃, ξk, ; k ∈ Z

}

be the biorthogonal family to FT (see point (3) in Theorem B.3).

Using Proposition 4.5 and Remark B.4, there exists a constant C > 0 and a unique
u ∈ HT satisfying

∫ T

0

u(t)eiωkt dt = dk, ∀k ∈ Z,

and such that

‖u‖L2(0,T ) ≤ C

(

∑

k∈Z∗

|dk|2
)

1
2

.

Moreover, u is real-valued thanks to the uniqueness. Let us set

w := M(d̃, d) = u+

(

d̃−
∫ T

0

tu(t) dt

)

ξ̃.

Thus, w solves (4.64) and is also real-valued, since u and ξ̃ are so. Moreover,
proceeding exactly as in [8, Corollary 2, Appendix B], one shows that the map M
is continuous. �
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4.2.4. A key asymptotic result. The goal of this section is to prove the following
formulae, which are key to prove that d = {dk}k∈N

, defined by (4.62) is well-defined

and belongs to ℓ2(N;C).

LEMMA 4.6. For every ν ∈ N and k, l ∈ N∗ such that k 6= l,

(4.70)

∫ 1

0

r3Jν(jν,lr)Jν(jν,kr) dr =
4jν,kjν,lJν+1(jν,k)Jν+1(jν,l)

(

j2ν,k − j2ν,l

)2 .

Proof. Let us define, for every k ∈ N
∗,

(4.71) W 2
ν,k(r) := r2Jν(jν,kr), ∀r ∈ (0, 1).

From (A.81), we deduce that W 2
ν,k satisfies the following equation

(4.72)
d2

dr2
W 2
ν,k(r) −

3

r

d

dr
W 2
ν,k(r) +

(

j2ν,k +
4− ν2

r2

)

W 2
ν,k(r) = 0, ∀r ∈ (0, 1).

This implies
∫ 1

0

r3Jν(jν,kr)Jν(jν,lr) dr =

∫ 1

0

W 2
ν,k(r)Jν (jν,lr)r dr

= − 1

j2ν,k

∫ 1

0

(

d2

dr2
− 3

r

d

dr
+

4− ν2

r2

)

W 2
ν,k(r)Jν (jν,lr)r dr

= − 1

j2ν,k

∫ 1

0

(

d2

dr2
+

1

r

d

dr
− ν2

r2

)

W 2
ν,k(r)Jν (jν,lr)r dr

+
4

j2ν,k

∫ 1

0

(

1

r

d

dr
− 1

r2

)

W 2
ν,k(r)Jν(jν,lr)r dr.(4.73)

For the last integral, we have, by (4.71), (A.86) and (A.89),
∫ 1

0

(

1

r

d

dr
− 1

r2

)

W 2
ν,k(r)Jν(jν,lr)r dr

= jν,k

∫ 1

0

r2J ′
ν(jν,kr)Jν(jν,lr) dr

= jν,k

∫ 1

0

r2Jν−1(jν,kr)Jν(jν,lr) dr.(4.74)

For the other integral in (4.73), we have, integrating by parts and using (A.81),
∫ 1

0

(

d2

dr2
+

1

r

d

dr
− ν2

r2

)

W 2
ν,k(r)Jν (jν,lr)r dr = −j2ν,l

∫ 1

0

W 2
ν,k(r)Jν(jν,lr)r dr.

Combining this equality with (4.73) and (4.74) yields
(4.75)

(

1−
j2ν,l

j2ν,k

)

∫ 1

0

r3Jν(jν,kr)Jν(jν,lr) dr =
4

jν,k

∫ 1

0

r2Jν−1(jν,kr)Jν(jν,lr) dr.

To calculate the last integral, let us define

(4.76) W 1
ν−1,k(r) := rJν−1(jν,kr), ∀r ∈ (0, 1).
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According to (A.81), we have, for every r ∈ (0, 1),

d2

dr2
W 1
ν−1,k(r) −

1

r

d

dr
W 1
ν−1,k(r) +

(

j2ν,k +
1− (ν − 1)2

r2

)

W 1
ν−1,k(r) = 0.

Then,
∫ 1

0

r2Jν−1(jν,kr)Jν (jν,lr) dr =

∫ 1

0

W 1
ν−1,k(r)Jν(jν,lr)r dr

= − 1

j2ν,k

∫ 1

0

(

d2

dr2
− 1

r

d

dr
+

2ν − ν2

r2

)

W 1
ν−1,k(r)Jν (jν,lr)r dr

= − 1

j2ν,k

(

d2

dr2
+

1

r

d

dr
− ν2

r2

)

W 1
ν−1,k(r)Jν (jν,lr)r dr

+
1

j2ν,k

∫ 1

0

(

2

r

d

dr
− 2ν

r2

)

W 1
ν−1,k(r)Jν(jν,lr)r dr.

Integrating by parts, and recalling that Jν(0) = 0, for any ν ∈ N∗, we find

− 1

j2ν,k

∫ 1

0

(

d2

dr2
+

1

r

d

dr
− ν2

r2

)

W 1
ν−1,k(r)Jν(jν,lr)r dr

= − 1

j2ν,k

∫ 1

0

W 1
ν−1,k(r)

(

d2

dr2
+

1

r

d

dr
− ν2

r2

)

Jν(jν,lr) dr

+
jν,l

j2ν,k
W 1
ν−1,k(1)J

′
ν(jν,l)

=

(

jν,l

jν,k

)2 ∫ 1

0

W 1
ν−1,k(r)Jν (jν,lr)r dr +

jν,l

j2ν,k
Jν−1(jν,k)J

′
ν(jν,l).

This gives
(

1−
j2ν,l

j2ν,k

)

∫ 1

0

W 1
ν−1,k(r)Jν (jν,lr)r dr

=
1

j2ν,k

∫ 1

0

(

2

r

d

dr
− 2ν

r

)

W 1
ν−1,k(r)Jν (jν,lr)r dr(4.77)

+
jν,l

j2ν,k
Jν−1(jν,k)J

′
ν(jν,l).

We treat the last integral separately. Integrating by parts and using (4.76) and
(A.89), it comes

∫ 1

0

(

2

r

d

dr
− 2ν

r2

)

W 1
ν−1,k(r)Jν (jν,lr)r dr

= −2jν,l

∫ 1

0

W 1
ν−1,k(r)J

′
ν (jν,lr) dr − 2ν

∫ 1

0

Jν−1(jν,kr)Jν (jν,lr) dr

= −2jν,l

∫ 1

0

rJν−1(jν,kr)

[

Jν−1(jν,lr) −
ν

jν,lr
Jν(jν,lr)

]

dr

−2ν

∫ 1

0

Jν−1(jν,kr)Jν(jν,lr) dr
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= −2jν,l

∫ 1

0

rJν−1(jν,kr)Jν−1(jν,lr) dr.

Hence, using (A.87), we deduce.
∫ 1

0

(

2

r

d

dr
− 2ν

r2

)

W 1
ν−1,k(r)Jν (jν,lr)r dr = 0.

Consequently, from (4.77), we get
(

1−
j2ν,l

j2ν,k

)

∫ 1

0

W 1
ν−1,k(r)Jν(jν,lr)r dr =

jν,l

j2ν,k
Jν−1(jν,k)J

′
ν(jν,l).

Combining this with (4.75) we find

(

1−
j2ν,l

j2ν,k

)

∫ 1

0

r3Jν(jν,kr)Jν(jν,lr) dr =
4jν,lJν−1(jν,k)J

′
ν(jν,l)

jν,k

(

j2ν,k − j2ν,l

)

Hence, this yields (4.70), since (A.89) and (A.88) imply that J ′
ν(jν,k) = −Jν+1(jν,k)

and Jν−1(jν,l) = −Jν+1(jν,l). �

4.3. Resolution of the moment problem.

Proof of Proposition 4.1. We observe that the trigonometric moment problem (4.60)
can be solved by using Proposition 4.3. In order to justify this, we claim that there
exist C1, C2, C3, D1, D2, D3, positive constants such that
(4.78)

C1 ≤ j30,k|ak| ≤ D1, C2 ≤ j30,k|bk| ≤ D2, C3 ≤ j30,k|ck| ≤ D2, ∀k ∈ N
∗.

Indeed, let k > 1, the case k = 1 being straightforward. Identity (4.70) with ν = 0,
l = 1, allows to write, through (4.49) and (1.12), that

|ak| =
1

|J1(j0,1)||J1(j0,k)|

∣

∣

∣

∣

∫ 1

0

r3J0(j0,1r)J0(j0,k) dr

∣

∣

∣

∣

=
4j0,1j0,k

(j0,k − j0,1)
2
(j0,k + j0,1)

2 ,

and thus,

j30,k|ak| =
4j0,1j

4
0,k

(j0,k − j0,1)
2
(j0,k + j0,1)

2 ,

≥ 4j0,1
(j0,k − j0,1)

2

(j0,k − j0,1)
2

j20,k

(j0,k + j0,k)
2 ≥ j0,1.

The majoration follows by the same arguments. Then, (4.78) is proved for {ak}k∈N∗ .
Let us observe that the other two cases can be done in the same way.

In addition, assumption Ψf ∈ H3
(0),rad(D,C), combined with (4.78), gives that

d := {dk}k∈N
∈ ℓ2r(N;C).

This allows to apply Proposition 4.3, which provides a function w := M(0, d) ∈
L2(0, T ;R) with

(4.79)

∫ T

0

w(σ) dσ = 0,

∫ T

0

σw(σ) dσ = 0.



CONTROLLABILITY OF A 2D QUANTUM PARTICLE IN A VARYING DOMAIN 21

Consequently, setting

(4.80) t 7→ v(t) :=

∫ t

0

w(σ) dσ

we find a control v ∈ Ḣ1
0 (0, T ;R) solving (4.60). Moreover, the application (0,Ψf) 7→

v thus defined is continuous, thanks to Proposition 4.3. �

5. Proof of Theorem 1.4

Following [8, Section 2.4], Theorem 1.4 is a consequence of the Inverse Mapping
Theorem, combining Proposition 4.1 and Proposition 3.1. We omit the details.

6. Comments and perspectives

In this paper we have proved a controllability result via domain deformations for
the Schrödinger equation in the unit disc of R2. This work, the first of this kind
in a two-dimensional domain, shows that the geometry of the domain under study
is essential. Indeed, our result is possible thanks to the particular geometry of the
disc, which allows to exploit the radial symmetry. This yields a simplified situation
to which the tools from one-dimensional bilinear control can be adapted. Even if
some extensions in this direction are still possible, this feature of our result seems
quite limiting.

On the other hand, a major difficulty of this result was to determine the func-
tional framework in which controllability holds. This has been done thanks to a
careful analysis of the spectral family given by the Bessel functions.

Any advance in a more general setting would be utterly interesting. The consid-
eration of more general domains and data may lead, very likely, to the use of more
general controls, probably space-dependent. Consequently, the tools from bilinear
control, very useful in the one-dimensional case and in the present work, will be no
longer convenient, in profit of other approaches.

Acknowledgements: The author would like to very much thank Karine Beauchard
(Ecole Normale Supérieure de Rennes) for suggesting him this problem and for many
fruitful and stimulating discussions and helpful advices. This article has been pre-
pared at the Centre de Mathématiques Laurent Schwartz, Ecole polytechnique,
Palaiseau, France, as part of the author’s PhD dissertation.

Appendix A. Bessel functions

Let ν ∈ R. We denote the Bessel function of order ν of the first kind by Jν ( see
[1, 9.1.10, p.360]), which satisfies the ordinary differential equation

(A.81) z2
d2

dz2
Jν(z) + z

d

dz
Jν(z) + (z2 − ν2)Jν(z) = 0, z ∈ (0,+∞).

A.1. Properties of the zeros. We denote by {jν,k}k∈N∗
the increasing sequence

of zeros of Jν , which are real for any ν ≥ 0 and enjoy the following properties (see
[1, 9.5.2, p.360] and [18, Lemma 7.8, p.135]).

ν < jν,k < jν,k+1, ∀k ∈ N
∗,(A.82)

jν,k → +∞, as k → +∞,(A.83)
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jν,k+1 − jν,k → π, as k → ∞.(A.84)

(j0,k+1 − j0,k)k∈N∗
is a strictly increasing sequence.(A.85)

A.2. Integral identities. We also have the integral formulae ([1, 11.4.5, p.485])

(A.86)

∫ 1

0

rJν(jν,lr)Jν (jν,kr) dr =
1

2
|Jν+1(jν,k)|2δl,k, ∀l, k ∈ N

∗.

and (see [1, 11.3.29, p. 484])

(A.87) (α2 − β2)

∫ 1

0

rJν(αr)Jν (βr) dr = αJν+1(α)Jν(β)− βJν(α)Jν+1(β),

for any α, β ∈ R, with α 6= β. We have the differential relations (see [1, 9.1.27, p.
361])

J ′
ν(r) = −Jν+1(r) +

ν

r
Jν(r), r ∈ (0,+∞),(A.88)

J ′
ν(r) = Jν−1(r) −

ν

r
Jν(r), r ∈ (0,+∞).(A.89)

Appendix B. Moment problems

In this section we gather some classical material concerning abstract moment
problems in Hilbert space and trigonometric moment problems in L2(0, T ;C), that
have been used in section 4.

B.1. Abstract moment problems. LetH be a separable Hilbert space, equipped
with the scalar product 〈·, ·〉H , and let S = {fk}k∈Z

⊂ H be a family of elements of
H . Given a sequence of complex numbers {ck}k∈Z

, we want to determine whether
the moment problem

(B.90) 〈f, fk〉H = ck, ∀k ∈ Z,

can be solved for some element f ∈ H . In particular we study the moment set
associated to S, which is defined (see [31, Ch.4 Sect.2, p.128]) by

MH(S) :=
{

{〈g, fk〉H}k∈Z
; g ∈ H

}

⊂ C
Z.

Let us notice that, in practice, we are interested in solving the moment problem
(B.90) for {cj}k∈Z

∈ ℓ2(Z;C), i.e., we want ℓ2(Z;C) ⊂ MH(S). This necessitates
some conditions on the family S, that we briefly describe below.

DEFINITION B.1. Let H be a separable Hilbert space and let S = {fk}k∈Z
⊂ H.

Then,

(1) S is a minimal family in H if

∀j ∈ Z, fj 6∈ AdhH (span {fk; k 6= j}) ,
(2) S is a Riesz basis of H if there exists an orthonormal basis of H, say

{ek}k∈Z
, and a linear and bounded mapping T ∈ L (H) which is invertible

and satisfies
Tek = fk, ∀k ∈ Z.

(3) S satisfies the Riesz-Fischer property in H if

ℓ2(Z;C) ⊂ MH(S).

REMARK B.2. Observe that it follows from the previous definition that any Riesz
basis of a separable Hilbert space H is also a minimal family in H.
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The following result provides two powerful criteria to check whether a given
family S ⊂ H is a Riesz basis or satisfies the Riesz-Fischer property in H .

THEOREM B.3. Let H be a separable Hilbert space and let S = {fk}k∈Z
⊂ H.

Then,

(1) [31, Ch.4 Sect.2. Th.3, p.129] S satisfies the Riesz-Fischer property if there
exists a constant m > 0 such that the inequality

m
∑

k∈Z

|ck|2 ≤
∥

∥

∥

∥

∥

∑

k∈Z

ckfk

∥

∥

∥

∥

∥

2

H

,

holds for any {ck}k∈Z
⊂ CZ with finite support.

(2) [31, Ch.1 Sect.8. Th.9, (3) p.27] S is a Riesz basis if there exist M,m > 0
such that the inequality

(B.91) m
∑

k∈Z

|ck|2 ≤
∥

∥

∥

∥

∥

∑

k∈Z

ckfk

∥

∥

∥

∥

∥

2

H

≤M
∑

k∈Z

|ck|2

holds for any {ck}k∈Z
⊂ CZ with finite support.

(3) [31, Ch.1 Sect.8. Th.9, (5) p.27] S is a Riesz basis if and only if one has
AdhH (spanS) = H3 and there exists a family, say S⊥ = {gk}k∈Z∗ ⊂ H,

satisfying that AdhH
(

spanS⊥) = H and such that4

〈gn, fk〉 = δn,k, ∀n, k ∈ Z.

REMARK B.4. The previous result shows that if S is a Riesz basis of H, then it
satisfies the Riesz-Fischer property in H. Thus, in particular, ℓ2(Z,C) ⊂ MH(S).
This allows to deduce that if S is a Riesz basis of H, then the moment problem
(B.90) can be solved in H for a given {ck}k∈Z

∈ ℓ2(Z;C).

B.2. Trigonometric moment problems. Let us focus next on the choice H =
L2(0, T ;C), for some T > 0. Let us consider families given in the form

S =
{

t 7→ eiωkt, k ∈ Z
}

⊂ L2(0, T ;C), with {ωk}k∈Z
⊂ R

Z.

In order to determine if such a family S is a Riesz basis of H , it is crucial to analyse
the separation properties of the frequences {ωk}k∈Z

, as this allows to fulfill (B.91)
through an Ingham-type inequality (see [16]). We shall recall next a classical result
due to A.Haraux (see [15] and [18, Sect. 4.4, p.69] for a proof).

THEOREM B.5 (Haraux). Let N ∈ N and let {ωk}k∈Z
be an increasing sequence

of RZ such that the following gap conditions

ωk+1 − ωk ≥ γ > 0, ∀k ∈ Z, with |k| ≥ N,(B.92)

ωk+1 − ωk ≥ ρ > 0, ∀k ∈ Z,(B.93)

are satisfied for some γ and ρ. Let

(B.94) T ≥ 2π

γ
.

3In this case the familiy is called complete in H (see [31, Ch.1, Sect.5 p.16]).
4Such a family S⊥ is called biorthogonal to S (see [31, Ch.1 Sect.5 p.24]).
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Then, there exist M,m > 0 such that the inequality

(B.95) m
∑

k∈Z

|ck|2 ≤
∫ T

0

∣

∣

∣

∣

∣

∑

k∈Z

cke
iωt

∣

∣

∣

∣

∣

2

dt ≤M
∑

k∈Z

|ck|2,

holds for any sequence {ck}k∈Z
⊂ CZ with finite support.

Condition (B.94) can be sharpened by using the following result, due to A.
Beurling (see [18, Th.9.2, p.174]).

THEOREMB.6 (Beurling). Let ω = {ωk}k∈Z
⊂ RZ satisfying (B.92) and (B.93).

Then, the real number

(B.96) D+(ω) := lim
r→∞

maxI⊂R interval |I|=r# {ωk ∈ I}
r

,

called the upper density of ω, is well-defined and inequality (B.95) holds for any
T ≥ 2πD+(ω).
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de l’Ecole polytechnique. 2012.

[6] K. Beauchard. Local controllability of a 1D Schrödinger equation. J. Math. Pures et Appl.
Vol. 84. pp. 851-956. 2005.

[7] K. Beauchard. Controllability of a quantum particule in a 1D variable domain. ESAIM-
COCV. Vol.14:1, 2008 pp. 105-147.

[8] K. Beauchard, C. Laurent. Local controllability of linear and nonlinear Schrödinger equations
with bilinear control. J. Math. Pures et Appl. Vol. 94:5, 2010, pp 520-554.

[9] K. Beauchard, C. Laurent. Bilinear control of high-frequences 1D Schrödinger equation.
https://hal.archives-ouvertes.fr/hal-01333625v1. Preprint. 2016.

[10] K. Beauchard, C. Laurent. Local exact controllability of the 2-D Schrödinger-Poisson system.
https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-01333627/document. Preprint. 2016.

[11] K. Beauchard, H. Lange, H. Teismann. Local exact controllability of a Bose-Einstein con-
densate in a 1D time-varying box. SIAM J. of Contr. and Opt. Vol. 53:5, pp. 2781-2818.
2015.

[12] U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, A weak spectral condition for
the controllability of the bilinear Schrödinger equation with application to the control of a
rotating planar molecule. Commun. Math. Phys. Vol. 311, pp. 423-455. 2012.

[13] E.B. Davies. Spectral Theory and Differential Operators. Cambridge Univ. Press. 1995.
[14] S.W. Doescher and M.H. Rice. Infinite square well potential with a moving wall. Am. J. Phys.

vol. 37., 1246. 1969.
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