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A Bayesian nonparametric approach to
ecological risk assessment

Guillaume Kon Kam King, Julyan Arbel and Igor Prünster

Abstract We revisit a classical method for ecological risk assessment, the
Species Sensitivity Distribution (SSD) approach, in a Bayesian nonparamet-
ric framework. SSD is a mandatory diagnostic required by environmental
regulatory bodies from the European Union, the United States, Australia,
China etc. Yet, it is subject to much scientific criticism, notably concerning a
historically debated parametric assumption for modelling species variability.
Tackling the problem using nonparametric mixture models, it is possible to
shed this parametric assumption and build a statistically sounder basis for
SSD. We use Normalized Random Measures with Independent Increments
(NRMI) as the mixing measure because they offer a greater flexibility than
the Dirichlet process. Indeed, NRMI can induce a prior on the number of
components in the mixture model that is less informative than the Dirich-
let process. This feature is consistent with the fact that SSD practitioners
do not usually have a strong prior belief on the number of components. In
this short paper, we illustrate the advantage of the nonparametric SSD over
the classical normal SSD and a kernel density estimate SSD on several real
datasets. We summarise the results of the complete study in Kon Kam King
et al. (2016), where the method is generalised to censored data and a system-
atic comparison on simulated data is also presented, along with a study of
the clustering induced by the mixture model to examine patterns in species
sensitivity.
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1 Introduction

Assessing the response of a community of species to an environmental stress
is critical for ecological risk assessment. Methods for this purpose vary in lev-
els of complexity and realism. Species Sensitivity Distribution (SSD) repre-
sents an intermediate tier, more refined than rudimentary assessment factors
(Posthuma et al., 2002) but practical enough for routine use by environmen-
tal managers and regulators in most developed countries (Australia, Canada,
China, EU, South Africa, USA. . . ). The SSD approach is intended to pro-
vide, for a given contaminant, a description of the tolerance of all species
possibly exposed using information collected on a sample of those species.
This information consists of Critical Effect Concentrations (CECs), a con-
centration specific to a species which marks a limit over which the species
suffers a critical level of effect. This is for instance the concentration at which
50% of the tested organisms died (Lethal Concentration 50% (LC50)), or the
concentration which inhibited growth or reproduction by 50% compared to
the control experiment (Effect Concentration 50% (EC50)). Each CEC is the
summary of long and costly bioassay experiments for a single species, so they
are rarely available in large number. Typical sample sizes range from 10 to
15 (ECHA, 2008).

To describe the tolerance of all species to be protected, the distribution
of the CECs is then estimated from the sample. In practice, a parametric
distributional assumption is often adopted (Forbes and Calow, 2002): the
CECs are assumed to follow a log-normal (Aldenberg and Jaworska, 2000),
log-logistic (Kooijman, 1987), triangular (Van Straalen, 2002; Zhao and Chen,
2016) or BurrIII (Shao, 2000) distribution.

Once the response of the community is characterised by the distribution,
the goal of risk assessment is to define a safe concentration protecting all or
most of the species. In the case of distributions without a lower threshold
strictly above 0, a cut-off value is often chosen as the safe concentration.
Typically, this is the Hazardous Concentration for 5% of the Species (HC5),
which is the 5th percentile of the distribution. Reasonings behind this choice
include: that the lowest bound of the confidence interval around the 5th per-
centile will be used instead of the estimate, that a safety factor will be sub-
sequently applied to that value and that ecosystems have a certain resilience
to perturbations.

The lack of justification for the choice of any given parametric distribution
has sparked several research directions. Some authors (Xu et al., 2015; He
et al., 2014; Jagoe and Newman, 1997; Van Straalen, 2002; Xing et al., 2014;
Zhao and Chen, 2016) have sought to find the best parametric distribution by
model comparison using goodness-of-fit measures. The general understand-
ing is that no single distribution seems to provide a superior fit and that
the answer is dataset dependent (Forbes and Calow, 2002). Therefore, the
log-normal distribution has become the customary choice, notably because
it readily provides confidence intervals on the HC5, and because model com-
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parison and goodness of fit tests have relatively low power on small datasets,
precluding the emergence of a definite answer to the question. Another re-
search direction consisted in seeking to avoid any reference to a distribu-
tion, using so-called nonparametric or distribution-free approaches. Those
efforts included using the empirical distribution function (Suter II et al.,
1999; Jones et al., 1999), methods based on ranks (Van Der Hoeven, 2001;
Chen, 2004), bootstrap resampling (Jagoe and Newman, 1997; Wang et al.,
2008) or nonparametric kernel density estimation (Wang et al., 2015). All
these approaches have in common that they require large sample sizes to be
effectively applicable. Finally, authors have considered the possibility that
the distribution of the CECs might not be a single distribution but rather a
mixture of distributions (Zajdlik et al., 2009), datasets being an assemblage
of several log-normally distributed subgroups (Kefford et al., 2012; Craig,
2013). This is more realistic from an ecological point of view because sev-
eral factors influence the tolerance of a species to a contaminant such as the
taxonomic group or the mode of action, and contaminant such as pesticides
might even target specific species groups. Therefore, there is strong evidence
in favour of the presence of groups of CECs, although the CECs within a
group might remain log-normally distributed.

Ignorance of the group structure is a strong motivation for a nonparamet-
ric approach. However, the method must remain applicable to small datasets,
which suggests trying to improve on the existing frequentist nonparametric
methods. Bayesian nonparametric mixture models offer an interesting solu-
tion for both large and small datasets, because the complexity of the mixture
model adapts to the size of the dataset. It offers a good compromise between
a simplistic one-component parametric model and a kernel density method
which in a certain sense lacks flexibility and might cause overfitting. More-
over, the low amount of information available in small datasets to estimate
the groups parameters can be complemented via the prior, as some a priori
degree of information is generally available from other species or contami-
nants (Awkerman et al., 2008; Craig, 2013; Craig et al., 2012). This paper
summarises the results of the complete study in Kon Kam King et al. (2016).

The rest of the article is organised as follows. In Section 2 we present the
Bayesian nonparametric (BNP) model and existing frequentist models for
SSD and explain how to obtain a density estimate. Then in Section 3 we
compare the different methods on a real dataset, illustrating the benefits of
the BNP SSD. We conclude with a final discussion in Section 4.

2 Models for SSD

Given that concentrations vary on a wide range, it is common practice to work
on log-transformed concentrations. Consider a sample of n log-concentrations
denoted by X = (X1, . . . ,Xn). We propose to carry out density estimation
for the SSD based on sample X by use of nonparametric mixtures. Bayesian
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nonparametric mixtures were introduced in Lo (1984) with Dirichlet process
mixtures (DPM). Generalizations of the DPM correspond to allowing the
mixing distribution to be any discrete nonparametric prior. A large class of
such prior distributions is obtained by normalizing increasing additive pro-
cesses (Sato, 1999). The normalization step, under suitable conditions, gives
rise to so-called normalized measures with independent increments (NRMI)
as defined by Regazzini et al. (2003), see also Barrios et al. (2013) for a recent
review. An NRMI mixture model is defined hierarchically as:

Xi|µi,σ
ind∼ k(·|µi,σ), µi|P̃

i.i.d.∼ P̃ , i= 1, . . . ,n, (1)
P̃ ∼NRMI, σ ∼Ga(aσ, bσ).

where k is a kernel, which we assume parametrized by some θ = (µ,σ) ∈
R×R+, and P̃ is a random probability on R whose distribution is an NRMI.
In our model, all clusters have a common variance. This is easier to fit on a
small dataset, because information about the variance is pooled across clus-
ters. Similar mixture SSD models described in Craig (2013) also assume com-
mon variance. As described in the Introduction, concentrations are commonly
fitted with a log-normal distribution. Our aim is to move from this parametric
model to the nonparametric one in (1). In order to allow comparisons to be
made, we stick to the normal specification for k on the log-concentrations X
by letting: k(x|µ,σ) = N (x|µ,σ). Under this framework, density estimation
is carried out by evaluating the posterior predictive density along the lines
of Barrios et al. (2013):

f̂(x|P̃ ,X) =
∫∫

k(x|µ,σ)dπ(σ)dP̃ (µ) (2)

for any x in R, where π denotes the posterior distribution of σ.
To specify the prior, we choose as mixing random measure the normalized

stable process (Kingman, 1975) with:

i a stability parameter γ = 0.4, which controls the flatness of the prior on
the number of clusters. The parameter γ can take values in (0,1). Taking
the limit γ→ 0 reduces the model to a Dirichlet process, larger values of γ
lead to less informative priors on the number of clusters. The parameter γ
was chosen as a good compromise between model flexibility and numerical
stability. The total mass parameter is, without loss of generality, set equal
to 1.

ii a base measure (which corresponds to the mean of the random probability
measure) P0( ·) =N ( · |ϕ1,ϕ2) with mean ϕ1 and standard deviation ϕ2,
hyperparameters fixed a priori to specify a certain knowledge in the degree
of smoothness

iii a common variance for all the clusters with a vaguely informative prior
distribution Ga(0.5,0.5).
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Recent years have witnessed the appearance of a wealth of softwares ded-
icated to implement Bayesian nonparametric models and sample from their
posterior. To cite a few, the R package DPpackage (Jara et al., 2011), is a
rather comprehensive bundle of functions for Bayesian nonparametric mod-
els, while Bayesian Regression (Karabatsos, 2016) is a software for Bayesian
nonparametric regression. For posterior sampling, we use the R package BN-
Pdensity and the function MixNRMI1 which implements BNP density models
under a general specification of normalized random measures based on the
generalised gamma processes (see Barrios et al., 2013). The package is avail-
able from the Comprehensive R Archive Network (CRAN).

To illustrate the interest of the Bayesian nonparametric SSD, we compare
our proposed BNP model to two commonly used frequentist models: the
normal distribution (Aldenberg and Jaworska, 2000) and the nonparametric
Kernel Density Estimate (KDE) recently proposed by Wang et al. (2015). For
both frequentist approaches, the data is assumed to be iid. Density estimates
take on respectively the following form (µ̂ and σ̂ are MLE)

f̂N (x) =N (x | µ̂, σ̂) and f̂KDE(x) = 1
n

n∑
i=1
N (x |Xi,1.06σ̂n−

1
5 ). (3)

2.1 Model comparison and cross-validation

For the purpose of comparing the predictive performance of the model, we
resort to Leave-One-Out (LOO) cross-validation. We compute the LOOs for
each of the methods as ∀i,LOOi = f̂(Xi |X−i) where f̂(x |X−i) is the density
for one of the three methods estimated from X withXi left out. The LOOs for
the BNP model correspond to the conditional predictive ordinates (CPOs)
statistics which are commonly used in applications, see Gelfand (1996). A
CPO statistic is defined for each log-concentration Xi as follows:

CPOi = f̂(Xi|X−i) =
∫
k(Xi|θ)dπ(θ|X−i) (4)

where X−i denotes the all sample X but Xi, dπ(θ|X−i) is the posterior
distribution associated to X−i and f̂ is the (cross-validated) posterior pre-
dictive distribution of Equation (2). As shown by Barrios et al. (2013), CPOs
can be easily approximated by Monte Carlo as

ĈPOi =
(

1
T

T∑
t=1

1
k(Xi|θ(t))

)−1

(5)

where {θ(t), t= 1,2, . . . ,T} is an MCMC sample from the posterior distri-
bution.
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2.2 Quantile estimation and HC5

The quantity of interest for ecological risk assessment is the HC5, which
corresponds to the 5th percentile of the SSD distribution. We choose as an
estimator the median of the posterior distribution of the 5th percentile, while
the 95% credible bands are formed by the 2.5% and 97.5% quantiles of the
posterior distribution of the 5th percentile. The 5th percentile of the KDE is
obtained by numerical inversion of the cumulative distribution function, and
the confidence intervals using nonparametric bootstrap. The 5th percentile
of the normal SSD and its confidence intervals are obtained following the
classical method of Aldenberg and Jaworska (2000).

3 Application to real data

We applied this model to a selection of contaminants extracted from a large
database collected by the National Institute for Public Health and the En-
vironment (RIVM). This database was prepared, studied and published by
Hickey et al. (2012). We only considered non censored data, left or right
censored data were discarded, while interval censored data were replaced by
the centre of the interval. Kon Kam King et al. (2016) will describe how the
method can be adapted to include censored data. Using a continuous dis-
tribution for the CECs implies that the model does not support ties (or, in
other words, observing ties has zero probability). However, ties may appear
in the dataset due to the rounding of concentrations. Hence, we used a small
jittering of the data.

We selected three example datasets which feature three typical sample
sizes: a relatively large carbaryl dataset (CAS: 63-25-2, insecticide, 55
species), a medium-sized temephos dataset (CAS: 3383-96-8, mosquito lar-
vicide, 21 species), and a small captan dataset (CAS: 133-06-2, fungicide,
13 species). Datasets for new contaminants are always small, the minimum
requirement set by the European Chemical Agency being 10 species. The
datasets can be visualised on the histograms of Figure 1 (left panel).

These datasets illustrate different features of the three approaches: when
there is a clear multimodality in the data, the BNP SSD is more flexible than
the fixed bandwidth KDE SSD (Figure 1, carbaryl and captan). When
the data do not exhibit strong multimodality, as for temephos, the BNP
reduces to the normal SSD model, whereas the KDE remains by construction
a mixture of many normal components.

One might think to increase the flexibility of the KDE by simply decreas-
ing the bandwidth. However, that would also decrease the robustness of the
method. On the middle panel of Figure 1, the LOOs give an indication of the
robustness to over-fitting of the three methods. For carbaryl and captan,
they show that the superior flexibility of the BNP SSD compared to the KDE
SSD does not come at the expense of robustness, because the median CPO
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Fig. 1: The top panel represents large-size carbaryl dataset, the middle panel
represents the medium-sized temephos dataset, the bottom panel represents
small-sized captan dataset. Fits of the Normal (in green), KDE (in red) and
BNP (in blue) models. Concentrations are log transformed.
Left: Histogram and density estimates.
Centre: Boxplot for the LOOs (for Normal and KDE) and the CPO (for
BNP) on logarithmic scale. The horizontal line corresponds to the median.
The box hinges extend to the inner quartiles. The whiskers extend to cover
points up to one and a half times the inter-quartile distance away from the
hinges. For both frequentist methods, the n LOOs are obtained by fitting
the model n times, while an analytical expression is available for the BNP
method (Equation 5).
Right: log HC5 and associated confidence/credible intervals (for Normal,
KDE and BNP).
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of the BNP SSD is higher than the other two. In the case of temephos, the
median LOO likelihood estimate of the normal model is very similar to the
median CPO for the BNP SSD, sign that there is little over-fitting. This
generally illustrates the fact that model complexity in a BNP model scales
with the amount and structure of the data. On the right panel of Figure 1,
the credible intervals of the HC5 for the BNP SSD are generally larger than
the confidence interval of the normal SSD, which is coherent with the model
uncertainty of the nonparametric approach.

4 Discussion

The BNP SSD seems to perform well when the dataset deviates from a normal
distribution. Its great flexibility is an asset to describe the variability of the
data, while it does not seem prone to over-fitting. It can be thought of as
an intermediate model between the normal SSD with a single component on
the one hand, and the KDE which counts as many components as there are
species on the other hand. We chose to base the BNP SSD on NRMI rather
than on the more common Dirichlet Process, because it is more robust in
case of misspecification of the number of clusters (Lijoi et al., 2007; Barrios
et al., 2013). The BNP SSD provides several benefits for risk assessment: it
is an effective and robust standard model which adapts to many datasets.
Moreover, it readily provides credible intervals. While it is always possible
to obtain confidence intervals for a frequentist method using bootstrap, it
can be difficult to stabilise the interval for small datasets even with a large
number of bootstrap samples. As such, the BNP SSD represents a safe tool
to remove one of the arbitrary parametric assumptions of SSD (Forbes and
Calow, 2002).

The extended paper supporting the BNP SSD (Kon Kam King et al.,
2016) will include a comparison of methods on simulated data, an extension
to the case of censored data and an emphasis on the potential benefits of the
approach from a biological point of view.
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