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Abstract

An accurate 2-D numerical model that accounts for concentration polar-
ization and osmotic effects is developed for the cross-flow filtration in a
membrane channel. Focused on the coupling between laminar hydrodynam-
ics and mass transfer, the numerical approach solves the solute conservation
equation together with the steady Navier-Stokes equations under the Prandtl
approximation, which offers a simplified framework to enforce the non-linear
coupling between filtration and concentration polarization at the membrane
surface.
The present approach is first validated thanks to the comparison with clas-
sical exact analytical solutions for hydrodynamics and/or mass transfer, as
well as with approximated analytical solutions that attempted at coupling
the various phenomena. The effects of the main parameters in cross-flow
reverse osmosis (RO) or nanofiltration (NF) (feed concentration, axial flow
rate, operating pressure and membrane permeability) on streamlines, ve-
locity profile, longitudinal pressure drop, local permeate flux and solute
concentration profile are predicted with the present numerical model, and
discussed.
With the use of data reported from NF and RO experiments, the Prandtl ap-
proximation model is shown to accurately correlate both average permeate
flux and local solute concentration over a wide range of operating conditions.
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1. Introduction

The first paragraph has been cancelled

In cross-flow filtration, species remain in the axial (or feed) flow, while
permeate (or purified transverse flow) leaves the duct by leaking transver-
sally through the membrane. The accumulation of rejected species at the
membrane inner wall results in a concentration polarization (i.e. a large so-
lute enhancement) which -combined with osmosis- can induce a substantial
reduction in permeation. On the one hand, the basic theoretical descrip-
tion of the cross-flow filtration refers to the seminal contribution by Berman
(Berman (1953)) that treats of the channel flow driven by a uniform leak-
age at the wall. Other contributions on the case of the ”pure solvent” flow
proposed several analytical solutions that accounts for the pressure depen-
dence on permeate flux (see Regirer (1960), Haldenwang (2007), Tilton et al.
(2012), Bernales and Haldenwang (2014)). On the other hand, an exact an-
alytical solution for the solute transfer in Berman flow has been derived in
Haldenwang et al. (2010) and accounts for concentration polarization and
the subsequent hindrance to permeation in the limit of certain RO/NF con-
figurations.

Permeate flux actually results from the coupling of those transport phe-
nomena (hydrodynamics and mass transfer) upstream and through the mem-
brane.

The present contribution can essentially be seen as an improvement in
the numerical efficiency for studying the laminar flows involved in filtration.
It is however known that the applicability domain of such an approach can
be extended by introducing the concept of turbulent viscosity and turbulent
diffusivity (as we shall do in the present Subsection 3.3).

This issue has also been recently identified as a challenge for nanofiltra-
tion and reverse osmosis processes [Van der Bruggen et al. (2008) and Malaeb
and Ayoub (2011)]. The literature is now rich with studies on RO/NF mod-
eling. In the present approach, we hence pay a special attention to develop
an efficient predictive model that allows us to accurately describe the full
coupling between flow, concentration polarization and hindrance to perme-
ation. As discussed below, efficiency and accuracy come from the fact that
the solver is fast and has no limitations in terms of numerical degrees of
freedom.
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Whereas the conservation laws for diluted solutions of salt and water are
well-admitted, solvent and solute transport through a membrane remains a
quite controversial issue. A large number of investigators have proposed nu-
merous local models derived from different mechanisms. They are based
either on the principles of irreversible thermodynamics models (Kedem-
Katchalsky model, Spiegler-Kedem model) or on various homogeneous mem-
brane models (Porous model, Solution-Diffusion model). The oldest of these
models are analyzed in the contribution by Soltanieh [Soltanieh and Gill
(1981)]. More recent models describing the different local transport phe-
nomena within the membranes with an increasing complexity can be found
in Wijmans and Baker (1995), Gauwbergen and Baeyens (1998), Weissbrodt
et al. (2001), Moresi et al. (2002), Kahdim et al. (2003), Mehdizadeh et al.
(2005), Mane et al. (2009), Malaeb and Ayoub (2011). Below, we shall
nevertheless use a minimal model, since it is essential to investigate the as-
sociated limitations.

An evident improvement in modeling consists in coupling a local mem-
brane model with the upstream composition of the solution. Several in-
vestigations [Alvarez et al. (1997),Jamal et al. (2004), Prabhavathy and De
(2011), Hung et al. (2011), Choi and Kim (2015), Qiu and Davies (2015)]
have predicted permeate flux by using the combined solution-diffusion/film
model also known as the Kimura-Sourirajan model. The integrated or dif-
ferential film theory equations (convection due to the pressure difference and
back diffusion owing to the concentration gradient) have also been used by
Urama [Urama and Marinas (1997)] and Ahmad [Ahmad et al. (2007)] while
they applied the Spiegler-Kedem models in the membrane. It is worth noting
that all these studies are based only on mass transfer considerations forget-
ting the influence of hydrodynamics. Such an approach that involves only
averaged data all along the membrane is attractive in view of its simplicity
and surely convenient for the description of a complex multistage membrane
process in transient condition. However, just using averaged conditions as-
similated to feed parameters along the membrane length becomes seemingly
unrealistic when an industrial membrane module where a spatial variation of
pressure and solute concentration appears in the long cross-flow membrane
channel is involved.

We hence turn towards 1-D models that consider the local longitudinal
variations along membrane duct. The simplest approach we can mention
conceives the feed channel as a black box which can be represented by a
series of perfect mixing cells with exchange. No information is needed on
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hydrodynamics and mechanisms of transport. This is the purpose of Roth
et al. (2000) who used the residence time distribution (RTD) method by ana-
lyzing in some spiral-wound membranes the response to a stimulus injection
of tracer. The main drawback of this very simplified method is to ignore the
local solute concentration in boundary layer which has a great influence on
permeate flux via the phenomenon of concentration polarization.

In other 1-D studies, the material balance is solved numerically without
taking the velocity field into account, the hydrodynamic effects being lim-
ited to pressure drop along the membrane, which is generally described by
the Hagen-Poiseuille or the Ergun equations [Sekino (1993), Sekino (1995),
Chatterjee et al. (2004), Senthilmurugan et al. (2005)]. Material balances
have also been considered numerically with the assumption of a negligible
pressure drop by Malek et al. [Malek et al. (1994)] who introduced a simple
model based on a lumped transport parameter approach combined with the
solution-diffusion model. A modified solution-diffusion model [Sagne et al.
(2009)] was developed to take the sorption pattern into account.

Several approaches investigated the cell model based on single material
balances and consisted in dividing the membrane into several parts that were
considered as a well-mixed reactors. Voros et al. [Voros et al. (1996)] ne-
glected pressure drop in comparison with the trans-membrane applied pres-
sure, while others works treated of the influence of pressure drop [Costa and
Dickson (1991), Ali et al. (2009), Fujioka et al. (2014)]. MATHCAD8 pack-
age was also used to solve the mass transport equations across the membrane
and the boundary layer [Albastaki and Abbas (2010)]. Let us also mention
that an analytical model treating the membrane as a heterogeneous system
[Song and Tay (2006)] was obtained with the assumption of constant driving
pressure.

To conclude on the large amount of 1-D models, we stress on the fact
that these approaches at least postulate one of the following strong simpli-
fications:

- simplified pressure drop derived from the particular case of flow in an
impermeable duct,

- permeate flux and concentration polarization are estimated from mass
transfer coefficients derived from dimensionless correlations on Sherwood
number;

- hydrodynamics is not investigated, only solute mass transfer is consid-
ered neglecting the influence of the cross-flow on solution composition.

It is however accepted that permeate flux has a great influence on cross-
flow, particularly on pressure drop in the situation of highly permeable mem-
brane [Mellis et al. (1993), Haldenwang and Guichardon (2011)]. Concerning
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the use of mass transfer coefficients, the difficulty lies in the proper choice of
the most suitable correlation among the large number of correlations found
in literature which are often eclectic. As concentration polarization results
from the establishment of a solute boundary layer, it is essential to couple
hydrodynamics and mass transport.

We now devote what follows to more accurate models that deal with the
2-D variations of pressure, flow velocities and solute concentration in the
feed channel.

We first consider the analytical approaches, which are approximate so-
lutions for the time being, even though some exact solutions have been
derived in certain limit cases. The first concern of the approximate analyti-
cal approaches considers the various manners of incorporating a satisfactory
velocity field into the mass transfer equation. Then, the film theory is often
invoked to describe the coupling between permeate flux and concentration
polarization. In this way, an analytical expression of the permeate flux can
be established. This has firstly been done for the case of a solid suspension
[Song and Elimelech (1995)]. Song and Elimelech used the excess concentra-
tion subtracted by feed concentration to balance the convection and diffusion
of solute within the polarization concentration layer. The validation analy-
sis of such an approach can be found in [Kim and Hoek (2005)]. Later, this
model was extended and applied to salt solutions specific to RO membranes
[Song and Yu (1999)]. The specific case of a long-narrow channel in which
concentration polarization could develop all along the channel was also in-
vestigated [Song (2010)]. To take account of the variable cross-flow velocity,
a total salt balance model was proposed for different considered kinds of
shear flow [Song and Liu (2012)]. Let us mention that Sundaramoorthy
[Sundaramoorthy et al. (2011)] also proposed an analytical model that pro-
vides us with explicit expressions for spatial variations of pressure, fluid
velocity and solute concentration on the feed channel side of a spiral wound
RO/NF membrane module.

If the permeation is supposed to remain more or less uniform all along
the channel, the flow field can be described by the Berman exact solution
[Berman (1953)]. This expression is then used for solving the mass trans-
port equation in the diffusion layer [Agashichev (2009)]. Kim [Kim (2007)]
solved the convection-diffusion equation with a Berman flow approximated
as a linear shear flow in the close proximity of the membrane surface. In
Annex, we briefly recall the exact analytical solution to the mass transfer
in a solution carried by a Berman flow, as obtained by Haldenwang et al.
[Haldenwang et al. (2010)]. Note that the latter solution precisely describes

5



the concentration polarization in the HP-LR limit (HP-LR for High Pres-
sure - Low Recovery).

In addition to these analytical contributions, numerous numerical studies
have to be mentioned. Bhattacharyya [Bhattacharyya et al. (1990)] devel-
oped a numerical approach that solves the diffusion-convection equation to
compute the concentration profiles throughout a reverse osmosis membrane.
Ma and Song [Ma et al. (2004)] solved the convection-diffusion equation
coupled with Navier-Stokes equations in the feed channel. This work is
based on rigorous mass and momentum balances in both the radial and ax-
ial membrane dimensions. We now reach an important aspect in the present
modeling: it concerns the calculation of the hydrodynamics and mass trans-
fer coupling with high accuracy thanks to computational fluids dynamics
(CFD) softwares. Wiley and Fletcher developed a CFD model of concentra-
tion polarization and fluid flow in membrane process [see Wiley and Fletcher
(2003)]. Later, they extended the model to the specific filtration processes
[Fletcher and Wiley (2004), Alexiadis et al. (2007)]. A great advantage of
the CFD methods lies in their ability to treat of complex system geome-
tries. Certain CFD software are indeed convenient to simulate momentum
and mass transport in membrane filtration system with spacer-filled chan-
nels [Subramani et al. (2006)] in order to modify the cross-flow. The fully
coupled governing equations for fluid dynamics and mass transfer were in-
vestigated [Lyster and Cohen (2007)], and more recently in [Salcedo-Diaz
et al. (2014)], where the CFD sofware Comsol Multiphysics has been used.
A 3-D numerical solution of the coupled fluid dynamics and solute transfer
equation [Lyster et al. (2009)] was obtained with the use of Ansys CFX
solver.

It is worthy of note that the numerical approach in cross-flow filtration
is faced with an unusual boundary condition that nonlinearly relates per-
meation flux and concentration at the membrane surface. The general CFD
softwares treat this difficulty in an iterative way that is founded on stan-
dard methods for solving large non-linear systems; in practice, this limits the
number of nodes to get a fast convergence. For instance, in [Salcedo-Diaz
et al. (2014)] the number of nodes is about 3.104. The aim of the present
numerical approach is to develop a tailor-made modeling, which does not
have such a limitation (our standard runs will be able to involve 2.107 nodes
and will take one ten of seconds on a standard Intel I5 processor).

Actually, an elegant manner to save computational efforts is to con-
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sider the laminar Navier-Stokes equations in the limit of the Prandtl ap-
proximation. This approach -fully justified in most channel laminar fil-
tration systems- involves a ”time marching like” solver along the channel,
which makes easier the treatment of the non-linear boundary condition.
The Prandtl approximation applies on all conservation laws for a chemical
solution flowing in a cross-flow filtration channel. Therefore, the present
approach aims at accounting for concentration polarization and osmotic
counter-pressure, expecting to predict permeate flux and concentration pro-
file, at any point all along the channel, with a computational cost low enough
to develop an exhaustive parametric study. Furthermore, we focus our in-
terest on cross-flow filtration at steady state. The fluid is incompressible
and the channel is supposed to be narrow. As a result, this paper takes
place within a continuous effort towards predictive filtration models, the ef-
ficiency of which increases in terms of precision and in capacities of analysis.

It is organized as follows: In section 2, we present the governing equations
and the main hypotheses. We briefly recall why the Prandtl approximation
of the conservation laws is justified. The numerical method that solves
the Prandtl differential system is described. In section 3, we first compare
our numerical results with the Berman exact solution and the associated
exact solution for mass transfer (Haldenwang et al., 2010). Second, other
approximated models (Elimelech’s model and Total Salt balance model) are
also compared with the present numerical predictions for the case of a pure
solvent and of a single solute solution. Finally, we present the comparison
between our model predictions and several experimental data from reverse
osmosis experiments of the literature. In Appendix, we briefly recall the
spirit of the different analytical results that we need for conducting the
validation step [Haldenwang et al. (2010), Song and Elimelech (1995), Song
and Liu (2012)].

2. Numerical solution of Prandtl system for filtration

2.1. Main hypotheses and conservation laws at steady state

The present 2-D numerical development is focused on modelling the con-
centration polarization and the osmotic (counter-)pressure that occur in the
steady cross-flow filtration with one solute diluted solution. The experi-
ments on reverse osmosis show that the rejection of solute is nearly total
in most situations. To simplify the approach -and reduce the number of
independent parameters- we suppose that the solute rejection is total.
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The Prandtl approximation corresponds to a simplification that pro-
duces an important gain in numerical efficiency. The price to pay is the
following: when we shall decide to cancel the streamwise diffusive terms, we
shall renounce to study the details of any recirculating phenomena, as what
happens between two spacers.

Two semi-permeable parallel walls compose the 2-D channel as schemat-
ically shown in Figure 1. The channel is of length L and spacing 2d. This
defines the computational domain as {−d < x̃ < d} × {0 < z̃ < L}. The
fluid is supposed to be Newtonian, incompressible and its physical proper-
ties, such as dynamical viscosity µ0 and density ρ0, are supposed uniform.
Inlet conditions (at z̃ = 0) are the given axial mean velocity Win, the fixed
feed concentration Cin and the fixed inlet pressure Pin. To simplify our

Solute
concentration
profileCin

Pin
Win

d

z̃

x̃

−UW (z̃)

UW (z̃) =
PW (z̃)−P

osm

W
(z̃)

I0

Figure 1: Sketch of cross-flow membrane filtration and concentration polarization

development again, the effect of partial fouling or cake formation on per-
meate flux is supposed to be inexistent or negligible in comparison with
the hindrance due to the osmotic (counter-)pressure. In other words, I0,
the membrane resistance is considered as constant and uniform all along
the channel. This allows us to define Uin, the permeation velocity in pure
solvent cross-flow, as

Uin =
Pin

I0
(1)

Accordingly with the Darcy law for porous media and the van’t Hoff law
for osmotic pressure, and considering a total rejection of the membrane, the
Spiegler-Kedem model leads us to the so-called Darcy-Starling law which
relates UW (z̃), the local permeation velocity at the wall, to pressure PW

and osmotic pressure P osm
W as:

UW (z̃) ≡ PW (z̃)− P osm
W (z̃)

I0
=

PW (z̃)− iRTCW (z̃)

I0
(2)
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where i is the number of dissolved ions per molecule of salt, T , the tem-
perature of the solution and R, the ideal gas constant. We consider a two-
dimensional newtonian flow in cartesian coordinates (x̃, z̃) with the velocity
vector {U,W}. The classical set of conservation laws reads:

∂U

∂x̃
+

∂W

∂z̃
= 0 (3)

U
∂U

∂x̃
+W

∂U

∂z̃
= − 1

ρ0

∂P

∂x̃
+

µ0

ρ0

(

∂2U

∂x̃2
+

∂2U

∂z̃2

)

(4)

U
∂W

∂x̃
+W

∂W

∂z̃
= − 1

ρ0

∂P

∂z̃
+

µ0

ρ0

(

∂2W

∂x̃2
+

∂2W

∂z̃2

)

(5)

U
∂C̃

∂x̃
+W

∂C̃

∂z̃
= D0

(

∂2C̃

∂x̃2
+

∂2C̃

∂z̃2

)

(6)

where C̃ is the field of solute concentration, the molecular diffusivity of
which is D0. This set of partial differential equations has to be solved with
the following boundary conditions: at the porous walls (i.e x̃ = ±d, ∀z̃)

W = 0 (7)

UC̃ −D0
∂C̃

∂x̃
= 0 (8)

U =
P − iRT C̃

I0
(9)

and with appropriate inlet/outlet conditions at z̃ = 0 and z̃ = L. Note the
nonlinearity present in equation (8).

2.2. Non-dimensioning

At this point, we have several order of magnitude already defined: d,
Uin, Win, Pin, Cin determine the order of magnitude for the variations of
x̃, U , W , P and C̃. To set an order of magnitude for the axial coordinate,
we add Lde, the so-called dead-end length (or exhaustion length for clear
water) (Haldenwang (2007)),

Lde =
Wind

Uin
=

I0Wind

Pin
(10)

Let us now define the following dimensionless unknowns and variables, used
throughout the article:

u =
U

Uin
, w =

W

Win
, p =

P

Pin
,
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x =
x̃

d
, z =

z̃

Lde
, C =

C̃

Cin
(11)

This process leads us to introduce the six dimensionless numbers that char-
acterize the problem:

Rin =
ρ0Uind

µ0
, λ =

L

Lde
, α =

(

µ0I0W
2
in

P 2
ind

)

1
2

,

β =
µ0

I0d
, Pein =

Pind

D0I0
and Nosm =

iRTCin

Pin
(12)

Rin is the ”pure solvent” transverse Reynolds number, λ is the dimensionless
length of the channel reduced by Lde, the exhaustion length (or dead-end
length). In practice, experimentalists choose λ < 1. α is the square root
of the ratio of Hagen-Poiseuille pressure drop throughout the exhaustion
length to trans-membrane pressure and β is the dimensionless permeability
of the membrane, the typical values of which are much less than unity (for
a more detailed discussion on those numbers, refer to (Haldenwang, 2007)).
Pein is the ”pure solvent” transverse Péclet number. Nosm, the ratio of the
osmotic pressure in absence of polarization to the operating pressure Pin,
will be denoted the osmotic number. Note that Nosm must be less than 1
in pressure-driven filtration.

We are now able to rewrite the whole system, in the domain ]−1, 1[×]0, λ[,
as the following non-dimensional form:

0 =
∂u

∂x
+

∂w

∂z
(13)

−∂p

∂x
= β

[

Rin

(

u
∂u

∂x
+ w

∂u

∂z

)

−
(

∂2u

∂x2
+

β

α2

∂2u

∂z2

)]

(14)

−∂p

∂z
= α2

[

Rin

(

u
∂w

∂x
+ w

∂w

∂z

)

−
(

∂2w

∂x2
+

β

α2

∂2w

∂z2

)]

(15)

0 = Pein

(

u
∂C

∂x
+ w

∂C

∂z

)

− ∂2C

∂x2
− β

α2

∂2C

∂z2
(16)

with the boundary conditions at the wall (x = ±1):

w(±1, z) = 0, u(±1, z) = p−NosmCW , P einuC =
∂C

∂x
(17)

with the appropriate inlet/outlet conditions at z = 0 and z = λ.
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2.3. Prandtl system for cross-flow filtration

Note that the ratio β/α2 reduces to U2
in/W

2
in, which is by nature of

RO/NF cross-flow filtrations a very small quantity (as small as 10−6).
Incompressibility condition (13) confirms that the non-dimensional quan-

tities u and w have the same order of magnitude for their different variations
of the RHS of equations (14) and (15). Therefore, transverse variation of
pressure is β/α2 times as small as its axial variation. It can easily be deduced
that pressure is constant within a channel section (i.e p(x, z) ≡ p(z)).

The same rationale applies when comparing transverse diffusion with
axial diffusion. It is clear that both magnitudes are in U2

in/W
2
in ratio. This

incites us to cancel the axial diffusion terms in the differential equations.
Consequently, the following set of equations are validated for a large class

of filtration processes. This is the so-called Prandtl approximation of the
conservation laws. Note that the mathematical nature of these equations
has changed, since we switch from a set of elliptic equations to a set of
parabolic equations, in which the variable ”z” plays the same role as the
time in the heat equation.

∂u

∂x
+

∂w

∂z
= 0 (18)

∂p

∂x
= 0 (19)

Rinw
∂w

∂z
− ∂2w

∂x2
= −Rinu

∂w

∂x
− 1

α2

dp

dz
(20)

Peinw
∂C

∂z
− ∂2C

∂x2
= −Peinu

∂C

∂x
(21)

In the left-hand-side of equations (20-21), we have gathered the terms of
these equations that are mathematically identical to that of heat equation.
This Prandtl system for cross-flow filtration calls for the following comments.

Remark 1: If the above inlet data at z = 0 are symmetrical, the laminar
solution of the system will develop symmetrically with respect to x = 0.
Therefore, assuming symmetrical boundary conditions at x = 0 allows us to
gain half of the computational effort, the computational domain reducing to
{0 ≤ x ≤ 1} × {0 ≤ z ≤ λ} with the following boundary conditions on the
axis (x = 0):

u(0, z) = 0,
∂w

∂x
(0, z) = 0,

∂C

∂x
(0, z) = 0 (22)
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This assumption will hold in all what follows.

Remark 2 : Equation (19) expresses the fact that pressure only de-
pends on z, the stream-wise position. Equations (20) and (21) are clearly of
parabolic type, the pressure being -in each section- the Lagrange multiplier
that allows us to satisfy the following constraint

d

dz

∫ 1

0
wdx = −u(1, z) = −[p(z)−NosmCW (z)] (23)

which is obtained owing to transverse integration of equation (18). The
forthcoming numerical method exploits this mathematical property. Fur-
thermore, the parabolic nature of this system only requires boundary con-
ditions at inlet. Hence, the term ”appropriate boundary conditions” previ-
ously mentioned after equations (17) becomes now defined and simply reduce
to entrance conditions at z = 0: only, suitable entrance x-profiles on w and
C are required.

Remark 3: Conservation laws are non-linear by nature. Here, their non-
linearity is increased by the boundary condition: PeinuC − ∂C/∂x = 0 at
x = 1, which non-linearly combines permeation velocity and solute concen-
tration. This coupling is tremendously important since it governs polariza-
tion and permeation. Therefore, this nonlinearity needs to be numerically
enforced iteratively, as described below.

2.4. A new numerical approach

Technically, the solution method for solving the steady conservation laws:
equations from eq.(18) to eq.(21), coupled with the boundary conditions (22)
and (17) is performed by using finite difference methods (FDM) of order two.
The computational domain is discretized using a regular mesh in both trans-
verse and axial direction. A regular mesh is not optimal transversally, but a
large discretization is permitted, since the numerical cost is low. As a mat-
ter of fact, the conservation laws being conceived in the context of Prandtl
approximation, the system is parabolic, the axial coordinate playing the role
of the time. Hence, for a given transverse section z, we solve the coupling
-which is non-linear- by an iterative process. One iteration is as follows: we
first solve the concentration field, then the axial velocity field together with
pressure, and finally the transverse velocity field. The solver iterates until a
certain convergence criterion is satisfied in what concerns the simultaneous
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satisfaction of all boundary conditions or couplings, in particular, when the
consistency between local permeation velocity UW , local pressure p and lo-
cal wall concentration CW is achieved. At this convergence stage, we are in
condition to proceed with the computation of the various fields in the next
transverse section until the whole length of the channel is reached.

As the system of equations [from eq.(18) to eq.(21)] is of parabolic type,
we now resort to the terminology generally used for the discretization of

heat equation with finite differencing. Let us define w
(n)
j [resp. C

(n)
j ], the

value of unknown w [resp. C] at point {x = j∆x, z = n∆z} for 0 ≤ j ≤ J
and 0 ≤ n ≤ N , where ∆x = 1/J and ∆z = λ/N are the mesh sizes in both

directions. We suppose that all transverse profiles (velocity field {u(n)j , w
(n)
j },

scalar concentration field C
(n)
j and local pressure p(n)) are known up to the

section z = n∆z. The purpose of the numerical scheme is to compute the

all unknown fields ( {u(n+1)
j , w

(n+1)
j }, C(n+1)

j and p(n+1) in the next section
z = (n+ 1)∆z.

In channel section z = (n+1)∆z , the permeation velocity u
(n+1)
J is a key-

stone for the numerical method. Since the permeation velocity is involved
in the non-linear boundary condition, it assessment will be obtained as the
convergence of an iterative process where U (k), k = 0, 1, 2, · · · , represents a
series of local permeation estimates. At convergence of the iterative process,

we shall set u
(n+1)
J = limU (k).

The final numerical system to be solved incorporates a discretization of
the differential operators. More precisely, for the transverse coordinate, the
following centered finite difference operators of order two are chosen:

∂w

∂x

∣

∣

∣

∣

(n+1)

j

≈
w

(n+1)
j+1 − w

(n+1)
j−1

2∆x
(24)

∂2w

∂x2

∣

∣

∣

∣

(n+1)

j

≈
w

(n+1)
j+1 − 2w

(n+1)
j + w

(n+1)
j−1

(∆x)2
, (25)

As for the axial differential operators, a backward finite difference scheme
of order 2 is used:

∂w

∂z

∣

∣

∣

∣

(n+1)

j

≈
3w

(n+1)
j − 4w

(n)
j + w

(n−1)
j

2∆z
(26)

To perform the axial extrapolations, we selected the Adams-Bashforth sec-
ond order scheme:

ŵ
(n+1)
j ≈ 2w

(n)
j − w

(n−1)
j (27)

13



The entire procedure starts with the setting of the entrance data. Operating

pressure is p(0) = 1. The velocity fields u
(0)
0,···,j,···,J , w

(0)
0,···,j,···,J is either of

Berman type, or of Poiseuille type. The entry concentration field C
(0)
0,···,j,···,J

is supposed transversally uniform and set to C
(0)
j = 1. Because we use

the extrapolation scheme 27 to determine the guessed next fields, for the
first (unknown) transverse section (n = 1) we would also need all the fields
in n = −1, which can be those of the section (n = 0). Hence, we set

{u(−1)j = u
(0)
j , w

(−1)
j = w

(0)
j and C

(−1)
j = C

(0)
j }.

Now we are ready to enter into the main axial loop. The procedure
described bellow is the same for all transverse section z = (n + 1)∆z from
n = 0 to N − 1. For a general node n+ 1 the above extrapolation provides

us with the initial guesses {ŵ(n+1)
j , û

(n+1)
j , Ĉ

(n+1)
j } for 0 ≤ j ≤ J .

At iteration k = 0, we use this guess for the transverse velocity by setting

Uk=0 = û
(n+1)
j . ¿From the discretized form of equation (21), and boundary

nodes (symmetry condition at j = 0, and the Robin boundary condition at
j = J), we then obtain a tri-diagonal system to inverse for computing the

solute concentration profile C
(n+1)
j .

We now proceed with the computation of the axial velocity field w(n+1).
In the same manner as that used for the concentration field, equation (20)
is developed by its respective discretization. It is worthy noting that the

no-slip condition w
(n+1)
J = 0 (i.e. at node j = J ) reduce the unknown

field w(n+1) to J unknowns. However the whole system has always J + 1
unknowns due to additional unknown p(n+1). Therefore, a complementary
constraint is required. The latter unknown depends on boundary condition
u = p−NosmC that holds at the membrane (x = 1) and after integration of
the incompressibility constraint 18 we obtain another relationship to relate

all unknowns (w
(n+1)
j to p(n+1)) and complement the tri-diagonal system.

From the profile w(n+1), the incompressibility constraint allows us to
compute the transverse velocity profile u(n+1) and the permeate velocity

U (K) At this stage, all fields C
(n+1)
j , w

(n+1)
j , u

(n+1)
j and p(n+1) are known.

The new permeation velocity can be computed thanks to net trans-membrane
pressure, as

Uk+1 = p(n+1) −NosmC
(n+1)
J . (28)

We then check the convergence of the procedure by comparing the new
filtration with that of the previous step in the loop. More precisely, we
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if n < N

n = n + 1

Set n = 0

Assign values to u(0), w(0), C(0), p(0)

Set values to u(−1), w(−1), C(−1), p(−1)

Compute values of û(n+1), ŵ(n+1), Ĉ(n+1), p̂(n+1)

Set k = 0

Resolve system C(n+1)

Resolve system w(n+1)

Compute values of u(n+1)

Store values of u(n+1), w(n+1), C(n+1), p(n+1)

Set values of u(n−1), w(n−1), C(n−1), p(n−1)

Set values of u(n), w(n), C(n), p(n)

End

If

∣

∣

∣

∣

U
(k+1)

−U
(k)

U(k)

∣

∣

∣

∣

≤ Econv

k = k + 1

U(k) = U(k+1)

yes

no

no

yes

Figure 2: Calculation sequence of the numerical model

perform the following test:
∣

∣

∣

∣

∣

U (k) − U (k+1)

U (k)

∣

∣

∣

∣

∣

≤ Econv (29)
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where Econv is a certain criterion of convergence.
If convergence is not reached, a new iteration is performed for the same

section z = (n+1)∆z with the new guess of permeation Uk = Uk+ω(Uk−
Uk+1), where ω is a relaxation factor used to speed up the convergence, until
an acceptable permeation velocity UK satisfies the convergence criterion.

After each iterative loop, all fields C
(n+1)
j , w

(n+1)
j , u

(n+1)
j and p(n+1) are

stored. If convergence is attained, the computation of the next axial section
is prepared by setting all the memories affected to section (n− 1) with the
corresponding values just obtained for section (n) and fields of section (n)
with the values of section (n + 1). Now we are in condition to restart the
previous iterative process for the next section z = (n+ 1)∆z, following the
same calculation sequence until z = λ = N∆z (i.e. n = N). All calculation
steps are schematically described in figure 2.

A classical study of dependency on mesh size has been performed (Bernales,
2013) in both axial and transverse directions; this numerical check confirms
the order two expected from the finite difference approximations, that we
have used.

3. Validation and results

Even though we have derived a numerical approach rather light, we
need to validate the numerical technique, as well as the spirit of the Prandtl
approximation. The best manner is to resort to exact analytical solutions,
even when their efficiency with respect to filtration is limited. Once this step
is completed, we can tackle the numerical predictions of well-documented
experiments.

3.1. Validation with exact analytical solutions

First of all, the numerical model is validated by comparison with the
Berman flow. This validation implies the simulation of a uniform permeation
of pure solvent, namely a pure water flow nearly isobaric. Accordingly with
the validity domain of the Berman solution, this is achieved when parameter
α becomes as small as possible, since the pressure drop is proportional to
α2. In Table 1, the numerical data obtained with three studied cases where
α rapidly declines are gathered. Ep is the maximum of the relative error
between the numerical result (average permeate flux) and the solution of
reference (here the Berman flow). It is clear that the departure diminishes
as the square of α2, indicating that the error only comes from the pressure
drop, which induces a non-uniform filtration in the numerical simulation.
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Test Case α Rin number of meshes in the axial direction (N) Ep

1 10−2 0.1 104 10−4

2 10−3 0.1 104 10−6

3 10−4 0.1 104 10−8

Table 1: Error with respect to the simple case of uniform permeation (Berman exact
solution)

We retrieve the fact that pressure becomes uniform as α2 diminishes, as
well as permeation (according to Darcy’s law).

For the sake of illustration, Figure 3 shows the axial and transverse ve-
locity profiles. Both numerical and analytical solutions (Berman flow) are
plotted for three axial sections, with no visible departures. We observe that
the axial velocity component is close to a parabola (but slightly flatter at the
maximum). As expected, the analytical solution well-predicts the velocity

(a) Axial velocity (b) Transverse velocity

Figure 3: Axial and transverse velocity profiles obtained by numerical simulation compared
to analytical solutions for a uniform permeation case (α = 0.01, Rin = 0.1, clean water):
correspond to symmetric channel (in Fig.3a, note that both curves for z = 1 and vertical
axis superimpose).

profiles for low values of α. Let us consider now increasing values of α, for
a constant value of Rin, namely Rin = 0.05. This value corresponds to a
typical situation in RO/NF filtration; for example if we consider a system
filtration with a membrane resistance of I0 = 2.0× 1011 Pa · s/m operating
at 100 bar. Varying pressure drop levels were tested: the first case con-
cerns a negligible pressure drop (i.e. α = 0.01), the second one considers
an important pressure drop (α = 0.5) and finally in the third case we test
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a predominant viscous pressure drop with respect to trans-membrane pres-
sure (α = 0.75). Table 2 summarizes the dimensionless parameters of three
tested cases in ”clean water” filtration. The influence of parameters α and

Test Case Pin (bar) Win (m/s) α Rin

4 100 0.23 0.01 0.05
5 100 11.2 0.5 0.05
6 100 16.7 0.75 0.05

Table 2: Operating conditions of various test cases in ”clean water” filtration

(a) Axial velocity (b) Transverse velocity

(c) Streamlines (d) Pressure and mean axial velocity

Figure 4: Results obtained by numerical simulation for a pure solvent case with α = 0.01
and Rin = 0.05

Rin is reflected in all panels of Figures 4, 5, and 6. Panels a and b illustrate
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reduced axial and transverse velocity profiles respectively for three differ-
ent positions of z coordinate and Panels c and d plot streamlines, reduced
pressure p and reduced flow rate q along the channel until a reduced axial
distance from entrance z equals to 1. It should be noticed that the reduced
permeate velocity um is included implicitly since it is equal to the reduced
pressure p according to Darcy’s law (11). As expected, the axial velocities

(a) Axial velocity (b) Transverse velocity

(c) Streamlines (d) Pressure and mean axial velocity

Figure 5: Results obtained by numerical simulation for a pure solvent case with α = 0.5
and Rin = 0.05

(panel a) and axial flowrates (panel d) decrease along the membrane be-
cause of the permeate flux passing through the membrane. However, when
the local transverse Reynolds number R0 is used instead of the inlet trans-
verse Reynolds number Rin, the Berman solution gives the right velocity
profiles (panels a and b), even if it has been obtained for constant filtration
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rates. Figure 4 shows the case for a negligible influence of pressure drop

(a) Axial velocity (b) Transverse velocity

(c) Streamlines (d) Pressure and mean axial velocity

Figure 6: Results obtained by numerical simulation for a pure solvent case with α = 0.75
and Rin = 0.05

(α = 0.01). The reduced pressure p is quietly constant in that case (figure
4d), leading to a constant local permeate flux, which does not depend on
the axial position (figure 4b). Hence, the axial flow q decreases linearly as
seen in figure 4d. There is consequently a very good agreement with the
Berman’s theory in this case, as expected.

For the second case, an important pressure drop was tested (α = 0.5).
The reduced pressure p decrease all along the channel (figure 5d), leading
to a decreasing local permeate flux (figure 5b). Then, the axial flowrate
decreases more slowly than expected (figure 5d), and the exhaustion length,
z = 1, is reached without completely exhausting the axial flow (figures 5c,
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5d). As seen in figure 5d, the reduced flowrate q decreases faster than the
reduced pressure p; hence, if the channel would be longer, the axial flow
exhaustion (AFE) would occur rather than a cross-flow reversal (CFR).
This is consistent with a previous work (Haldenwang, 2007) predicting this
behaviour for these values of α and Rin (Rin ≈ 0, α < 1/

√
3).

If the relative pressure drop is further increased (α = 0.75), the reduced
pressure p will decrease faster than the flowrate q, as seen in figure 6d. At
z = 0.8, the reduced pressure becomes negative (that is, the pressure in
the retentate side becomes lower than the pressure in the permeate side),
leading to a cross-flow reversal (CFR): water flows from the permeate to
the retentate, as expected for Rin ≈ 0, α > 1/

√
3 (Haldenwang (2007)).

Hence, the reduced axial flowrate q increases again for z > 0.8. Figure
6c confirms us this behavior when streamlines at z = 0.8 change direction
passing through a process of suction to injection.

To investigate the influence of transverse Reynolds number Rin, other
values of Rin (0.2, 0.5) that might correspond to ultrafiltration (UF) or
microfiltration (MF) systems have been evaluated; in both cases the same
behavior was found for the same values of parameter α.

Finally, let us consider the validation of the solute transfer coupled with
the fluid motion. The solute concentration profile will follow the exact ana-
lytical solution obtained by Haldenwang et al. (2010), if the following condi-
tions are fulfilled: a) α vanishes (negligible pressure drop to get the Berman
flow); b) the exact solute boundary layer and Berman flow are initiated at
the duct entrance; c) the recovery is low (i.e. the comparison is carried out
for small λ).

In Figure 7, the concentration profiles numerically computed, as well
as those corresponding to our analytic studies have been plotted for four
cases of increasing operating pressures (i.e. Pein). As expected, increasing
operating pressures (i. e. increasing Pein) leads to higher permeate fluxes
and then to a more important concentration polarization. The discrepancy
between the numerical and the approximated analytical solution is hardly
discernable in the figure 7.

3.2. Comparisons with approximated approaches of the literature

Figures 8 and 9 show the solute concentration at the wall and the ax-
ial variation of the permeate flux, respectively. These figures conduct the
comparisons between the results by Song and Elimelech (1995), TSB-plug
(Song (2010)) and TSB-shear (Song and Liu (2012)) models described in
Appendix (subsection 5.3), with our numerical model for a RO module of
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Figure 7: Comparisons of concentration profiles obtained by both numerical and by ana-
lytical approaches for a uniform permeation case in a symmetric channel for various values
of inlet Péclet number (α = 0.001, Nosm = 0.1, z = 0.05).

height d = 0.35mm with a membrane resistance I0 = 1× 1011 Pa · s/m sup-
plying a solution of an initial concentration Cin = 5g/l and a cross-flow
rate Win = 0.1m/s operating at different pressures Pin ranging from 6 to
10 bar. This conditions correspond to the following values of the character-
istic dimensionless numbers: 0.0535 ≤ α ≤ 0.0891, 0.370 ≤ Nosm ≤ 0.616,
2.10× 10−3 ≤ Rein ≤ 3.5× 10−3, Sc = 621 and λ > 1.

We remark that our numerical model predicts a strong development of
concentration polarization layer and a more rapid decay of the permeate flux
in the length very close to the entrance. This prediction can be explained
because with permeable walls, the transverse advection strongly modifies the
layer construction, which is no longer created by diffusion only. Our careful
iterative process allowed us to take account of this non-usual balance. Let us
compare our model with the TSB models. TSB models uncouple the axial
and transverse solute transfer, and its solute concentration profile (50) is
then flatter than ours (39). Since the total salt concentration is conserved,
the predicted wall solute concentration is weaker than ours, and the local
permeate flux is higher. If the membrane is long enough, higher fluxes
in the TSB models lead finally to higher solute concentrations, and their
predicted local permeate flux decreases then faster than ours for Z > 1m.
Recently, Liu et al. (2014) developed a TSB model considering a parabolic
velocity profile. Their results show an intermediate behaviour between the
TSB-plug and the TSB-shear models with a concentration polarization more
intense than predicted by the first, but more attenuated than predicted by
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Figure 8: Comparisons of solute wall concentration along the channel between Song-
Elimelech, TSB-plug and TSB-shear model with our numerical approach for different
operating pressures ranging between 6 and 10 bar

the second. Hence, the comparison with the TSB-parabolic model has not
been tested, since the results of this model would be found between those
of the TSB-plug and the TSB-shear model. When comparing our numerical
model with the analytical solution by Song-Elimelech, it can be seen that the
Song-Elimelech model predicts much higher local permeate fluxes, and lower
wall solute concentrations. This is owed to the fact that Song-Elimelech
analytical solution considers a concentration polarization layer much smaller
than the channel height, which is not the case.

Figures 10 and 11 present the average permeate flux determined by the
TSB-shear model, the analytical solution and our numerical model for the
same filtration module of half-height d = 0.35mm, I0 = 1× 1011 Pa · s/m
and for different operating conditions (operating pressures from 1 to 20 bar
and inlet concentrations from 1.5 to 7 g/l). This conditions correspond to
the following values of the characteristic dimensionless numbers: 0.0267 ≤
α ≤ 0.535, Rein ≤ 7×10−3, Sc = 621 and 5.54×10−2 ≤ Nosm ≤ 9.24×10−1.

Comparison of the numerical and analytical solution shows good agree-
ment for low permeate fluxes and short membranes (figure 10). It should be
kept in mind that the analytical model has been obtained for high pressure
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Figure 9: Comparisons of permeate flux along the channel between Song-Elimelech, TSB-
plug and TSB-shear model with our numerical approach for different operating pressures
ranging between 6 and 10 bar

(i.e. low values of alpha) and low recovery (i. e. low values of lambda)
conditions. When the inlet pressure Pin is increased, the value of alpha de-
creases; however, lambda increases at the same time, from 0.0286 for 1 bar to
0.571 for 20 bar. Hence, the hypothesis of λ≪ 1 is not valid for high perme-
ate fluxes, which explains the gap between the analytical and the numerical
solutions. The analytical solution overestimates the permeate flux because
it considers a constant transversal concentration profile (39), whereas the
numerical solution considers the more realistic development of the concen-
tration polarization from an homogeneous inlet concentration at z = 0.

For long membranes (0.171 ≤ λ ≤ 3.43, Fig.11), the numerical solution
deviates from the analytical solution (even for low permeate fluxes), since
the low recovery hypothesis is not valid. Considering that recovery is low
implies an underestimation of the solute concentration, an underestimation
of the osmotic pressure and finally an overestimation of the local permeate
flux. Furthermore, as TMP increases, the discrepancy between the analyt-
ical solution and both numerical models is enhanced. This is of course due
to the analytical solution, the hypotheses of which are no longer fulfilled, as
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Figure 10: Channel length L = 1m

pressure increases. More precisely, in Fig.11, the channel length is large and
the hypothesis of low recovery becomes invalid, all the more so that TMP
produces a large permeation.

Comparison of our numerical solution with the TSB-plug model shows
a quite good agreement for long membranes (figure 11). For short mem-
branes (figure 10), the TSB model predicted higher values than our numeri-
cal model; this trend was expected due to a major influence, in our numerical
model, of the concentration polarization development at the beginning of the
process.

3.3. Comparisons with experimental data

At this point, we have demonstrated that the Prandtl approximation
offers an accurate alternative with respect to the full conservation laws. We
now need to validate the overall approach in terms of basic choice with re-
spect to the mathematical model. This must be established by comparison
with experiments. For the sake of conducting this comparison, we choose
different experimental contributions that propose careful measurements in
both NF and RO measurements.
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Figure 11: Channel length L = 6m

We first compare our averaged permeate fluxes as a function of the op-
erating pressure with the experimental results obtained by Geraldes et al.
(2002) in a NF module composed by a CDNF501 commercial membrane
with an hydraulic permeability of 1.4× 10−11ms−1Pa−1, working at oper-
ating pressures that range between 10 and 40 bar and for three feed axial
rates. Even though the NF module had a length of 20 cm, the reported data
only included average values obtained in the first 6 cm. Table 3 allows the
quantitative comparison between the data from the experiment and the pre-
dictions of the numerical simulation for three aqueous solutions of Na2SO4,
sucrose and polyethylene glycol 1000 (PEG1000). For characterizing the
physical properties of the chemical solution, we recall that the numerical
prediction only uses the standard constants taken from the literature.

For both solutions with Na2SO4 and sucrose, the comparison between
numerical and experimental results shows an excellent agreement (a discrep-
ancy of the order of 10by contrast this trend is reversed for the solutions of
sucrose, the numerical simulation providing us with higher values than the
experiments.

As for the PEG1000 solutions, our modeling overpredicts the permeation,
in particular when the operating pressure is higher than 20 bars. When the
feeding flow is increased (i.e. when the concentration polarization is lesser),
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Solute Pin Win Cin Sc Jexp Jnum
105 Pa ms−1 kg ·m−3 ms−1 ms−1

Na2SO4 20 0.067 7 908 1.65× 10−5 1.41× 10−5

Na2SO4 30 0.067 7 908 2.43× 10−5 2.06× 10−5

Na2SO4 40 0.067 7 908 3.11× 10−5 2.61× 10−5

Na2SO4 20 0.133 7 908 1.8× 10−5 1.56× 10−5

Na2SO4 30 0.133 7 908 2.69× 10−5 2.34× 10−5

Na2SO4 40 0.133 7 908 3.48× 10−5 3.00× 10−5

Na2SO4 20 0.267 7 908 1.96× 10−5 1.70× 10−5

Na2SO4 30 0.267 7 908 2.98× 10−5 2.59× 10−5

Na2SO4 40 0.267 7 908 3.98× 10−5 3.39× 10−5

Sucrose 10 0.067 7 1940 1.1× 10−5 1.14× 10−5

Sucrose 20 0.067 7 1940 1.98× 10−5 2.12× 10−5

Sucrose 30 0.067 7 1940 2.70× 10−5 2.92× 10−5

Sucrose 40 0.067 7 1940 3.26× 10−5 3.62× 10−5

Sucrose 10 0.133 7 1940 1.13× 10−5 1.19× 10−5

Sucrose 20 0.133 7 1940 2.07× 10−5 2.29× 10−5

Sucrose 30 0.133 7 1940 2.95× 10−5 3.29× 10−5

Sucrose 40 0.133 7 1940 3.69× 10−5 4.07× 10−5

Sucrose 10 0.267 7 1940 1.16× 10−5 1.23× 10−5

Sucrose 20 0.267 7 1940 2.24× 10−5 2.42× 10−5

Sucrose 30 0.267 7 1940 3.26× 10−5 3.49× 10−5

Sucrose 40 0.267 7 1940 4.18× 10−5 4.47× 10−5

PEG1000 10 0.067 7 3240 1.13× 10−5 1.23× 10−5

PEG1000 20 0.067 7 3240 1.74× 10−5 2.26× 10−5

PEG1000 30 0.067 7 3240 2.07× 10−5 3.22× 10−5

PEG1000 40 0.067 7 3240 2.31× 10−5 4.60× 10−5

PEG1000 10 0.133 7 3240 1.20× 10−5 1.27× 10−5

PEG1000 20 0.133 7 3240 1.96× 10−5 2.42× 10−5

PEG1000 30 0.133 7 3240 2.40× 10−5 3.48× 10−5

PEG1000 40 0.133 7 3240 2.72× 10−5 4.77× 10−5

PEG1000 10 0.267 7 3240 1.27× 10−5 1.30× 10−5

PEG1000 20 0.267 7 3240 2.18× 10−5 2.54× 10−5

PEG1000 30 0.267 7 3240 2.87× 10−5 3.70× 10−5

PEG1000 40 0.267 7 3240 3.33× 10−5 4.95× 10−5

Table 3: Average permeate flux of experiments carried out by Geraldes et al. (2002)
compared with the same quantity obtained by numerical simulations
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the discrepancy diminishes. As a matter of fact, the Schmidt number of PEG
1000 is very large and the polarization at high pressure attains important
values, in such a way that the osmotic law increasing linearly with PEG1000
concentration can no longer be appropriate. To conclude this stage of model
validation, the numerical predictions can be considered as reliable for both
solutions of Na2SO4 and sucrose. For solutes of larger Schmidt numbers (as
PEG 1000), the polarization at high trans-membrane pressure leads to very
rich concentrations, for which the physical ”constants” have to be modified.

We next turn towards a reverse osmosis experiment conducted with salt.
More precisely, we now compare two predicitions (the TSB-shear model and
the present numerical model) with the experiments of Zhou et al. (2006).
This experiment presents a particular difficulty for our laminar simulation,
since the flow is turbulent due to the effects of spacers. Actually, an aqueous
solution of NaCl feeds a set of four spiral wound RO modules of a polyamide
composite membrane (TFC 2540SW, Koch Membrane Systems). The pilot
had a total length L of 4m with a distance between membranes 2d of 0.6mm,
and a membrane resistance I0 = 8.41× 1010 Pa · s/m. Experiments were
carried out with a mean inlet axial velocity Win = 0.075m/s and for three
different feed initial concentrations Cin: 500, 1000 and 3000mg/l.

To overcome the difficulty due to the presence of turbulent mixing, it
was proposed in [Zhou et al. (2006)] to adopt the concept of an effective
solute diffusivity, which is suggested at the value of D0 = 1.81× 10−8m2/s,
i.e. about ten times the molecular diffusion coefficient of sodium chloride.
We hence have used the same turbulent diffusivity in our numerical Prandtl
approach. Numerical simulations are depicted by solid lines, while TSB
model results and experimental data are plotted as dash-dotted lines and
symbols, respectively. For all cases both models agreed very well with ex-
perimental fluxes until a pressure of 10 bar but deviated gently as pressure
still increases. The maximum difference was about 15% for a feed concentra-
tion of 500mg/l at a pressure of 15 bar. Actually, although the simulations
have considered a membrane which was 4 m long, the experiments were
carried out in 4 modules 1.016 m long connected in series (Zhou et al.,
2006). There is no permeate flux along the connection pipes between the
modules, thus reducing concentration polarization. This could explain the
discrepancy between simulations and experiments, especially for the highest
trans-membrane pressures.

We now conduct the last comparison of our numerical predictions with
experimental results. Measurements of the concentration polarization profile
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Figure 12: Comparisons of the average permeate flux according to Zhou experiments [Zhou
et al. (2006)]and permeate flux obtained numerically for different operating pressures and
NaCl initial concentrations.

are concerned. The experiment has been carried out in Fernández-Sempere
et al. (2010) and consisted in measuring the concentration polarization layer
of a solution of Na2SO4 within a RO module by digital holographic inter-
ferometry. The module was composed of a thin film membrane (TFM-50,
from Hydro Water S.L.) and sized 10 cm×3mm×10mm (L×W ×H). In all
three cases the operating pressure Pin was 7.2 bar and the feed initial con-
centration Cin was 8.5 kg/m3, for three different inlet mean velocities Win

of 0.2, 0.7 and 1.7 cm/s. Unlike all the previous experimental results which
considered two parallel permeable walls, these experiments were carried in
a channel with a permeable wall and an impermeable one. Hence, the limit
conditions for the axial velocity (22) have been modified:

w(0, z) = 0 (30)

The figure 13 shows the concentration polarization profiles obtained by our
numerical model and TSB model (solid and dotted lines, respectively) com-
pared with the experimental ones (symbols). Measurements were performed
at the distance from the inlet Z = 5cm. A good agreement is found between
our numerical predictions and the experimental data. We observe that the
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modeling slightly overestimates the concentration gradient (and hence the
permeate flux). The same trend in discrepancy also appears in [Salcedo-
Diaz et al. (2014)]. Here, we can propose two possible explanations. First,
our model considers a total rejection by the membrane, although experi-
ments showed a 97 % rejection for Na2SO4, only. Second, the experimental
channel has a width-to-height ratio of 3.3, and the consideration of a two-
dimensional geometry might be a slightly inaccurate approximation. Lastly,
the TSB model meets difficulties in fitting with the experimental concen-
tration profiles. This can partly be attributed to the fact that the latter
predictions have been obtained in the case of a symmetric channel.

To finish this important stage of mathematical model validation with
respect to experiments, let us make the following remarks. The Prandtl
simulations, in a general manner, have shown an excellent accordance with
the analytical and numerical previous results, and a good agreement with
the experimental results. This point is valid for both ”clean water” filtration
and coupling between hydrodynamics and mass transfer. Furthermore, the
possible discrepancies we have observed when comparing with experiments
are likely to be corrected by using concentration-dependent physical con-
stants. Such an improvement does not affect the present overall numerical
approach, and will be the object of future contributions. Another remark-
able point is that in all cases the flow always match locally with a pattern
that can be identified with the analytical solution (i.e. Berman (1953)).
In other words, the flow pattern adapts to permeation, while mass transfer
rules the whole system (of course, the flow plays an important role in mass
transfer...).

4. Conclusions and final discussion

An efficient two dimensional numerical model has been developed; it
solves the solute conservation equation coupled with the steady Navier-
Stokes equations under the Prandtl approximation. This approach of cross-
flow membrane filtration takes the pressure-dependent leakage into account,
as well as the effect of concentration polarization on osmotic (counter-)effects
in RO/NF filtration. More precisely, the effective trans-membrane pressure
depends on osmotic effects due to concentration polarization at the mem-
brane. Under specific operating conditions, this numerical model can predict
the local permeate flux and the solute concentration polarization with an
excellent accuracy, as shown during the validation steps, where several exact
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(a) (b)

(c)

Figure 13: Comparisons of concentration profiles between TSB (dotted lines) and present
numerical model (solid lines) with experiments [Fernández-Sempere et al. (2010)] (trian-
gles) for a solution of Na2SO4 operating at Pin = 7.2 bar and a feed initial concentration
Cin = 8.5 g/l (a)Win = 0.2 cm/s, (b)Win = 0.7 cm/s and (c)Win = 1.7 cm/s

analytical approaches were used to validate the numerical model. Both local
results of flow and concentration fields were considered in this validation.

In comparison with other numerical approaches, our model predicts a
rapid development of the polarization boundary layer and hence a faster
decline in permeation in the vicinity of entrance. This prediction that differs
from other numerical models might be explained by the ability of the present
model to accurately enforce the non-linear boundary condition at the very
entrance.

In the last section, we have compared our numerical predictions with
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several RO/NF experimental results. A good accordance was generally ob-
tained. This validates the overall modeling approach, from the choice of the
model to the numerical solution method. It is furthermore worthy of note
that the present numerical tool can be easily adapted to more sophisticate
situations in terms of viscous and transport properties. In the same vein,
the numerical model can be extended to other geometries, as tubular mem-
branes, or to non-linear laws on osmotic pressure, as realized in [Lopes et al.
(2012)]. In the same manner, a model of membrane selectivity with partial
solute rejection can be considered as developed in [Lopes et al. (2015)]. The
present numerical approach has easily been adapted to a situation of fouling,
a work which has been left to future publication.

Lastly, the filtration of multi-species systems (as in the case of sea wa-
ter desalination) can easily be envisaged from the present work. For each
species, a conservation law can be duplicated from the present solute conser-
vation law. Furthermore, an osmotic number must be introduced for every
species.

Nomenclature

α square root of ratio between Hagen-Poiseuille pressure drop and trans-
membrane pressure

Γ osmotic factor, Γ ≡ iRT (J)

γ shear rate in TBS model (1/s)

λ channel length reduced by dead-end length Lde, λ ≡ L/Lde

µ0 dynamic viscosity (kg/m/s)

ρ0 fluid density (kg/m3)

x̃ dimensional transverse coordinate (m)

z̃ dimensional axial coordinate (m)

C̃ solute concentration (moles/m3)

C̃m average transverse solute concentration (moles/m3)

C̃W solute concentration at the membrane wall (moles/m3) C̃W = CWCin

˜ transforms variables or certain unknowns into their dimensional form
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B(x;Rin) Berman function that gives the dimensionless transverse velocity,
i.e. the solution to Eq. (32) combined with boundary conditions (33)

Cin feed solute concentration (moles/m3)

D0 solute diffusivity through the solvent (m2/s)

i number of dissociated entities (ionic or neutral) per solute molecule

I0 membrane resistance (kg/m2/s)

L membrane length (m)

Lde dead-end length, or location where axial flowrate is exhausted, Lde =
Wind/Uin

Nosm osmotic number, Nosm ≡ P osm
in /Pin

P driving pressure (kg/m/s2)

p dimensionless pressure (p = P/Pin)

P osm
W osmotic (counter-)pressure on the membrane wall, P osm

W = ΓC̃W

Pin (overall) operating pressure (kg/m/s2)

P osm
in osmotic (counter-)pressure due to feed concentration, P osm

in ≡ ΓCin

Pe0 Actual Péclet number of permeation, Pe0 ≡ U0d/D0

Pein pure solvent transverse Péclet number

R perfect gaz constant (J/mol/K)

R0 transverse Reynolds number

Rin pure solvent transverse Reynolds number

T solution temperature (K)

u dimensionless transverse velocity (u = U/Uin)

U0 actual permeate flux (m/s) U0 ≡ U(x̃ = d)

Uin pure solvent permeation velocity (m/s)

V transverse velocity (m/s)
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W axial velocity (m/s)

w dimensionless axial velocity (=W/Win)

Wm axial mean velocity at Z (m/s)

Win axial mean velocity at entrance (m/s)

X dimensional transverse coordinate in TSB model (m)

x dimensionless transverse coordinate (x = x̃/d)

Z dimensional axial coordinate in TSB model (m)

z dimensionless axial coordinate (z = z̃/Lde)

5. Appendix: a brief description of the models used for validation

The purpose of this addendum is to present the various main properties
of the analytical or semi-analytical results that we have used in the vali-
dation step of our numerical approach. We shall particularly stress on the
underlying assumptions making feasible the analytical approach.

5.1. The Berman flow

The Berman flow is a basis solution for the fluid motion in a leaky
channel, when the permeation is uniform and fixed all along the porous walls
(Berman, 1953). Under this hypothesis, Berman derived the flow solution
{u(x, z), w(x; z)} to the steady Navier-Stokes equations complemented with
the lateral boundary conditions u(x = ±1, z) = UW /Uin = ±1, as

u(x, z) = B(x;Rin) ; w(x, z) = (1− z)B′(x; in) (31)

where B(x; in) is the solution of the ordinary differential equation (ODE):

Rin(BB′′ −B′2)−B′′′ = K(Rin) in 0 < x < 1 (32)

with the boundary conditions:

B(0) = 0, B(1) = 1, B′(1) = 0, B′′(0) = 0 (33)

and Rin is the transverse Reynolds number of permeation. For the standard
configurations of filtration, a rich literature has shown that the solution to
ODE (32) is unique, stable and attractive in the sense that, if the inlet
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conditions are different from the Berman x-profiles, Berman solution is re-
covered shortly after the entrance. Moreover, in the range (i.e. Rin ≤ 4), the
following Taylor expansion of the Berman function rapidly converges (see
for instance [Haldenwang (2007)]) in the standard situations of filtration:

B(x;Rin) =
n=∞
∑

n=0

1

n!
fn(x)R

n
in (34)

where the first two coefficients are:

f0 =
3x

2

(

1− x2

3

)

; f1 =
x

280

(

−x6 + 3x2 − 2
)

(35)

The Berman flow for filtration only makes sense when the pressure drop
remains weak enough all along the channel, in order to justify that the per-
meation is uniform. This condition corresponds to the so-called assumption
of ”High Pressure” (HP).

5.2. Exact analytical solution for mass transfer in Berman flow

In a previous study, Haldenwang et al. (2010) obtained an exact ana-
lytical solution for the solute conservation law, when the carrying flow is of
Berman type. Let us now consider the solute mass conservation law (21),
in which we consider the velocity components {u,w} as fixed and given by
expression (31) where the transverse Reynolds number is unknown, since
the permeation will depend on the hindrance due to concentration polar-
ization. Let us denote this unknown permeation with U0 as the transverse
velocity at the wall, leading us to define Re0 [resp. Pe0] , the (unknown)
Reynolds [resp. Péclet] number of permeation, as Re0 = ρ0U0d/µ0 [resp.
Pe0 = U0d/D0]. An exact solution to this problem has been established in
(Haldenwang et al., 2010) and reads:

C(x, z) =
C̃(x, z)

Cin
=

1

(1− z)
exp

{

Pe0

∫ x

0
B(x̂;R0)dx̂

}

(36)

with

∫ x

0
B(x̂;R0)dx̂ =

n=∞
∑

n=0

1

n!
Fn(x)R

n
0 (37)

where the first two Fn(x) take the form :

F0(x) =
3x2

4
− x4

8
; F1(x) =

1

280

(

−x8

8
+
3x4

4
− x2

)

(38)
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Developing this solution (36) at the lowest order with respect to R0 is
sufficient in most RO/NF situations and leads to the simple expression for
the solute concentration field.

C(x, z) =
C̃(x, z)

Cin
=

1

(1− z)
exp

{

Pe0

(

3x2

4
− x4

8

)}

(39)

This relationship gives a mathematical form to the phenomenon of con-
centration polarization, and allows us to obtain the concentration at the
membrane wall as:

CW (z) =
C̃W

Cin
≈ 1

1− z
exp

{

5

8
Pe0

}

(40)

Now, let us consider the osmotic pressure provoked by CW (z). To maintain a
uniform leakage, the osmotic pressure must be constant all along the channel.
Therefore, we must assume that (1 − z) ≈ 1. In other words, the channel
length is limited enough to keep the concentration polarization uniform all
along the wall. This condition corresponds to the so-called ”Low Recovery”
condition (LR). Therefore, under the ”HP-LR” assumption, concentration
polarization and permeation satisfy

ln[CW ] ≈ 5

8
Pe0 (41)

Then, expressing U0 accordingly with Darcy and Van’t Hoff laws, we get the
”three Péclet number” relationship:

ln

[

Pein − Pe0
Peosmin

]

=
5

8
Pe0 (42)

where Pein is the pure solvent transverse Péclet number and Peosmin is a
dimensionless form of inlet concentration, defined as:

Pein =
Pind

I0D0
; Peosmin =

iRTCind

I0D0
(43)

Permeate flux U0 can be calculated from the last implicit equation (42) in
Pe0 by using an iterative method. This analytical approach is a useful tool to
estimate the permeation velocity U0 in presence of polarization and osmotic
effects. Finally, let us note that, in the limit of the high operating pressures
Pein ≫ 1, expression (42) reduces to Pe0 ≈ 1.6ln [Pein/Peosmin ]. The latter
expression simply demonstrates the classically observed saturation of the
permeation when increasing operating pressure.
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5.3. Song-Elimelech model

Song and Elimelech (1995) proposed to consider equation (21) under
various simplified forms, accordingly with the concerned zone. The first
step in the assumption process consists in neglecting the second term in
the RHS of equation (21) (the mass axial transport) when considering the
domain in the very vicinity of the membrane. After integration, this yields
the dimensional form

U0(C̃ − Cin) = −D0
dC̃

dX
(44)

where Cin is the feed solute concentration or bulk concentration. This model
assume that the concentration polarization layer is smaller than the spac-
ing of the membrane channel and considers at steady state a mass balance
relationship in the axial direction through the channel:

∫

∞

0
γX(C̃ − Cin)dX = Cin

(
∫ Z

0
U0(Z

′)dZ ′
)

(45)

where γ is the shear rate, Z the axial distance from the entrance and X
the transverse coordinate. In this model the wall concentration could be

Plug flow profile

Membrane

Shear flow profile

Membrane
Z

d

Wm = cte

Wmax Wmax

Wmax = 2Wm Wmax = 1.5Wm

γ = Wmax

d

Parabolic flow profile

X

Figure 14: Different profiles of a laminar flow in the membrane channel

determine by solving equations (44) and (45) simultaneously

C̃W = Cin

(

1 +
1

D2γ
U2
0

∫ Z

0
U0(Z

′)dZ ′
)

(46)

If a constant shear rate γ is assumed (Figure 14) an analytical expression
of the permeate velocity can be obtained as follows:
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U0(Z) =
U0(0)

(1 +AZ/L)1/3







[

(

1

1 +AZ/L
+ 4

)
1
2

+ 2

]

1
3

−
[

(

1

1 +AZ/L
+ 4

)
1
2

− 2

]

1
3







(47)

where U0(0) is the permeate velocity at inlet, A is a dimensionless parameter
of operation and L is the membrane channel length.

U0(0) =
P − P osm

in

I0
=

P − ΓCin

I0
(48)

A =
6U0(0)

2P osm
in L

I0D2
0γ

(49)

5.4. Total salt balance model with plug flow

This model takes into account that concentration polarization layer could
be developed to the whole height of the membrane channel. Solute concen-
tration at any transverse coordinate can be determine by integrating equa-
tion (44)

C̃ = Cin + (C̃m − Cin)
Pe0

1− exp(−Pe0)
exp(−UX

D0
) (50)

where C̃m is the average solute concentration and Pe0 is the transverse
Péclet number:

Pe0 =
U0d

D0
(51)

We can consequently determine the wall concentration C̃W by evaluating
equation (50) in X = 0:

C̃W = Cin + (C̃m − Cin)
Pe0

1− exp(−Pe0)
(52)

Considering that the total solute flux downstream along the channel is con-
stant even though both solute wall concentration and permeate flux changed
carried us to the following mass balance relationship:

C̃mWm = CinWin (53)
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whereWin andWm are the axial mean velocity at the entrance and the axial
mean velocity at any Z position respectively. Working with an average
axial velocity is equivalent to assume that the fluid has a constant axial
velocity across the channel height (plug flow profile in Figure 14). ¿From
mass conservation principle for the solvent we can establish the following
relationship

dWm

dZ
= −U0

d
(54)

The variation of C̃m along the membrane channel can be determine by taking
derivate of equation (53) with respect to Z and using equation (54) we
obtained:

dC̃m

dZ
=

U0

Wmd
C̃m (55)

A numerical method can solve equations (55),(54), (2) and (52). Discretizing
the membrane channel length L into n equal segments (∆Z = L/n), the
finite difference forms of these equations are:

C̃mi+1 =

(

1 +
U0i∆Z

Wmid

)

C̃mi (56)

Wmi+1 = Wmi −
∆Z

d
U0i (57)

U0i+1 =
P − ΓC̃Wi

I0
(58)

C̃Wi+1 = Cin + (C̃mi+1 − Cin)
fU0id

D0(1− exp(−U0id/D0)
(59)

The iterative process begins when the feed solute concentration Cin, the
axial mean velocity at entrance Win and the driving pressure P are given.
The mean solute concentration C̃m, the axial mean velocityWm, the perme-
ate velocity U0 and the solute wall concentration C̃W , can be then obtained
progressively throughout the entire membrane channel using the finite dif-
ference equations above.

5.5. Total salt balance model with shear flow

In this model a shear flow rate γ for axial velocity was considered, as
shown shear flow profile in Figure 14 therefore the mass balance relationship
(53) along the cross-flow direction reads:

∫ d

0
γXC̃dX =WinCind (60)
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Replacing the expression (50) for C̃ in equation (60) above leads to:

WinCind =

∫ d

0
γX(C̃m − Cin)

Pe0
1− exp(−Pe0)

exp

(

−UX

D0

)

dX

+

∫ d

0
γXCindX (61)

Performing the integration of equation (61) results in:

WinCind = γd2
(

1

Pe0
− exp(−Pe0)

1− exp(−Pe0)

)

(C̃m − Cin)

+
1

2
γd2Cin (62)

Taking derivative of both sides of equation (62) conducted to

0 =
1

2

dγ

dZ
Cin +

dγ

dZ

(

1

Pe0
− exp(−Pe0)

1− exp(−Pe0)

)

(C̃m − Cin)

+ γ

(

1

Pe0
− exp(−Pe0)

1− exp(−Pe0)

)

dC̃m

dZ
(63)

¿From Figure 14 we induced that the shear rate γ for an average axial
velocity Wm was:

γ =
2

d
Wm (64)

The derivative of γ with respect to Z gave:

dγ

dZ
=
2

d

dWm

dZ
= − 2

d2
U0 (65)

Substituting equations (64), (65) into equation (63) reached the following
relationship:

dC̃m

dZ
=

(

U0

Wmd

)

C̃m +

(

U0

Wmd

)

A1Cin (66)

where A1 is a new function of the transverse Péclet number:

A1 =
Pe0(1− exp(−Pe0))

2(1− exp(−Pe0)− exp(−Pe0)Pe0)
− 1 (67)

In this model, the numerical method solves equations (2), (52) and (54) cou-
pled with equation (66) instead of equation (55) using the following forward
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finite difference forms:

C̃mi+1 =

(

1 +
U0i∆Z

Wmid

)

C̃mi +

(

U0i∆Z

Wmid

)

A1Cin (68)

Wmi+1 = Wmi −
∆Z

d
U0i (69)

U0i+1 =
P − ΓC̃Wi

I0
(70)

C̃Wi+1 = Cin + (C̃mi+1 − Cin)
Pe0i

1− exp(−Pe0i)
(71)

Let us finally remark that the models described above assume a constant
driving pressure P through the membrane channel. The variation in oper-
ating pressure is obtained by solving the fluid motion. In the latter case, to
analytically study this more complex situation is, to say the least, a hard
task. Analytical developments for PDE are never easy, especially when hy-
drodynamics is strongly coupled with mass transfer equation. This is why
a numerical approach seems to be more suitable to analyze this situation.
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Highlights 

1. An efficient two dimensional numerical model based on the solute conservation 

equation coupled with the steady Navier-Stokes equations has been developed. 

2. The local permeat flux and the solute concentration polarization are predicted with an 

excellent accuracy. 

3. In comparison with other numerical approaches, our model predicts a rapid 

development of the polarization boudary layer and a faster decline in permeation. 

4. An excellent agreement was obtained between our numerical results and several 

reverse osmosis experimental results. 


