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), we study a moment-matching criterion which consists in evaluating a measure of discrepancy between actual moments of the CRM and moments based on the simulation output. This note focuses on a general class of CRMs, namely the superposed gamma process, which suitably transformed have already been successfully implemented in Bayesian Nonparametrics. To this end, we show that the moments of this class of processes can be obtained analytically.

Introduction

Completely random measures (CRMs) represent a fundamental building block of countless popular stochastic models and play a prominent role within Bayesian nonparametric modeling (see [START_REF] Lijoi | Models beyond the Dirichlet process[END_REF][START_REF] Jordan | Hierarchical models, nested models and completely random measures[END_REF]. For instance, the popular Dirichlet process [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF] can be obtained as normalization or exponentiation of suitable CRMs. Implementation of CRM-based models usually requires to simulate the CRMs trajectories. As infinite dimensional objects, representable as infinite random series (1), truncation of the series is needed leading to an approximation error. Different strategies for representing the series and choosing the truncation threshold M are available in the literature. A thorough account on CRM size-biased representations has been recently provided in [START_REF] Campbell | Truncated Random Measures[END_REF], where the truncation error is examined from the angle of the L 1 distance between marginal data densities under truncated and untruncated models, an approach first considered by [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF] for stick-breaking processes.
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Another important type of representation due to [START_REF] Ferguson | A representation of independent increment processes without Gaussian components[END_REF] (see also [START_REF] Walker | Representations of Lévy processes without Gaussian components[END_REF] is arguably one of the most useful ones in that it displays the weights in decreasing order. This yields the very interesting feature that the approximation error is minimized over the whole sample space for a given truncation level. This competitive advantage was exploited in many works, including [START_REF] Argiento | A blocked Gibbs sampler for NGGmixture models via a priori truncation[END_REF]; [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF][START_REF] De Blasi | A class of neutral to the right priors induced by superposition of beta processes[END_REF]; [START_REF] Epifani | Exponential functionals and means of neutralto-the-right priors[END_REF]; [START_REF] Griffin | Posterior simulation of normalized random measure mixtures[END_REF]Nieto-Barajas et al. (2004); Nieto- Barajas and Walker (2004) to cite just a few in Bayesian Nonparametrics. The quality of the approximation, addressed only heuristically in those previous works, is the focus of this note.

In [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] it shown how moments of the CRMs can be used in order to assess the quality of approximation due to the truncation. Since moments of CRMs are simple to compute, the quality of the approximation can be quantified by evaluating a measure of discrepancy between the actual moments of the CRM at issue and the moments computed based on the sampled realizations of the CRM. The truncation level is selected so that measure of discrepancy does not exceed a given threshold, say 5%. In [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] the methodology is illustrated on two classes of CRMs, namely the generalized gamma process and the stable-beta process.

In the proposed talk we review the results of [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] and, in addition, analyze another broad class called the superposed gamma process (see [START_REF] Regazzini | Distributional results for means of normalized random measures with independent increments[END_REF][START_REF] Lijoi | Bayesian nonparametric analysis for a generalized Dirichlet process prior[END_REF]. After defining CRMs and the superposed gamma process (Section 2), we display a bound in probability on the truncation error in Section 3.1 and then show the applicability of the moment-matching criterion by deriving analytically the moments of the superposed gamma process in Section 3.2. An illustration of the Ferguson & Klass algorithm and a proof are deferred to the Appendix.

Superposed gamma process

Completely random measures (CRM) have been successfully employed in a wide spectrum of modern applications, including survival analysis, random sparse networks, biology, to cite just a few. A CRM μ on X is a random measure which spreads out mass independently in the space, which means that the random measure μ, when evaluated on disjoint sets A 1 , . . . , A n , leads to independent random variables μ(A 1 ), . . . , μ(A n ). Importantly, [START_REF] Kingman | Completely random measures[END_REF] showed that the only way to spread out mass in a completely random fashion (without deterministic components) is by randomly scattering point masses in the space. In other words, CRM present the interesting feature that they select (almost surely) discrete measures and hence can be represented as μ =

i≥1 J i δ Z i (1)
where both the jumps J i and the locations Z i are random and are controlled by the so-called Lévy intensity which characterizes the CRM. It is a measure on R + × X which can be written as ν(dv, dx) = ρ(dv)α(dx) for so-called homogeneous CRM, which are considered here and correspond to the case of jumps independent of the locations. The function ρ controls the intensity of the jumps. The measure α, if the CRM is (almost surely) finite, which is assumed throughout, splits up in α = aP 0 where a > 0 is called the total mass parameter and the probability distribution P 0 tunes the locations.

Ever-popular CRM include the generalized gamma process introduced by Brix (1999) and the stable-beta process, or three-parameter beta process, defined by [START_REF] Teh | Indian buffet processes with power-law behavior[END_REF] as an extension of the beta process [START_REF] Hjort | Nonparametric bayes estimators based on beta processes in models for life history data[END_REF]). Here we consider another large class of completely random measures called superposed gamma process, introduced by [START_REF] Regazzini | Distributional results for means of normalized random measures with independent increments[END_REF]. It is identified by the jump intensity

ρ(dv) = 1 -e -ηv 1 -e -v e -v v dv, η > 0.
(2)

As noted by [START_REF] Lijoi | Bayesian nonparametric analysis for a generalized Dirichlet process prior[END_REF], one usually restricts attention to the case of positive integer η. Under this assumption, the superposed gamma process takes the form of a genuine superposition of independent gamma processes with increasing integer-valued scale parameter, with jump intensity ρ(dv) = 1 v e -v + e -2v + . . . + e -ηv dv/v. The specification of integer values for η has also the advantage to lead to analytic computation of the moments. Note that the special case η = 1 reduces to the gamma process, which gives rise to the Dirichlet process by normalization. Alternatively, the normalization of the superposed gamma process for unspecified η provides the so-called generalized Dirichlet process [START_REF] Lijoi | Bayesian nonparametric analysis for a generalized Dirichlet process prior[END_REF]. [START_REF] Ferguson | A representation of independent increment processes without Gaussian components[END_REF] devise a constructive representation of a CRM which produces the jumps in decreasing order. This corresponds to the (almost surely unique) ordering of the sum elements in (1) where J 1 > J 2 > • • • . Indeed, the jumps are obtained as andξ 1 , ξ 2 , ∼ Exp(1). Figure 2 in Appendix illustrates the function N ( • ) which takes the following form in the superposed gamma process case

ξ i = N (J i ), where N (v) = ν([v, ∞), R) is a decreasing function,
N (v) = aE η (v), where E η (v) = η l=1 E 1 (kv) and E 1 (v) = ∞ v u -1 e -u du, (3) 
and where the function E 1 denotes the exponential integral function. Since it is impossible to sample an infinite number of jumps, approximate simulation of μ is in order. This becomes a question of determining the number M of jumps to sample leading to the truncation μM and truncation error T M as follow

μM = M i=1 J i δ Z i , T M = ∞ i=M +1 J i . ( 4 
)
The Ferguson & Klass representation has the key advantage of generating the jumps in decreasing order implicitly minimizing such an approximation error. However, a precise evaluation of T M , for example in expectation, is a daunting task due to the non independence of the jumps in the Ferguson & Klass representation. The algorithm is summarized in Algorithm 1.

Algorithm 1: Ferguson & Klass algorithm 1: sample ξ i ∼ PP for i = 1, . . . , M 2: define J i = N -1 (ξ i ) for i = 1, . . . , M 3: sample Z i ∼ P * for i = 1, . . . , M 4: approximate μ by M i=1 J i δ Z i 3 Truncation error of the superposed gamma process

Bound in probability

We provide an evaluation in probability of the truncation error T M in (4). Proposition 1. Let (ξ j ) j≥1 be the jump times for a homogeneous Poisson process on R + with unit intensity. Then for any ∈ (0, 1), the tail sum of the superposed gamma process (4) satisfies

P T M ≤ t M ≥ 1 -, for t M = C (η!) 1/η e 1-M C , where C = 2eaη .
The simple proof is deferred to Appendix B. It is interesting to note that the bound t M for the superposed gamma process is equal to its counterpart for the beta process with concentration parameter c set to η, all else things being equal (total mass parameter a and threshold ). See Proposition 1 in [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF]. This finding provides a nice connection between both processes otherwise seemingly unrelated.

The bound t M obtained in Proposition 1 is exponentially decreasing with M , which is reminiscent of the results obtained by [START_REF] Brix | Generalized gamma measures and shot-noise Cox processes[END_REF] and [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF], respectively, for the generalized gamma process and the stable-beta process with no stable component. As already pointed out by these authors, the bound t M is very conservative due to a crude lower bound on the quantiles q j (notation of the proof). The left panel of Figure 1 displays this bound t M , while the right panel illustrates the truncation level M (in log-scale) required in order to guarantee with 95% probability an upper bound on T M of t max ∈ {1, 10, 100}, for varying values of η. Inspection of the plots demonstrates the rapid increase with η of the number of jumps needed in order to assess a given bound in probability. 

Moment-matching criterion

Given the limited practical usefulness of the bound provided in Proposition 1, we propose to use the alternative route of the moment-matching methodology of [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] and derive the relevant quantities in order to implement it for the superposed gamma process. Let us consider the n-th (raw) moment of the (random) total mass μ(X) defined by m n = E μn (X) . Given the Laplace transform of CRM, the moments (see, e.g., Proposition 1 in [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] take on the form

m n = ( * ) ( n k 1 •••kn ) n i=1 κ i /i! k i , (5) 
where the sum ( * ) is over all n-tuples of nonnegative integers (k 1 , . . . , k n ) satisfying the constraint dv). Simple algebra leads to the following expression for the cumulants of the superposed gamma process

k 1 + 2k 2 + • • • + nk n = n and κ i is the ith cumulant defined by κ i = a ∞ 0 v i ρ(
κ i = a(i -1)!ζ η (i) (6)
which displays the incomplete Euler-Riemann zeta function ζ η (i) = η l=1 1 l i . Hence the moment-matching methodology introduced by Arbel and Prünster (2016) can be readily applied by making use of ( 5) and (6).

A Ferguson and Klass illustration

From Figure 2 it is apparent that increasing η leads to larger jumps which in turn leads to the need of a higher truncation level in order to match a given precision level. This is not surprising given the CRM at hand can be thought of as a superposition of η gamma CMRs. Such an intuition is made precise in Section 3 in the main text by (i) deriving a bound in probability on T M and (ii) obtaining the moments of the superposed gamma process, thus showing the applicability of the moment-criterion introduced by Arbel and Prünster (2016). 
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B Proof

Proof of Proposition 1. The proof follows along the same lines as the proof of Theorem A.1. by [START_REF] Brix | Generalized gamma measures and shot-noise Cox processes[END_REF] for the generalized gamma process and Proposition 4 by [START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF] for the stable-beta process. Let q j denote the 2 M -j quantile, for j = M + 1, M + 2, . . ., of a gamma distribution with mean and variance equal to j. Then

P ∞ j=M +1 N -1 (ξ j ) ≤ ∞ j=M +1
N -1 (q j ) ≥ 1 -.

Denote t M = ∞ j=M +1 N -1 (q j ) = ∞ j=M +1 E -1 η (q j /a), and let us upper bound E -1 η . By using E 1 (u) ≤ 1 -log(u), one gets

E η (u) = η l=1 E 1 (lu) ≤ η - η l=1 log(lu) = η -log η!u η ,
which can be inverted to obtain

E -1 η (x) ≤ 1 (η!) 1/η e 1-x η .
Additionally, since the quantiles satisfy q j ≥ 2e j, we can conclude that

t M ≤ 1 (η!) 1/η ∞ j=M +1 e 1- q j aη ≤ 1 (η!) 1/η ∞ j=M +1
e 1-j 2eaη ≤ 2eaη (η!) 1/η e 1-M 2eaη .

  . . . are jump times of a standard Poisson process (PP) of unit rate: ξ 1 , ξ 2 -ξ 1 , . . . i.i.d.
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 1 Fig. 1: Left: variation of M → t M for η ∈ {1, 2, 5, 10}. Right: variation of the threshold function η → M needed to match an error bound of t max ∈ {1, 10, 100} with η ∈ {1, . . . , 20}, log scale on y-axis.

Fig. 2 :

 2 Fig. 2: Left: illustration of Ferguson and Klass representation through the inversion of the jumps times ξ 1 , . . . , ξ 5 for a homogeneous Poisson process on R + to the jumps J 1 , . . . , J 5 of a CRM. Right: Tail of the Lévy measure N ( • ) of the superposed gamma process with η ∈ {1, . . . , 10}, η = 1 for the lowest curve, η = 10 for the highest curve.