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Abstract

Completely random measures (CRM) represent a key ingredient of a wealth
of stochastic models, in particular in Bayesian Nonparametrics for defining
prior distributions. CRMs can be represented as infinite random series of
weighted point masses. A constructive representation due to Ferguson and
Klass provides the jumps of the series in decreasing order. This feature is of
primary interest when it comes to sampling since it minimizes the truncation
error for a fixed truncation level of the series. We quantify the quality of
the approximation in two ways. First, we derive a bound in probability
for the truncation error. Second, following Arbel and Prünster (2016), we
study a moment-matching criterion which consists in evaluating a measure
of discrepancy between actual moments of the CRM and moments based
on the simulation output. This note focuses on a general class of CRMs,
namely the superposed gamma process, which suitably transformed have
already been successfully implemented in Bayesian Nonparametrics. To this
end, we show that the moments of this class of processes can be obtained
analytically.

Keywords: Approximate inference, Bayesian Nonparametrics, Completely random measures,
Ferguson & Klass algorithm, Normalized random measures, Truncation.

1 Introduction

Completely random measures (CRMs) represent a fundamental building block of countless
popular stochastic models and play a prominent role within Bayesian nonparametric modeling
(see Lijoi and Prünster, 2010; Jordan, 2010). For instance, the popular Dirichlet process
(Ferguson, 1973) can be obtained as normalization or exponentiation of suitable CRMs.
Implementation of CRM-based models usually requires to simulate the CRMs trajectories.
As infinite dimensional objects, representable as infinite random series (1), truncation of the
series is needed leading to an approximation error. Different strategies for representing the
series and choosing the truncation threshold M are available in the literature. A thorough
account on CRM size-biased representations has been recently provided in Campbell et al.
(2016), where the truncation error is examined from the angle of the L1 distance between
marginal data densities under truncated and untruncated models, an approach first considered
by Ishwaran and James (2001) for stick-breaking processes.
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Another important type of representation due to Ferguson and Klass (1972) (see also Walker
and Damien, 2000) is arguably one of the most useful ones in that it displays the weights
in decreasing order. This yields the very interesting feature that the approximation error
is minimized over the whole sample space for a given truncation level. This competitive
advantage was exploited in many works, including Argiento et al. (2016); Barrios et al. (2013);
De Blasi et al. (2010); Epifani et al. (2003); Griffin and Walker (2011); Nieto-Barajas et al.
(2004); Nieto-Barajas and Walker (2004) to cite just a few in Bayesian Nonparametrics. The
quality of the approximation, addressed only heuristically in those previous works, is the
focus of this note.
In Arbel and Prünster (2016) it shown how moments of the CRMs can be used in order to
assess the quality of approximation due to the truncation. Since moments of CRMs are simple
to compute, the quality of the approximation can be quantified by evaluating a measure of
discrepancy between the actual moments of the CRM at issue and the moments computed
based on the sampled realizations of the CRM. The truncation level is selected so that
measure of discrepancy does not exceed a given threshold, say 5%. In Arbel and Prünster
(2016) the methodology is illustrated on two classes of CRMs, namely the generalized gamma
process and the stable-beta process.
In the proposed talk we review the results of Arbel and Prünster (2016) and, in addition,
analyze another broad class called the superposed gamma process (see Regazzini et al., 2003;
Lijoi et al., 2005). After defining CRMs and the superposed gamma process (Section 2),
we display a bound in probability on the truncation error in Section 3.1 and then show the
applicability of the moment-matching criterion by deriving analytically the moments of the
superposed gamma process in Section 3.2. An illustration of the Ferguson & Klass algorithm
and a proof are deferred to the Appendix.

2 Superposed gamma process

Completely random measures (CRM) have been successfully employed in a wide spectrum of
modern applications, including survival analysis, random sparse networks, biology, to cite
just a few. A CRM µ̃ on X is a random measure which spreads out mass independently
in the space, which means that the random measure µ̃, when evaluated on disjoint sets
A1, . . . ,An, leads to independent random variables µ̃(A1), . . . , µ̃(An). Importantly, Kingman
(1967) showed that the only way to spread out mass in a completely random fashion (without
deterministic components) is by randomly scattering point masses in the space. In other
words, CRM present the interesting feature that they select (almost surely) discrete measures
and hence can be represented as

µ̃=
∑
i≥1

JiδZi (1)

where both the jumps Ji and the locations Zi are random and are controlled by the so-called
Lévy intensity which characterizes the CRM. It is a measure on R+×X which can be written
as ν(dv,dx) = ρ(dv)α(dx) for so-called homogeneous CRM, which are considered here and
correspond to the case of jumps independent of the locations. The function ρ controls the
intensity of the jumps. The measure α, if the CRM is (almost surely) finite, which is assumed
throughout, splits up in α = aP0 where a > 0 is called the total mass parameter and the
probability distribution P0 tunes the locations.
Ever-popular CRM include the generalized gamma process introduced by Brix (1999) and
the stable-beta process, or three-parameter beta process, defined by Teh and Gorur (2009)
as an extension of the beta process (Hjort, 1990). Here we consider another large class of
completely random measures called superposed gamma process, introduced by Regazzini et al.
(2003). It is identified by the jump intensity

ρ(dv) = 1− e−ηv

1− e−v
e−v

v
dv, η > 0. (2)

As noted by Lijoi et al. (2005), one usually restricts attention to the case of positive
integer η. Under this assumption, the superposed gamma process takes the form of a genuine
superposition of independent gamma processes with increasing integer-valued scale parameter,
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with jump intensity ρ(dv) = 1
v

(
e−v +e−2v + . . .+e−ηv

)
dv/v. The specification of integer

values for η has also the advantage to lead to analytic computation of the moments. Note
that the special case η = 1 reduces to the gamma process, which gives rise to the Dirichlet
process by normalization. Alternatively, the normalization of the superposed gamma process
for unspecified η provides the so-called generalized Dirichlet process (Lijoi et al., 2005).
Ferguson and Klass (1972) devise a constructive representation of a CRM which produces
the jumps in decreasing order. This corresponds to the (almost surely unique) ordering of
the sum elements in (1) where J1 > J2 > · · · . Indeed, the jumps are obtained as ξi =N(Ji),
where N(v) = ν([v,∞),R) is a decreasing function, and ξ1, ξ2, . . . are jump times of a standard
Poisson process (PP) of unit rate: ξ1, ξ2−ξ1, . . .

i.i.d.∼ Exp(1). Figure 2 in Appendix illustrates
the function N( ·) which takes the following form in the superposed gamma process case

N(v) = aEη(v), where Eη(v) =
η∑
l=1

E1(kv) and E1(v) =
∫ ∞
v

u−1e−udu, (3)

and where the function E1 denotes the exponential integral function. Since it is impossible to
sample an infinite number of jumps, approximate simulation of µ̃ is in order. This becomes
a question of determining the number M of jumps to sample leading to the truncation µ̃M
and truncation error TM as follow

µ̃M =
M∑
i=1

JiδZi , TM =
∞∑

i=M+1
Ji. (4)

The Ferguson & Klass representation has the key advantage of generating the jumps in
decreasing order implicitly minimizing such an approximation error. However, a precise
evaluation of TM , for example in expectation, is a daunting task due to the non independence
of the jumps in the Ferguson & Klass representation. The algorithm is summarized in
Algorithm 1.

Algorithm 1: Ferguson & Klass algorithm
1: sample ξi ∼ PP for i= 1, . . . ,M
2: define Ji =N−1(ξi) for i= 1, . . . ,M
3: sample Zi ∼ P ∗ for i= 1, . . . ,M
4: approximate µ̃ by

∑M
i=1JiδZi

3 Truncation error of the superposed gamma process

3.1 Bound in probability

We provide an evaluation in probability of the truncation error TM in (4).
Proposition 1. Let (ξj)j≥1 be the jump times for a homogeneous Poisson process on R+

with unit intensity. Then for any ε ∈ (0,1), the tail sum of the superposed gamma process (4)
satisfies

P
(
TM ≤ tεM

)
≥ 1− ε, for tεM = C

(η!)1/η e1−MC , where C = 2eaη
ε

.

The simple proof is deferred to Appendix B. It is interesting to note that the bound tεM
for the superposed gamma process is equal to its counterpart for the beta process with
concentration parameter c set to η, all else things being equal (total mass parameter a and
threshold ε). See Proposition 1 in Arbel and Prünster (2016). This finding provides a nice
connection between both processes otherwise seemingly unrelated.

The bound tεM obtained in Proposition 1 is exponentially decreasing with M , which is
reminiscent of the results obtained by Brix (1999) and Arbel and Prünster (2016), respectively,
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for the generalized gamma process and the stable-beta process with no stable component.
As already pointed out by these authors, the bound tεM is very conservative due to a crude
lower bound on the quantiles qj (notation of the proof). The left panel of Figure 1 displays
this bound tεM , while the right panel illustrates the truncation level M (in log-scale) required
in order to guarantee with 95% probability an upper bound on TM of tmax ∈ {1,10,100},
for varying values of η. Inspection of the plots demonstrates the rapid increase with η of the
number of jumps needed in order to assess a given bound in probability.
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Fig. 1: Left: variation of M 7→ tεM for η ∈ {1,2,5,10}. Right: variation of the threshold
function η 7→M needed to match an error bound of tmax ∈ {1,10,100} with η ∈
{1, . . . ,20}, log scale on y-axis.

3.2 Moment-matching criterion

Given the limited practical usefulness of the bound provided in Proposition 1, we propose
to use the alternative route of the moment-matching methodology of Arbel and Prünster
(2016) and derive the relevant quantities in order to implement it for the superposed gamma
process. Let us consider the n-th (raw) moment of the (random) total mass µ̃(X) defined by
mn = E

[
µ̃n(X)

]
. Given the Laplace transform of CRM, the moments (see, e.g., Proposition

1 in Arbel and Prünster, 2016) take on the form

mn =
∑
(∗)

( n
k1···kn)

n∏
i=1

(
κi/i!

)ki , (5)

where the sum (∗) is over all n-tuples of nonnegative integers (k1, . . . ,kn) satisfying the
constraint k1 +2k2 + · · ·+nkn = n and κi is the ith cumulant defined by κi = a

∫∞
0 viρ(dv).

Simple algebra leads to the following expression for the cumulants of the superposed gamma
process

κi = a(i−1)!ζη(i) (6)

which displays the incomplete Euler–Riemann zeta function ζη(i) =
∑η
l=1

1
li
. Hence the

moment-matching methodology introduced by Arbel and Prünster (2016) can be readily
applied by making use of (5) and (6).
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A Ferguson and Klass illustration

From Figure 2 it is apparent that increasing η leads to larger jumps which in turn leads to
the need of a higher truncation level in order to match a given precision level. This is not
surprising given the CRM at hand can be thought of as a superposition of η gamma CMRs.
Such an intuition is made precise in Section 3 in the main text by (i) deriving a bound in
probability on TM and (ii) obtaining the moments of the superposed gamma process, thus
showing the applicability of the moment-criterion introduced by Arbel and Prünster (2016).
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Fig. 2: Left: illustration of Ferguson and Klass representation through the inversion of
the jumps times ξ1, . . . , ξ5 for a homogeneous Poisson process on R+ to the jumps
J1, . . . ,J5 of a CRM. Right: Tail of the Lévy measure N( ·) of the superposed gamma
process with η ∈ {1, . . . ,10}, η = 1 for the lowest curve, η = 10 for the highest curve.

B Proof

Proof of Proposition 1. The proof follows along the same lines as the proof of Theorem A.1.
by Brix (1999) for the generalized gamma process and Proposition 4 by Arbel and Prünster
(2016) for the stable-beta process. Let qj denote the ε2M−j quantile, for j =M+1,M+2, . . .,
of a gamma distribution with mean and variance equal to j. Then

P
( ∞∑
j=M+1

N−1(ξj)≤
∞∑

j=M+1
N−1(qj)

)
≥ 1− ε.

Denote t̃εM =
∑∞
j=M+1N

−1(qj) =
∑∞
j=M+1E

−1
η (qj/a), and let us upper bound E−1

η . By
using E1(u)≤ 1− log(u), one gets

Eη(u) =
η∑
l=1

E1(lu)≤ η−
η∑
l=1

log(lu) = η− log
(
η!uη

)
,

which can be inverted to obtain

E−1
η (x)≤ 1

(η!)1/η e1−xη .

Additionally, since the quantiles satisfy qj ≥ ε
2ej, we can conclude that

t̃εM ≤
1

(η!)1/η

∞∑
j=M+1

e1−
qj
aη ≤ 1

(η!)1/η

∞∑
j=M+1

e1− εj
2eaη ≤ 2eaη

ε(η!)1/η e1− εM
2eaη .
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