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Abstract

In mixture models, latent variables known as allocation variables play an essential
role by indicating, at each iteration, to which component of the mixture obser-
vations are linked. In sequential algorithms, these latent variables take on the
interpretation of particles. We investigate the use of quasi Monte Carlo within
sequential Monte Carlo methods (a technique known as sequential quasi Monte
Carlo) in nonparametric mixtures for density estimation. We compare them to
sequential and non sequential Monte Carlo algorithms. We highlight a critical
distinction of the allocation variables exploration of the latent space under each of
the three sampling approaches.

Keywords: Bayesian Nonparametrics, Density estimation, Quasi random variables, Monte Carlo
methods, Sequential sampling.

1 Introduction

Sequential quasi Monte Carlo (SQMC) sampling is a novel sampling scheme proposed by Gerber
and Chopin (2015) in a paper read before The Royal Statistical Society. It bridges ideas from quasi
Monte Carlo (QMC) methods and from sequential Monte Carlo (SMC) sampling. The latter, also
called particle filtering, focuses on sampling in state space models based on sequential data, while the
former’s initial goal is to enhance Monte Carlo efficiency by using evenly spread vectors instead of
(unconstrained) random vectors. As Gerber & Chopin put it,

we can only think that the full potential of QMC in statistics remains underexplored.

In this note, we explore applications of SQMC to the field of Bayesian nonparametrics. More
specifically, we focus on nonparametric mixtures for density estimation. The method of nonparametric
mixtures of kernels appeared in Ferguson (1973) and Lo (1984) with Dirichlet process mixtures
(DPM). Posterior sampling for DPM is usually carried out by Markov chain Monte Carlo (MCMC,
see Jain and Neal, 2004). See also Blei and Jordan (2006) for a variational Bayes approach. A known
drawback of MCMC is its difficulty to cope with multimodality, ie the Markov chain can be trapped
in local modes. Another limitation of MCMC is that it is not suited for online data acquisition, that
is when data points are observed one at a time (see Caron et al., 2008). Sequential Monte Carlo
methods have proved successful in addressing these issues, in general and also in the particular
context of nonparametric mixture models. These models were first cast as SMC samplers by Liu
(1996); MacEachern et al. (1999) as follows. Observations are spread out into unobserved clusters.
Hence the cluster labels, or allocation variables, are latent variables which act as the states of the
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observations in the context of SMC. Two features of the states in this setting are unusual in a QMC
setting and will be discussed in this note: they are discrete and non Markovian. The original algorithm
was later extended to particle filters by Fearnhead (2004), and further variations and applications
have been proposed by Ülker et al. (2010); Carvalho et al. (2010); Griffin (2015); Tsiligkaridis and
Forsythe (2015), among others.

Our goal here is to extend these existing SMC samplers for DPM to the SQMC paradigm. How does
SQMC fare in this nonparametric Bayes framework? The extension that we pursue is not trivial and
challenging due to the two aforementioned peculiarities: (i) the state-space is discrete, unlike the
examples developed by Gerber and Chopin (2015) with continuous state-spaces; (ii) the allocation
variables (the states) are not Markovian. The challenges can be formulated as follows: are QMC
methods still advantageous in discrete state-space settings? Is the non-Markovianity of the latent
variables an impediment to practical implementation, or further to computational gains? For our
investigation, we confine attention to Dirichlet process mixtures. Nevertheless, the ideas developed
here reach far beyond this model.

2 Background on sampling: SMC, QMC and SQMC

Sequential inference refers to the ability to update the estimation as new observations arrive. Se-
quential Monte Carlo (SMC), or Particle filtering, is a principled technique which sequentially
approximates the full posterior using particles (Doucet et al., 2001; Del Moral et al., 2006; An-
drieu et al., 2010). It focuses on sequential state-space models: the density of the observations yt
conditionally on Markov states xt in X ⊆ Rd is given by yt|xt ∼ fY (yt|xt), with kernel

x0 ∼ fX0 (x0), xt|xt−1 ∼ fX(xt|xt−1). (1)
The output of an SMC sampler with N particles on (1 : T ) time period is a collection of weighted
particles

{
W

(n)
T ,x

(n)
1:T

}
for n = 1, . . . , N , W (n)

T > 0,
∑N
n=1W

(n)
T = 1 which approximate the

posterior distribution of the states, p(x1:T |y1:T ), by a discrete distribution whose support points are
the particles. Thus the posterior expectation of any function g of the states can be approximated by

E[g(x1:T |y1:T )] ≈
N∑
n=1

W
(n)
T g

(
x
(n)
1:T

)
with an error rate of order OP (N−1/2).

The initial motivation of quasi Monte Carlo (QMC) is to use low discrepancy vectors instead of
unconstrained random vectors in order to improve the calculation of integrals via Monte Carlo. The
discrepancy D(u) of a sample of vectors u = u(1:N) is more precisely defined as the total variation
distance (TV)

D(u) = dTV (Pu, λ)

between the empirical measure of the sample u, Pu(·) = 1
N

∑N
n=1 1(u(n) ∈ ·) and the Lebesgue

measure λ. Recall that the TV distance between two probability measures P and Q is defined by
dTV (P,Q) = sup

A∈A
|P (A)−Q(A)|

where A is a set of measurable sets, for instance Borel sets.

The reason why discrepancy is of interest to Monte Carlo sampling is perhaps best exemplified through
the Koksma–Hlawka inequality which bounds the Monte Carlo error by a constant (depending on
the integrand) times the discrepancy of the sample used. Hence the discrepancy alone leads the
asymptotic error rate, hence the obvious aim of seeking lowest discrepancy. The best methods
produce discrepancy of order O(N−1+ε) for any ε > 0, which is of course better than the Monte
Carlo rate OP (N−1/2).

In order to utilize the potential of QMC in the context of SMC, Gerber & Chopin introduce a
sequential quasi Monte Carlo (SQMC) methodology. This assumes the existence of transforms Γt
mapping uniform random variables to the state variables. More specifically, it is assumed that (1) can
be rewritten as x(n)

0 = Γ0(u
(n)
0 ) to generate x

(n)
0 ∼ fX0 (dx

(n)
0 ), and as x(n)

1:t = Γt(x
(n)
1:t−1,u

(n)
t ) to

generate x
(n)
1:t |x

(n)
1:t−1 ∼ fXt (dx

(n)
1:t |x

(n)
1:t−1), where u

(n)
t ∼ U([0, 1)d). We show in the next section

that such a deterministic function Γt that is easy to evaluate is available in the context of Dirichlet
process mixture models, however at the cost of Markovianity.
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3 Sequential quasi Monte Carlo for Infinite Mixture Models

Nonparametric mixtures are commonly used for density estimation and can be thought of as an
extension of finite mixture models when the number of clusters is unknown. Observations y1:T

follow a DPM model with kernel ψ, ie y → ψ(y; θ) are probability density functions for any θ in a
parameter set Θ,

yt|G
i.i.d.∼

∫
ψ(y; θ)dG(θ), t ∈ (1 : T ),

where G is endowed with a Dirichlet process prior DP(α,G0) with precision parameter α and base
measureG0. The discrete structure of the Dirichlet process induces partitions on the observations y1:t

into clusters identified by the cluster labels xt, or allocation variables. They link each observation yt
to a mixture component θ∗xt

. For any t, y1:t are clustered into a set of kt ≤ t clusters of sizes nt,j ,
for j ∈ (1 : kt). The allocation variables can be interpreted as the states of y1:t in the context of
SMC. Note that they are discrete and elements of {1, . . . , kt}. The generalized Pólya urn scheme
(GPUS) is essentially a sequential formulation of this model: it describes the joint distribution
of the states x1:t by its sequence of prior predictive distributions p̃t,j = P(xt = j|x1:t−1) for
t ∈ (1 : T ). Interestingly, the posterior predictive distribution also takes the form of a GPUS
pt,j = P(xt = j|x1:t−1,y1:t). Both prior and posterior predictives, as well as details on the model,
are provided in Appendix, Section A.

Our SMC sampler follows similar lines as Fearnhead (2004). The specific resampling technique,
known to be unavoidable in sequential samplers, is detailed in Appendix, Section B. As stressed in
Section 2, the key ingredient of SQMC is the availability of a deterministic transform Γt to sample xt
given xt−1 with the use of an additional quasi uniform variable. Here, such a function is available,
however at the cost of Markovianity, thus using x1:t−1 instead of xt−1. This transform utilizes the
posterior predictive distribution of Equation 3 and takes the following form in our setting

Γt(x
(n)
1:t−1,u

(n)
t ) = min

{
j ∈ {1, . . . , k(n)t−1 + 1} :

j∑
i=1

p
(n)
t,i > u

(n)
t

}
for any particle n, where p(n)t,i is the associated GPUS weight (3) and with ut ∼ U([0, 1)) (see Arbel
and Prünster, 2015). Although the particles state-space dimension is growing with t, notice that this
second argument of the Γt transform remains a univariate uniform random variable. This is of crucial
importance for our methodology since SQMC samplers are known to break for large dimensional ut
(Gerber and Chopin, 2015). Thus, Γt relies on quasi uniform vectors u(1:N)

t ∈ [0, 1)N . Generating
such a vector is straightforward, for instance by adding a random uniform variable to a regular grid of
[0, 1) modulo 1, such as u(1:N)

t = u+ (0, 1/N, . . . , (N − 1)/N) mod.1, with u ∼ U [0, 1). This is
also faster than generating N uniform random variables required in the SMC setting, since it only
needs one such variable.

4 Impact of quasi Monte Carlo on diversity of the allocation variables

We compare some properties of the allocation variables trajectories x(n)
1:T , n = 1, . . . , N of DP normal

mixture models under three samplers: the non sequential Monte Carlo method (Gibbs sampler) of
Neal (2000) (MC), a sequential Monte Carlo method of Griffin (2015) (SMC) and our proposed
sequential quasi Monte Carlo method (SQMC)3. We run the three samplers on three simulated
datasets of size T = 200, respectively with heavy-tailed, skewed, and multimodal distributions (see
densities on Figure 1). The number of iterations for MC (after a burn-in period) and the number of
particles in both sequential samplers is set to the same value of N = 1000.

For the three distributions, the posterior mean obtained for the three methods have equivalent fit (see
left panel of Figure 1). However, we observe that the SMC method does not satisfactorily explore the
allocation space. In particular, we observe that a single path for the allocation vector x1:t is strongly
favored by this approach up to some t ≤ T . Using quasi random sequences is a simple way to get
around this problem by insuring at each step a good spread of the random sequence. In practice, this

3 The code is available upon request.
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Fig. 1: Left: Density fit; Right: Diversity index (PCA) for three samplers, non sequential Monte Carlo (MC),
sequential Monte Carlo (SMC) and sequential quasi Monte Carlo (SQMC). Top row: Heavy tailed
distribution (student with degree of freedom two); Middle row: Skewed distribution (log-Gamma);
Bottom row: Multimodal distribution with three well separated modes (mixture of normals).

makes a significant difference and we observe allocations x(n)
1:T that present closer behavior in terms

of dispersion to the one obtained with non sequential method. To measure that dispersion, we run a
principal component analysis (PCA) on the allocation vector x(n)

1:T , n = 1, . . . , N . The PCA gives
information on how different the trajectories are from one another. We represent on the right panel of
Figure 1 the proportion of variance explained by number of components in the PCA. For instance,
if the samples have similar allocation vectors, then most of the variance will be on few principal
components, yielding a high curve.

The first two examples, heavy-tailed and skewed distributions, cannot be written straightforwardly
as a mixture of normal kernels. Thus in these cases, we do not expect a clear clustering but some
heterogeneity in the sampled allocation vectors. On the contrary, the third example is exactly a
mixture of normal kernels, so there should be much less variability in the allocation vector here. From
the experiments, we observe that the diversity of the allocation trajectories under SQMC behaves
as one would expect: it is high in the first two examples, and moderate in the third. This feature
is not as clear for SMC. Additionally, having more diversity in the allocation vector is a sign of a
better exploration of the latent space. This diversity for SQMC is always higher than the one for
SMC, and is closer to the one obtained from a non sequential approach (MC), indicating that SQMC
outperforms SMC in terms of latent space exploration.

5 Discussion

We introduce sequential quasi Monte Carlo sampling for DPM models, and discuss the applicability
of the proposed methodology to a broader class of BNP mixture models. For these models, the
structure of the latent space is non standard for sequential methods. We show that favoring diversity
by using quasi random sequences improves the exploration of the allocation space.
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A Generalized Pólya urn schemes for infinite mixture models

The generalized Pólya urn scheme (GPUS) is essentially a sequential formulation of this model:
it describes the joint distribution of the states x1:t by its sequence of prior predictive distributions
p̃t,j = P(xt = j|x1:t−1) for t ∈ (1 : T ). For a Dirichlet process prior DP (α,G0) with precision
parameter α and base measure G0

p̃t,j ∝
{
nt−1,t for j ∈ (1 : kt−1)
α for j = kt−1 + 1.

(2)

The posterior predictive distribution also takes the form of a GPUS pt,j = P(xt = j|x1:t−1,y1:t)
with

pt,j ∝
{
nt−1,jψj(yt|x1:t−1) for j ∈ (1 : kt−1)
αψ0(yt) for j = kt−1 + 1

(3)

where

ψj(yt|x1:t−1) =

∫
ψ(yt|θ)

∏
l∈st−1,j

ψ(yl|θ)G0(dθ)∫ ∏
l∈st−1,j

ψ(yl|θ)G0(dθ)

and

ψ0(yt) =

∫
ψ(yt|θ)G0(dθ)

where one denotes the allocation sets by st,j = {l ≤ t : xl = j}. The weights ψj(yt|x1:t−1)
and ψ0(yt) can be calculated in conjugate cases and approximated otherwise. Note that posterior
predictive distributions in the form of GPUS are also available for broader classes of random
probability measures including the two-parameter Poisson–Dirichlet process (Pitman and Yor, 1997)
and normalized random measures with independent increments (Regazzini et al., 2003; James et al.,
2009). Algorithms are detailed by Griffin (2015).

The most widespread setting (Escobar and West, 1995; Fearnhead, 2004), that we also pursue here,
considers Gaussian mixtures with a Gaussian base measure G0. More specifically, we consider
location scale mixtures where the hierarchical representation of the model assumes that observations
in each cluster are draw iid from Gaussian distributions N (µ, σ2). The conjugate prior for θ = (µ, s)
where s = σ−2 has the conditional representation s ∼ Gamma(a, b) and µ|s ∼ N (η, τ/s), with
fixed hyperparameters a, b, η and τ . Posterior distributions of µj and sj for cluster j parameters, as
well as the posterior probability of the states x1:t are given by Fearnhead (2004).

Marginalising out the location scale parameter θ has been shown to improve substantially the
efficiency of sequential samplers (Chen and Liu, 2000). Indeed, it allows us to consider only the
allocations x1:t as the states, thus removing the part on θ which would make our QMC methodology
more cumbersome.

B Resampling algorithm

A typical feature of sequential methods is that the weights
{
W

(n)
t

}
can become very skewed as

t increases, ie most of the particles weights tend to zero while only some remain active, which
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leads to an increasing variance and so-called particle degeneracy. A popular criterion for measuring
degeneracy is the effective sample size (ESS) defined by(

N∑
n=1

(
W

(n)
t

)2)−1
.

which takes on values in (1, N), and it is common practice to resample the particles when the ESS
falls below a threshold. Once resampled, the particles are all given the same weight (1/N). It is
common to require the resampling to be unbiased, meaning that the expected value of any function of
the particles is unchanged by the resampling. The typical resampling technique consists in sampling
particles from x

(1:N)
1:t using the multinomial distribution Multinomial

(
N ;W

(1:N)
t

)
, which leads to

duplication of particle values with positive probability (see for instance Gordon et al., 1993). In
the case of discrete (finite) state-space, specific resampling schemes have been tailored in order to
take advantage of the finiteness of the states with the aim of reducing wasteful particle duplication.
One defines as ‘putative particles’ the set of Mt =

∑N
n=1 k

(n)
t−1 + 1 possible particles at step t.

Computing their weights is feasible, and sampling from them instead of from the N < Mt particles
of step t− 1 improves efficiency from a Rao-Blackwell point of view. However, keeping track of all
possible trajectories till time t is a task beyond computational capabilities even for limited t, since the
trajectories number is equal to the number of partitions of a set of size t which explodes essentially
as tt. Hence resampling appears to be unavoidable. The approach that we follow consists in the two
steps

• Computing the normalized weights of the Mt putative particles,
(
x
(n)
1:t−1, j

)
, for n ∈ (1 : N)

and j ∈ (1 : (k
(n)
t−1 + 1)), by

W
(n)
t,j ∝W

(n)
t−1

p
(
x
(n)
1:t−1, j|y

(n)
1:t

)
p
(
x
(n)
1:t−1|y

(n)
1:t−1

)
where the ratio in the right hand side, also known as the incremental weight, can be evaluated up
to a normalizing constant in conjugate models.
• Choosing N among the Mt by the multinomial

Multinomial
(
N ;
(
W

(n)
t,j , n ∈ (1 : N), j ∈ (1 : (k

(n)
t−1 + 1))

))
.
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