Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2014

Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

Nicole Spillane
Frédéric Nataf
Clemens Pechstein
  • Fonction : Auteur
  • PersonId : 911932
Robert Scheichl
  • Fonction : Auteur
  • PersonId : 899364

Résumé

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property.

Dates et versions

hal-01405538 , version 1 (30-11-2016)

Identifiants

Citer

Nicole Spillane, Victorita Dolean, Hauret Patrice, Frédéric Nataf, Clemens Pechstein, et al.. Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numerische Mathematik, 2014, 126 (4), pp.741-770. ⟨10.1007/s00211-013-0576-y⟩. ⟨hal-01405538⟩
987 Consultations
0 Téléchargements

Altmetric

Partager

More