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SUMMARY

This paper deals with the numerical simulation of the quicksand phenomenon using a coupled Discrete 
Elements – Lattice Boltzmann hydromechanical model. After the presentation of the developed numerical 
model, simulations of ascending fluid flow through granular deposits are performed. The simulations show 
that the quicksand actually triggers for a hydraulic gradient very close to the critical hydraulic gradient 
calculated from the global analysis of classical soil mechanics, that is, when the resultant of the applied 
external pressure balances submerged weight of the deposit. Moreover, they point out that the quicksand 
phenomenon does not occur only for hydraulic gradients above the critical hydraulic gradient, but also in 
some cases with slightly lower gradients. In such cases, a more permeable zone is first gradually built at the 
bottom of the deposit through a grain rearrangement, which increases the hydraulic gradient in the upper 
zones and triggers the phenomenon. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords : granular soils; discrete element method; mollecular dynamics; lattice Boltzmann; fluid-solid

interaction; quicksand

1. INTRODUCTION

When a sand deposit is submitted to an upward hydraulic gradient, the grains undergo hydrodynamic
forces essentially oriented in the direction of the applied gradient. These forces grow with increasing
hydraulic gradient and may lead to the destabilization of the deposit by carrying the grains upward.
This is the so-called quicksand phenomenon. Classical soil mechanics have been interested in this
phenomenon in order to estimate the critical hydraulic gradient which is the minimum gradient that
triggers quicksand. This critical gradient is thus estimated by expressing the balance between the
resultant of external pressures and the submerged weight of the deposit.

The numerical simulation could bring more understanding on the phenomenon as it allows the
visualization of its development for different hydraulic gradients. The most appropriate methods in
this context are those based on the discrete element method (DEM) due to the discrete nature of the
sand material. This method allows the modeling of the mechanical behavior of granular materials
through the consideration of external forces acting on the grains and mutual granular interactions.
For dynamic phenomena in saturated sands as the case of quicksand, the main external forces are
obviously hydrodynamic forces due to fluid flows. Therefore, the DEM should be coupled with
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other appropriate methods for the evaluation of such forces. Within this context, several numeri-
cal approaches have been developed for the simulation of phenomena relative to saturated granular 
materials. The proposed methods may be classified in two essential categories; the first category 
includes methods in which the cells resulting from the discretization of the fluid domain are much 
larger than the grain size, the information within each cell is treated as local average and used to esti-
mate the hydrodynamic forces [1–3]. Although these methods are developed in order to reduce the 
computational cost, they may fail on description details of intergranular flows, which can have sig-
nificant effects on the overall behavior. The methods of the second category are based on the detailed 
discretization of intergranular spaces and are usually named DNS-DEM approaches. These meth-
ods use commonly the Navier-Stokes equations discretized through finite element or finite volume 
techniques [4–6]. Simulations based on these methods seem to be very good, however, 3D modeling 
using such discretizations remains computation demanding and is therefore very expensive.

In this work we use the DEM coupled with the Lattice Boltzmann method (LBM) for the fluid’s 
modeling. This method is based on a detailed discretization of intergranular spaces and seems to 
be less expensive. Moreover, it has shown considerable capacity in the modeling of flows through 
porous media such as soils [7]. Although the use of the LBM is convenient for flows with straight 
boundaries, curved and moving boundaries that are usually involved in granular materials modeling, 
require special treatments. Therefore, different models are proposed to simulate particle-fluid inter-
actions. The earliest models [8, 9], are based on the ‘Standard Bounce Back’ (SBB) rule to describe 
the non-slip boundary condition at the fluid-solid interface. The momentum exchange technique is 
then used to compute the interaction fluid-solid force. By using the standard bounce back rule the 
solid boundary is enforced to be located at the midpoints of the lattice links, which are cut by the 
solid particle boundary. Therefore, for a moving solid the boundary does not move continuously and 
smoothly in space; instead it will jump from one midpoint to another causing fluctuations on the 
computed interaction forces. Despite this shortcoming, this method has been successfully applied to 
the analysis of internal erosion in granular media [10, 11].

Another approach to consider fluid-solid interaction was proposed by Noble and Torczynski [12] 
and based on a modified collision operator for the fluid nodes that are partially covered by the solid. 
This method involves the fluid filling ratio of the voxel surrounding the fluid boundary node which 
is computed through the partial voxel’s volume covered by the solid. This method has been widely 
used to model moving solids in a fluid [13–15]. It was also used in the coupled DEM-LBM model 
proposed by Feng et al. [16].

Following an alternative approach, other researchers have proposed the Interpolated Bounce Back 
(IBB) conditions [17–21]. Such conditions use the parts covered by the solid of the lattice links cut 
by the boundary. Because they are based on a computation of lengths (parts of links covered by 
the solid) rather than volumes as in the method of Noble and Torczynski [12], these conditions are 
easier and more effective in practice. Using the IBB condition proposed by Yu et al. [19], a coupled 
DEM-LBM 2D model have been developed to analyze the surface erosion in a particle bed [22].

In the present work, we have develop a 3D coupled LBM-DEM model based on the IBB rule pro-
posed by Bouzidi et al. [20]. The model was first validated and then used to simulate the quicksand 
phenomenon.

In the remainder of this paper, the methods DEM and LBM are first described, then the procedure 
of their coupling is presented together with some technical aspects for the implementation. After 
the validation part, simulations of the quicksand phenomenon are presented. The paper closes by 
discussing the different obtained results and drawing some concluding remarks.

2. A DISCRETE ELEMENT METHOD

The Discrete Element approach models the grains of a granular material by independents ele-
ments, each element interacts with its neighbors at the contact points. The overall deformation of 
the medium is mainly due to the relative movements of the grains assumed as rigid bodies. There-
fore, the behavior of the medium can be described through the integration of the dynamic equations 
applied to each element. Such equations are written by taking all external forces into account, such



as the contact forces, the gravitational forces and the hydrodynamic forces. Because these forces 
can change abruptly with time, the integration should be performed in an incremental manner using 
small enough time steps.

The dynamic of a grain i is governed by Newton’s second law, consequently, the equations of 
translational and rotational motions are´

mi ERxi D
P
j
EF contactij C EF

hyd
i Cmi Eg

Ii ER'i D
P
j
EM contact
ij C EM

hyd
i

(1)

wheremi and Ii are the mass and the mass moment of inertia of the grain, ERxi and ER'i are accelerations
of translation and rotation, EF contactij is the interaction force applied by a grain j on the grain i ,
EF
hyd
i is the hydrodynamic force applied on the grain i and Eg is the acceleration of gravity. EM contact

ij

and EM hyd
i are the torques caused by the contact forces and the hydrodynamic force on the grain i ,

respectively.
The molecular dynamics method originally proposed by Cundall and Strack [23] is implemented

in this work. This method allows a slight overlap of the grains which is used to calculate the contact
forces through a contact low. The grains are assumed spherical in 3D and circular in 2D modeling.
At each time step, the contacts are first detected by examining the normal distance between grains
Dn (Figure 1). Two grains are in contact if they overlap (Dn � 0).

A contact force applied by a grain j on a grain i can be decomposed into normal and tangential
components. The normal force is calculated here using the viscoelastic linear model (Figure 2a):

EFn D .�knDn � �nVn/:En (2)

Figure 1. Normal distance between two grains.

Figure 2. Modeling of the contact interaction forces; (a) the normal force model, (b) the tangential force
model.



where Vn is the normal velocity of the grain j relative to the grain i , kn, and  �n are the elastic and 
the viscous damping constants, respectively, and nE is the unit vector pointing from i to j :

En D .Exj � Exi /=kExj � Exik (3)

in which Exi and Exj are the positions vectors of the grains.
The tangential force is computed using the simple frictional Coulomb model (Figure 2b):

EFs D �dFn
EVs

k EVsk
(4)

where EVs is the tangential velocity of the grain j relative to the grain i and �d is the dynamic
coefficient of friction.

It should be noted that the choice of the elastic and the viscous damping constants (kn and �n)
is not arbitrary, in fact kn must be high enough to avoid substantial overlap that affects the overall
behavior and �n that controls the damping in the material, is selected such that the restitution coeffi-
cient �n defined as the ratio of the normal velocities at the start and the end of the contact is between
0 and 1. Hence, it is usual in practice to select �n and calculate �n from the relation [24]:

�n D �
2log.�n/

p
knmeffq

�2 C .ln�n/
2

(5)

where meff D mimj =.mi Cmj /, mi and mj are the masses of the grains in contact.
Once the contact forces and the other external forces acting on a grain are obtained at a discrete

time t , accelerations are calculated through the dynamic equations (Eqs. (1)), then integrated to
obtain the kinematic variables of the grain at time .t C�t/. Considering that accelerations are not
constant during a time increment�t , special algorithms are used to predict accurately the kinematic
variables, such as the Velocity-Verlet algorithm [25].

Finally, it is important to note that in order to correctly describe the evolution of the contact
force, the time step �t should be sufficiently small compared with the contact duration tc . It is
usually taken as �t � tc=10. For the viscoelastic model the contact duration can be approximated
by tc D �

p
meff =kn, so the maximum time step is taken as:

�tmax � 0:1�
p
m=kn (6)

where m is the smallest effective mass in the system.

3. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS MODELING

3.1. Standard formulation

In the LBM, one solves the kinetic equation for the particle distribution function f .Ex; E�; t/, which
depends on the spatial position Ex, the velocity of particules E� , at the time t . The macroscopic quan-
tities of interest such as mass density � and momentum density �Eu are weighted averages of the
distribution function:

� D

Z
fd E� .a/ �Eu D

Z
E�fd E� .b/ (7)

A popular kinetic model adopted for the method is the so-called BGK (Bhatnagar, Gross, and Krook)
model. In this model the collisions term in the Boltzmann equation is simplified using the simple
relaxation time approximation:

@f

@t
C E�: Erf D �

1

	

�
f � f .0/

�
(8)



where f .0/ is the equilibrium distribution function (Maxwell-Boltzmann equilibrium function) and 
	 is the relaxation time. To solve for f numerically, Eq. (8) is discretized twice: a first discretiza-
tion with respect to the time involving a time increment �t and a second discretization based on the 
velocity space by choosing a finite set of velocity vectors that particles can have. The continuous 
particle distribution function f .Ex; E�;  t /  becomes therefore, a set of discrete distributions fi .Ex; t /
associated with the chosen velocity vectors eEi .

As an illustration, we present hereafter the D2Q9 model (2 Dimensions, 9 Velocity vectors) which 
is widely used for 2D simulations. The detailed model’s derivation can be found in [26]. As sketched 
in Figure 3a, the discrete velocity vectors are chosen as follows : eE0 D c.0; 0/; eE1 D c.�1; 1/; eE2 D 
c.�1; 0/; eE3 D c.�1; �1/; eE4 D c.0; �1/; eE5 D c.1; �1/; eE6 D c.1; 0/; eE7 D c.1; 1/; eE8 D c.0; 1/, 
where c is a characteristic speed of the model.

The discretizations lead to the LBGK (Lattice BGK) equation, that describes the incremental
evolution of the discrete particle distributions fi :

fi .Ex C Eei�t; t C�t/ � fi .Ex; t/ D �
1




�
fi .Ex; t/ � f

.eq/
i .Ex; t/

�
(9)

where f .eq/i is the discrete equilibrium distribution given as:

f
.eq/
i D �wi

�
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3
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with wi being the weighting factors; w0 D 4=9, w2;4;6;8 D 1=9, w1;3;5;7 D 1=36, 
 is the
dimensionless relaxation time such as:

1



D
�t

	
(11)

Thus, the mass and the momentum densities (Eqs. (7)) can be rewritten as:

� D

Q�1X
iD0

fi .a/ �Eu D

Q�1X
iD0

Eeifi .b/ (12)

where Q is the number of the chosen discrete velocity vectors.
Equation (9) describes the incremental evolution of the discrete particle distributions fi at the

nodes of a regular lattice having a space step �x D c�t (Figure 3b). Hence, if the discretization’s
step of the space is selected, the characteristic speed of the model is defined by:

c D
�x

�t
(13)

Figure 3. (a) D2Q9 model, (b) Flow domain discretization using the D2Q9 model.



The discrete density distributions fi are calculated at each time step according to Eq. (9) as follows

collision stepW f outi .Ex; t/ D fi .Ex; t/ �
1




�
fi .Ex; t/ � f

.eq/
i .Ex; t/

�

streaming stepW fi .Ex C Eei�t; t C�t/ D f
out
i .Ex; t/

where f outi represents the post-collision density distribution.
After the streaming step, the discrete distributions fi are obtained at each node, consequently,

the mass and momentum densities can be calculated at each node too. The fluid pressure p can be
computed from the mass density through the equation of state p D c2s �, where cs is the sound speed
of the model related to the lattice model’s speed c as cs D c=

p
3.

3.2. Discretization parameters for incompressible fluid flow simulations

It can be shown through the Chapman-Enskog analysis [27] that LB models recover the incompress-
ible Navier-Stokes equations when the density fluctuation of the fluid is assumed to be negligible
and the equivalent kinematic viscosity is given by:

� D
1

3
c�x

�

 �

1

2

	
(14)

Therefore, in order to correctly simulate an incompressible fluid flow, one must ensure that the
density fluctuation is sufficiently small. This can be achieved using a model in which the sound
speed cs is larger enough than the maximum velocity of the simulated flow umax , that is, when the
‘computational’ Mach number defined as Ma D

umax
cs

is sufficiently small. In practice, Ma should
be maintained, smaller than 0.1. The discretization parameters are �x, �t , and 
 , if the viscosity
of the fluid is given, only two of these parameters can be chosen independently because they are
related through Eq. (14). In practice, it is often convenient to choose 
 and �x as two independent
parameters and�t is derived from Eq. (14). This is due to the fact that 
 is largely responsible for the
numerical stability of LB simulations and �x is often dictated by the space description precision.
The BGK-LBM is theoritically convergent for 0:5 < 
 <1, in fact, this range of 
 corresponds to
positive viscosities (Eq. (14)). In practice 
 is typically chosen in the range �0:5 ; 3�.

3.3. Solid moving boundary treatment

Boundary conditions are introduced in LBM in terms of distribution functions fi that are constructed
from the imposed physical boundary conditions such as pressure and velocity. We present in the
following the treatment of a solid moving boundary, because it is the principal one encountered in
granular materials hydromechanics. Details about other boundary conditions in the LBM can be
found in the literature [28]. A simple way to represent solid obstacles such as solid particles in a
LB dicretization, is to consider them as composed of grouped sets of pixels (voxels in 3D) whose
centers are lattice nodes (Figure 4). We denote ‘fluid nodes’ the nodes that are in the fluid domain
and ‘solid nodes’ the ones covered by solid obstacles.

A solid boundary node is a solid node having at least one link with fluid nodes. The fluid-solid
interaction is taken into account through the boundary nodes. The intenal solid nodes are excluded
from the computation process. It is assumed that there is no slip of the fluid along a solid surface,
that is, the fluid particles in contact with a solid surface have the velocity of this surface at the
contact point. This condition could be imposed in LBM using the bounce back scheme. This means
that any incoming fluid particle from a fluid node to a solid node will be reflected back to the
node it comes from. The momentum of the reflected particle may be different from the momentum
of the streamed one, it depends on the position and the velocity of the solid boundary. Therefore,
at the solid boundary nodes, instead of the collision step, the distributions that will be used in
the streaming step are constructed using the post-collision distributions at neighboring fluid nodes.



Figure 4. Representation of a moving grain on the lattice grid.

In this work, we use the IBB scheme proposed by Bouzidi et al. [20]. For a linear interpolation, the
post-collision distributions to be assigned to the solid boundary nodes before the streaming step are8<

: f
out
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(15)

where EeOi refers to the opposite direction of the direction Eei (EeOi D �Eei ), Euw is the velocity of the
boundary, �w is the fluid mass density at the boundary and q defines the fraction of the boundary
intersected link located in the fluid domain and calculated by referring to Figure 4 as:

q D
k Exf � Exw k

k Exf � Exs k
(16)

3.4. Approximation of the distributions on the nodes regaining the fluid domain due to a solid
boundary movement

When a solid boundary moves, there are grid nodes that move from the solid region into the fluid
region to become fluid nodes (indicated by � in Figure 4). Therefore, one must specify the dis-
tribution functions applying to these nodes. There are several techniques to compute values of the
unknown distribution functions in this context, including the extrapolation from neighboring nodes,
or by approximation as equilibrium distributions, using the velocity of the solid at the considered
node just before it leaves the solid region with an averaged mass density. Or alternatively, by sys-
tematically updating the distribution functions in the solid nodes by performing collisions as in the
fluid nodes. It seems that all these schemes produce similar results [29]. In this work, unknown
distributions are approximated as the equilibrium distributions computed using the averaged fluid’s
density in the whole system and the velocity of the solid particle at the specified node’s position just
before it leaves the solid region.

3.5. Hydrodynamic force on a grain, momentum exchange method

Based on the bounce back scheme, the hydrodynamic forces acting on an obstacle can be obtained
through the momentum exchange method. The momentum change of the bounced fluid particle is
Œf out
Oi

.Exs; t /EeOi � f
out
i .Exf ; t /Eei ��x

3. Then, the average force transmitted over a time step �t to the
solid particle, along a boundary link ` defined by the boundary nodes Exf and Exs (Figure 4) is:



EF` D �
�x3

�t

h
f outOi
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i .Exf ; t /Eei

i
(17)

The total hydrodynamic force exerted on the grain can be calculated by summing up the forces from
all the related boundary links:

EF hyd D
X
`

EF` (18)

The force EF` induces a torque around the grain’s center of mass calculated as:

EM` D Er` � EF` (19)

where Er` D
ExfCExs
2
� ExG . Likewise, the total hydrodynamic torque is obtained by summing over all

the boundary links:

EM hyd D
X
`

EM` (20)

4. DEM AND LBM COUPLING

4.1. Coupling procedure

The coupling of the two methods involves the use of the DEM by introducing the hydrodynamic
forces as external forces in the dynamic equations of the grains (Eqs. (1)). These forces are obviously
dependent of grains motion, therefore, they should be re-evaluated continuously. The space LB
discretization is dictated in this case by the diameters of the granular material particles. That is,
solid particles should be discretized with a sufficient resolution. For moderate Reynolds numbers,
Yu et al. [28] have shown that in order to obtain an accurate evaluation of the hydrodynamic force
on a grain, the discretization’s step (�x) must be lower than about one-tenth (1=10) of the grain
diameter in the 2D modeling (circular grain) and about one-seventh (1=7) of the grain diameter in
the 3D case (spherical grain).

As mentioned in the previous section, the time step in LBM (noted in the following �tLB )
depends on the other discretization parameters and calculated from Eq. (14). �tLB is often larger
than the maximum value DEM time step noted here �tDEmax and calculated from Eq. (6). There-
fore, one should perform a number nd of DEM computation steps then perform one LB computation
step. This can be carried out by selecting the DEM time step �tDE 6 �tDEmax , such that
nd�tDE D �tLB , with the integer number nd may be computed as:

nd D Int

�
�tLB

�tDEmax

	
C 1 (21)

then the DEM time step is set:

�tDE D
�tLB

nd
(22)

It should noted finally that the model presented in this manuscript does not account for any gravity
effect on the fluid. The effect of buoyancy could be adequately computed by re-scaling the specific
weight of the grains without changing their inertial properties. This can be achieved by multiplying
the gravitationnal acceleration applied to the grains by the coefficient .1 � �w=�s/, where �w and
�s are the fluid and solid densities, respectively.



Figure 5. D3Q19 Lattice Boltzmann model, each arrow corresponds to a velocity between the central node
and one of the 18 neighboring nodes.

4.2. Numerical inspection

The applications presented here are focused on the validation of the hydrodynamic forces computa-
tion procedure using 2D or 3D models. For 2D cases the D2Q9 Lattice Boltzmann model is used,
whereas in 3D we employ D3Q19 model whose the discrete velocity vectors are (Figure 5):

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

Ee0 D c.0; 0; 0/
Ee1 D c.�1; 0; 0/; Ee2 D c.0;�1; 0/; Ee3 D c.0; 0 � 1; /
Ee4 D c.�1;�1; 0/; Ee5 D c.�1; 1; 0/; Ee6 D c.�1; 0;�1/
Ee7 D c.�1; 0; 1/; Ee8 D c.0;�1;�1/; Ee9 D c.0;�1; 1/
Ee10 D c.1; 0; 0/; Ee11 D c.0; 1; 0/; Ee12 D c.0; 0; 1/
Ee13 D c.1; 1; 0/; Ee14 D c.1;�1; 0/; Ee15 D c.1; 0; 1/
Ee16 D c.1; 0;�1/; Ee17 D c.0; 1; 1/; Ee18 D c.0; 1;�1/

(23)

where c is the characteristic speed of discretization. The discrete equilibrium distributions f .eq/i

have the same expressions as in the D2Q9 model (Eq. (10)) with the weight factors are:

wi D

8<
:
1=3 pour i D 0;
1=18 for short velocity vectors like : c.1; 0; 0/;
1=36 for long velocity vectors like : c.1; 1; 0/:

(24)

4.2.1. Force and torque on a sphere in a Poiseuille flow. In this application, we compute the drag
force and the torque applied on a stationary spherical grain in a flow between two parallel plates at
low Reynolds Number. In addition, analytical approximate solutions established by Wakiya (1957)
are used. These solutions give the drag force and the torque applied on a fixed sphere in a creeping
Poiseuille flow, that is, a flow between two infinite parallel plates at very low Reynolds number.

The configuration of the problem is shown in figure (Figure 6(a)) and the expressions of
hydrodynamic force and torque applied on the sphere are given as follows [30]:
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where � is the fluid’s dynamic viscosity, r is the sphere’s radius, Uh is the fluid velocity at position
h (indicated in Figure 6) for a Poiseuille flow (without the sphere), it is expressed:



Figure 6. (a) Fixed spherical grain in a 3D Poiseuille flow, (b) Periodic cells used in the modeling.

Uh D
1

2�

�
hH � h2

� �
�
dp

dx

	
(27)

where dp
dx

is the pressure gradient in the x direction.
In this application, the flow is driven by introducing an acceleration ax in the x direction. The

equivalent pressure gradient is then dp
dx
D ��f ax , �f being the fluid density. The acceleration is

introduced according to the procedure given [28] and selected to get the desired particulate Reynolds
number defined as:

Re D
Uhd

�
(28)

where d D 2r is the sphere’s diameter and � is the fluid’s kinematic viscosity.
As the problem is infinite, it is convenient to implement periodic boundary conditions in x and

y directions. The simulated problem is then a periodic cell whose dimensions are the periods in the
two directions Dx and Dy (Figure 6(b)).

The effect of the discretization size on the computed forces is also examined in these simulations.
The discretization size is given by the sphere’s radius in LB units Nr D r=�x . Three series of
simulations are then performed for Nr D 5:50, Nr D 3:52 and Nr D 3:08.

The geometrical parameters used in the simulation are set to r=H D 0:11, h=H D 0:25. Periods
are the same in both directions and set Dx D Dy D D. The period D is increased gradually in
order to show its effects on the computed force and torque. The dimensionless relaxation time is set
in all simulations to 
 D 0:7 and the Reynolds number is chosen equal to 0.0006, which is in the
range of Stokes flow.

Figures (7 and 8) show the evolution of the computed normalized drag force and normalized
torque when enlarging the cell size with respect to the sphere’s radius. The normalized drag force
and torque are defined as:

NF hyd D
F hyd

6��rUh
(29)

NM hyd D
M hyd�

8
3
��r2Uh

�
r
h

�� (30)

The dashed-line curves through the data are provided to guide the eye. It is clear that the com-
puted drag force and torque increase with increasing distance between periodic spheres and tend to
Wakiya’s solution for large periods.

The reduction of the discretization size has almost no effect on the computed force, however, for
the computed torque, this reduction causes a slight overestimation. Neverthless, the resulting errors



Figure 7. Hydrodynamic force vs. cell’s size.

Figure 8. Hydrodynamic torque vs. cell’s size.

remain low for the tested sizes. This is consistent with the conclusion drawn by Mei et al. [31]
namely the computed force on a sphere is accurate when the radius is greater than 3.5 lattice spaces.

4.2.2. Hydrodynamic force on a moving sphere. In the previous section, we have checked the
validity of the model for a fixed sphere in a Poiseuille flow. This application, however, does not
involve the movement of the solid across the lattice. Thus, in this section, we compute the hydro-
dynamic force on a moving spherical grain in a channel bounded by two parallel plates. The
geometrical configuration of the problem is similar to that of the previous section, with the speci-
fications r=H D 0:11, h=H D 0:5, Dy=r D 6 and Dx=r D 45. At time t D 0, the fluid in the
channel is at rest and the sphere is impulsively started to move with a constant speed us D U0 in
x-direction. The sphere’s initial position is .x0; y0; ´0/ D .Dx=10;Dy=2;H=2/.

This problem should be equivalent to the following one: the channel with the fluid is moving at
a uniform speed �Ux , at time t D 0, the sphere is placed at its position and maintained at rest, the
speed of the lower and upper plates being maintained uW D �U0.

Therefore, in the first problem the sphere is moving relatively to the lattice grid, whereas in the
second one the fluid is flowing but the sphere is at a fixed position relatively to the lattice grid. The
following dimensionless parameters are used for the simulations: the sphere’s radius in LB units
is Nr D 5:5, the dimensionless imposed velocity is NUx D Ux=c D 0:04 and the dimensionless
relaxation time is 
 D 0:63. The flow’s characteristic Reynolds number is then Re D 10.



Figure 9. Drag force vs. time.

Figure 9 shows the drag force acting on the sphere over time. The plot is presented in a dimen-
sionless form where the dimensionless drag force is computed as NF hyd D F hyd=.�2xc

2�/ and the
time is given in LB units, that is, the number of time steps performed. Two curves are shown, the
first one is a fluctuating line (thin line) corresponding to the case of an impulsively started sphere
movement at a constant velocity NuG D 0:04with the channel being at rest ( NuW D 0), the second one
is a smouth line (thick line), corresponding to the inverse case where the sphere is at rest ( NuG D 0)
and the channel starts moving with the velocity NuW D �0:04.

These curves show that the drag force variation is the same for the two cases. On the whole,
the fluctuations observed on the computed drag force in the case of the moving sphere are small
compared with the mean value of the force at any time. These fluctuations can be attributed to the
approximation used in the computation of the distributions at the nodes joining the fluid domain due
to the grain movement (as discussed in section 3.4).

4.2.3. Sedimentation of two particles ‘drafting, kissing, and tumbling’. The two validations per-
formed earlier do not involve the effective DEM-LBM coupling. In this application, we simulate the
sedimentation of two solid particles in a column of fluid. It is known that two particles dropped close
to each other in a Newtonian fluid will undergo drafting, kissing, and tumbling as demonstrated
experimentally by Fortes et al. [32]. This phenomenon has also been captured by numerical simula-
tions using different methods in two and three dimensions [14, 15, 33–35]. Because of its clarity in
visualization, a 2D simulation is performed here. We replicate a problem solved by Patankar et al.
[34, 35], using the finite element method based on the fictitious domain method. This problem was
resolved later by Feng and Michaelides [14] in order to validate their immersed boundary-lattice
Boltzmann method.

The channel is 2 cm wide (x-direction) and 8 cm high (y-direction). The fluid has the same prop-
erties as water with viscosity 0:01 g=cm:s and density 1 g=cm3. The particles density is 1:01 g=cm3

, and the radii of the particles are 0:1 cm. Initially, the first particle is shifted with 0:001 cm from
the channel’s center and at a height of 7:2 cm, the second particle is at the channel center at a height
of 6:8 cm. The two particles start settling in the y-direction, due to the gravity force. The relaxation
time is set to 
 D 0:75 and the computational domain is discretized to 200 � 800 lattice units, the
radius of each particle is then 10 lattice units.

Figure 10 shows the positions of the particles at different times. Fixed straigth lines on the par-
ticles are represented to show their rotations during the sedimentation. It can be observed that the
drafting, kissing, and tumbling are quite well captured by the LBM-DEM simulation. Qualitatively,
the sedimentation process is almost the same as that observed by Feng and Michaelides [14].

The longitudinal velocities during the sedimentation process are plotted in Figure 11 together
with those obtained by Feng and Michaelides [14] and Patnakar [35].



Figure 10. Numerical simulation of two circular particles sedimentation at different time stages.

Figure 11. Evolution of the particles longitudinal velocities vs. time.

This graph shows a good agreement in the velocity evolution obtained by the three methods. It
can be noted that the different phases of the phenomenon occur at nearly identical times for the
three methods. From a quantitative point of view, the graph shows small differences between the
results of the three methods during the two first phases, that is, the drafting and the kissing phases,
but from the start of the tumbling phase (at time t � 2:4 s on the graph) the difference becomes
more significant. Feng and Michaelides [14] in a comparison of their results with those of Patnakar
[35], attributed the notable difference that arises from the start of the tumbling phase to the physical
instability of the tumbling’s initiation.

5. QUICKSAND PHENOMENON SIMULATIONS

Before analyzing the simulations, it should be noted that the presented model was previously used
in a simplified form to estimate the critical hydraulic gradient corresponding to the quicksand onset
[36, 37]. This gradient was estimated through the analysis of the evolution of the vertical stress in
a deposit of grains subjected to an increasing hydraulic gradient. The obtained results were very
close to the ones calculated through the global analysis of classical soil mechanics. In that work, the
hydrodynamic forces acting on the grains were assumed to be proportional to the applied gradient.
As a consequence, they are computed for a single value of the hydraulic gradient, then obtained
by proportionality for any applied gradient. For this purpose, no relative movement between the
grains is allowed until the lifting of the deposit occurs. Therefore, it was not possible to visualize
the deposit after the boiling onset.



To better understand the micromechanical mechanisms that occur in the quicksand phenomenon, 
we present the simulations of grain deposits subjected to ascending water flows under hydraulic 
gradients near the critical hydraulic gradient.

5.1. 3D quicksand simulations

As the phenomenon is 3D, the first simulations are performed through a 3D modeling. We con-
struct polydisperse granular deposits with periodic boundaries in both horizontal directions using 
the DEM. The deposits are composed of spherical grains having diameters that follow the cumula-
tive beta distribution [38], with maximum and minimum diameters of 0.4 and 0:8 mm, respectively. 
Once a grain deposit is built, it is placed into a water column of the same section and of larger 
height, then subjected to the hydraulic gradient by imposing a pressure difference between the hor-
izontal lower and upper boundaries. For this purpose, we employ the pressure boundary conditions 
developed by Zou & He [39] and based on the assumption the bounce back of non-equilibrium dis-
tribution. Note that the details of these conditions for the 3D case are not given in this reference, 
their implementation procedure for the D3Q19 model is therefore presented in Appendix. On both 
horizontal directions, periodic conditions are implemented on the water flow.

The unit weight and kinematic viscosity of water are taken as �w D 10 kN=m3 and � D 10�6m2, 
respectively, while the unit weight of solid grains �s is set to 26 kN=m3.

Starting from its classical expression, the hydraulic gradient could be written as:

i D
� 0

�w

�pS

W 0
(31)

where � 0 is the submerged unit weight of the soil, �p is the imposed pressure drop between the
lower and upper horizontal surfaces of the deposit, S and W 0 are the horizontal section and the
submerged weight of the deposit, respectively. The product�pS represents the resultant of external
pressures applied to the deposit. With increasing �p, the quicksand phenomenon triggers when the
resultant of external pressures balances the submerged weight of the deposit, that is, �pS D W 0,
therefore, the critical hydraulic gradient is ic D

� 0

�w
and the applied hydraulic gradient could be

written in terms of the critical hydraulic gradient as

i D ic
�pS

W 0
(32)

As S andW 0 are fixed (and characterize the deposit), it results from Eq. (32) that in order to impose
a fraction of the critical hydraulic gradient, the only parameter to select is the pressure drop �p. It
should be noted that W 0 is calculated as the sum of the submerged grain weights.

Hereafter an example of a 3D quicksand simulation is described. The deposit consists of 100
grains, periodically disposed in both horizontal directions with a period of 2:4 mm. The discretiza-
tion steps in the horizontal directions are 40�x � 40�x, so that the diameter of the smallest grain
is discretized in 6.67 space steps (�x).

In order to analyze the deposit’s behavior when varying the applied hydraulic gradient, the deposit
is subjected to different gradients near the critical hydraulic gradient. It is observed that:

� For i � ic no grain movement is observed, the deposit remains in its initial state.
� For i slightly less than ic , a relaxation occurs in some cases starting from the bottom of the

deposit. Then the grains undergo a carrying upwards. Figure 12 shows this behavior for an
applied gradient i � 0:92ic .
� For i > ic , the deposit undergoes an upward movement with its preserved form as soon as the

gradient is applied, but it loosens from the bottom during the movement. Moreover, it is noted
that the movement is faster when the gradient is increased.

It is worth noting that for this deposit, the hydraulic gradient i � 0:92ic is the minimum gradient
that triggers the quicksand.



Figure 12. Snapshots in a chronological order, during the 3D quicksand simulation for a deposit submitted to
a gradient i � 0:92ic . The picture (1) corresponds to the initial state of the deposit not subjected to the flow.

These observations indicate that quicksand can occur in cases where i < ic . Similar results are
obtained for other samples with larger numbers of grains, but the minimum gradient below the
critical gradient which causes the quicksand is variable, depending on the initial compactness of the
deposit and on the applied pressure rate. From a theoretical point of view, the quicksand is expected
for i > ic , but not for i < ic . Therefore, further investigations are required. For this purpose, it
is convenient to visualize the movement of deposit grains, nevertheless the visualization is difficult
for 3D simulations. This is why 2D simulations of quicksand were carried out, making it easier to
visualize the grain movements.

5.2. 2D quicksand simulations

First and foremost, it is worth noting that 2D discrete element modeling of a granular deposit gives
rise to a porous medium with non interconnected pores. This completely changes the hydraulic
properties of a saturated granular material. Boutt et al. [40], in order to simulate hydromechanics of
saturated granular materials with a 2D model, have used a reduced grain diameter in LB modeling
while keeping the actual diameter in DEM modeling. The model simulates therefore a connected
pore network. In addition, they proposed an approximate expression of the permeability including
the average radius and a radius reduction multiplier, in order to extrapolate the 2D simulation results
to 3D problems with comparable permeability and average grain size.

An inverse approach is proposed in this manuscript. The diameters of the grains are increased
to compute the contact forces while conserving the actual diameters in the calculation of the grain
weights and drag forces. This method is mainly adopted in order to calculate the drag force with
the actual diameter. By doing so, the contact forces between the grains develop before the contacts
actually occur and a connected pore network is created. In this study, the distance added to the actual
radius in the discrete elements modeling is set equal to one spatial step in the Lattice-Boltzmann



Figure 13. Snapshots in a chronological order, during the 2D simulation of the quicksand of a grain deposit
for i D 1:1ic , ıt D 0:065 s.

discretization .�x/, consequently, the space between each two grains contains at least one node of
the Lattice-Boltzmann grid.

The simulated deposit is composed of 300 grains, periodic in the horizontal direction with a
period length of 14:4 mm. The resulting average height is about 8:8 mm and the total submerged
weight is 1:265 N . The D2Q9 Lattice Boltzmann model is used, the discretization in the horizontal
direction is 400�x, so that the smallest grain diameter is discretized into about 11�x.

The deposit is first subjected to a vertical flow under a pressure difference equal to 100N=m2

applied slowly. The resultant force of the applied pressure is then of 1:44 N (�pS ) and the corre-
sponding hydraulic gradient is i � 0:90ic . The applied pressure was maintained for a long time but
nothing happened, the deposit has kept its initial configuration. It was verified that when the steady
state flow is established, the resultant of the computed hydrodynamic forces is very close to the
resultant of applied pressure (1:44 N ), it is only about 0:018% larger.

After that, the applied gradient was gradually increased, but nothing happened until i � 0; 97ic .
Figures 13, 14, and 15 show the deposit evolution over time for three applied hydraulic gradients

i D 1; 1ic , i D ic and i � 0; 97ic .
The time increment used to plot these figures (ıt D 0:065s) was selected to compare conveniently

the three cases. Figures 13 and 14 corresponding to the gradients i D 1:1ic and i D ic , respectively,
show that quicksand occurs in a similar manner for gradients i > ic , in fact the deposit is fully
raised initially, but for a low gradient (i D ic) it loosens quickly while for a high gradient it may be
raised like a shutter. This can be attributed to the high pressure applied at the bottom of the deposit
which prevents loosening. Furthermore, it can be observed that the lifting is more quicker for the
high gradient, because the grains reach the end of the column of water in a shorter time; 3ıt for
i D 1:1ic against 4:7ıt for i D ic .

For the case i � 0:97ic , Figure 15 shows that quicksand develops step by step; first, there is a
grain rearrangement in some areas at the bottom of the deposit that allows the creation of large chan-
nels where there is no pressure drop (surrounded areas in Figure 15). Accordingly, the hydraulic
gradient in the area overlying the channel becomes larger. This increase in gradient initiates an upris-
ing of this zone which leads to the loosening of the lower zone. This loosening grows progressively
until the quicksand onset. It should be noted that in this case (i � 0:97ic) the quicksand process is
much slower than in the case with i > ic , and the initial stage of grain rearrangement is the most
time consuming stage.



Figure 14. Snapshots in in a chronological order, during the 2D simulation of the quicksand of a grain
deposit for i D ic , ıt D 0:065 s.

Figure 15. Snapshots in a chronological order, during the 2D simulation of the quicksand of a grain deposit
for i � 0:968ic , ıt D 0:065 s.



These results confirm the previous results obtained in the 3D simulations. In addition, they bring 
some comprehensive elements on the quicksand triggering for cases where i < ic . In fact, for  loose  
deposits, the water flows induce a grain rearrangement at the bottom of the deposit which leads to 
an increased hydraulic gradient at the top causing the onset of quicksand.

6. CONCLUDING REMARKS

We have presented a 3D coupled Lattice-Boltzmann-Discrete element hydromechanical model to 
investigate the micro-mechanical dynamic response of saturated granular materials. The devel-
oped model was first checked and validated from different heuristic applications, including the 
computation of the hydrodynamic forces on fixed and moving grains and the simulation of the 
‘Drafing-Kissing-Tumbling’ phenomenon. The obtained results are very close to those reported in 
the literature including numerical and experimental data. Then, the model was used to simulate the 
quicksand phenomenon. The performed simulations show that the quicksand actually triggers for 
a hydraulic gradient very close to the critical hydraulic gradient calculated from the standard soil 
mechanics analysis, that is, when the resultant of the applied external pressure balances submerged 
weight of the deposit. Moreover, they reveal that this phenomenon does not occur only for hydraulic 
gradients above the critical hydraulic gradient, but also at lower gradients when a more permeable 
zone can develop at the bottom of the deposit due to a grain rearrangement.

Finally, as in the presented quicksand simulations the developed model could be applied in sim-
ulation of more complex phenomena related to saturated granular media, such as sand liquefaction 
and internal erosion of soils. This could shed light on the micro-mechanical mechanisms involved.

APPENDIX A: PRESSURE AND VELOCITY BOUNDARY CONDITIONS FOR THE D3Q19 
LATTICE BOLTZMANN MODEL

We consider that the pressure (or the velocity) is imposed on the boundary of a discretized domain 
by the D3Q19 model (Figure (A.1)).

After the streaming step, the unknown distributions are f7, f9, f12, f15 and f17. Assuming that
their non-equilibrium parts are equal to that in the opposite directions (i.e., fi�f

.eq/
i D fOi�f

.eq/

Oi
),

therefore they can be expressed as:

Figure A.1. Boundary of a domain discretized using the D3Q19 Lattice Boltzmann model.
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According to Eq. (A.1), the momentum densities in the three directions (Eq. (12b)) can be given
as:

�ux D

Q�1X
iD1

eixfi D c.f10 C f13 C f14 � f1 � f4 � f5/C
1

3
�ux (A.2)

�uy D
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1

3
�uy (A.3)

�u´ D

Q�1X
iD1

ei´fi D �u´ (A.4)

where eix , eiy , and ei´ are the three components of the discrete velocity Eei .
It can be observed that these expressions (A.1) of unknown distributions lead to inexact

momentum densities in the x and y directions, therefore, it is necessary to introduce corrections.
Let errx and erry be the errors on the momentum densities in the x and y directions resulting

from equations (Eq. (A.2)) and (Eq. (A.3)):
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These errors can be corrected by introducing additional terms in the distribution expressions
(Eqs. (A.1)) as follows:

� add and subtract errx
2c

to f15 et f7 respectively
� add and subtract erry

2c
to f17 et f9 respectively

The corrected expressions of the unknown distributions are finally:8̂̂̂
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It shall be noted that the fluid’s inplane velocities in a pressure boundary are commonly assumed
zero, that is, for the case of figure (Figure (A.1)) ux D uy D 0.
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