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Abstract:

This paper considers a particular renewal-reward process with multivariate discounted
rewards (inputs) where the arrival epochs are adjusted by adding some random delays.
Then this accumulated reward can be regarded as multivariate discounted Incurred But
Not Reported (IBNR) claims in actuarial science and some important quantities studied
in queueing theory such as the number of customers in G/G/∞ queues with correlated
batch arrivals. We study the long term behavior of this process as well as its moments.
Asymptotic expressions and bounds for the quantities of our interest, and also con-
vergence result for the distribution of this process after renormalization, are studied,
when interarrival times and time delays are light tailed. Next, assuming exponentially
distributed delays, we derive some explicit and numerically feasible expressions for the
limiting joint moments. In such case, for an in�nite server queues with renewal arrival
process, we obtain limiting results on the expectation of the workload, and the covariance
of queue size and workload. Finally, some queueing theoretic applications are provided.

AMS 2000 subject classi�cations: Primary 60G50, 60K30, 62P05, 60K25.
Keywords and phrases: Renewal-reward process, Multivariate discounted rewards, In-
curred But Not Reported (IBNR) claims, In�nite server queues, Workload, Convergence
in distribution.

1. Introduction and notation

Many situations in which processes restart probabilistically at renewal instants and there are
non-negative rewards associated with each renewal epoch, are well described by a multivari-
ate renewal-reward process. For example, a multivariate reward function can be viewed as an
accumulated cost from di�erent types of properties or infrastructures caused by a single catas-
trophe event, which is of interest in actuarial science and reliability analysis. The asymptotic
distribution and the asymptotic expansion for the covariance function of the rewards were
studied by [19] and [1] who extended the result of [4] to multivariate case. In the context of
actuarial science, much research about the aggregate discounted claims has been done on its
moment under renewal claim arrival processes. For example, [12], [13], [14], and [15] analyzed
the renewal process, and [28] looked at the dependent renewal process.
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In this paper, we assume that there are time lags added to the original arrival times of
renewal process. These delayed renewal epochs allow us to study the quantities related to in�-
nite server queues with correlated batch arrivals and multivariate Incurred But Not Reported
(IBNR) claims where there is a delay in reporting or payment for claims. Furthermore, rewards
are accumulated at a discounted value. A direct application to some problems in in�nite server
queues includes the case, for example, when the bulk size random variable is multivariate (i.e.
correlated) and the service time distribution is dependent on the type of input, in which case
a multivariate reward function incorporating time delays up to time t (with zero discount-
ing factor) is essentially the number of customers in the system up to time t. In the in�nite
server queues with multiple batch Markovian arrival streams, a time-dependent matrix joint
generating function of the number of customers in the system was derived by [17]. For the
univariate case, IBNR claim count with batch arrivals was considered by [8] and the total
discounted IBNR claim amount was studied by [11]. For the multivariate case, [27] provided
expressions for joint moments of multivariate IBNR claims which are computable recursively.
For the number of IBNR claims, a direct relation to the number of customers in the in�nite
server queues with batch arrivals is well known as discussed in the literature, e.g. [10], [11],
[24], [25], [26]. The transient behavior of a distribution of the number of customer in various
multichannel bulk queues was studied in [5]. See also [3] for example.

Let us introduce the model more precisely. We shall suppose that the batch arrival process
{Nt}t≥0 is a renewal process with a sequence of independent and identically distributed (iid)
positive continuous random variables (rv)s (Ti)i∈N representing the arrival time of the ith
batch with T0 ≡ 0. Let τi = Ti−Ti−1 be the interarrival time of the ith batch with a common
probability density function (pdf) f , distribution F , Laplace transform Lτ (u) = E[e−uτ1 ] for
u ≥ 0, and renewal function t 7→ m(t) := E[Nt]. Each batch arrival contains several (k)
types of inputs which may simultaneously occur from the same renewal event (e.g. [19], [27]).
Let us denote the j-type of input from the ith batch as Xi,j where {(Xi,1, . . . , Xi,k)}i∈N is
a sequence of iid random vectors. A vector for multivariate input variables is denoted as
X = (X1, X2, . . . , Xk). Here multivariate input values are assumed to be dependent on the
occurrence time and/or the adjusted time by adding a random delay. This time delay for
the j-type of input from ith batch is denoted by Li,j where (Li,j)i∈N is a sequence of iid rvs
with a common cumulative distribution function Wj , and such that (Li,j)i,j∈N is a sequence
of independent rvs. For the sake of simplicity let us assume a constant force of interest δ to
discount input values to time 0, and de�ne the following discounted compound delayed process

Z(t) = Z(t, δ) = (Z1(t), . . . , Zk(t)), t ≥ 0, (1)

where

Zj(t) :=

Nt∑
i=1

e−δ(Ti+Li,j)Xi,j1{Ti+Li,j>t} =
∞∑
i=1

e−δ(Ti+Li,j)Xi,j1{Ti≤t<Ti+Li,j}, j ∈ {1, . . . , k}.

(2)
Here, we can interpret the process {Z(t)}t≥0 in two di�erent ways. The �rst one is related
to actuarial science: we suppose that an aggregate claim amounts (or claim severities) Xi,j

in branch j ∈ {1, . . . , k} of an insurance company is caused by the event arriving at time Ti.
Instead of being dealt with immediately, they are (within a batch) subject to a delay Li,j before
being treated. Zj(t) then represents the discounted total claim amounts of such incurred but
not reported claims in branch j. The second one is related to queueing theory. Let us consider
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a single queue containing batches of k types of customers in an in�nite-server model. Here
customers arrive according to a renewal process {Nt}t≥0 with corresponding arrival times
(Ti)i∈N. At each arrival instant Ti a batch of correlated customers (Xi,1, . . . , Xi,k) arrive in
the system, with Xi,j ∈ N. For each customer of class j ∈ {1, . . . , k} (of which number is
Xi,j) the service time Li,j is the same. A random sequence (Xi,1, . . . , Xi,k) for i ∈ N, is iid
and distributed as (X1, . . . , Xk). The service times (Li,j)i∈N, j=1,...,k are thus assumed to be
independent, although Li,1, . . . , Li,k possibly have di�erent distributions, i.e. service times are
di�erent according to the type of customer class. For example, if δ = 0, the model is reduced to
that of a G/G/∞ queue with multiple types of customer classes in a batch. As an illustration,
let us look at the particular case where (X1, . . . , Xk) follows a multinomial distribution with
parameters M ∈ N and probability vector (p1, . . . , pk) where pj ≥ 0 and

∑k
j=1 pj = 1. This

models a situation where at each instant Ti exactlyM customers arrive, each of which belongs
to class j with probability pj . Xj is the number of customers of class j in this batch. See Figure
1. The simplest scenario is when M = 1, where each customer arrives according to renewal

Size M batch of customers

Z1(t) customers of class 1

Zj(t) customers of class j

Zk(t) customers of class k

Customer from batch i of class j with probability pj ,
service time Li,j

Fig 1. The G/G/∞ queue with multinomial distributed classes batches (X1, . . . , Xk).

process {Nt}t≥0, and belongs to class j with probability pj . Because of both those two, either
actuarial or queueing, interpretations, we will refer the Li,j 's as either "delay" or "service"
times, without ambiguity.

We note that it is usually di�cult to derive a distribution for this compound renewal pro-
cess Z(t) since there is no concrete representation for an inversion of the complicated moment
generating function (mgf) for this quantity in a general arrival process {Nt}t≥0. In this sense,
it is appealing to study the long term behavior of the process in terms of its moment and dis-
tribution. From [27], explicit expressions for the joint moments of Z(t) = (Z1(t), ..., Zk(t)) are
computable recursively. However, an analytic expression of the lower moment which appears
in its integral term, is required for the calculation of the higher moment. Also, it requires
an explicit form of the renewal density m(t) for evaluation of this moment. Therefore, our
objective here is to develop simpler approximation methods such as asymptotics and bound
results for the joint moments of Z(t). To the best of our knowledge, these kinds of approxima-
tion approaches have never been developed in the analysis of a multivariate renewal-reward
process with discounted inputs and time delays. Also, a relationship between multivariate dis-
counted IBNR claim process and quantities studied in in�nite server queues with correlated
batch arrivals and a discounting factor is �rstly exploited in this paper. Moreover, we shall
also consider the case with exponential time delays in a general arrival process and provide
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asymptotic results for the joint moments. In this case, when interarrival times are light tailed
and single input case, we are able to quantify the approximation precision by providing many
terms for the asymptotics for the �rst order moment of our process. We note that this approach
was previously found in [4, Lemma 1] where 2-term asymptotics for a general renewal reward
process without delays was provided, see also [19] and [1] for an expansion of the covariance.
In particular, some asymptotic results regarding queueing theoretic applications such as the
workload in a G/M/∞ queue, are obtained.

In most cases in this paper, we suppose that the discounted factor δ is real and non negative
because of its discounting role. However it has to be pointed out that, mathematically speaking,
De�nitions (1) and (2) can in some cases be extended to some complex δ, as will be the case
in Section 5 where δ ∈ C is needed for technical purposes. It will also be convenient to de�ne
the process Z̃(t) = Z̃(t, δ) = (Z̃1(t), . . . , Z̃k(t)) = eδtZ(t), i.e.

Z̃j(t) =

Nt∑
i=1

eδ(t−Ti−Li,j)Xi,j1{Ti+Li,j>t}, j ∈ {1, . . . , k}. (3)

Although Z̃(t) does not have a direct actuarial or queueing interpretation, it will turn out
that most results will concern this process rather than Z(t).
Notation. For n = (n1, . . . , nk) ∈ Nk, the nth joint moments for Z(t) and its mgf are
respectively denoted as

Mn(t) = E
[ k∏
j=1

Z
nj
j (t)

]
, t ≥ 0, n = (n1, . . . , nk) ∈ Nk,

ψ(s, t) = E
[
e<s,Z(t)>

]
, s = (s1, . . . , sk) ∈ Rk,

where < ·, · > is the euclidian scalar product. For notational convenience, we let, for all
n = (n1, . . . , nk) ∈ Nk and t ≥ 0,

ηn :=

k∑
i=1

ni,

M̃n(t) := eηnδtMn(t) = E
[ k∏
j=1

Z̃
nj
j (t)

]
, (4)

ψ̃(s, t) = E
[
e<s,Z̃(t)>

]
, s = (s1, . . . , sk) ∈ Rk. (5)

We de�ne the natural partial order on set Nk as follows. We say that two vectors ` and n in
Nk verify ` < n if `i ≤ ni for all i = 1, . . . , k and `i < ni for (at least) an i, i.e. ηn > η`. Let
us introduce, for all n ∈ Nk,

C`,n := {j = 1, . . . , k| `j < nj} ⊂ {1, . . . , k}.

We will denote by n(i) ∈ Nk the vector of which jth entry is δi,j where δi,j is the Kronecker
delta function.

It is convenient to introduce function t 7→ ϕ`,n(t) for ` < n:

ϕ`,n(t) = E
[
e(ηn−η`)δ(t−τ1)M̃`(t− τ1)

∏
j∈C`,n

ω(nj−`j)δ,j(t− τ1).1[τ1<t]
]
, (6)
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where

ωδ,i(t) =

∫ ∞
t

e−δydWi(y). (7)

Following [27], we de�ne b̃n(t) by

b̃n(t) =
∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
E
[ k∏
j=1

X
nj−`j
j

]
ϕ`,n(t). (8)

Throughout the paper, E(µ) denotes an exponential distribution with a mean 1/µ. We denote
|A| as the cardinal of A for any �nite set A.

We assume that vector X admits joint moments of all order. Lastly, we denote assumptions
(A1), (A1') and (A2) by:

(A1) Density f(·) of interarrival time τ1 is bounded,

(A1′) interarrival time τ1 is light tailed: ∃R > 0,

∫ ∞
0

eRxdF (x) = E[eRτ1 ] < +∞,

(A2) ∃M > 0 such that ∀j = 1, . . . , k, 0 ≤ Xj ≤M a.s.

An important consequence of (A1) is the following result, of which proof is given at the
beginning of Section 7.

Lemma 1. If (A1) holds then the associated renewal function m : t ≥ 0 7→ E[Nt] admits a
density u(t), and this latter veri�es

u(t) =
d

dt
m(t) =

∞∑
j=0

f?(j)(t). (9)

Besides, this density is upper bounded: There exists C > 0 such that

u(t) ≤ C, ∀t ≥ 0. (10)

Structure of paper. For ease of presentation, all main results are given in Sections 2, 3, 4
and 5, and all the proofs in Section 7. Section 2 recalls the results from [27] that are used
throughout the paper, with some immediate applications when interarrivals are exponentially
distributed. Section 3 addresses the general case where interarrival and delays have a general
distribution, in which case one proves convergence of moments of Z̃(t) (Proposition 4) as well
as convergence in distribution when (A1) and (A2) holds (Theorem 8). Section 4 addresses
the case where delays are exponentially distributed (Theorem 10). Particular focus is made in
Section 5 on the case k = 1 with exponentially distributed delays: we �rst give an asymptotic
expansion for M̃1(t) as t→∞ when (A1') holds (Theorem 14). In the subsequent subsection,
this result is utilized to obtain asymptotic moments for the workload of the G/M/∞ queue
when (A1) and (A1') hold (Theorem 18). In both those latter sections, we compare the results
to the existing queueing literature, particularly those from Takács [21]. Finally, in Section 6,
an attempt is made to put some emphasis on the fact that the generality of the model yields
interesting applications.



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 6

2. Renewal equations: General and Exponential interarrival times

The aim of this section is to brie�y review the results obtained in [27] that will be the starting
point of most of the results in the present paper, and to recover some particular results when
claims arrive according to a Poisson process. Following notation in Section 3.3 of [27], we let
for all t ≥ 0 and s = (s1, . . . , sk) ∈ Rk,

M∗t,X(s) := E

exp
 k∑
j=1

sje
−δLijXij1[Lij>t]


=

∫ ∞
0
· · ·
∫ ∞
0

E

exp
 k∑
j=1

sje
−δvjXij1[vj>t]

 dW1(v1) · · · dWk(vk).

From Theorem 3 in [27], The mgf ψ(s, t) of Z(t) satis�es

ψ(s, t) = E
[ Nt∏
i=1

M∗t,X(e
−δTis)

]
.

Also, M̃n(t) de�ned in (4) satis�es

M̃n(i)(t) = E[Xi].

∫ t

0
eδ(t−y)ωδ,i(t− y)dm(y), i = 1, . . . , k.

M̃n(t) = b̃n(t) + M̃n ? F (t), t ≥ 0, n ∈ Nk\{n(i), i = 1, . . . , k}, (11)

where ωδ,i(t) and b̃n(t) are respectively given by (7) and (8). It is standard that the solution to

(11) is given by M̃n(t) =
∫ t
0 b̃n(t− y)dm(y) for all t ≥ 0. However, as pointed out in [27], this

solution is hardly explicit in practice because b̃n(.) depends on M̃`(.), ` < n. So, the expression
for M̃n(t) at time t depends on the whole trajectory of M̃`(y), ` < n, for y ∈ [0, t]. Not only
that, but the renewal function t 7→ m(t) is not always explicit.

Corollary 2. The mgf ψ̃(s, t) of Z̃(t) satis�es the integral-renewal equation

ψ̃(s, t) = F (t) +

∫ t

0
M∗t−y,X(e

δ(t−y)s)ψ̃(s, t− y)dF (y), t ≥ 0, (12)

for all s ∈ Rk.

Proof. The renewal equation (12) is obtained thanks to relation ψ̃(s, t) = ψ(eδts, t) and by
using (2) as well as a classical renewal argument.

An interesting application of the above corollary is that a closed form expression for ψ̃(s, t)
when arrivals occur according to a Poisson process.

Proposition 3 (Poisson arrival and general delay). If τ1 ∼ E(λ) then one has the following
expression

ψ̃(s, t) = exp

[
λ

∫ t

0

(
M∗v,X(e

δvs)− 1
)
dv

]
, t ≥ 0, s ∈ Rk. (13)

Then, the mgf of Z(t) is obtained explicitly by ψ(s, t) = ψ̃(e−δts, t).
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Proof. When τ1 ∼ E(λ), renewal equation (12) reads, up to a change of variable y := t− y in
the integral,

ψ̃(s, t) = e−λt +

∫ t

0
M∗y,X(e

δys)ψ̃(s, y)λe−λ(t−y)dy, t ≥ 0,

which, derived with respect to t, yields the linear di�erential equation

∂tψ̃(s, t) = λ
[
−1 +M∗t,X(e

δts)
]
ψ̃(s, t)

of which solution is given by (13). Note that the above di�erential equation is also available
in a similar form in [17, Theorem 3.1].

Two remarks are to be deduced from Proposition 3. First, since the density function of the
exponential distribution is upper bounded, Condition (A1) is ful�lled, and thus one has from
upcoming Theorem 8, Section 3, that Z̃(t) converges in distribution towards some light tailed
random vector Z∞. Thus, it is immediate from (13) that the mgf of Z∞ is, when τ1 ∼ E(λ),
given by

E
[
e<s,Z∞>

]
= lim

t→∞
ψ̃(s, t) = exp

[
λ

∫ ∞
0

(
M∗v,X(e

δvs)− 1
)
dv

]
, s ∈ Rk.

Second, one is able to recover some well known result in the M/G/∞ queue by setting δ = 0.
For example, when k = 1 and X = X1, one computes that M∗t,X(s) = 1 + (es − 1)W (t), and
(13) reduces to

ψ̃(s, t) = ψ(s, t) = exp

[
λ

∫ t

0
W (v)dv.[es − 1]

]
recovering that the distribution of the number of customers in an in�nite server queue with
Poisson arrivals of intensity λ is Poisson distributed with parameter λ

∫ t
0 W (v)dv at time t, see

Theorem 1 p.160 of [21]. When δ = 0, (13) in Proposition 3 is similar to the results obtained
in Section 3.1 of [16], concerning in�nite server queues with Poisson arrivals.

3. General results: Convergence of joint moments and distribution

We are interested in the general limiting behaviour of processes Z(t) and Z̃(t) when arrivals
and delays have a general distribution. It may be di�cult to compute its distribution in all
generality, however some information may be obtained if we add some extra assumption on
the arrival process {Nt}t≥0. Our �rst immediate result is convergence of joint moments of
Z̃(t):

Proposition 4. One �nds the following asymptotic result for the joint moments of Z(t), for
all n ∈ Nk:

lim
t→∞

M̃n(t) = χn ⇐⇒ Mn(t) ∼ χne−ηnδt, t→∞,

where

0 ≤ χn :=

∫ ∞
0

b̃n(t)dt

E[τ1]
< +∞, (14)

and b̃n(t) is given by (8).
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Proof. See Section 7.1.

A direct consequence of Proposition 4 when k = 1 with [27, Example 3] yields the result
for the �rst moment in the following corollary.

Corollary 5 (Single type of input, arbitrary time delays). The mean of Z̃1(t) = Z̃(t, δ) in
(3) for k = 1 with arbitrary time lag distribution L is asymptotically obtained as

E[Z̃1(t)] ∼ χ1, t→∞,

where

χ1 =
E[X1]E[L]w̃1,1(δ)

E[τ1]
, (15)

and w̃1,1(δ) =
∫∞
0 e−δxW 1(x)dx/E[L]. This is a generalization of Corollary 3 in [27] in which

it is assumed that Xi = 1 and δ = 0.

Remark 6 (Little's law revisited). Expression (15) gives an interesting interpretation in a
queueing context. Let us suppose here (without loss of generality) that X1 = 1 (i.e. customers
do not arrive in batches). (15) reads

lim
t→∞

E[Z̃(t, δ)] = χ1 =
E[L]w̃1,1(δ)

E[τ1]
. (16)

When δ = 0, Z̃(t, δ) = Z̃(t, 0) is the number of customers at time t in an in�nite server
queues; In that case w̃1,1(δ) = 1 and (16) is just a rephrasing of Little's law which says that
the limiting expected number of customers in the queue is equal to the arrival rate mutliplied
by the mean service time. When δ > 0, we notice that E[L1]w̃1,1(δ) = Pr(L > Eδ)/δ where
Eδ ∼ E(δ) is a r.v. independent from everything, so that (16) reads

lim
t→∞

E[Z̃(t, δ)] =
1

E[τ1]
Pr(L > Eδ)

δ
=

1

E[τ1]
Pr(L > Eδ)E[Eδ]. (17)

The asymptotic expression in (17) implies that the limiting expected number of customers of
which residual service time is no more than horizon Eδ ∼ E(δ) is equal to the arrival rate
mutliplied by the expected horizon time, multiplied by the proportion of customers of which
service time did exceed this horizon Eδ. So, (17) can be seen as a generalization of Little's
Law in the G/G/∞ context.

In the following we address the limiting behaviour in distribution of process {Z̃(t)}t≥0 under
(A1).

First of all, one sees, looking back at Proposition 4, that coe�cients χn, n ∈ Nk are in
general not directly computable, as the function t 7→ b̃n(t) in the integral (14) does not have
an easy expression, and are de�ned recursively in the function of t 7→ M̃`(t), ` < n. We thus
provide in the following easily computable bounds for the χn's and a uniform upper bound in
t for M̃n(t) if we impose that (A1) holds.

Proposition 7 (Upper bounds for the joint moments). Let us suppose that (A1) holds. One
has the following bounds for all n ∈ Nk:

χn ≤ 1

CE(τ1)
Rn, (18)

M̃n(t) ≤ Rn, ∀t ≥ 0, (19)
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where (Rn)n∈Nk is de�ned recursively by

Rn(i) = CE[Xi]δ
−1 {1− E

[
e−δLi

]}
, i = 1, . . . , k,

Rn = C
∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
E
[ k∏
j=1

X
nj−`j
j

]
min
i∈C`,n

E[Li]. R`, n ∈ Nk\{n(i), i = 1, . . . , k},

(20)
Here, the constant C is the upper bound for renewal density u(t) in Lemma 1.

Proof. See Section 7.2.

Proposition 7 is useful for two reasons. First, we remark that coe�cients Rn, n ∈ Nk, in (20)
can be easily computed because Rn is a linear function of the R`, ` < n, and only involves the
joint moments of X = (X1, . . . , Xk), the Laplace transform of the L1,. . . ,Lk as well as their
expectations. So, simple bounds are available, which is useful since it is not possible in general
to compute the distribution (or even moments) of the process. Second, Proposition 4 reads that
M̃n(t) converges towards χn. Since M̃n(t) is the joint moments of Rk valued process {Z̃(t)}t≥0,
this suggests in turn that this process converges in distribution. As convergence of moments
does not always implies convergence in distribution, we give some su�cient conditions such
that this latter holds, and we prove it thanks to the bounds obtained in Proposition 7.

Theorem 8. Let us suppose that (A1) and (A2) hold. Then one has the result of convergence
in distribution for Z̃(t):

Z̃(t) = eδtZ(t)
D−→ Z∞, t→∞,

where Z∞ = (Z∞,1, . . . ,Z∞,k) = Z∞(δ) is a light tailed vector valued rv with the joint moments

E
[ k∏
i=1

Zni∞,i

]
= χn = χn(δ)

given by (14) for n ∈ Nk.

Proof. See Section 7.3.

4. Joint moments with exponential delays

Let us note that Theorem 8 holds for general interarrival times τi that satisfy (A1), and general
time delays Lj 's. The boundedness assumption (A2) is relatively not too restrictive and is
ful�lled in many cases, for example when, in a queueing scenario, only one customer arrives at
each time Ti. The aim of this subsection is to prove that the χn's are explicit when the Lj are
exponentially distributed. We suppose for simplicity that all Lj 's for j = 1, . . . , k, have same
distribution E(µ), for some µ > 0. Note that we may obtain similar results in the following
for more general cases such as a mixture or a combination of exponential distributions, but
the following expressions would only be more complicated.

Some notations are necessary in this section. Let LMn (u) and Lbn(u) for u ≥ 0 and n ∈ Nk,
be the Laplace transforms of M̃n(·) and b̃n(·) respectively

LMn (u) :=

∫ ∞
0

e−uyM̃n(y)dy, Lbn(u) :=
∫ ∞
0

e−uy b̃n(y)dy.
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Note that these Laplace transforms exist (i.e. the integrals converge) respectively when u > 0
and u ≥ 0 since M̃n(y) converges to some �nite limit χn as y →∞, and b̃n(·) is integrable (as
proved in Proposition 4). The following lemma gives a recursive expression of Lbn(u).

Lemma 9. When time delays Lj are E(µ) distributed, the Laplace transform of b̃n(·) in (8)
is obtained as

Lbn(i)(u) = E[Xi]
µ

(µ+ δ)(µ+ u)
Lτ (u), i = 1, . . . , k, (21)

and

Lbn(u) = B0,n
Lτ (u)

u+ |C0,n|µ
+
∑

0<`<n

B`,n
Lτ (u)

1− Lτ (u+ |C`,n|µ)
Lb`(u+|C`,n|µ), n ∈ Nk\{n(i), i = 1, . . . , k},

(22)
where 0 is a zero vector in Nk,

B`,n :=

(
n1
`1

)
· · ·
(
nk
`k

)
E
[ k∏
j=1

X
nj−`j
j

] ∏
j∈C`,n

µ

µ+ (nj − `j)δ
, (23)

and we recall that C`,n = {j = 1, . . . , k| `j < nj} ⊂ {1, . . . , k}.

Proof. See Section 7.4.

The following shows that the χn's can be computed in function of coe�cients (D`(j))j∈N =
(Lbn(jµ))j∈N which are de�ned recursively.

Theorem 10. Let us denote Dn(j) := Lbn(jµ) for j ∈ N and n ∈ Nk. When time delays Lj
are E(µ) distributed, the joint moments χn = χn(δ) for n ∈ Nk of Z∞ = Z∞(δ) (the limiting
distribution of eδtZ(t)), are given by

χn(i) =
E[Xi]

E[τ1]

(
1

µ+ δ

)
, i = 1, . . . , k, (24)

χn =
1

E[τ1]

(
B0,n

1

|C0,n|µ
+
∑

0<`<n

B`,n
1

1− Lτ (|C`,n|µ)
D`(|C`,n|)

)
,

n ∈ Nk\{n(i), i = 1, . . . , k}, (25)

where Dn(j)'s for j ∈ N and n ∈ Nk are obtained recursively as:

Dn(i)(j) = E[Xi]
µ

(µ+ δ)([j + 1]µ)
Lτ (jµ), i = 1, . . . , k, (26)

Dn(j) = B0,n
Lτ (jµ)

[j + |C0,n|]µ
+
∑

0<`<n

B`,n
Lτ (jµ)

1− Lτ ([j + |C`,n|]µ)
D`([j + |C`,n|]),

n ∈ Nk\{n(i), i = 1, . . . , k}, (27)

with B`,n in (23).

Proof. From (14), using (21) and (22) when u = 0, we �nd (24) and (25) respectively. In
addition, (26) and (27) are obtainable by setting u = jµ in (21) and (22) respectively.
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We remark that a close look at (25) and (27) reveals that computation of the in�nite
sequences (D`(j))j∈N for all ` < n is not needed to obtain χn. Since |C`,n| is bounded by k,
it is not hard to see that one needs to compute (recursively) D`(j) for ` < n and for j ≤ kηn
(i.e. only for a �nite number of j's). Moreover, the values of Dn(j) may be stored in memory
while computing the successive χn as ηn increases, and thus one does not need to recompute
them each time. Hence the algorithm (25) is relatively not too costly. Some special cases for
k = 1 and k = 2 are given in the following.

Corollary 11 (Single type of input, exponential time delays). The r-th moment of Z1(t) in
(2) for k = 1 with exponential delay is asymptotically obtained as

E[Zr1(t)] ∼ χr e−rδt, t→∞, r ∈ N,

where

χ1 =
E[X1]

E[τ1]

(
1

µ+ δ

)
, (28)

and

χr =
1

E[τ1]

(
E[Xr

1 ]
1

µ+ rδ
+

r−1∑
`=1

(
r

`

)
E
[
Xr−`

1

] µ

µ+ (r − `)δ
D`(1)

1− Lτ (µ)

)
, r = 2, 3, . . . ,

(29)
and D`(1) recursively available from the formulas (26) and (27) respectively given by

D1(j) = E[X1]
µ

(µ+ δ)([j + 1]µ)
Lτ (jµ)

and

Dn(j) = E[Xn
1 ]

µ

µ+ nδ

Lτ (jµ)
[j + 1]µ

+

n−1∑
`=1

(
n

`

)
E
[
Xn−`

1

] µ

µ+ (n− `)δ
Lτ (jµ)

1− Lτ ([j + 1]µ)
D`(j + 1),

n = 2, 3, . . . .

Proof. When n(1) = 1 and n(i) = 0 for i 6= 1 together with ηn = r, η` = `, and |C`,n| = 1,
from Proposition 4 and Theorem 10, the result follows.

Remark 12. When δ = 0 and X1 = 1, the model in Corollary 11 reduces to the classical
G/M/∞ queue, which was extensively studied by Takács [21, Chapter 3, Section 3]. More
precisely, the results in this corollary are to be compared to [21, Theorem 2 p.166], [18, Theorem
2] and [20, Corollary of Theorem 1] where the approach is di�erent and the distribution of
the asymptotic queue level is derived but requires an in�nite sum involving so called binomial
moments.

Next, we compute the covariance of Z1(t) and Z2(t) when k = 2. We thus let n = (n1, n2) =
(1, 1) (i.e. ` = (`1, `2) ∈ {(0, 0), (0, 1), (1, 0)}). From (8) and (6), we have

b̃n(t) =
∑

`1,`2\(`1,`2)<(n1,n2)

(
n1
`1

)(
n2
`2

)
E
[ 2∏
j=1

X
nj−`j
j

]
ϕ`,n(t)

= E[X1X2]ϕ(0,0),n(t) + E[X1]ϕ(0,1),n(t) + E[X2]ϕ(1,0),n(t), (30)
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where ϕ(0,0),n(t) = E
[
e2δ(t−τ1)ωδ,1(t − τ1)ωδ,2(t − τ1).1{τ1<t}

]
because of M̃(0,0)(t − τ1) = 1),

ϕ(0,1),n(t) = E
[
eδ(t−τ1)M̃(0,1)(t− τ1)ωδ,1(t− τ1).1{τ1<t}

]
, and ϕ(1,0),n(t) = E

[
eδ(t−τ1)M̃(1,0)(t−

τ1)ωδ,2(t − τ1).1{τ1<t}
]
. As shown previously, (30) is simpli�ed when Li for i = 1, 2, is expo-

nentially distributed. In this case, the joint expectation and the covariance of Z1(t) and Z2(t)
are presented in the following.

Corollary 13 (Two types of inputs, exponential time delays). The joint mean of two types of
Z1(t) and Z2(t) in (2) where the time delay of type-i input Li for i = 1, 2 is E(µ) distributed,
is asymptotically given by

E[Z1(t)Z2(t)] ∼ χne−2δt, t→∞,

where, n = (1, 1), and

χn =
1

E[τ1]
µ

(µ+ δ)2

[
E[X1X2]

2
+

E[X1]E[X2]

2

Lτ (µ)
1− Lτ (µ)

]
. (31)

Consequently, the covariance is given by

Cov[Z1(t), Z2(t)] ∼ ξne−2δt, t→∞,

where ξn = χn − E[X1]E[X2]
E[τ1]2(µ+δ)2 with χn given in (31).

Proof. From Theorem 10 when n = (n1, n2) = (1, 1) (i.e |C`| = 1 when ` = (`1, `2) ∈
{(1, 0), (0, 1)}), we have

χn =
1

E[τ1]

[
B(0,0),(1,1)

1

2µ
+B(1,0),(1,1)

D(1,0)(1)

1− Lτ (µ)
+B(0,1),(1,1)

D(0,1)(1)

1− Lτ (µ)

]
. (32)

But from (23), B's are given by

B(0,0),(1,1) = E[X1X2]

(
µ

µ+ δ

)2

, B(1,0),(1,1) = E[X2]
µ

µ+ δ
, B(0,1),(1,1) = E[X1]

µ

µ+ δ
.

Also, Dn(i)(1) for i = 1, 2 is available from (26) as Dn(i)(1) = E[Xi]
µ

(µ+δ)(2µ) L
τ (µ). Combining

results given above, (32) is expressed thanks to (31) and the asymptotics of E(Z1(t)) and
E(Z2(t)) obtained in Corollary 11.

It is noted that the form given in Theorem 3 of [27] was not suitable to derive the asymptotic
behavior of Z1(t). A comment therein reveals only that this quantity is asymptotically close
to zero. Hence Corollary 11 is useful for calculating higher moments of Z1(t) in any order for
a large t when time delays are exponentially distributed.

An interesting consequence of Lemma 9 is that the expression of LMn (u) for all u > 0 can

be obtained recursively thanks to relation LMn (u) =
Lbn(u)

1− Lτ (u)
(which stems from the renewal

equation (11), and was used in the proof of the lemma, see Section 7.4) as well as the recursive
relation (22). As in the computation of (D`(j))j∈N, this requires computing Lb`(u+ jµ) for a
�nite number of j's and ` < n only. This enables to obtain the Laplace transform in y of the
mgf of Z̃(y) thanks to the formula∫ ∞

0
e−uyψ̃(s, y)dy =

∑
n∈Nk

k∏
i=1

snii
ni!
LMn (u), u > 0, s ∈ Nk,

and gives some information on the transient behaviour of Z̃(t), see Theorem 3 p.168 of [21]
(which deals with the case of k = 1 in the current model), for a comparable result.



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 13

5. Single input with exponential delays

We further narrow the scope of Section 4 and consider here the particular case where delays
are exponentially distributed and k = 1. As we deal with a one dimensional process, we drop
a subscript j in Li,j which represents the service time for the j type of input (i.e. write Li for
i ∈ N), and denote by L for the generic service time. The same way we write X instead of X1

and W (t) for W1(t). The �rst subsection gives some information on the rate of convergence
of the �rst moment of Z̃(t). As a result, some limiting behaviour result of the workload in an
in�nite server queues context is available.

5.1. High order expansions

Recalling that k = 1, we study in this subsection how fast the �rst moment M̃1(t) = E[eδtZ(t)]
converges to χ1 given in Proposition 4 when t → ∞. As M̃1(t) satis�es the renewal equation
(11), using its solution it may be expressed as

M̃1(t) =

∫ t

0
b̃1(t− s)dm(s), (33)

and from Proposition 4, recall that

M̃1(t) −→ χ1 =

∫∞
0 b̃1(t)dt

E[τ1]
, t→∞, (34)

where χ1 = {E[X]E[L]w̃(δ)}/E[τ1] and w̃(δ) =
∫∞
0 e−δxW (x)dx/E[L] as given in (15), Corol-

lary 5. From [6], we use the result of higher order expansions for the function v(x) which is
related to the renewal function as

v(x) := m(x)− x

E[τ1]
− E[τ21 ]

2E[τ1]2
, (35)

where F here is non-lattice (as it admits a density) which we suppose is light tailed, i.e. there
exists R > 0 such that (A1') holds. It admits the following expression

v(x) =

N∑
j=1

γje
−zjx + o(e−zNx), (36)

where zj 's are the solution of E(ezjτ1) = 1 which are in the range of 0 ≤ Re(zj) ≤ R for some
R > 0 and ordered as Re(zj) ≤ Re(zj+1). In order for (36) to hold, we in addition require all
roots z1, . . . , zN to be of mutliplicity 1, i.e. such that ∂

∂zE(e
zτ1)
∣∣
z=zj

6= 0 (the condition is not

necessary but it enables us to avoid some technicalities later), in which case one has

γj = −
1

zj
∂
∂zE(ezτ1)

∣∣
z=zj

, j = 1, . . . , N,

see [6, Theorem 3]. Although they are complex, the zj 's actually come in pair as one sees that
if zj veri�es E(ezjτ1) = 1 then so does zj , so that one checks that the right-hand side of (36)
is in fact real. Furthermore, in the following result we need to write o(e−zNx) term in (36) in
the form of

o(e−zNx) = η(x)e−zNx (37)

for some function η(x) such that limx→∞ η(x) = 0.
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Theorem 14. Let us assume that time delays Li are E(µ) distributed and that (A1') holds,
and de�ne

A = −E[X].
µ

µ+ δ

[
E[τ21 ]
2E[τ1]2

+
N∑
k=1

γk
µ

zk − µ
+ µ

∫ ∞
0

η(s)e(µ−zN )sds

]
Lτ (−µ), (38)

where η(x) is de�ned by (37), and

Bk = E[X].
µ

µ+ δ

[
γk

zk
zk − µ

]
Lτ (−zk). (39)

Then M̃1(t) in (4) satis�es the following high order expansions

M̃1(t) = χ1 +A∗e−µt +

N∑
k=1

Bke
−zkt + o(e−zN t), (40)

where A∗ = A− E[X]
E[τ1] .

1
µ+δL

τ (−µ) with A in (38) and Bk in (39).

Proof. See Section 7.5.

Note that in expansion (40) the Bk's are explicit. On the other hand, A in (38) features
an integral involving function x 7→ η(x) which is not explicit in general. This means that
(40) is explicit only if we truncate the expansion to the i0th term where i0 = max{j =
1, . . . , N | Re(zj) < µ}. We may write the expansion in this way, however we prefer to keep a
form as general as possible. Besides, we point out on a similar note that an expansion akin
to (40) was provided in [4, Lemma 1] for a general renewal reward process in the particular
context where there is no time delay, under the weaker assumption that interarrival times and
rewards admit a moment of order 1.

Remark 15 (Dependence of (40) in δ). Upon inspecting (38) and (39) one notices that

|A∗|, |Bk| ≤ M

µ+ δ
, k = 1, . . . , N,

for all δ ≥ 0, where M > 0 is a constant independent from δ. On further analysis, one also
checks that when δ is complex and veri�es |δ| < µ then

|A∗|, |Bk| ≤ M

µ− |δ|
, k = 1, . . . , N. (41)

In particular this inequality also holds when δ is negative and larger than −µ. Hence, from
(41), it is shown that that M̃1(t) and χ1 are de�ned for such a complex δ. This is particularly
going to be the case in Section 5.2. Concerning the term o(e−zN t) in (40), one carefully checks
from the proof of Theorem 14 that

|o(e−zN t)| ≤ 1

µ− |δ|
ζ(t)e−Re(zN )t, (42)

when δ ∈ C, |δ| < µ, for some function ζ(.) independent from δ verifying limt→∞ ζ(t) = 0.
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5.2. Asymptotics for the workload of the G/M/∞ queue

An interesting application of the previous study of the one dimensional discounted compound
delayed process Z(t) is that we are able to �nd results concerning the asymptotic behaviour
of the workload D(t) of the in�nite server queue when k = 1. This D(t) represents the time
needed to empty the queue at time t if there is no arrival afterwards. The distribution of this
quantity was derived in [3, Section 3] for anM/G/∞, but no results seem to have been obtained
for a general arrival process with exponential service times, i.e. in G/M/∞. In particular, [3]
derives the distribution of the transient workload D(t) in the case of Poisson arrivals with
inhomogeneous intensity. The workload has the following expression

D(t) :=

∞∑
i=1

(Ti + Li − t)1{Ti≤t<Ti+Li},

which is obtained from Z̃(t, δ) := eδtZ(t) as:

D(t) = − ∂

∂δ
Z̃(t, δ)

∣∣∣∣
δ=0

, (43)

We assume in this section that all Xi,1 for i ∈ N, are equal to one. In that case, Z(t) in
(2) is, when δ = 0, the size of this in�nite server queue at time t. A sample path of D(t)

D(t)

tT1 T2 T3 T5T4 T6

Fig 2. Sample path of workload for the G/G/∞ queue.

is depicted in Figure 2. Let us note that D(t) is also the sum of the residual times for all
services to be completed at time t. From an actuarial point of view, D(t) may be interpreted
as the remaining time before all current claims have been reported. We are interested in the
limiting expectation of workload and the covariance of queue size and workload. We thus need
to study the two �rst moments of Z̃(t, δ), i.e. quantities M̃n(1)(t, δ) = M̃1(t, δ) = E[Z̃(t, δ)]
and M̃2n(1)(t, δ) = M̃2(t, δ) = E[Z̃(t, δ)2], where we here underline the dependence on δ.

Here we assume that service time L is E(µ) distributed, i.e.

E[exL] =
µ

µ− x
, ∀x ∈ (−∞, µ), (44)

so that this queue is the G/M/∞, and that interarrival times are light tailed, i.e. Condition
(A1') holds for some R > 0. To begin, two lemmas are �rst required. We need to de�ne for
r > 0, the disc Dr centered at 0 with the radius r, included in C, by

Dr := {z ∈ C| |z| ≤ r}.
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Lemma 16. Let a < µ and let us suppose that (A1) and (A1') holds. For all t > 0, M̃1(t, δ)
and M̃2(t, δ) are respectively de�ned on Da and Da/2. Furthermore, δ 7→ M̃1(t, δ) and δ 7→
M̃2(t, δ) are analytic on those sets, hence a fortiori at δ = 0.

Note that one implication of the above lemma is that quantities M̃1(t, δ) and M̃2(t, δ) (and,
hence Z̃(t, δ)) are de�ned for some complex values of δ, and in particular for negative values
(not only for δ ≥ 0). This is especially handy to express the workload as (43) and to be able
to de�ne analyticity of M̃1(t, δ) and M̃2(t, δ) at δ = 0, which is needed to di�erentiate with
respect to δ at 0.

Proof. See Section 7.6.

Lemma 17. Let us suppose that (A1) and (A1') hold and let a < µ. δ 7→ M̃1(t, δ) and
δ 7→ M̃2(t, δ) uniformly converge to δ 7→ χ1(δ) and δ 7→ χ2(δ) respectively on Da and Da/2 as
t→ +∞.

Proof. See Section 7.6.

Now we are ready to provide some results for the long term behaviour of the expected
workload, and the covariance function of the workload and the queue size in the following.

Theorem 18. Let us suppose that (A1) and (A1') hold. In the G/M/∞ queue, the limiting
expected workload is given by

lim
t→∞

E[D(t)] =
1

µ2E[τ1]
=

E[L2]

2E[τ1]
, (45)

and the limiting covariance of the workload and queue size is given by

lim
t→∞

Cov[D(t), Z1(t, 0)] =
1

µ2E[τ1]

[
1 +

Lτ (µ)
1− Lτ (µ)

− 1

µE[τ1]

]
. (46)

Proof. See Section 7.6.

Remark 19. When k = 1, utilizing (43), it is possible to get an expression of the expected
workload and covariance of workload and queue size at time t in the M/G/∞ queue as well.
This is done thanks to the (easily veri�ed) relations

E[D(t)] = −1

s

∂

∂δ
ψ̃(s, t)

∣∣∣∣
δ=0,s=0

,

Cov[D(t), Z1(t, 0)] =

[
∂

∂s

[
−1

s

∂

∂δ
ψ̃(s, t)

]
−
[
−1

s

∂

∂δ
ψ̃(s, t)

]
.

[
∂

∂s
ψ̃(s, t)

]]∣∣∣∣
δ=0,s=0

,

where ψ̃(s, t) is given by (13) withM∗t,X(s) =W (t)+
∫∞
t ese

−δv
dW (s). Contrarily to Theorem

18, justi�cation of the above formulas is much easier as one does not have to justify interchange
of expectation and derivation with respect to δ, which is the core step in the proof of Theorem
18, and is done with the help of Lemmas 16 and 17.
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6. Applications

6.1. Queues with di�erent service times within a batch

The queueing model introduced in Section 1 features a queue where customers arrive in a
batch of size Xi,j with class j at time Ti. Each customer in this batch has the same service
time Li,j within the same class j for j = 1, 2, . . . , k. One may argue that this scenario is not
much realistic since each customer ` ∈ {1, . . . , Xi,j} may have di�erent service times Lij`,
where (Lij`)ij`∈N3 are independent rv, with (Lij`)`∈N identically distributed for all i ∈ N,
j = 1, . . . , k, so that customers within a batch get di�erent service times.

It can be shown that this (more realistic) situation is essentially expressed in the form of our
model by constructing a "larger" vector X = (X1, . . . , Xk) in the following. For illustration
purposes, recall the situation depicted in Figure 1 where M customers arrive in a batch,
but let us consider it with customer ` ∈ {1, . . . , Xi,j} having service time Lij` instead of
Lij . In other words, let such a sequence (Lij`)(i,j,`)∈N3 be given and let pj` the probability
of having a customer of class j ∈ {1, . . . , k} and delay Lj`, for some generic random matrix
(Lj`)j=1,...,k, `=1,...,M . This situation is then modelled thanks to the one described in Section
1 by considering a vector X = (Xj,`)j=1,...,k, `=1,...,M of length kM (written as a matrix) such
that

X = (Xj`)j=1,...,k, `=1,...,M

∼ D ((Yj`)j=1,...,k, `=1,...,M | Yj` ∈ {0, 1}, ∀(j, `) ∈ {1, . . . , k} × {1, . . . ,M}) .

where (Yj`)j=1,...,k, `=1,...,M be a matrix with distribution M(M, (pj`)j=1,...,k, `=1,...,M ), i.e. a
random vector of length kM with a multinomial distribution with parameter M and proba-
bility vector (p11, . . . , p1M , p21, . . . , p2M , . . . , pk1, . . . , pkM ).

6.2. In�nite server queues in tandem

To furthermore illustrate the versatility of the present model, let us now consider the following
two in�nite server queues in tandem setup. We suppose that each batch arriving at time
Ti contains Xi,j customers where there are k classes of customers. Once customer of class
j ∈ {1, . . . , k} arrives in the �rst queue, he is served during a deterministic time L1

i,j . Upon
completion of the service, i.e. after leaving the �rst queue, he is then directly sent to the second
queue (again with an in�nite number of servers) where it is served during a time L2

i,j . This
kind of successive treatments of queues is easily observed in the claims payment process in
actuarial science. In general, there are time delays between the time of incurral of the claim
and the time of receipt of payment. Of course, for the insurers, they are concerned with the
time from receipt of noti�cation of the claim until approval or payment. It is natural that each
stage for one claim has di�erent processing times (i.e. di�erent distribution for time delays).
See [22] for detailed discussion related to the insight of queueing theoreic tools into the claims
payment process.

Again, for illustration purposes, consider the case where there are M customers that arrive
in a batch at time Ti. Within the same type of class j of which size Xi,j , all have the same
service times L1

i,j and L
2
i,j . Certainly, as explained in Section 6.1, di�erent service times within

a batch may also be available. We assume that (L2
i,j)i∈N, j=1,...,k are independent, and that, as

usual, L2
i,1, . . . , L

2
i,k have di�erent distribution for each class; In the same vein, service times



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 18

L1
i,1, . . . , L

1
i,k in the �rst queue are all deterministic but are di�erent for each class. This is

represented in Figure 3. We are interested in the number of customers of class j in the second

Size M batch of customers

Q1
1(t) customers, class 1

Q1
j (t) customers, class j

Q1
k(t) customers, class k

Q2
1(t) customers, class 1

Q2
j (t) customers, class j

Q2
k(t) customers, class k

service time L1
ij service time L2

ij

Fig 3. Two queues in tandem.

queue at time t which is denoted by Q2
j (t). It is not hard to see that one has the expression

Q2
j (t) =

∞∑
i=1

Xi,j1{Ti+L1
i,j≤t<Ti+L1

i,j+L
2
i,j}
, j = 1, . . . , k, (47)

where X = (X1, . . . , Xk) ∼M(M,p1, . . . , pk). Let us then introduce, for i ∈ N, the N2k sized
vector

X ′ = (X ′i,1, . . . , X
′
i,2k) := (Xi,1, . . . , Xi,k, Xi,1, . . . , Xi,k)

(i.e. vector X concatenated with itself) as well as the [0,+∞)2k sized vector

L′i,j =

{
L1
i,j , j = 1, . . . , k,

L1
i,j−k + L2

i,j−k, j = k + 1, . . . , 2k.
(48)

One important remark is that, since the L1
ij 's are deterministic, the sequence (L′ij)i∈N, j=1,...,2k

has independent components. Hence, this model can be expressed under the setting of our
model as described in Section 1 but withX ′ and (L′i,j)i∈N, j=1,...,2k in lieu ofX and (Li,j)i∈N, j=1,...,k.

To be speci�c, let us de�ne the N2k valued process Z(t) = (Z1(t), . . . , Z2k(t)) with

Zj(t) =
∞∑
i=1

X ′i,j1{Ti≤t<Ti+L′i,j}, j = 1, . . . , 2k,

where L′i,j are de�ned in (48). Then, one has in particular Zj(t) = Q1
j (t) for j = 1, . . . , k.

One also notes from (47) that Q2
j (t) = Zj+k(t) − Zj(t) for j = 1, . . . , k. The mgf of Q2(t) =

(Q2
1(t), . . . , Q

2
k(t)) can then be expressed in terms of the mgf of Z(t) by

E
[
e<s,Q

2(t)>
]
= E

[
e<(−s,s),Z(t)>

]
, s = (s1, . . . , sk) ∈ Rk, (49)

where (−s, s) := (−s1, . . . ,−sk, s1, . . . , sk) ∈ R2k. The consequence of(49) is that
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• If arrivals occur according to a Poisson process with intensity λ, then the mgf of Q2(t)
is explicit thanks to Proposition 3 that

E
[
e<s,Q

2(t)>
]
= exp

[
λ

∫ t

0

(
M∗v,X′((−s, s))− 1

)
dv

]
.

• If arrival processes are general but satisfy (A1) then less information is available on
the transient distribution, however one has from Theorem 8 that Q2(t) converges in
distribution to some light tailed random vector as t→∞, and that some simple bounds
on the joint moments of this limiting random vector are available from Proposition 7.

7. Proofs

Proof of Lemma 1. When τ1 admits a density f(·) then density t 7→ u(t) of renewal function
t 7→ m(t) satis�es a renewal equation of the form

u(x) = f(x) +

∫ x

0
u(y)f(x− y)dy, x ≥ 0, (50)

(e.g. see Equation (3.6) of [7]). Since (A1) holds, by [7, Lemma p.359] (50) admits a unique
solution bounded on �nite intervals given by (9). Also, the derivative m′(t) = u(t) veri�es
limt→∞m

′(t) = 1/E[τ1], see [7, Theorem 2 p.367], and is thus bounded above by some constant
C. �

7.1. Proof of Proposition 4

Since M̃n(t) satis�es the renewal equation in (11), asymptotics result in (14) is a direct con-
sequence of Smith's renewal theorem, provided that we prove that

∫∞
0 b̃n(y)dy or equivalently∫∞

0 ϕ`,n(y)dy is �nite for all n ∈ Nk and ` < n. We shall demonstrate this by induction on
n ∈ Nk. First, consider the case of n = n(i) for some i ∈ {1, . . . , k}. From Example 3 in [27]
one has

bn(t) = E[Xi].

∫ t

0
e−δyωδ,i(t− y)dF (y) = E[Xi]. ωδ,i ? Hδ(t), (51)

where ωδ,i(t) is given in (7) andHδ(t) =
∫ t
0 e
−δydF (y). But

∫∞
0 eδzωδ,i(z)dz =

∫∞
0 eδz

∫∞
z e−δydWi(y)dz =

δ−1{1− E[e−δLi ]}, the following integration yields∫ ∞
0

b̃n(y)dy =

∫ ∞
0

eδybn(y)dy = E[Xi].

∫ ∞
0

eδy
∫ y

0
e−δxωδ,i(y − x)dF (x)dy

= E[Xi].

∫ ∞
0

e−δx
∫ ∞
x

eδyωδ,i(y − x)dydF (x)

= E[Xi]. δ
−1
{
1− E[e−δLi ]

}
<∞, (52)

or equivalently∫ ∞
0

b̃n(y)dy = E[Xi]E[Li]
∫ ∞
0

e−δx
W i(x)

E[Li]
dx = E[Xi]E[Li]w̃1,i(δ),

where w1,i(x) is an equilibrium pdf of Li de�ned as w1,i(x) = W i(x)/E[Li] and its Laplace
transform is w̃1,i(s) =

∫∞
0 e−sxw1,i(x)dx.
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Moreover, recall Equation (36) in [27]

Mn(t) = E[Xi].

∫ t

0
e−δyωδ,i(t− y)dm(y) = E[Xi]. e

−δt
∫ t

0
eδ(t−y)ωδ,i(t− y)dm(y).

By Smith's theorem, it satis�es

Mn(t) ∼
E[Xi]

E[τ1]

[ ∫ ∞
0

eδyωδ,i(y)dy

]
e−δt, t→∞.

In other words, one identi�es

χn = χn(i) =
E[Xi]

E[τ1]

[ ∫ ∞
0

eδyωδ,i(y)dy

]
.

We now assume for all ` < n that M̃`(t)→ χ` < +∞ as t→∞ with χ` de�ned as in (14).
Hence t 7→ M̃`(t) is bounded for all ` < n by some constant K` = supt≥0 M̃`(t). Hence simple
algebraic computation results in the upper bound for (6) as

ϕ`,n(t) ≤ K`E
[
e(ηn−η`)δ(t−τ1)

∏
j∈C`,n

ω(nj−`j)δ,j(t− τ1).1[τ1<t]
]

= K`E
[
e(ηn−η`)δ(t−τ1)

∏
j∈C`,n

[ ∫ ∞
t−τ1

e−(nj−`j)δydWj(y)

]
.1[τ1<t]

]

≤ K`E
[
e(ηn−η`)δ(t−τ1)

∏
j∈C`,n

[
e−(nj−`j)δ(t−τ1)W j(t− τ1)

]
.1[τ1<t]

]

= K`E
[ ∏
j∈C`,n

W j(t− τ1).1[τ1<t]
]
.

Then integrating ϕ`(t) from 0 and ∞ yields∫ ∞
0

ϕ`,n(t)dt ≤ K`E
[ ∫ ∞

0

∏
j∈C`,n

[
W j(t− τ1)

]
.1[τ1<t] dt

]
= K`

∫ ∞
0

∏
j∈C`,n

W j(t) dt,

and by Holder's inequality, one �nds∫ ∞
0

ϕ`,n(t)dt ≤ K`

∏
j∈C`,n

[ ∫ ∞
0

W j(t)
|C`,n| dt

]1/|C`,n|
,

≤ K`

∏
j∈C`,n

[∫ ∞
0

W j(t) dt

]1/|C`,n|
= K`

∏
j∈C`,n

E[Lj ]1/|C`,n|

≤ K` min
j∈C`,n

E[Lj ] <∞, (53)

where |C`,n| denotes the cardinal of set C`,n. Hence from (8) we deduce that
∫∞
0 b̃n(y)dy is

also �nite, and the induction is complete.
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7.2. Proof of Proposition 7

Since m(t) admits u(t) as a density, one has from (11) that M̃n(t) =
∫ t
0 b̃n(y)u(t− y)dy, and

in turn, from Lemma 1 we arrive at the following upper bound

M̃n(t) ≤ C
∫ ∞
0

b̃n(y)dy. (54)

Combining (8) and (53) yields the following upper bound∫ ∞
0

b̃n(y)dy ≤
∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
E
[ k∏
j=1

X
nj−`j
j

]
K` min

j∈C`,n
E[Lj ],

where we recall that K` = supt≥0 M̃`(t) (see the proof of Proposition 4). Thus the above
inequality together with (14) and (54) yields (18) and (19) respectively with (Rn)n∈Nk de�ned
in (20), provided we initialize value of Rn when n = n(i) for i ∈ {1, . . . , k}. This is done by
again using upper bound (54) and remembering that

∫∞
0 b̃n(y)dy is obatined by (52) when

n = n(i).

7.3. Proof of Theorem 8

Let P (x1, . . . , xk) =
∑

ηn≤K anx
n1
1 · · ·x

nk
k be a nonnegative polynomial in the variables x1. . .xk

of degree K. One has then that
∑

ηn≤K anE
[∏k

i=1(Z̃i(t))
ni
]
= E

[
P (Z̃1(t), . . . , Z̃k(t))

]
≥ 0

for all t, which, from Proposition 4, yields
∑

ηn≤K anχn ≥ 0 as t→∞. By the Riesz-Haviland
theorem (see [9]), we deduce that sequence (χn)n∈Nk is a sequence of moments associated to
some random variable Z∞ = (Z∞,1, . . . ,Z∞,k).

Next we shall show that the mgf of Z̃(t) exists and converges to the mgf of Z∞ as t→∞.
To this end, we note that the mgfs of Z̃(t) and of Z∞ respectively de�ned by (5) and denoted
by ψ∞(s) verify

ψ̃(s, t) =
∑
n∈Nk

k∏
i=1

snii
ni!

M̃n(t), (55)

ψ∞(s) = E
[
e<s,Z∞>

]
=
∑
n∈Nk

k∏
i=1

snii
ni!

χn, (56)

for t ≥ 0 and s = (s1, . . . , sk) ∈ Rk in the neighborhood of (0, . . . , 0). To let t → ∞ in (55)
and apply the dominated convergence theorem, we need to show that M̃n(t) is bounded such
as

M̃n(t) ≤ Un := (MmLe
k)ηn

k∏
i=1

ni!, ∀n ∈ Nk, ∀t ≥ 0, (57)

where mL := max (1, C.maxi=1,...,k E[Li]), so that, since

∑
n∈Nk

k∏
i=1

|si|ni
ni!

Un =
k∏
i=1

( ∞∑
ni=0

|siMmLe
k|ni
)
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converges for

s = (s1, . . . , sk) ∈ J :=

[
− 1

MmLek
,

1

MmLek

]k
,

the dominated convergence theorem yields ψ̃(s, t) −→ ψ∞(s) when t→∞ for s ∈ J .
Hence, we shall prove (57) by induction. Recall that in Proposition 7, we have already

proved M̃n(t) ≤ Rn where Rn is de�ned in (20). Thus we shall essentially show that Rn ≤ Un
for all n ∈ Nk, so that (57) holds. We start by n = n(i) for i ∈ {1, . . . , k}. In this case, upper
bound (19) with (20) yields

Rn(i) = CE[Xi]δ
−1
{
1− E

[
e−δLi

]}
≤ CME[Li] ≤MmL = Un(i),

where the �rst inequality is due to δ−1
{
1− E

[
e−δLi

]}
=
∫∞
0 e−δxW i(x)dx ≤

∫∞
0 W i(x)dx.

Let us now suppose that n is such that R` ≤ U` for all ` < n. Using (20) as well as the
induction assumption we get

Rn ≤ C
∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
E
[ k∏
j=1

X
nj−`j
j

]
min
i∈C`,n

E[Li]. U` ≤ mL

∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
Mηn−η` . U`.

(58)
But, ` < n implies ηn − η` ≥ 1 and mL and e are larger than 1, the following inequality is
valid

mLM
ηn−η` ≤ mηn−η`

L Mηn−η`(ek)ηn−η`−1 = (mLMek)ηn−η`e−k.

Substituting the above inequality and U` = (MmLe
k)η`

∏k
i=1 `i! into (58), the right-hand side

of (58) is now bounded by

Rn ≤
∑
`<n

(
n1
`1

)
· · ·
(
nk
`k

)
(mLMek)ηn−η`e−k(MmLe

k)η`
k∏
i=1

`i!

= (MmLe
k)ηn

[∑
`<n

k∏
i=1

ni!

(ni − `i)!

]
e−k = (MmLe

k)ηn
[ k∏
i=1

ni!

][∑
`<n

k∏
i=1

1

(ni − `i)!

]
e−k

= Un

[∑
`<n

k∏
i=1

1

(ni − `i)!

]
e−k. (59)

We then conclude by noticing that

∑
`<n

k∏
i=1

1

(ni − `i)!
≤

∑
`i≤ni, i∈{1,...,k}

k∏
i=1

1

(ni − `i)!

=

k∏
i=1

[ ni∑
`i=1

1

(ni − `i)!

]
=

k∏
i=1

[ ni∑
`i=1

1

`i!

]
≤

k∏
i=1

[ ∞∑
`i=1

1

`i!

]
= ek,

which, plugged into (59), yields Rn ≤ Un. Therefore, by the dominated convergence theorem,
ψ̃(s, t) in (55) converges to ψ∞(s) in (56) as t→∞.

In conclusion, since M̃n(t) and χn are bounded as shown in Proposition 7, the mgfs of eδtZ(t)
in (55) and Z∞ in (56) exist. Also, we have shown that ψ̃(s, t) −→ ψ∞(s) when t → ∞ for
s ∈ J in some neighborhood of (0, . . . , 0). Hence, eδtZ(t) converges to Z∞ in distribution.
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7.4. Proof of Lemma 9

When n = n(i) and i ∈ {1, . . . , k}, we may obtain an expression of Lbn(s) by using the
expression of bn(t) in Example 3 in [27], and applying similar idea as applied in (52). We
now turn to proving (22). Since Lj 's are all E(µ) distributed, ϕ`,n(t) = ϕ`,n(t) given by (6)
simpli�es to

ϕ`,n(t) = E
[
M̃`(t− τ1)

{ ∏
j∈C`,n

µ

µ+ (nj − `j)δ

}
e−|C`,n|µ(t−τ1).1[τ1<t]

]
.

Then using Fubini's theorem to interchange the expectation with the integration as well as a
change of variable t := t− τ1, it follows that∫ ∞

0
e−utϕ`,n(t)dt =

[ ∏
j∈C`,n

µ

µ+ (nj − `j)δ

]
E
[∫ ∞

τ1

e−utM̃`(t− τ1)e−|C`,n|µ(t−τ1)dt
]

=

[ ∏
j∈C`,n

µ

µ+ (nj − `j)δ

]
E
[
e−uτ1

∫ ∞
0

e−utM̃`(t)e
−|C`,n|µtdt

]

=

[ ∏
j∈C`,n

µ

µ+ (nj − `j)δ

]
Lτ (u)LM` (u+ |C`,n|µ). (60)

If ` = 0, where 0 is a zero vector in Nk, then M̃`(t) = 1 hence LM` (u + |C0,n|µ) = 1
u+|C0,n|µ ,

and we get∫ ∞
0

e−utϕ0,n(t)dt =

[ ∏
j∈C0,n

µ

µ+ (nj − `j)δ

]
Lτ (u)

u+ |C0,n|µ
=

[ k∏
j=1

µ

µ+ njδ

]
Lτ (u)

u+ |C0,n|µ
.

In the case ` > 0, let us now observe that taking Laplace transforms in renewal equation (11)
satis�ed by M̃n(.) yields the following classical relation between LMn (u) and Lbn(u):

LMn (u) =
Lbn(u)

1− Lτ (u)
, ∀u > 0, n ∈ Nk\{n(i), i = 1, . . . , k},

so that (60) leads to∫ ∞
0

e−utϕ`,n(t)dt =

[ ∏
j∈C`,n

µ

µ+ (nj − `j)δ

]
Lτ (u)

1− Lτ (u+ |C`,n|µ)
Lb`(u+ |C`,n|µ).

With the above result, the Laplace transform of (8) becomes (22).

7.5. Proof of Theorem 14

Substituting (35) into (33) for dm(s) yields

M̃1(t) =
1

E[τ1]

∫ t

0
b̃1(t− s)ds+

∫ t

0
b̃1(t− s)dv(x).
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A change of variable s := t − s in the �rst integral and a subtraction of χ1 in (34) on both
sides result in

M̃1(t)− χ1 = −
1

E[τ1]

∫ ∞
t

b̃1(s)ds+

∫ t

0
b̃1(t− s)dv(x). (61)

Let

I1(t) = −
1

E[τ1]

∫ ∞
t

b̃1(s)ds, I2(t) =

∫ t

0
b̃1(t− s)dv(s), (62)

then (61) is essentially a sum of I1(t) and I2(t). In the sequel, we shall separately study the
asymptotic behaviors of I1(t) and I2(t) when t → ∞. First it is convenient to introduce the
following quantity and its asymptotic result as it will be often utilitized in the later analysis.

E[1{τ1≥t}e
−µi(t−τ1)] = e−µit

∫ ∞
t

eµisdF (x)

= e−µit
∫ ∞
t

e(µi−R)seRsdF (s) ≤ e−µit
∫ ∞
t

e(µi−R)teRsdF (s)

≤ e−Rt
∫ ∞
t

eRsdF (x) = o(e−Rt), (63)

where the second last inequality is due to the assumption on µi < R for all i's and the last
result is due to E[eRτ1 ] = Lτ (−R) <∞ by (A1').

We begin to analyze I1(t) in (62) when t→∞. From (51) and (7) we may write∫ ∞
t

b̃1(z)dz = E[X].E
[ ∫ ∞

t
eδ(z−τ1)1{τ1<z}

∫ ∞
z−τ1

e−δsdW (s)dz
]
. (64)

When we assume that Lj 's are E(µ) distributed for µ > 0, then the second integral on the
above equation is simpli�ed as∫ ∞

z−τ1
e−δsdW (s) =

µ

µ+ δ
e−(µ+δ)(z−τ1). (65)

As 1{τ1≥t} + 1{τ1<t} = 1, inserting these two indicator functions in (64) together with (65)
results in∫ ∞

t
b̃1(z)dz = E[Xi].

µi
µi + δ

E
[ (
1{τ1<t} + 1{τ1≥t}

) ∫ ∞
t

1{τ1<z}e
−µi(z−τ1)dz

]
.

For the case of τ1 < t, as z > t and τ1 < z, the above expectation is reduced to

E
[
1{τ1<t}

∫ ∞
t

1{τ1<z}e
−µi(z−τ1)dz

]
=

1

µ
E[1{τ1<t}e

−µt−τ1)]

=
1

µ
E[(1− 1{τ1≥t})e

−µ(t−τ1)]

=
1

µ

{
e−µtLτ (−µ)− E[1{τ1≥t}e

−µ(t−τ1)]
}

=
1

µ
e−µtLτ (−µ) + o(e−Rt),



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 25

where the last line is obtained by applying (63). On the other hand, when τ1 ≥ t,

E
[
1{τ1≥t}

∫ ∞
t

1{τ1<z}e
−µ(z−τ1)dz

]
= E

[
1{τ1≥t}

∫ ∞
τ1

e−µ(z−τ1)dz
]

=
1

µ
Pr(τ1 ≥ t),

and note that, using Cherno�'s inequality, Pr(τ1 ≥ t) ≤ E(eRτ1)e−Rt = o(e−zN t) because of
E(eRτ1) <∞ (by condition (A1')) and Re(zN ) < R. Hence combining the above results using
the fact that an o(e−Rt) is a fortiori an o(e−zN t), it follows that

I1(t) = −
1

E[τ1]

∫ ∞
t

b̃1(s)ds = −
E[X]

E[τ1]
.

1

µ+ δ
Lτ (−µ)e−µt + o(e−zN t). (66)

We now turn to I2(t) in (62). As b̃1(0) = 0, applying integration by parts for Stieltjes integrals
on the right side of I2(t) yields

I2(t) =

∫ t

0
b̃1(t− s)dv(x) = b̃1(t)v(0

−) +

∫ t

0
v(s)b̃′1(t− s)ds. (67)

But v(0−) = −E[τ21 ]/(2E[τ1]2) and using a similar reasoning applied to (63) we get

b̃1(t) = E[X].
µ

µ+ δ
E
[
1{τ1<t}e

−µ(t−τ1)] = E[X].
µ

µ+ δ
Lτ (−µ)e−µt + o(e−Rt), (68)

i.e.

b̃1(t)v(0
−) = −E[Xi]E[τ21 ]

2E[τ1]2
µ

µ+ δ
Lτ (−µ)e−µt + o(e−zN t), t→∞. (69)

Also we have b̃1(t) = E[X]. µ
µ+δe

−µt ∫ t
0 e

µsdF (s) and then b̃′1(t) = −µb̃1(t)+E[X] µ
µ+δf(t). Thus∫ t

0
e−zksb̃′1(t− s)dx = e−zkt

∫ t

0
ezksb̃′1(s)ds

= e−zkt
∫ t

0
ezks

[
− µb̃n(s) + E[X]

µ

µ+ δ
f(s)

]
ds, k = 1, . . . , N. (70)

On the �rst term of the above equation, from (68) it follows that

e−zkt
∫ t

0
ezksb̃1(s)ds = E[X].

µ

µ+ δ

( 1

zk − µ

)
E
[
1{τ1<t}{e

−µ(t−τ1) − e−zk(t−τ1)}
]

= E[X].
µ

µ+ δ

( 1

zk − µ

){
e−µtLτ (−µ)− e−zktLτ (−zk)

}
+ o(e−Rt), (71)

for k = 1, . . . , N . Next, on the second term, one has

e−zkt
∫ t

0
ezksf(s)ds = e−zktLτ (−zk)− e−zkt

∫ ∞
t

ezksf(s)ds

= e−zktLτ (−zk) + o(e−zN t) (72)
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since∣∣∣e−zkt ∫ ∞
t

ezksf(s)ds
∣∣∣ = ∣∣∣e−zkt ∫ ∞

t
e(zk−R)seRsf(s)ds

∣∣∣ ≤ e−Re(zk)t

∫ ∞
t

e(Re(zk)−R)seRsf(s)ds

≤ e−Re(zk)te(Re(zk)−R)t

∫ ∞
t

eRsf(s)ds = e−Rt
∫ ∞
0

eRsf(s)ds = o(e−zN t).

Then using (36) and (70) with (71) and (72), and since an o(e−Rt) is a fortiori an o(e−zN t),
the second term of (67) (except for the term involving o(e−zNx) in v(x) in (36)) is now given
by∫ t

0
[v(s)− o(e−zNs)]b̃′1(t− s)ds

= E[X].
µ

µ+ δ

[
N∑
k=1

γk

( µ

zk − µ

){
e−zktLτ (−zk)− e−µtLτ (−µ)

}
+ γke

−zktLτ (−zk)

]
+ o(e−zN t)

= E[X].
µ

µ+ δ

[
N∑
k=1

γk

(
zk

zk − µ
e−zktLτ (−zk)−

µ

zk − µ
e−µtLτ (−µ)

)]
+ o(e−zN t). (73)

Recall that function η(.) is de�ned by (37). Then, putting the expression for b̃′1(t) into the
integral, it follows that∫ t

0
o(e−zNs)b̃′1(t− s)ds =

∫ t

0
η(s)e−zNsb̃′1(t− s)ds

=

∫ t

0
η(s)e−zNs

[
− µb̃1(t− s) + E[X]

µ

µ+ δ
f(t− s)

]
ds. (74)

We start by considering
∫ t
0 η(s)e

−zNsf(t− s)ds which can be written as∫ t

0
η(t− s)e−zN (t−s)f(s)ds = e−zN t

∫ ∞
0

η(t− s)1{0<s<t}ezNsf(s)ds.

The fact that
∫∞
0 |e

zNsf(s)ds| =
∫∞
0 e(Re(zN ))sf(s)ds is convergent implies, by dominated

convergence, ∫ ∞
0

η(t− s)1{0<s<t}ezNsf(s)ds −→ 0, t→∞.

Consequently, ∫ t

0
η(s)e−zNsf(t− s)ds = o(e−zN t), t→∞. (75)

Now we turn our attention to the �rst term of (74) involving
∫ t
0 η(s)e

−zNsb̃1(t− s)ds. Writing
from (51) (see also (68))

b̃1(t) = E[X].
µ

µ+ δ
E
[
1{τ1<t}e

−µ(t−τ1)] = E[X].
µ

µ+ δ
Lτ (−µ)e−µt−E[X].

µ

µ+ δ
E
[
1{τ1≥t}e

−µ(t−τ1)],



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 27

we then split
∫ t
0 η(s)e

−zNsb̃1(t−s)ds into two parts, namely E[X]. µ
µ+δL

τ (−µ)
∫ t
0 η(s)e

−zNse−µ(t−s)ds

and E[X]. µ
µ+δ

∫ t
0 η(s)e

−zNsE
[
1{τ1≥t−s}e

−µ((t−s)−τ1)
]
ds. The �rst term is expressed as

E[X].
µ

µ+ δ
Lτ (−µ)

∫ t

0
η(s)e−zNse−µ(t−s)ds

= E[X].
µ

µ+ δ
Lτ (−µ)

[∫ ∞
0

η(s)e−zNseµsds

]
e−µt − E[X].

µ

µ+ δ
Lτ (−µ)

[∫ ∞
t

η(s)e−zNseµsds

]
e−µt

= E[X].
µ

µ+ δ
Lτ (−µ)

[∫ ∞
0

η(s)e−zNseµsds

]
e−µt + o(e−zN t), (76)

where the latter term o(e−zN t) being again justi�ed as in (63). Now (63) implies that the
second term veri�es, by dominated convergence

E[X].
µ

µ+ δ

∫ t

0
η(s)e−zNsE

[
1{τ1≥t−s}e

−µ((t−s)−τ1)]ds
= E[X].

µ

µ+ δ
e−zN t

∫ t

0
η(t− s)ezNsE

[
1{τ1≥s}e

−µ(s−τ1)]ds = o(e−zN t). (77)

Gathering (76) and (77) thus yields∫ t

0
η(s)e−zNsb̃n(t− s)ds = E[X].

µ

µ+ δ
Lτ (−µ)

[ ∫ ∞
0

η(s)e(µ−zN )sds
]
e−µt + o(e−zN t). (78)

Then from (73) and (74) with (75) and (78) we get∫ t

0
v(s)b̃′1(t− s)ds = E[X].

µ

µ+ δ

[
N∑
k=1

γk

(
zk

zk − µ
e−zKtLτ (−zK)− µ

zk − µ
e−µtLτ (−µ)

)]

− E[X].
µ2

µ+ δ
Lτ (−µ)

[ ∫ ∞
0

η(s)e(µ−zN )sds
]
e−µt + o(e−zN t), t→∞.

Hence the above result together with (69) allows us to have an expression for (67) as

I2(t) = Ae−µt +
N∑
k=1

Bke
−zkt + o(e−zN t), (79)

where A and Bk for k = 1, . . . , N are de�ned by (38) and (39). As a result, combining (66)
and (79) leads the theorem.

7.6. Proof of Theorem 18

Proof of Lemma 16. We shall start by proving the properties for M̃1(t, δ), as those for
M̃2(t, δ) are a bit more technical but follow in a similar way. Let us write

M̃1(t, δ) =

∞∑
i=1

ψi(t, δ), ψi(t, δ) := E[e−δ(Ti+Li−t)1{Ti≤t<Ti+Li}], i ∈ N. (80)

We �rst start by proving that ψi(t, δ) is de�ned and analytic on set Da. Indeed, inequality∣∣∣∣δj (−1)jj!
(Ti + Li − t)j1{Ti≤t<Ti+Li}

∣∣∣∣ ≤ aj 1j!Lji , j ∈ N, δ ∈ Da, (81)
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coupled with the fact that
∑∞

j=0 E
[
aj 1

j!L
j
i

]
= E[eaL] = µ

µ−a < +∞ by (44), yields that

∞∑
j=0

δjE
[
(−1)j

j!
(Ti + Li − t)j1{Ti≤t<Ti+Li}

]

is a convergent series on δ ∈ Da and that δ 7→ ψi(t, δ) is analytic on that set for all t ≥ 0, and
admits the above power series expansion in δ. Now one checks easily, by independence of Li
and Ti,

ψi(t, δ) ≤ E[eaLi1{Ti≤t}] = E[eaL] Pr[Ti ≤ t], ∀δ ∈ Da, (82)

with
∑∞

i=1 E[eaL] Pr[Ti ≤ t] = E[eaL]m(t) < +∞. This yields that for all t ≥ 0, series∑∞
i=1 ψi(t, δ) converges normally on δ ∈ Da. Thus for all t ≥ 0, δ 7→ M̃1(t, δ) is thus an-

alytic as the uniform limit of an analytic sequence of functions on compact set Da.
We then move on M̃2(t, δ). Similar to (80), one has

M̃2(t, δ) =
∞∑

r,j=1

πr,j(t, δ), πr,j(t, δ) := E[e−δ(Tr+Lr−t)1{Tr≤t<Tr+Lr}e
−δ(Tj+Lj−t)1{Tj≤t<Tj+Lj}].

The analog of (81) is∣∣∣∣δp (−1)pp!
[(Tr + Lr − t) + (Tj + Lj − t)]p 1{Tr≤t<Tr+Lr}1{Tj≤t<Tj+Lj}

∣∣∣∣ ≤ (a/2)p
1

p!
[Lr+Lj ]

p,

r ∈ N, j ∈ N, δ ∈ Da/2,

with
∑∞

p=0(a/2)
p 1
p! [Lr + Lj ]

p = E
[
ea(Lr+Lj)/2

]
≤ E

[
eaL
]
(by Jensen's inequality), a �nite

quantity, so that δ ∈ Da/2 7→ πr,j(t, δ) is analytic. The analog of (82) is

πr,j(t, δ) ≤ E
[
ea(Lr+Lj)/21{Tr≤t}1{Tj≤t}

]
, r ∈ N, j ∈ N, δ ∈ Da/2, (83)

with, again thanks to Jensen's inequality as well as independence of (Lr, Lj) from (Tr, Tj),

∞∑
r,j=1

E[ea(Lr+Lj)/21{Tr≤t}1{Tj≤t}] ≤ E
[
eaL
] ∞∑
r,j=1

E
[
1{Tr≤t}1{Tj≤t}

]
= E

[
eaL
]
E
[
N2
t

]
< +∞.

Hence, from (83),
∑∞

r,j=1 πr,j(t, δ) = M̃2(t, δ) converges normally on δ ∈ Da/2, and is analytic

on this set by the same argument as δ 7→ M̃1(t, δ). Note that we used that Nt admits the
second moment, a fact that holds because E[τ21 ] < +∞, see e.g. [2, Chapter V.6]. �

Prior to proving Lemma 17, we prove a few upper bounds concerning M̃1(t, δ). First, we
note that deriving b̃1(t) = µ

µ+δe
−µt ∫ t

0 e
µsdF (s) yields b̃′1(t) = −µb̃1(t) + µ

µ+δf(t). Besides,

since (A1) holds, a density u(t) = m′(t) of renewal function exists and is bounded by above
by C > 0 thanks to Lemma 1. Both these facts entail, deriving (33), the following∣∣∣M̃ ′1(t)∣∣∣ = ∣∣∣∣∫ t

0
b̃′1(t− s)m′(s)ds+ b̃1(0)m

′(t)

∣∣∣∣ = ∣∣∣∣∫ t

0
b̃′1(t− s)m′(s)ds

∣∣∣∣
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as f(.) is a density, so that b̃1(0) = 0. Then one �nds∣∣∣M̃ ′1(t)∣∣∣ ≤ µ

∫ t

0

∣∣∣b̃1(t− s)m′(s)∣∣∣ ds+ ∣∣∣∣ µ

µ+ δ

∣∣∣∣ ∫ t

0

∣∣f(t− s)m′(s)∣∣ ds
≤ µC

∫ ∞
0

∣∣∣b̃1(s)∣∣∣ ds+ ∣∣∣∣ µ

µ+ δ

∣∣∣∣C ∫ ∞
0

f(s)ds

≤ C

[∣∣∣∣ µ

µ+ δ

∣∣∣∣+ ∣∣∣∣ µ

µ+ δ

∣∣∣∣] ≤ 2Cµ

µ− |δ|
, (84)

where the last line is due to the fact that f(·) is a density, and
∫∞
0 |b̃1(s)|ds ≤ C

∣∣ µ
µ+δ

∣∣ from
(52).
Proof of Lemma 17. We again start with M̃1(t, δ). The key to is to use expansions for
M̃1(t) = M̃1(t, δ) in Theorem 14 and particularly the dependence of this expansion in δ as
discussed in Remark 15. Indeed, an immediate consequence of (41) and (42) from Remark 15
is that∣∣∣M̃1(t, δ)− χ1(δ)

∣∣∣ ≤ M∗

µ− |δ|

[
e−µt +

N∑
k=1

e−Re(zk)t + ζ(t)e−Re(zN )t

]

≤ M∗

µ− a

[
e−µt +

N∑
k=1

e−Re(zk)t + ζ(t)e−Re(zN )t

]
, ∀δ ∈ Da,

for some constantM∗ independent from δ and t, which implies uniform convergence of M̃1(t, δ)
as t→∞ towards χ1(δ) on δ ∈ Da.

We then move on to M̃2(t, δ). Relation (8) when k = 1, Xj = 1, L ∼ E(µ), along with (6)
and (7) yields the following expression

b̃2(t) = b̃2(t, δ) = ϕ0(t) + 2ϕ1(t), (85)

ϕ0(t) = ϕ0,2(t, δ) =
µ

µ+ 2δ
E[e−µ(t−τ1)1{τ1<t}] =

µ

µ+ 2δ

∫ t

0
e−µ(t−s)f(s)ds, (86)

ϕ1(t) = ϕ1,2(t, δ) =
µ

µ+ δ
E[M̃1(t− τ1, δ)e−µ(t−τ1)1{τ1<t}] =

µ

µ+ δ

∫ t

0
M̃1(t− s, δ)e−µ(t−s)f(s)ds.

(87)

Di�erentiating (86) and (87) with respect to t results in

ϕ′0(t) =
µ

µ+ 2δ

[
−µ
∫ t

0
e−µ(t−s)f(s)ds+ f(t)

]
, (88)

ϕ′1(t) =
µ

µ+ δ

[∫ t

0

(
M̃ ′1(t− s, δ)− µM̃1(t− s, δ)

)
e−µ(t−s)f(s)ds+ f(t)

]
. (89)

We are also going to need the following upper bounds for ϕ0(t, δ), ϕ1(t, δ), obtained from (86),
(87), and the fact that t 7→ M̃1(t, δ) is uniformly bounded in δ ∈ Da/2 by some constant C̃
(independent from δ and t, a consequence of the fact that it converges uniformly on that set):

|ϕ0(t, δ)| ≤
∣∣∣∣ µ

µ+ 2δ

∣∣∣∣ e−µt ∫ ∞
0

eµsf(s)ds ≤ µ

µ− a
C0e

−µt, δ ∈ Da/2, (90)

|ϕ1(t, δ)| ≤
∣∣∣∣ µ

µ+ δ

∣∣∣∣ C̃e−µt ∫ ∞
0

eµsf(s)ds ≤ µ

µ− a/2
C1e

−µt, δ ∈ Da/2,
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for some constants C0 and C1 independent from δ ∈ Da/2 and t. We also wish to obtain similar
bounds for ϕ′0(t, δ) and ϕ′1(t, δ). The following upper bound for ϕ′0(t, δ) is easily obtained
thanks to (88):

|ϕ′0(t, δ)| ≤
∣∣∣∣ µ

µ+ 2δ

∣∣∣∣ [µe−µt ∫ ∞
0

eµsf(s)ds+ f(t)

]
≤ µ

µ− a
[C∗0e

−µt + f(t)], δ ∈ Da/2, (91)

for some constant C∗0 . As to ϕ
′
1(t, δ), the fact that t 7→ M̃1(t, δ) and t 7→ M̃ ′1(t, δ) are uniformly

bounded in δ ∈ Da/2 respectively by C̃ and 2C µ
µ−a/2 (thanks to (84)), easily yields from (89)

|ϕ′1(t, δ)| ≤
µ

µ− a/2
[C∗1e

−µt + f(t)], δ ∈ Da/2,

for some constant C∗1 > 0. Getting back to our original concern of showing that M̃2(t, δ)
converges uniformly, we �rst note that, in view of (33) and (85), it is clear that it is necessary
and su�cient to prove that

δ 7→
∫ t

0
ϕl(t− s, δ)dm(s), l = 0, 1,

converges uniformly on δ ∈ Da/2 as t → ∞ towards 1
E[τ1]

∫∞
0 ϕl(s, δ)ds for l = 0, 1. Details

will be given only for l = 0 as similar proof is applicable for l = 1. The starting point is the
following decomposition, already used in Relation (61) in Section 7.5:∫ t

0
ϕ0(t− s, δ)dm(s)− 1

E[τ1]

∫ ∞
0

ϕ0(s, δ)ds = − 1

E[τ1]

∫ ∞
t

ϕ0(s, δ)ds+

∫ t

0
ϕ0(t− s, δ)dv(x)

:= I1(t, δ) + I2(t, δ). (92)

Thus, in view of (92), it su�ces to prove that I1(t, δ) and I2(t, δ) uniformly converge towards
0 as t→∞ on δ ∈ Da/2. Uniform convergence of I1(t, δ) is obtained thanks to (90) that entail:

sup
δ∈Da/2

|I1(t, δ)| ≤
1

E[τ1]
1

µ− a
C0e

−µt −→ 0, t→∞.

As to I2(t, δ), performing an integration by parts as in (67) yields

I2(t, δ) = ϕ0(t, δ)v(0
−) +

∫ t

0
v(s)ϕ′0(t− s, δ)ds.

The �rst term on the right-hand side uniformly converges to 0 on δ ∈ Da/2 thanks to (90). As
to the second term, we use the inequality (91) to get∣∣∣∣∫ t

0
v(s)ϕ′0(t− s, δ)ds

∣∣∣∣ ≤ ∫ t

0
|v(s)||ϕ′0(t−s, δ)|ds ≤

µ

µ− a

∫ t

0
|v(s)|[C∗0e−µ(t−s)+f(t−s)]ds, δ ∈ Da/2.

(93)
Note that

∫ t
0 |v(s)|e

−µ(t−s)ds tends to zero by dominated convergence theorem, as
∫∞
0 |v(s)|ds

is �nite (a direct consequence of expansion (36)). Also, the light tailed assumption in (44)
for τ1 entails that for all j = 1, . . . , N one has

∫ t
0 e
−zjsf(t − s)ds = e−zjt

∫ t
0 e

zjsf(s)ds −→ 0

as t → ∞. Similarly,
∫ t
0 η(s)e

−zjsf(t − s)ds −→ 0 where η(x) is de�ned by (37). Hence



L.Rabehasaina and J.K.Woo/Multivariate renewal-reward process 31∫ t
0 |v(s)|f(t− s)ds tends to zero as t→∞. Then, from (93) I2(t, δ) uniformly converges to 0

on δ ∈ Da/2. Thus, all in all, M̃2(t, δ) converges uniformly on δ ∈ Da/2 towards χ2(δ). �

Proof of Theorem 18. Since 0 ≤ − ∂
∂δ Z̃(t, δ)

∣∣∣
δ=0

= D(t) ≤
∑N(t)

i=1 Li is integrable, it is

possible to exchange derivation with respect to δ and expectation and one has for all t > 0

− ∂

∂δ
M̃1(t, δ)

∣∣∣∣
δ=0

= − ∂

∂δ
E[Z̃(t, δ)]

∣∣∣∣
δ=0

= −E
[
∂

∂δ
Z̃(t, δ)

∣∣∣∣
δ=0

]
= E[D(t)]. (94)

The main point in the proof is to be able to pass to the limit in (94) as t → ∞. To do this,
we use the fact that we proved in Lemma 16 that δ 7→ M̃n(1)(t, δ) is analytic on the set Da

where a < µ is arbitrary. Since by Lemma 17, M̃1(t, δ) uniformly converges towards χ1(δ) on
this set, a standard result in complex analysis states that the limiting function δ 7→ χ1(δ) is
analytic on the same set, hence in particular at δ = 0 (which is known from its expression
(28)), but, more importantly, that one can interchange derivation and passage to the limit,
i.e.

lim
t→∞

∂

∂δ
M̃1(t, δ)

∣∣∣∣
δ=0

=
∂

∂δ

[
lim
t→∞

M̃1(t, δ)
]∣∣∣∣
δ=0

=
∂

∂δ
χ1(δ)

∣∣∣∣
δ=0

.

Expression of χ1(δ) in the case k = 1 is given in Corollary 11, Expression (28) with Xj = 1,
yielding (45).

Let us move on to the covariance ofD(t) and queue size Z1(t, 0). One has− ∂
∂δ [Z1(t, δ)]

2
∣∣
δ=0

=

2D(t)Z1(t, 0), and since the latter is integrable due to D(t)Z1(t, 0) ≤
(∑N(t)

i=1 Li

)
N(t), as in

(94), interchanging expectation and derivation results in

− ∂

∂δ
M̃2(t, δ)

∣∣∣∣
δ=0

= 2E[D(t)Z1(t, 0)].

The same argument of analyticity of δ 7→ M̃2(t, δ) on δ ∈ Da/2 in Lemma 16, coupled with the

fact that uniform convergence result as t→∞ in Lemma 17 yields that limt→∞
∂
∂δM̃2(t, δ)

∣∣∣
δ=0

=

∂
∂δχ2(δ)

∣∣
δ=0

. Now the fact that limt→∞ M̃1(t, 0) = χ1(0) and limt→∞
∂
∂δM̃1(t, δ)

∣∣∣
δ=0

= ∂
∂δχ1(δ)

∣∣
δ=0

implies

lim
t→∞

Cov[D(t), Z1(t, 0)] = lim
t→∞

E[D(t)Z1(t, 0)]− E[D(t)]E[Z1(t, 0)]

= − 1

2

∂

∂δ
χ2(δ)

∣∣∣∣
δ=0

+ χ1(0).
∂

∂δ
χ1(δ)

∣∣∣∣
δ=0

. (95)

Expression (29) with Xj = 1 yields χ2(δ) =
1

E[τ1]

(
1

µ+2δ +
µ

(µ+δ)2
Lτ (µ)

1−Lτ (µ)

)
, and in turn,

∂

∂δ
χ2(δ)

∣∣∣∣
δ=0

= − 1

E[τ1]

(
2

(µ+ 2δ)2
+

2µ

(µ+ δ)3
Lτ (µ)

1− Lτ (µ)

)∣∣∣∣
δ=0

= − 2

µ2E[τ1]

(
1 +

Lτ (µ)
1− Lτ (µ)

)
.

Hence, substitution of the above expression together with χ1(δ) obtained previously into (95)
yields (46) for the limiting covariance. �
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