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On a multivariate renewal-reward process involving time delays:
Applications to IBNR process and infinite server queues

L. Rabehasaina' and J.-K. Woo?

Abstract

This paper considers a particular renewal-reward process with multivariate discounted rewards (inputs)
where the arrival epochs are adjusted by adding some random delays. Then this accumulated reward can
be regarded as multivariate discounted Incurred But Not Reported (IBNR) claims in actuarial science and
some important quantities studied in queueing theory such as the number of customers in G/G /oo queues
with correlated batch arrivals. We study the long term behavior of this process as well as its moments.
Asymptotic expressions and bounds for the quantities of our interest, and also convergence result for the
distribution of this process after renormalization, are studied, when interarrival times and time delays are
light tailed. Next, assuming exponentially distributed delays, we derive some explicit and numerically
feasible expressions for the limiting joint moments. Finally, in infinite server queues with renewal arrival
process, we obtain the limiting joint moments as well as the limiting expectation of workload, and the
limiting covariance of queue size and workload.

MSC classification: 60G50, 60K30, 62Pxx.
Keywords: Renewal-reward process, Multivariate rewards, Incurred But Not Reported (IBNR) claims, Infinite
server queues, Workload, Convergence in distribution

1 Introduction and notation

Many situations in which processes restart probabilistically at renewal instants and there are non-negative
rewards associated with each renewal epoch, are well described by a multivariate renewal-reward process.
For example, a multivariate reward function can be viewed as an accumulated cost from different types of
properties or infrastructures caused by a single catastrophe event, which is of interest in actuarial science and
reliability analysis. The asymptotic distribution and covariance function of a multivariate reward function
were studied by [16] who extended the result of [3] to multivariate case. In an insurance context, much research
about the aggregate discounted claims has been done on its moment under renewal claim arrival processes.
For example, [11], [12], [13], and [14] in renewal process, and [22] in the dependent renewal process.

In this paper, we assume that there are time lags added to the original arrival times of renewal process.
These delayed renewal epochs allow us to study the quantities related to infinite server queues with correlated
batch arrivals and multivariate Incurred But Not Reported (IBNR) claims where there is a delay in reporting
or payment for claims. Furthermore, rewards are accumulated as a discounted value, which is useful to analyze
the discounted multivariate IBNR claim amounts and workload of the queue (the required time to empty the
queue). For an univariate case, IBNR claim count with batch arrivals was considered by [7] and the total
discounted IBNR claim amount was studied by [10]. For the multivariate case, [21] provided expressions for
joint moments of multivariate IBNR claims which are computable recursively. As mentioned previously, a
direct application to some problems in infinite server queues is also available. For example, suppose that
the bulk size random variable is multivariate (i.e. correlated) and service time distribution is dependent on
the type of input, then a multivariate reward function incorporating time delays up to time ¢ (with zero
discounting factor) is essentially the number of customers in the system up to time ¢. In the infinite server
queues with multiple batch Markovian arrival streams, a time-dependent matrix joint generating function of
the number of customers in the system was derived by [15].
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We note that it is usually difficult to derive a distribution for this compound renewal input since for
a general arrival process there is no concrete representation for an inversion of the complicated moment
generating function for this quantity. In this sense, it is appealing to study the long term behavior of the
process in terms of its moment and distribution. From [21], explicit expressions for the joint moments of
multivariate aggregate discounted claims involving time delays in renewal process are computable recursively.
However, an analytic expression of the lower moment which appears in its integral term, is required for a
calculation of the higher moment. Therefore, our objective here is to develop simpler approximation methods
such as asymptotics and bound results for the joint moment of a multivariate discounted reward function
incorporating time delays. To the best of our knowledge, these kinds of approximation approaches have never
been developed in the analysis of a multivariate renewal-reward process with discounted inputs and time
delays (or interpreted as a multivariate discounted IBNR claim process in an actuarial context). Also, in a
queueing context, a relationship between multivariate discounted IBNR claim process and quantities studied
in infinite server queues with correlated batch arrivals and a discounting factor is firstly exploited in this
paper. In particular, some asymptotic results regarding queueing theoretic applications such as the workload
in G/ - /oo queue, are obtained. For the number of IBNR claims, a direct relation to the number of customers
in the infinite server queues with batch arrivals is well known as discussed in the literature, e.g. [9], [10], [18],
[19], [20]. The transient behavior of a distribution of the number of customer in various multichannel bulk
queues was studied in [4]. See also [2] for example. Moreover, when interarrival times are light tailed, we are
able to quantify the approximation precision by providing many terms for the asymptotics for the first order
moment of our process. We note that this approach was previously found in [3, Lemma 1] where 2-terms
asymptotics for a general renewal reward process without delays was provided, see also [16] for an expansion
of the covariance.

In the following, we describe the model by calling renewal and reward as batch and input respectively. We
shall suppose that the batch arrival process {N;};>¢ is a renewal process with a sequence of independent and
identically distributed (iid) positive continuous random variables (rv)s {T;}5°, representing the arrival time
of the ¢th batch with Ty = 0. Let 7; = T; — T;_1 be the interarrival time of the ith batch with a common
probability density function (pdf) f, distribution F’, and Laplace transform £7(s) = E[e™*™] for s > 0. Each
batch arrival containing several (k) types of inputs which may simultaneously occur from the same renewal
event (e.g. [16], [21]). Let us denote the j-type of input from the ith batch as X; ; where {X; ;}72, is a
sequence of iid rvs. A vector for multivariate variables is denoted as X = (X1, X», ..., X). Here multivariate
input values are assumed to be dependent on the occurrence time and/or the adjusted time by adding a
random delay. This time delay for the j-type of input from ith batch is denoted by L;; where {L;;}5°, is
a sequence of iid rvs with a common pdf w; and distribution W;. For the sake of simplicity let us assume
a constant force of interest § to discount input values to time 0. Now we define the following discounted
compound delayed process

Z(t) = (Z(t),.... Zu(t) = Z°(1), >0, (1)
where
Nt o]
Zj(t) = Z 676(Ti+Li’j)Xi7jI{Ti+Liyj>t} = Z675(Ti+Li’j)Xi,jl{Ti§t<Ti+Lid}; j S {1, ey k} (2)
1=1 1=1

In most cases in this paper, we suppose that the discounted factor § is real and non negative because this
has some direct actuarial or queueing interpretation. However, it has to be pointed out that, mathematically
speaking, Definitions (1) and (2) can in some cases be extended to some complex 0, as is the case in Section
3.2 where § € C is needed for technical purposes.

Throughout the paper, we assume that vector X admits joint moments of all order. Let us denote (A)

for the following assumption:
(A) Density f(-) is bounded.

An important consequence of (A) is the following result, of which proof is given at the beginning of Section 5.



Lemma 1 If (A) holds then the associated renewal function m :t > 0 — E[N;] admits a density u(t), and
this latter verifies

u(t) = Sm(t) = 3 ;0. 3)
§=0

Besides, this density is upper bounded: There exists C' > 0 such that u(t) < C, Vt > 0.

Not all results in this paper require Assumption (A) to hold. We refer to it only when it is needed in what
follows.
Notation. The nth joint moment for Z(t) is denoted as

k
Mn(t):E[HZ;-”(t)}, t>0, n=(ng,...,n;) € N*. (4)
j=1
For notational convenience, we let, for all n = (n1,...,nx) € N* and ¢ > 0,
k
Nn = 2:7“3

i=1
M,(t) = €™M, (1), (5)
b(t) = ™%, (t). (6)

We define the natural partial order on set N* as follows. We say that two vectors £ and n in N* verify ¢ < n
if ; <n;foralli=1,...,k and ¢; < n; for (at least) an i, i.e. 1, > 1. Let us introduce, for all n € N*¥,

Co=Cop={j=1,...,k| {; <nj} C{1,...,k}.

We will denote by n(i) € N* the vector of which jth entry is d; ; where §; ; is the Kronecker delta function.
It is convenient to introduce function ¢ — @ (t) = e (t) for £ < n:

@Z(t) =E |:e(77n—ne)6(t—‘r1)]\~4¢(t — 7‘1) H w(njféj)&j(t — 7'1).1[71<t]:| , (7)
JjeCy
where -
Ws,i(t) = / e VdWi(y). (8)
t

Then using (7), b,(t) in (6) admits the following expression with the help of Equation (34) in [21]:

0= () (ol

L<n j=1

and one has that M, (t) defined in (5) satisfies the following renewal equation (a direct consequence of Theorem
3 in [21]) ) . )
M, (t) = by(t) + M, « F(t), t>0, neN\{n(),i=1,...,k}. (10)

Lastly, throughout the paper, £(;) denotes an exponential distribution with a mean 1/ ;.

Structure of paper. For ease of presentation, in Section 2 we provide our main results without proof. It
includes (i) asymptotic behavior for the joint moment of Z(t) given in (4), (ii) bounds for (5), (iii) higher
order expansion for asymptotic case of (5) when n = n(i) and exponential time delay, (iv) convergence form of
e Z(t) in distribution, and (v) joint moments of the limiting distribution of €’*Z(t) in the case of exponential
time delays. In Section 3, we focus on queueing theoretic applications involving some particular G/G/co
queue with correlated batch arrivals and determine the asymptotic expected workload and covariance of the
workload and queue size in the G/M /oo queue. Section 4 presents limiting moments and covariances when
k=1 or 2in (4), and we profit by this section to give some (re)interpretation of Little’s Law. Finally, proofs
of all main results and applications are presented in Section 5.



2 Main results

2.1 Asymptotics and bounds

In this section, we study some asymptotic behaviors and bounds for the joint moment of the process Z(t) in
(1) defined as (4).

Proposition 2 One finds the following asymptotic result for the moment of discounted compound delayed
process, for all n € N*:

My (t) ~ Xne_nnéta t— o0,
where -
/ by (t)dt
o= 11
X ] (11)
and by, (t) is given by (9).
Proof. See Section 5.1. O

It turns out that coefficients y,,, n € N* are in general not directly computable, as the function ¢ bn (t)
in the integral (11) does not have an easy expression, and are defined recursively in the function of ¢ — M;(t),
¢ < n. We thus provide in the following easily computable bounds for the y,’s and a uniform upper bound
in t for Mn(t)

Proposition 3 Let us suppose that (A) holds. One has the following bounds for all n € N*:

1
n < =— Rn, 12
X ) (12)
M,(t) < R,, Vt>0, (13)
where (Ry)neNe is defined recursively by
R,sy = CE[Xi6~'{1-E[eH]}, i=1,...,k,

i

_ ni ng nj—~; . k N (14)
R, — cZ;Q).“QJEUIXf ﬂ$£MMLM,nGN\QMLzL”WH,

Here, the constant C' is the upper bound for renewal density u(t) in Lemma 1.

Proof. See Section 5.2. O

We remark that coefficients R,,, n € N¥, in (14) are easily obtained because R,, is a linear function of the
Ry, ¢ < n, and only involves the joint moments of X = (X7, ..., Xj), the Laplace transform of the Lq,...,Lj
as well as their expectations. Proposition 3 thus provides a uniform upper bound for Mn(t), it however lacks
the property that it does not say much what happens when ¢ is small. The following bounds are established
under the conditions that the interarrival time distribution 7y has either an increasing or a decreasing failure
rate.

Proposition 4 (Transient bounds) If 7 has an increasing failure rate (IFR), then one has the lower bound
for all n € N*:

My (t) > hn(t), Vt>0,
Conversely, 71 has a decreasing failure rate (DFR), then one has the upper bound for all n € N*:

M(t) < ha(t), Vt>0,



where t — hy,(t) for n € N¥ is defined recursively by

hn(i) (ﬁ) = E[XZ] fg Ws,i * H(;(y)dy, i=1,...,k,
k
nq ng ni—40.
hn(t) = e E X771 f(0
o = () ()Mo
l<n j=1
X |:f0t fO einnazhé(yfz)eima(%@ HjECe w(nj—éj)(?,j(y*'z)dF(z)dy ) nec Nk\{n(7’>a 1:17 LS k}v
(15)
where f(0+) = lim;_o4+ f(t) and Hs(t) = fot e~dF (y) is the discounted interarrival distribution.
Proof. See Section 5.3. 0
2.2 High order expansions
In this section, we consider the case of n = n(i) for i € {1,...,k} to study how fast M, (t) converges to xn

given in Proposition 2 when t — oo. As M, (t) satisfies the renewal equation (10), using its solution it may
be expressed as

Vo (t) = / bt — 5)dm(s), (16)

and from Proposition 2, recall that

V(1) — xo = w (a7)

where here xn = Xn() = {E[Xi]E[L;]w1,:(6)}/E[r1] and @1,:(8) = [;° e "W ;(z)dx/E[L;] as given later in
Corollary 18, Expression (41). From [5], we use the result of higher order expansions for the function v(z)
which is related to the renewal function as

x Bl
E[Tl] 2E[7’1]2 ’

v(x) :=m(x) — (18)

where F' here is non-lattice (as it admits a density) and is light tailed, i.e. there exists R > 0 such that

/ P dF (z) = B[ef™] < 4o0. (19)
0
It admits the following expression
N
v(x) = Zvje_zﬂ + o(e™*NT), (20)
j=1

where z;’s are the solution of E(e®™) = 1 which are in the range of 0 < Re(z;) < R for some R > 0 and

ordered as Re(z;) < Re(zj+1). In order to hold (20), we in addition require all roots z1,...,zn to be of

mutliplicity 1, i.e. such that %E(ezﬁ)‘ .. # 0 (the condition is not necessary but it enables us to avoid
)

some technicalities later), in which case one has

1
zj %E(ezﬁ)’

Vi = = ) jzla"'7N7

Z=Zzj

see [5, Theorem 3]. Although they are complex, the z;’s actually come in pair as one sees that if z; verifies
E(e*™) =1 then so does Z;, so that one checks in (20) that the right-hand side is in fact real. Furthermore,
in the following result we need to write o(e”*¥%) term in (20) in the form of

o(e™ ) = m(x)e” N (21)

for some function n(z) such that lim,_, . n(z) = 0.



Theorem 5 Let us assume that time delays L; are E(u;) distributed, and define

o ) Hi - (pi—zn)s T(_ .
A; E[X;]. uz+5[2E E T +uz/0 n(s)e ds| L7 (—pi) (22)
and s .
By = BIX;].— T(—2). 2
k, []M+A%%_MF(ZH (23)

Then M, (t) in (5) satisfies the following high order expansions

N
My (t) = xn + Afe ™"+ " Brie™ ™ +o(e ™), n=n(i), (24)
k=1
where Af = A; — )Ti] MHET( wi) with A; in (22) and By in (23).
Proof. See Section 5.4. O

Note that in expansion (24) the By ;’s are explicit. On the other hand, A; in (22) features an integral
involving function x — n(x) which is not explicit in general. This means that (24) is explicit only if we
truncate the expansion to the ioth term where ip = max{j = 1,...,N| Re(z;) < p;}. We may write the
expansion in this way, however we prefer to keep a form as general as possible. Besides, we point out on a
similar note that an expansion akin to (24) was provided in [3, Lemma 1] for a general renewal reward process
in the particular context where there is no time delay, under the weaker assumption that interarrival times
and rewards admit the moment of order 1.

Remark 6 (Dependence of (24) in §) Upon inspecting (22) and (23) one notices that

N M
[ A7l [Bral - < ,
i + 0

k=1,...,N,

for all 6 > 0, where M > 0 is a constant independent from §. On further analysis, one also checks that when
d is complexr and verifies |§] < p; then

M

AT? Bk' Sia
| z| | 71| M17|5|

k=1,...,N. (25)
In particular this inequality also holds when ¢ is negative and larger than —u;. Hence, from (25), it is shown
that that M, (t) and x,, are defined for such a complex 4. This is particularly going to be the case in Section
3.2. Concerning the term o(e™*¥*) in (24), one carefully checks from the proof of Theorem 5 that

|0(672Nt)| < %w' g(wefI{e(ZN)t7 (26)

when 0 € C, |6| < u;, for some function ¢(.) independent from § verifying lim;_,~ ((t) = 0.

Remark 7 The exponential distribution assumption for L; may seem a bit restrictive. In fact, the result in
Theorem 5 can be similarly extended to the case of a combination of exponentials. For example, assume that
w;(xz) = 2521 Dijltije 9% where Z?Zl pij = 1. Then a key step in the proof of Theorem 5 in Section 5.4 is
to be able to prove a similar structure for the discounted survival function of W;. For instance, (59) becomes

> o5 DPijHij e~ (pij+0) (= n)
dW Hig
/z—‘r1 Zl Wij + 5

which is a combination of exponentials. It is thus not hard to be convinced that the rest of steps are similar,
hence the details are omitted here for brevity.



2.3 Convergence in distribution of renormalized process

From the proof of Proposition 2, it is shown that Mn(t) converges towards x,. Since Mn(t) is the joint
moments of R¥ valued process {e’*Z (t)}1>0, convergence result suggests in turn that this process converges
in distribution. Since convergence of moments does not always implies convergence in distribution, we give in
this section some sufficient conditions such that this latter holds.

Theorem 8 Let us suppose that (A) holds and that each rv X; for j = 1,....k, is a.s. bounded by some
constant M. Then one has the result of convergence in distribution for e’*Z(t) given by

et Z(t) Ly 2., t— oo,

where Zoo = (Zoo1s- -y Zook) = Zoo(9) is a light tailed vector valued rv with the joint moments
k
B [12%.] = v = x0)
i=1

given by (11) for n € N*.
Proof. See Section 5.5. O

2.4 Exponentially distributed delays

Let us note that Theorem 8 actually holds for general light tailed interarrival times 7; that satisfy (A), and
general time delays L;’s. In practice, it is not easy to compute explicitly limiting moments yx,, for n € NF,
as given by (11), although they are obtainable recursively in principle. Hence, we shall now restrict to the
case where the L;’s are exponentially distributed. To make analysis simpler, we suppose that all L;’s for
j=1,..,k, are all £(u) distributed for some g > 0. In the same spirit as in Remark 7, we may obtain similar
results in the following for more general cases such as a mixture or a combination of exponentials.

To begin, some notations are introduced. Let £ (s) and L% (s) for s > 0 and n € N¥, be the Laplace
transforms of M,,(-) and b, (-) respectively

E,ILV[(S) :/O efsyMn(y)dy, Efl(s) :/0 eiSan(y)dy.

Note that these Laplace transforms exist (i.e. the integrals converge) respectively when s > 0 and s > 0 since

M, (y) converges to some finite limit x, as y — oo, and b, (+) is integrable (as proved in Proposition 2). The
following lemma gives a recursive expression of £ (s). We denote |A| as the cardinal of A for any finite set A.

Lemma 9 When time delays L; are () distributed, the Laplace transform of by(-) in (9) is obtained as

ch o :EXZ-AET , i =1,...,k, 27
and
ET(S) ﬁT(S) b k N
E%s:BniJr By Ly(s+|Celp), meN\{n(i), i=1,...,k}, (28
)= Bon e+ D Bn =gy 4 o SHe + 10 \{n(i) boes)
where

o= () (el T e

JeCe
and we recall that Cp = Cyp ={j =1,...,k| £; <n;} C{1,...,k}.



Proof. See Section 5.6. O

Theorem 10 Let us denote Dy(j) := L%(ju) for j € N and n € N*. When time delays L; are ()
distributed, the joint moments x,, = X° for n € N*¥ of Z,, = Z% (the limiting distribution of e’*Z(t)), are

given by
E[X;] 1 .
N = — =1,...
Xn(z) E['Tl] ([,L + 5)) ? Y 7k) (30)

and

Xﬁ( TR IR et “'C”))’ N O

0<t<n

where D,,(j)’s for j € N and n € N* are obtained recursively as:

L L7 (jp) L7 () , N
Dn(j) = BM[ o +0<;<nt” Ry FRRTGAI De([]+|C’e|]), neN\{n(), i=1,...,k},
(33)

with By, in (29).

Proof. From (11), using (27) and (28) when s = 0, we find (30) and (31) respectively. In addition, (32) and
(33) are obtainable by setting s = ju in (27) and (28) respectively. O

We remark that a close look at (31) and (33) reveals that computation of the infinite sequences (D¢(j));eN
for all £ < n is not needed to obtain x,. Since |C¢| is bounded by k, it is not hard to see that one needs to
compute (recursively) Dy(j) for £ < n and for j < kn, (i.e. only for a finite number of j’s). Moreover, the
values of D,,(j) may be stored in memory while computing the successive x,, as n, increases, and thus one
does not need to recompute them each time. Hence the algorithm (31) is relatively not too costly.

3 Applications to infinite server queues

Now we consider the following application related to queueing theory. To begin, we restate the model as-
sumptions described in Section 1 in terms of technical terms used in queueing theory. Let us consider a single
queue containing batches of k types of customers in the infinite-server model. Here queues arrive according
to a renewal process {N;}4>0 with corresponding arrival times {T;}$2,. At each arrival instant T; a batch of

(correlated) customers (X1, ... Xz ) arrive in the system, with each customer within batch j € {1,...,k}
having the same service times L; ;. A random sequence (X 1,...,X; ) for ¢ € N, is iid and distributed as
(X1,...,Xk). In order to comply Wlth the previous section we suppose furthermore that the X;’s are upper

bounded, i.e. there exists some M € N such that all X;’s have support included in {0, ..., M}. Here, service
times (L; j); jeNe are assumed to be independent, although L; 1, ..., L; ; possibly have different distributions,
i.e. service times are different according to the type of customer class.

3.1 G/G/ queue with correlated batch arrivals and customer classes

We are first interested in the process Z(t) = Z°(t) = {(Z1(t), ..., Zk(t)) }+>0 defined in (1). Note in particular
that when 6 = 0, Z;(¢) is the number of customers of class j € {1,...,k} in the system at time ¢. When
d > 0, Z(t) has no real interpretation and can be seen as the number of customers of class j penalized with
respect to their departure times through a discount with rate §; another interpretation of the rescaled process
e Z(t) is given in upcoming Remark 13. Theorem 8 then reads as follows in this context:



Theorem 11 Let us suppose that (A) holds. The following convergence holds for the discounted queue size:
et Z(t) By 2., t— oo,

where Zoo = Z00(0) = (Zoo1s - - s Zoo,ks) 15 a light tailed vector valued rv with joint moments E [Hle Z:Oii} =
Xn = Xn(0) given by (11) for n € N*.

In particular, when § = 0, we obtain that the joint number of customers within different classes (Z1(t),. .., Zk(t))
converges in distribution as t — oo to a stationary regime Zo, with joint moments given by (Xn)neNk - O
Example 12 As an illustration, let us look at the particular case where (X1,..., Xy) follows a multinomial

distribution with parameters M € N and probability vector (pi1,...,px) where p; > 0 and Z?lej =1. This
models a situation where at each instant T; exactly M customers arrive, each of which belongs to class j with
probability p;. X; is the number of customers of class j in this batch. See Figure 1. When M =1, customers

@ Zy(t) customers of class 1

.

Customer i of class j with probability p;,

4
| Z;(t) customers of class j
|
Size M batch of customers | ’ '
|
|

I service time L; ;

|

|

|

|

v

Z,(t) customers of class k

Figure 1: The G/G /oo queue with multinomial distributed classes batches (X1,..., Xx).

arrive according to renewal process { Ny }i>0, and each arriving customer belongs to class j with probability p;.

Remark 13 (Another queueing interpretation in the case of § > 0) As pointed out at the beginning
of this section, no direct interpretation of the vector valued process {Z(t)}s>0 = {Z°(t) }+>0 is available in a
queueing context. One way to introduce a queueing interpretation is by using Fubini’s theorem and noticing
that for allt >0 and 7 =1,..., k,

oo
E Vrtr, j—t<ey Xiglm<t<ti+r. ;3| >

i=1

(34)
where Es is an £(0) distributed rv independent from everything. Since T;+ L; ; —t is the residual service time
of the ith batch of customers of size X; ;, (34) can then be interpreted as the expected number of customers
at time t of which residual service time does not exceed horizon Es, where § > 0 is arbitrary. Thus, a
direct consequence of Theorem 11 is that this expected number converges towards x,(;)(6) = E[Z ()], see
upcoming Remark 19 for another interesting insight on this convergence.

E[ezith(t)] -B 265(Ti+Li’jt)X’i,jl{TiSt<Ti+Li7j}‘| —E

=1

Similar to what observed at the beginning of Section 2.4 concerning Theorem 8, Theorem 11 holds for any
light tailed interarrival (that satisfies (A)) and service times. However, computing the y,,’s for n € N¥ is
theoretically feasible but practically complicated, as explained just before Proposition 3. On the other hand,
the case where the L; ; are ezponentially distributed, i.e. when one considers the G/M /oo queue with multiple
types of customer classes, is much more tractable and one may use the procedure given in Theorem 10 to
compute Y,’s much more easily.



3.2 Asymptotics for the workload of the G/M /oo queue

We now turn to the asymptotic behaviour of the workload D(t) of the queue when k = 1, which is defined
as the time needed to empty the queue at time ¢ if there is no arrival afterwards. As we deal with one queue
only, we drop a subscript in L;; for the ith service time (i.e. write L; for i € N), and denote by L for the
generic service time. The workload has the following expression

D(t) == Z(Tz + L —)l{m<t<Tit L3
i=1
and is obtained from Z(t,0) := e Z,(t) as:
D(t) = 722(15 5) (35)
T Ry

where here Z;(t) is the first entry of process Z(t) (i.e. (2) when k = 1). We assume in this subsection that
all X; 1 for i € N, are equal to one. In that case, Z;(t) in (2) is, when § = 0, the size of this infinite server
queue at time ¢t. A sample path of D(t) is depicted in Figure 2. Let us note that D(t) is also the sum of

D(#)
A

|
Tl TZ T3
Figure 2: Sample path of workload for the G/G /0o queue.

the residual times for all services to be completed at time t. We are interested in the limiting expectation
of workload and the covariance of queue size and workload. We thus need to study the two first moments
of Z(t,d), i.e. quantities Mn(l)(t,é) = E[Z(t,0)] and Mgn(l)(t,é) = E[Z(t,0)?], where here n(1) = 1 and
2n(1) = 2 in the case k = 1, sticking with the notation introduced in Section 1. In the following, we write
n(l) =1 and 2n(1) = 2 for notational convenience.

The main assumptions in this subsection are that service time L is £(u) distributed, i.e.

E[e®l] = ﬁ, Vo € (—oo, ), (36)

so that this queue is the G/M /oo, and that interarrival times are light tailed, i.e. Condition (19) holds for
some R > 0. A few lemmas are first required. We need to define for r > 0, the disc D, centered at 0 with the
radius 7, included in C, by

D, :={ze€C||z| <r}.
Lemma 14 Let a < p. For all t > 0, M(t,6) and Ms(t,8) are respectively defined on D, and Dy, /.
Furthermore, § — M, (t,8) and § — Ms(t,8) are analytic on those sets, hence a fortiori at § = 0.

Note that one implication of the above lemma is that quantities M (¢,8) and Ms(t,d) (and, hence Z(t,4))
are defined for some complex values of §, and in particular for negative values (not only for ¢ > 0). This is
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especially handy to express the workload as (35) and to be able to define analyticity of M, (t,8) and Ma(t,8)
at 0 = 0, which is needed to differentiate with respect to d at 0.
Proof. See Section 5.7. O

Lemma 15 Let us suppose that (A) holds and let a < . M (t,8) and My(t,d) uniformly converge to x1(6)
and x2(8) respectively on Dq and Dg/o as t — +00.

Proof. See Section 5.7. O
Now we are ready to provide some results for the long term behaviour of the expected workload, and the
covariance function of the workload and the queue size in the folloiwng.

Theorem 16 Let us suppose that (A) holds. The limiting expected workload for the G/M /oo queue is given

by
: _ 1 E[L7]
thggoE[D(t)] -~ p2E[n]  2E[n]° (87)

The limiting covariance of the workload and queue size is given by

| B oW
tliglo Cov[D(t), Z1(t,0)] = R 1+ T Z7G) BT (38)
Proof. See Section 5.7. U

4 Special cases

In this section, we use the results given in previous sections to obtain nice simple forms of asymptotic results
for some special cases. The following two corollaries are the results when k& = 1 in (2). The last corollary is
the case of kK = 2 which is useful to find the covariance of two types of inputs.

Corollary 17 (Single type of input, exponential time delays) The r-th moment of discounted com-
pound delayed process Z1(t) in (2) for k =1 with exponential time lag is asymptotically obtained as

E[Z](t)] ~ xr e ", t — 00, reN,
where BIX)] )
1
_ 39
v () )
and .
1 1 — [T ,Z m Dy(1)
= — (Ex—— E[X7 , —92.3,..., 4
X E[r] ( [ 1]u+r6+;<€> [ ! ]M—I—(r—ﬂ)él—ﬁT(u) " 3 (40)
and Dy(1) recursively available from the formulas (32) and (33) respectively given by
D(j) =EXq]—rr—=L7(j
) = BRGSO
and
. n—1 .
, a1 LT(p) (n) n—t 1 LT (ju) ,
D,.(j) = E[X : n E[X : De([j+1]), —2.3,....
() =El 1],U+n(5[j+1],u D ¢ JEIX ]u—f—(n—ﬂ)él—LT([j—i—l],u) e+, m

11



Proof. When n(1) =1 and n(i) = 0 for i # 1 together with n, =r, n, = ¢, and |C¢| = 1, from Proposition
2 and Theorem 10, the result follows. O

We remark that the form given in Theorem 3 of [21] was not suitable to derive asymptotic behavior of
Z1(t). A comment therein reveals only that this quantity is asymptotically closed to zero. Hence Corollary 17
is useful for calculating higher moments of Z; (¢) in any order for a large ¢ when time delays are exponentially
distributed.

For a general time lag distribution, a direct consequence of Proposition 2 when k = 1 with (5.1) yields the
result for the first moment in the following corollary.

Corollary 18 (Single type of input, arbitrary time delays) The mean of discounted compound delayed
process Z1(t) in (2) for k =1 with arbitrary time lag distribution is asymptotically obtained as

E[Z1(t)] ~ x1e7%, t — o0,

e ELXE[L] 1,1 (3
1 Wi,1
= . 41
X1 E[Tl] ) ( )
and w11 (6) = [ e " W(x)dx/E[L1]. This is a generalization of Corollary 3 in [21] in which it is assumed

that X; —1and6—0

Remark 19 (Little’s law revisited) Remark 13 as well as Expression (41) gives an interesting interpreta-
tion in a queuing context. Let us suppose here (without loss of generality) that X; = 1 (i.e. customers do
not arrive in batches). Recall that we defined Z(t,§) := € Z;(t), (41) then reads

E[L}@11(6)

tllglo E[Z(2,9)] =1 = E[r]

(42)
When § = 0, Z(t,8) = Z(t,0) is the number of customers at time ¢ in infinite server queues; In that case
w1,1(6) = 1 and (42) is just a rephrasing of Little’s law which says that the limiting expected number of
customers in the queue is equal to the arrival rate mutliplied by the mean service time. When § > 0, the
interpretation comes from (34): Noticing that E[L;]w; 1(6) = Pr(L > E5)/d, (42) reads

1 Pr(L > Es) 1

Jlim E[Z(t,0)] = Bl 5 =y DL > Bo)ELE] (43)

which says that the limiting expected number of customers of which residual service time is no more than
horizon E5 ~ £(9) is equal to the arrival rate mutliplied by the expected horizon time, multiplied by the pro-
portion of customers of which service time did exceed this horizon E5s. So, (43) can be seen as a generalization
of Little’s Law in the G/G /oo context.

Next, to compute the covariance for different types of discounted compound delayed process, the first joint
moment of X; and X for ¢ # j is needed. For notational convenience, let us denote arbitrary pair of claims
as X7 and Xo. Suppose that k =2 and ny =ng =1 (i.e. £ = (¢1,¢3) € {(0,0),(0,1),(1,0)}). From (9) and

(7), we have
- E Mo

£1,02\(£1,02)=(n1,n2) Jj=1
= E[X1 X2]00,0)(t) + E[X1]p0,1)(t) + E[X2]o1,0)(t), (44)

where (0,0) (t) = E[e%(t*ﬁ)w&l(t — 11)Ws2(t — 71).1fr,<4)] because ~of M(Qo) (t—11) = 1), po(t) =
E[e?=) Mg,1)(t — 7)@s,1(t = 71)1jry<q1 ], and @10y (t) = B[ My ) (t — 71)@s2(t — 11)-1pr,<qy] . As
shown previously, (44) is simplified when L; for i = 1,2 is exponentially distributed. In this case, the joint
expectation and the covariance of Z;(t) and Z5(t) are presented in the following.

12



Corollary 20 (Two types of inputs, exponential time delays) The joint mean of two types of discounted
compound delayed processes (2) where the time delay of type-i input L; for i = 1,2 is E(u) distributed, is
asymptotically given by
E[Z1(t)Za(t)] ~ xne ™2, t— o,
where
1 p [EXiXs] | E[XGE[X5]  L7(n)

TR G oRl 2 T 2 i) 45)

Consequently, the covariance is given by

Cov[Z1(t), Za(t)] ~ fn(f?‘st, t — oo,

where &, = Xn — E{% with xn, given in (45).

Proof. From Theorem 10 when n = (ny,n2) = (1,1) (i.e |C¢| = 1 when ¢ = (¢1,42) € {(1,0),(0,1)}), we

have D 1) D 1)
1 1 (1,0) (0.1)
X ] [ 00,115, + 500,007 () T Bon.an7z L () (46)
But from (29), B’s are given by
po\’ 7
B —EX. X2, B —EX,-2. B — E[X .
00,11 = BX1.Xo] <u n 5) ao.an = B2 Boy.an =BG
Also, Dy (1) for i = 1,2 is available from (32) as Dy,;)(1) = E[XZ-](H—M)(“TH) L7 (u). Combining results given
above, (46) is expressed as (45). O

5 Proofs

Proof of Lemma 1. When 71 admits a density f(-) then density ¢ — wu(t) of renewal function ¢ — m(t)
satisfies a renewal equation of the form

u() = f(x) + / )@ —ydy, @20, (47)

(e.g. see Equation (3.6) of [6]). Since (A) holds, by [6, Lemma p.359] (47) admits a unique solution bounded
on finite intervals given by (3). Also, the derivative m/(t) = w(t) verifies lim;_ oo m/(t) = 1/E[r], see [6,
Theorem 2 p.367], and is thus bounded above by some constant C. O

5.1 Proof of Proposition 2

Since M, (t) satisfies the renewal equation in (10), asymptotics result in (11) is a direct consequence of
Blackwell’s renewal theorem, provided that we prove that fooo l;n(y)dy or equivalently fooo we.n(y)dy is finite
for all n € N*¥ and ¢ < n. We shall demonstrate this by induction on n € N*. First, consider the case of
n = n(i) for some 7 € {1,...,k}. From Example 3 in [21] one has

bn(t) = E[X]. /Ot e ws,i(t — y)dF (y) = B[X,]. W * Hs (1), (48)
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where @s;(t) is given in (8) and Hy(¢ fo e %dF(y). But fooo eO*ws i(2)dz = OOO %% [ e vdW;(y)dz =
571 — E[e~%L]}, the following mtegration yields

/OOO Bn(y)dy/ooo b, (y)d / 574/ (y — z)dF (x)dy
/ / e 4(y — 2)dydF (x)

.67 {1-E[e "]} < o0, (49)

or equivalently

/ " bu(y)dy = EIXJJEL] / T et WD g pXIBIL . (5),
0 0

where w1 a(x) is an equilibrium pdf of L; defined as wi ;(z) = W;(x)/E[L;] and its Laplace transform is

’lI)l ) fO )dZC
Moreover recall Equation (36) in [21]

M, (t) = E[X;]. /0 e @s i (t — y)dm(y) = B[X]. e_6t/0 G5 i (t — y)dm(y).

By Blackwell’s theorem, it satisfies

In other words, one identifies

E[X; s
Xn = Xn(i) = LX) {/0 e‘sywa,i(y)dy}

We now assume for all £ < n that My(t) — x¢ < 400 as t — oo with x, defined as in (11). Hence
t = My(t) is bounded for all £ < n by some constant Ky = sup,- My(t). Hence simple algebraic computation
results in the upper bound for (7) as

oo(t) < KgE (Mn—n2)8(t—71) H w n],,l_)(;’j(t —7'1)-1[71<t]}
j€Cy

= KeE (77n ne)S(t—71) H |:/ _(nj_ej)éydwj(y)].1[T1<ti:|
t—711

J€C,

K,E|e(mm—n)(t=1) H [e(”jli)‘s(tTl)Wj(t — 71)] -1[7—1<t]]
L jeCe

IN

= KgE HWj(t_Tl)-l[‘rl<t]:|-
~jeC

Then integrating ¢y (t) from 0 and oo yields

/OOO po(t)dt < KeE[/OOO 11 [W (t—n)] 1t dt] Kg/ T 7,0 d.

J€C, jeCy
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and by Holder’s inequality, one finds

Amwdﬂﬁ < KQII[AmﬁQ@W”ﬁT”Q|,

JeCe
0o 1/1C|
< K] [j[ vvj@)d4 =K, |[ BIL,;]V1!
jec, 0 jeCy
< Ky min E[L;] < oo, (50)
JeCe

where |Cy| denotes the cardinal of set Cy. Hence from (9) we deduce that [~ bn(y)dy is also finite, and the
induction is complete.

5.2 Proof of Proposition 3

Since m(t) admits u(t) as a density, one has from (10) that M,,(t) = fot bn(y)u(t — y)dy, and in turn, from
Lemma 1 we arrive at the following upper bound

MA@SCAm%@My (51)

Combining (9) and (50) yields the following upper bound

oo k
7 n Nk n;—4L; . )
/0 bn(y)dy < Z <€1> <€k)EL];[1 X; }K@ min E[L,],

<n

where we recall that K, = sup,sq My(t) (see the proof of Proposition 2). Thus the above inequality together
with (11) and (51) yields (12) and (13) respectively with (R,),cN+ defined in (14), provided we initialize
value of R, when n = n(i) for i € {1,...,k}. This is done by again using upper bound (51) and remembering
that [~ bn(y)dy is obatined by (49) when n = n(i).

5.3 Proof of Proposition 4

Since t — M, (t) satisfies renewal equation in Theorem 3 of [21], one can write

o) = | bt — gy s(y), 30, (52)

where ms(y) is a discounted renewal function defined as .- H(g*)j(y) with Hs(t) = fot e %dF(y). From
(47), applying Theorem 3.1 of [17], one has lower and upper bounds for a renewal density u(z) as ar(z) <

fw) Hence,
()

- F
if 71 is IFR, one has that y — «(y) is nondecreasing, i.e. ar(t) = limy oy a(t) = a(0+) = f(0+) assuming
that F'(0) = 0, and it implies that

%mnnd(f) > g (t)e ™0 = £(0)e” MmO, 53)

u(z) < ay(z) for ¥ > 0 where a(t) = infycp0.q a(y) and ay(t) = supycp aly) with a(y) :

Substituting (53) into (52) results in

t d t d
M, (t) = bn(t —y)—m, .dy > b, (t —y)d inf —m,,
(0= [ = gemasdn = [ bue= )] inf o0

> / ba(t — y)dy[F(0)e™™%] = £(0) / ba(y)dy.c~", (54)
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We then finish proving this Proposition by induction on n € N*. For n = n(i), one has a closed-form
expression for b, (y) as E[X;].0s,; * Hs(y) from Example 3 of [21], hence the explicit expression for h,(t) is
available in this case. Next, if lower bound My(t) > hy(t)e~ is satisfies for all £ < n then, using expression
for t — b, (t) given in Equation (34) of [21], one obtains lower bound

k y
ni N n;—4~; bz —ned(y—z —
bn(y) > Z <€1) <€k)E{HXj’ ’} /o e~ hy(y — z)e 10w H W(n,—e;)8,4(y — 2)dF (2),
{<n j=1 jE€C,
and thus putting this lower bound into (54) yields (15) when n € N*\{n(i), i =1,... k}.
On the other hand, if 71 is DFR then ay(z) = f(0), and the proof is similar.

5.4 Proof of Theorem 5
Substituting (18) into (16) for dm(s) yields

t t
M, (t) = / bo(t — s)ds +/ b (t — s)dv(z).
E[n] Jo 0
A change of variable s :=t — s in the first integral and a subtraction of x,, in (17) on both sides result in

N (t) — yo = —E[lﬁ] /too B(s)ds +/0 bt — 8)dv(x). (55)

Let
Il(t):—ﬁ /t bo(s)ds,  Io(t) = /O b (t — 8)dv(s), (56)

then (55) is essentially a sum of I1(t) and I3(t). In the sequel, we shall separately study the asymptotic
behaviors of I (t) and I5(t) when ¢t — co. First it is convenient to introduce the following quantity and its
asymptotic result as it will be often utilitized in the later analysis.

L e_w/ e dF (x)
t

:e—uit/ e(ﬂi_R)SedeF(S) Se_ﬂit/ e(/"i_R)tedeF(s)
t t

< e Tt /tOO e dF(z) = o(e™ i), (57)

where the second last inequality is due to the assumption on u; < R for all i’s and the last result is due to
E(ef) = L7(—R) < o by (19).
We begin to analyze I (t) in (56) when ¢t — co. From (6) and (48) with (8) we may write

/ Bn(z)dz:E[Xi].E[/ e‘;(%ﬁh{ﬁ@}/ e"SSdWi(s)dz] (58)
t t

Z—T1

When we assume that L;’s are £(u;) distributed for p; > 0, then the second integral on the above equation
is simplified as

s oy M (ui48) (z—71)
e %dW;i(s) = ——e W . 59
| et = (59)

As 1(7,>4) + 147, <4y = 1, inserting these two indicator functions in (58) together with (59) results in

/ ba(2)dz = B[X,].— 5E{(1{Tl<t}+1{nzt})/ <oy G dz]. (60)
f i + t
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For the case of m; < t, as z >t and 71 < z, the above expectation is reduced to

> — i\ Z—T 1 — Mg —T
E[l{n<t}/t 1{n<z}€ i 1)dz} :;E[l{rxt}@ pa(t 1)]

1 s
— —_E[(l _ 1{7121:})6 it 1)]

i

L e
= {6 MELT (= p1i) — B[lgr, e )]}
= LT () o),

Hi

where the last line is obtained by applying (57). On the other hand, when 71 > ¢,

E[I{let}/ 1{T1<Z}6_Hi(z—7'1)dz:| :E|:1{7—12t}/ e_ﬂi(z_Tl)dZ
t 1

1
= — PI‘(Tl Z t),
and note that, using Chernoff’s inequality, Pr(r; > t) < E(eff™)e= i = o(e7*N?) because of E(ef™) < oo
(by (19)) and Re(zx) < R. Hence combining the above results using the fact that an o(e~*) is a fortiori an
o(e™*Nt) it follows that

L(t) = _E[i'l] /too bn(s)ds = —E];[[i_?]] ” 1+ 557(_’%)6*## + o(e”*N1). (61)

We now turn to Ir(t) in (56). As b, (0) = 0, applying integration by parts for Stieltjes integrals on the right
side of I1(t) yields

Ig(t)/o Bn(ts)dv(x)én(wv(oH/O v(s)b, (t — s)ds. (62)

But v(07) = —E[r?]/(2E[r1]?) and using a similar reasoning applied to (57) we get

7 Hi —ui(t—71)] _ Hi T — —
bn(t) = E[Xi].—m +5E[1{Tl<t}e wilt=m)] = E[Xi].m +5£ (—pi)e Mt + o(e™ i), (63)
i.e. )
- E[X;|E -
b (t)v(07) = — [XBln] L7 (—pi)e Mt 4 o(e*Nt), t — 0. (64)

2E[7’1]2 1223 +5

Also we have b, (t) = E[Xi]-#ffrae_“it J"Ot e5dF(s) and then b/, (t) = —uibn(t) + B[Xi] 25 f(t). Thus

¢ ¢
/ efz’“‘sl;;}(t — 8)dx = efzkt/ ezksl;;l(s)ds
0 0

t .
_ e—zkt/o ezks[*ﬂign(s) +E[Xz]uuj_6f(s)}d8, k=1,..,N. (65)

On the first term of the above equation, from (63) it follows that

1

2k — M

t ,
e_z’“t/o e***b,(s)ds = E[X}] Ji (

i+ 6 )E [1{rl<t}{6_“i(t—ﬁ) _ e—Zk(t—Tl)}i|

- E[Xi].# (zk ! M) e M8 LT () — e LT (—2)} + o(e™ ), (66)

17



for kK =1,..., N. Next, on the second term, one has

" o0
e_zkt/ €5 f(s)ds = e_zkt[,‘r(*zk) — e‘zmﬁ/ e**f(s)ds
0 t
_ €_Zkt£T(—Zk) +O(e—ZNt) (67)

since

efz’“t/ e f(s)ds efz’“t/ e(Z’FR)SeRSf(S)dS
t t

< e*Re(zk)te(Re(zk)fR)t/ eRSf(S)dS — eth/ eRSf(S)dS — o(eszt).
t 0

< e-Re(zo)t /°° e(ReCGR)=R)s o s £() g

t

Then using (20) and (65) with (66) and (67), and since an o(e™ 1) is a fortiori an o(e™*¥*), the second term
of (62) (except for the term involving o(e *~¥%) in v(x) in (20)) is now given by

/0 [0(s) — o(e™*¥*)[F (¢t — 5)ds

N
Hi i ot it it -
:E)(Z k _ _ Hi — 1 k _ N
[ ]Mz'+5 ;;Vk(z:k—ui){e L7(=2k) — e MLT (=) } + e LT (—28) | +o(e7™Y)
125 al z i
= E[X;]. v Z k eTERLLT (o) — L it pT i ) +o e~ ANtY 68
| ]MHMS k—1%(zkui (=) 2k — i (i) ( ) (68)

Recall that function 7(.) is defined by (21). Then, putting the expression for /,(¢) into the integral, it follows
that

/Oto(e—st)z};l(t —8)ds = /(Jtn(s)e_ZNSI;;l(t ~ $)ds

- / (s)e™* [ = bt = ) + BX L (0 = )]s (69)

We start by considering fot n(s)e *N*® f(t — s)ds which can be written as
t 00
[t s ps)s = [ pte = L pcocn e S (s)ds.
0 0
The fact that [ |e*¥ f(s)ds| = [;° e®e(=N)s f(5)ds is convergent implies, by dominated convergence,

/ n(t — s)1jocs<iye*f(s)ds — 0, t — 0.
0

Consequently,
t
/ n(s)e N f(t — s)ds = o(e”*N?), t — oc. (70)
0

Now we turn our attention to the first term of (69) involving fot n(s)e=*N*b, (t — s)ds. Writing from (48) (see
also (63))

b — g M —pi(t=m1)] _ g M e e Mit g M —pi(t—71)
by (t E[X;]. E|lg, ® 1 E[X;]. L et E[X;]. E|l,, a ,
( ) [ ] i 5 [ { 1<15}e } [ ] i 5 ( w )6 [ ] L 5 [ { 1215}6 ]
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we then split fot )e*N5b,, (t — s)ds into two parts, namely E[X;]. L7 (— i) fot n(s)e *Nse=#i(t=5)ds and

Xil i 5 fo ZNSE[l{ﬁzt_s}ef‘“((t’s)*“)}ds. The first term is expressed as

_ t
B sl () [ e ovee s

pi +0
= E[Xi].ui :L 557(—/%‘) [/0 n(s)e_ZNse“isds] e Hit — B[X;]. P 557( i) [/t n(s)e *Nsetisds| e it
= E[X;]. it 6ET( 1) {/0 n(s)ezNSe‘“Sds] e Mt 4 o(em N, (71)

where the latter term o(e™*N*) being again justified as in (57). Now (57) implies that the second term verifies,
by dominated convergence

t
) Hi —zZNS —pi((t—s)—71)
E[X,]. NB 1y, oy yeH d
X [ ) B 151 Jas

. ¢
= E[X;]. _MZ 5@‘“”/ n(t — s)estE[1{7125}6_‘“(5_“)]ds = o(e™*N!). (72)
Hi =+ 0

Gathering (71) and (72) thus yields
t . o)
/ n(s)e N 3by, (t — s)ds = E[XZ-].LU(WQ[ / n(s)e(“i_“’)sds}e_“it + o(e™*Nh). (73)
0 i + 0 0
Then from (68) and (69) with (70) and (73) we get

t N
v(8)0. (t — s)ds = ; —ERtLT( L) — — P it pr i )
[ vt v = B L S (e e () e
1 >
- E[Xi].m—j_é[f(—ui) {/0 n(s)e(“ﬁzN)sds} e Hit 4 o(e N, t — oo.

Hence the above result together with (64) allows us to have an expression for (62) as

N
L(t) = Aje " + Z Brie * 4 o(e7*N), (74)
k=1

where A; and By; for k = 1,..., N are defined by (22) and (23). As a result, combining (61) and (74) leads
the theorem.

5.5 Proof of Theorem 8

Let P(xy1,...,25) = Z%Q( anxy’ ---xp* be a nonnegative polynomial in the variables x;. ..z of degree K.
One has then that 3>, _ a,E [Hle(e‘”Zi(t))"i] =E [P(e”Z1(t),...,e" Zy(t))] > 0 for all ¢, which, from
Proposition 2, yields Znn< i GnXn > 0 as t — oo. By the Riesz-Haviland theorem (see [8]), we deduce that
sequence (Yn)neNr is a sequence of moments associated to some random variable Zoo = (Zo0.1, - - -, Zook)-
Next we shall show that the moment generating function (mgf) of e?*Z(t) exists and converges to the mgf

of Z, ast — co. To this end, we first introduce the mgfs of e’ Z(t) and of 2., denoted by @;(q) and yz_ (q)
respectively in the following:

Gi(q) = B [e<o"20>] = 3~ H L £>0

neNk i= 1

(75)
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and

pz..(q) = E[e<tP=>] = ) Hq_

P Xns (76)
neNk i=1

for ¢ = (q1,...,qx) in the neighborhood of (0,...,0). To apply the dominated convergence theorem to (75),
we need to show that M, (¢) is bounded such as

k
M, (t) < U, := (MmgeF)m™ Hni!, vn e N* vt >0, (77)
i=1
where my, := max (1, C. max;—1, ., E[L;]), so that, since

.....

R | | (i lqiMmLekl"i)

nelNk i=1 ! i=1 \n;=1

converges for

Mmpek’ Mmpek

the dominated convergence theorem yields ¢:(q) — ¢z__(¢q) when t — oo for g € J.

Hence, we shall prove (77) by induction. Recall that in Proposition 3, we have already proved Mn(t) <R,
where R, is defined in (14). Thus we shall essentially show that R,, < U, for all n € N¥, so that (77) holds.
We start by n = n(i) for i € {1,...,k}. In this case, upper bound (13) with (14) yields

Ry = CE[X;]67 {1 —E [e7°"]} < CME[L;] < Mmy, = Un(i),

k
1 1
q:(Qh---an)EJ::[_ ’ :| B

where the first inequality is due to 67 {1 —E [e7?5]} = [ e *W;(z)dx < [;°Wi(z)dx. Let us now
suppose that n is such that Ry < Uy for all £ < n. Using (14) as well as the induction assumptlon we get

ni n;—~; n
<o (1) (e[ L e s me 3 (3) - (G Jum v
<n Jj=1
But, ¢ < n implies n,, — ¢ > 1 and my, and e are larger than 1, the following inequality is valid
g, M= < I T e Ry e =L — (g MR )R

Substituting the above inequality and Uy, = (Mmy,eF)m Hle £;! into (78), the right-hand side of (78) is now
bounded by

k
E> (2‘5) (Z§)<mLMe’“>""’"e’%MmLekw I

<n i=1
k k

S | 5 S
(<ni=1 =1 l<ni=1

_ [ZH ] -+ (79)

<ni= 1
We then conclude by noticing that

St = S ot

<ni= 1 li<n;,i€{1,..., k}i= 1
B k ng 1 B k n; 1 - 00 1 .
: E[EW—Mméﬂ—mgﬁ]“



which, plugged into (79), yields R,, < U,. Therefore, by the dominated convergence theorem, ¢;(q) in (75)
converges to vz__(¢q) in (76) as t — oo.

Now it remains to show that the convergence in mgf implies the convergence in distribution. Since M, (t)
and x,, are bounded as shown in Proposition 3, the mgfs of e’*Z(t) in (75) and 2., in (76) exist. Also, we
have shown that ¢;(q) — ¢z_(q) when t — oo for ¢ € J in some neighborhood of (0, ..., 0). Hence, e®*Z(t)
converges to Z., in distribution.

5.6 Proof of Lemma 9

When n = n(i) and i € {1,...,k}, we may obtain an expression of L’ (s) by using the expression of b, (¢) in
Example 3 in [21], and applying similar idea as applied in (49). We now turn to proving (28). Since L,’s are
all £(u) distributed, ¢¢(t) = e (t) given by (7) simplifies to

l’[’ } 7|C[|,U,(t77'1) 1 :|
I I —_ — e . [.,.1<t] .
e, 1 + (n; —4;)6

po(t) = E[Me(t - Tl){

Then using Fubini’s theorem to interchange the expectation with the integration as well as a change of variable
t:=t— 71, it follows that

e So(t)dt = S — [/ e SEM(t — 7'1)6|C"|“(t71)dt]
/0 _jg[ p(ng =48] L
_ [ K | —sT1 > —st a1 —|Cy|ut
= —  _|E [e / e~ My(t)e~IZelr dt}
_jg[qu(”j*ﬁj)fs_ 0
[ K | M
= — 5 | £ ()L (s +|Celp). (80)
_jg@qu(nj—ﬁj)é_ ‘
If £ = 0 where 0 is a zero vector in N* then M,(t) = 1 hence £ (s 4 |Co|u) = m, and we get
k
- _ £r(s) w1 L)
e o (t)dt = [ E ] = [ :
[l 5w, =aw) 5710k ~ | U] 5510

In the case £ > 0, let us now observe that taking Laplace transforms in renewal equation (10) satisfied by
M,,(.) yields the following classical relation between £M (s) and L2 (s):

b(s
Eﬁj(s):%, Vs >0, neNi\{n(i),i=1,...,k},

so that (80) leads to

/OOO e Sty (t)dt = {

With the above result, the Laplace transform of (9) becomes (28).

Jd L7(s) b
Ly(s 4+ |Celp).
jgg’“L(”j—fj)J 1= L7(s+ [Celp) elo +|Celu)

5.7 Proof of Theorem 16

Proof of Lemma 14. We shall start by proving the properties for M (t,d), as those for My(t,§) are a bit
more technical but follow in a similar way. Let us write

Ml (t7 6) = Z wi(ta 6)7 wi(tv 6) = E[eig(TiJrLiit)1{Ti§t<Ti+Li}]’ i €N. (81)
i=1
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We first start by proving that ;(¢,0) is defined and analytic on set D,. Indeed, inequality

(=1)7
p 1

[Tl + L; — t]Jl{Ti§t<Ti+Li} < aJ_—'Lg, 7 €N, 6 € Dy, (82)

coupled with the fact that 377 (aj%Lg) = Eletl] = 755 < +o0 by (36), yields that

3 OE (b Ty + L — 1)1
Z I [Ti + Li — tP Vyp<iaemiriy

Jj=0

is a convergent series on § € D, and that § — ;(t,0) is analytic on that set for all ¢ > 0, and admits the
above power series expansion in 6. Now one checks easily, by independence of L; and T},

¥i(t,6) < Ele* i1y, <4y] = E[e®”]Pr[T; < t], V6 € Dy, (83)

with 77, E[e*t] Pr[T; < t] = E[e®*]m(t) < +oo. This yields that for all ¢ > 0, series > .=, ¥;(t,8) converges
normally on § € D,. Thus for all t > 0, § — Ml(t, 0) is thus analytic as the uniform limit of an analytic
sequence of functions on compact set D,.

We then move on My(t,d). Similar to (81), one has

o0

M(t,6) = Y m(t,8), (8, 6) o= Ele™ T oy o gy e TR0 oo p ).
r,j=1

The analog of (82) is

_1)»
5p( p!) (T + Lr =) + (T5 + Lj — )1 Yir, <t<t 4Ly Limy<t<ryvn;y | < (a/2)P5[Ly + Lj)P,

1
p!
reN, jeN, € D,p,

with 327 (a/2)pﬁ[Lr + Lj]P = E (e*LrFL)/2) <K (e2) (by Jensen’s inequality), a finite quantity, so that
6 € Dgjg + mp4(t,0) is analytic. The analog of (83) is

7T'r7j(ta (S) < E [6a(LT+Lj)/2]‘{TT§t}]‘{T]‘St}} s re N, j S N, XS Da/Qa (84)

with, again thanks to Jensen’s inequality as well as independence of (L,, L;) from (1), T;),

D Blet B g g <] SE () D B [ln<iylimy<n] = E (") E(N(8)?) < +oo.
r,j=1 r,j=1

Hence, from (84), Z:.;‘ﬂ mr;(t,0) = M (t,8) converges normally on § € D,/2, and is analytic on this set by
the same argument as 6 — M (t,0). Note that we used that N(¢) admits the second moment, a fact that
holds because E[77] < +o0, see e.g. [1, Chapter V.6]. } O
Prior to proving Lemma 15, we prove a few upper bounds concerning M; (¢, ). First, we note that deriving
bi(t) = Hze fot et*dF (s) yields by (t) = —pubi(t)+ ;45 f(t). Besides, since (A) holds, a density u(t) = m'(t)
of renewal function exists and is bounded by above by C' > 0 thanks to Lemma 1. Both these facts entail,

deriving (16), the following
ACIE

/ Bt — sy (s)ds + 51<0)mf(t)’ -|f 5t sy (6)ds
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as f(.) is a density, so that b;(0) = 0. Then one finds

~—

)| < M/Ot]&(ts)m’(s ds+\ﬁ\/ot|f<ts>m’<s>|ds

< uc/om]&(s)

l,[, (oo}
d — d
s+ PP C/o f(s)ds

gc{“ + ”]320”,

p+of  jp+d = 19|

where the last line is due to the fact that f(-) is a density, and [~ b1 (s)|ds < C| F%| from (49).
Proof of Lemma 15. We again start with M (¢,5). The key to is to use expansions for M;(t) = M(t, )
in Theorem 5 and particularly the dependence of this expansion in § as discussed in Remark 6. Indeed, an
immediate consequence of (25) and (26) from Remark 6 is that

(85)

Ml(ta(s)_XI((s) < ,U*|5|

N
e~ + Ze—Re(zk)t + C(t)e—Re(zN)t‘|
k=1

IN

w—a

N
e Mt + ZefRe(zk)t + C(t)eRe(ZN)t‘| , Vs e Dy,
k=1

for some constant M* independent from § and ¢, which implies uniform convergence of Ml(t, d) as t — o0
towards x1(d) on § € D,,.

We then move on to My(t,d). Relation (9) when k =1, X; = 1, L ~ £(y), along with (7) and (8) yields
the following expression

62(t) = 52(t7 5) = 500(t) + 2@1@)5 (86)
t

— __H —p(t—T1) __H —u(t—s)
o(t) = u(t, ) = Bl ) = L [ s, (87)

t
p1(t) = 1 (t,8) = —L B[N (t — 71, 8)e M1, ] = L/ My(t = s,0)e =) f(s)ds.  (88)

o ! w40 Jo

Differentiating (87) and (88) with respect to ¢ results in
M t
At) = Ao [u [ s+ 1), (59)
/ - M t I (t—5.8) — uMy(t —s.5) ) e HE=3) d

A(t) = || (W = 5.0) — phh(6 = 5.6)) O f(s)ds + (1) (90)

We are also going to need the following upper bounds for oo (t, ), v1(t,0), obtained from (87), (88), and the
fact that ¢ +— Mi(t,0) is uniformly bounded in § € D,/ by some constant C' (independent from § and ¢, a
consequence of the fact that it converges uniformly on that set):

H —put s —pt
< " K < n D 1
lpo(t,0)] < ‘M 25‘6 /0 et f(s)ds < u—acoe , 0€ Dy, (91)
K| A—nt 5 H —ut
< u " < " D P
lp1(t,0)] < ‘M 5’06 /0 e f(s)ds < Mfa/che , 0€ Dgo, (92)

for some constants Cy and € independent from 6 € D, /o and t. We also wish to obtain similar bounds for
wp(t,9) and ¢} (t,0). The following upper bound for ¢ (¢, d) is easily obtained thanks to (89):

w
w26

|<P6(t,5)|§' Hu [T e seas+ g0 < it s0) deDu 03
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for some constant Cj. As to ¢i(t, ), the fact that ¢ — M, (t,8) and t — Mj(t,8) are uniformly bounded in
§ € Dy )y respectively by C' and QCEGL/Q (thanks to (85)), easily yields from (90)

1 (t,6)] < %[cre-”t +f(t)], §€ Dy,

—a/2

for some constant C; > 0. Getting back to our original concern of showing that Mo (t,0) converges uniformly,
we first note that, in view of (16) and (86), it is clear that it is necessary and sufficient to prove that

t
5r—>/ ot —s,0)dm(s), 1=0,1,
0

converges uniformly on § € D, /5 as t — oo towards E{lr_l] fooo ©i(s,9)ds for I = 0,1. Details will be given only
for [ = 0 as similar proof is applicable for [ = 1. The starting point is the following decomposition, already
used in Relation (55) in Section 5.4:

t 1 o] 1 oo t
/0 wo(t — s,8)dm(s) — Einl /0 wo(s,0)ds = —m/t wo(s,d)ds —l—/o wo(t — s,0)dv(x)
= 1i(t,0) + I2(t,0). (94)

Thus, in view of (94), it suffices to prove that I (¢,d) and Iz(t, ) uniformly converge towards 0 as ¢ — oo on
d € Dy)9. Uniform convergence of I;(t,d) is obtained thanks to (91) that entail:

1
sup [11(2,9)] <

Coe " — 0, t— oo0.
(5€D,1/2 E[Tl] H—a

As to I1(t, ), performing an integration by parts as in (62) yields

I (t,8) = wo(t,6)v(07) —|—/O v(s)pp(t — s,0)ds.

The first term on the right-hand side uniformly converges to 0 on 6 € D, /o thanks to (91). As to the second
term, we use the inequality (93) to get

t t t
[ vt =sayis| < [ olie-—s.olas < L [ (@l[Coe 0+ fe=s)lds, 6 € Duga. (95)

Note that fot |v(s)|e~#(!=*)ds tends to zero by dominated convergence theorem, as J5~ [v(s)|ds is finite (a direct
consequence of expansion (20)). Also, the light tailed assumption in (36) for 71 entails that for all j = 1,..., N
one has fg e #i5f(t—s)ds = e *it fot €% f(s)ds — 0 as t — oo. Similarly, fot n(s)e= % f(t—s)ds — 0 where
n(x) is defined by (21). Hence fot [v(s)|f(t — s)ds tends to zero as t — co. Then, from (95) I5(¢,0) uniformly
converges to 0 on 0 € D, /5. Thus, all in all, M»(t,0) converges uniformly on ¢ € D/, towards x2(9). O

Proof of Theorem 16. Since 0 < — %Z(t, 5)‘6 =D(t) < ZZJ.V:(;) L; is integrable, it is possible to exchange
=0
derivation with respect to § and expectation and one has for all ¢ > 0

- 2Ml(t,é)

o -
55 — — 5;BlZ(.5)

5—0 00

__ [%Z(t,é) ] =E[D(t)]. (96)

=0 5=0

The main point in the proof is to be able to pass to the limit in (96) as t — oo. To do this, we use the fact
that we proved in Lemma 14 that ¢ — M, (¢, 0) is analytic on the set D, where a < p is arbitrary. Since

by Lemma 15, M, (t, ) uniformly converges towards y1(d) on this set, a standard result in complex analysis
states that the limiting function § — x1(d) is analytic on the same set, hence in particular at 6 = 0 (which is
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known from its expression (39)), but, more importantly, that one can interchange derivation and passage to
the limit, i.e.
0 -~ 0
lim —M;(¢,6 = —x1(0
1(1,9) 20

Jim lim M;(t,0)

= g7 [ 7160

0=0 6=0 0=0

Expression of x1(d) in the case k =1 is given in Corollary 17, Expression (39) with X; = 1, yielding (37).
Let us move on to the covariance of D(t) and queue size Z;(¢,0). One has — % [Z1(t,0)) |6:0 =2D(t)Z(t,0),

and since the latter is integrable due to D(t)Z;(t,0) < (Zfﬁf) Li) N(t), as in (96), interchanging expectation

and derivation results in 5
- _MQ (t’ 5)

2 = 2E[D(t)Z,(t,0)].

0=0

The same argument of analyticity of § Mg(t,é) on d € D,/ in Lemma 14, coupled with the fact that

uniform convergence result as t — oo in Lemma 15 yields that lim;_, %Mg (t, 5)‘ = %XQ((S)‘(S:O. Now
. ~ - . o 17 ;) . .
the fact that lim; o M (t,0) = x1(0) and lim; o 55 M1 (t, 5)’520 = 355X1 (5)|6:0 implies
Jim Coo[D(1), Z1(1,0)] = Jim E[D(H)Z(t,0)] - EID(®)E[Zu(t,0)]
10 0
= — ——x2(0 0). =—=x1(8 97
S50 0. g (97)

Expression (40) with X; = 1 yields x2(d) = J:{ln] (#J:M + (#J‘r‘a)z 152(7’80) , and in turn,

-~ 5 ( 2 T T )5_02_M2]§[71] (”%)

= +
A Y7 e e e
Hence, substitution of the above expression together with y1(d) obtained previously into (97) yields (38) for
the limiting covariance. O

0
%X2(5)
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