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On a multivariate renewal-reward process involving time delays:

Applications to IBNR process and infinite server queues

L. Rabehasaina1 and J.-K. Woo2

Abstract

This paper considers a particular renewal-reward process with multivariate discounted rewards (inputs)
where the arrival epochs are adjusted by adding some random delays. Then this accumulated reward can
be regarded as multivariate discounted Incurred But Not Reported (IBNR) claims in actuarial science and
some important quantities studied in queueing theory such as the number of customers in G/G/∞ queues
with correlated batch arrivals. We study the long term behavior of this process as well as its moments.
Asymptotic expressions and bounds for the quantities of our interest, and also convergence result for the
distribution of this process after renormalization, are studied, when interarrival times and time delays are
light tailed. Next, assuming exponentially distributed delays, we derive some explicit and numerically
feasible expressions for the limiting joint moments. Finally, in infinite server queues with renewal arrival
process, we obtain the limiting joint moments as well as the limiting expectation of workload, and the
limiting covariance of queue size and workload.

MSC classification: 60G50, 60K30, 62Pxx.
Keywords: Renewal-reward process, Multivariate rewards, Incurred But Not Reported (IBNR) claims, Infinite
server queues, Workload, Convergence in distribution

1 Introduction and notation

Many situations in which processes restart probabilistically at renewal instants and there are non-negative
rewards associated with each renewal epoch, are well described by a multivariate renewal-reward process.
For example, a multivariate reward function can be viewed as an accumulated cost from different types of
properties or infrastructures caused by a single catastrophe event, which is of interest in actuarial science and
reliability analysis. The asymptotic distribution and covariance function of a multivariate reward function
were studied by [16] who extended the result of [3] to multivariate case. In an insurance context, much research
about the aggregate discounted claims has been done on its moment under renewal claim arrival processes.
For example, [11], [12], [13], and [14] in renewal process, and [22] in the dependent renewal process.

In this paper, we assume that there are time lags added to the original arrival times of renewal process.
These delayed renewal epochs allow us to study the quantities related to infinite server queues with correlated
batch arrivals and multivariate Incurred But Not Reported (IBNR) claims where there is a delay in reporting
or payment for claims. Furthermore, rewards are accumulated as a discounted value, which is useful to analyze
the discounted multivariate IBNR claim amounts and workload of the queue (the required time to empty the
queue). For an univariate case, IBNR claim count with batch arrivals was considered by [7] and the total
discounted IBNR claim amount was studied by [10]. For the multivariate case, [21] provided expressions for
joint moments of multivariate IBNR claims which are computable recursively. As mentioned previously, a
direct application to some problems in infinite server queues is also available. For example, suppose that
the bulk size random variable is multivariate (i.e. correlated) and service time distribution is dependent on
the type of input, then a multivariate reward function incorporating time delays up to time t (with zero
discounting factor) is essentially the number of customers in the system up to time t. In the infinite server
queues with multiple batch Markovian arrival streams, a time-dependent matrix joint generating function of
the number of customers in the system was derived by [15].
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We note that it is usually difficult to derive a distribution for this compound renewal input since for
a general arrival process there is no concrete representation for an inversion of the complicated moment
generating function for this quantity. In this sense, it is appealing to study the long term behavior of the
process in terms of its moment and distribution. From [21], explicit expressions for the joint moments of
multivariate aggregate discounted claims involving time delays in renewal process are computable recursively.
However, an analytic expression of the lower moment which appears in its integral term, is required for a
calculation of the higher moment. Therefore, our objective here is to develop simpler approximation methods
such as asymptotics and bound results for the joint moment of a multivariate discounted reward function
incorporating time delays. To the best of our knowledge, these kinds of approximation approaches have never
been developed in the analysis of a multivariate renewal-reward process with discounted inputs and time
delays (or interpreted as a multivariate discounted IBNR claim process in an actuarial context). Also, in a
queueing context, a relationship between multivariate discounted IBNR claim process and quantities studied
in infinite server queues with correlated batch arrivals and a discounting factor is firstly exploited in this
paper. In particular, some asymptotic results regarding queueing theoretic applications such as the workload
in G/ · /∞ queue, are obtained. For the number of IBNR claims, a direct relation to the number of customers
in the infinite server queues with batch arrivals is well known as discussed in the literature, e.g. [9], [10], [18],
[19], [20]. The transient behavior of a distribution of the number of customer in various multichannel bulk
queues was studied in [4]. See also [2] for example. Moreover, when interarrival times are light tailed, we are
able to quantify the approximation precision by providing many terms for the asymptotics for the first order
moment of our process. We note that this approach was previously found in [3, Lemma 1] where 2-terms
asymptotics for a general renewal reward process without delays was provided, see also [16] for an expansion
of the covariance.

In the following, we describe the model by calling renewal and reward as batch and input respectively. We
shall suppose that the batch arrival process {Nt}t≥0 is a renewal process with a sequence of independent and
identically distributed (iid) positive continuous random variables (rv)s {Ti}

∞
i=1 representing the arrival time

of the ith batch with T0 ≡ 0. Let τi = Ti − Ti−1 be the interarrival time of the ith batch with a common
probability density function (pdf) f , distribution F , and Laplace transform Lτ (s) = E[e−sτ1 ] for s ≥ 0. Each
batch arrival containing several (k) types of inputs which may simultaneously occur from the same renewal
event (e.g. [16], [21]). Let us denote the j-type of input from the ith batch as Xi,j where {Xi,j}

∞
i=1 is a

sequence of iid rvs. A vector for multivariate variables is denoted as X = (X1, X2, . . . , Xk). Here multivariate
input values are assumed to be dependent on the occurrence time and/or the adjusted time by adding a
random delay. This time delay for the j-type of input from ith batch is denoted by Li,j where {Li,j}

∞
i=1 is

a sequence of iid rvs with a common pdf wj and distribution Wj . For the sake of simplicity let us assume
a constant force of interest δ to discount input values to time 0. Now we define the following discounted
compound delayed process

Z(t) = (Z1(t), . . . , Zk(t)) = Zδ(t), t ≥ 0, (1)

where

Zj(t) :=

Nt
∑

i=1

e−δ(Ti+Li,j)Xi,j1{Ti+Li,j>t} =
∞
∑

i=1

e−δ(Ti+Li,j)Xi,j1{Ti≤t<Ti+Li,j}, j ∈ {1, . . . , k}. (2)

In most cases in this paper, we suppose that the discounted factor δ is real and non negative because this
has some direct actuarial or queueing interpretation. However, it has to be pointed out that, mathematically
speaking, Definitions (1) and (2) can in some cases be extended to some complex δ, as is the case in Section
3.2 where δ ∈ C is needed for technical purposes.

Throughout the paper, we assume that vector X admits joint moments of all order. Let us denote (A)
for the following assumption:

(A) Density f(·) is bounded.

An important consequence of (A) is the following result, of which proof is given at the beginning of Section 5.
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Lemma 1 If (A) holds then the associated renewal function m : t ≥ 0 7→ E[Nt] admits a density u(t), and
this latter verifies

u(t) =
d

dt
m(t) =

∞
∑

j=0

f⋆(j)(t). (3)

Besides, this density is upper bounded: There exists C > 0 such that u(t) ≤ C, ∀t ≥ 0.

Not all results in this paper require Assumption (A) to hold. We refer to it only when it is needed in what
follows.
Notation. The nth joint moment for Z(t) is denoted as

Mn(t) = E[ k
∏

j=1

Z
nj

j (t)

]

, t ≥ 0, n = (n1, . . . , nk) ∈ Nk. (4)

For notational convenience, we let, for all n = (n1, . . . , nk) ∈ Nk and t ≥ 0,

ηn :=
k
∑

i=1

ni,

M̃n(t) := eηnδtMn(t), (5)

b̃n(t) := eηnδtbn(t). (6)

We define the natural partial order on set Nk as follows. We say that two vectors ℓ and n in Nk verify ℓ < n
if ℓi ≤ ni for all i = 1, . . . , k and ℓi < ni for (at least) an i, i.e. ηn > ηℓ. Let us introduce, for all n ∈ Nk,

Cℓ = Cℓ,n := {j = 1, . . . , k| ℓj < nj} ⊂ {1, . . . , k}.

We will denote by n(i) ∈ Nk the vector of which jth entry is δi,j where δi,j is the Kronecker delta function.
It is convenient to introduce function t 7→ ϕℓ(t) = ϕℓ,n(t) for ℓ < n:

ϕℓ(t) = E[e(ηn−ηℓ)δ(t−τ1)M̃ℓ(t− τ1)
∏

j∈Cℓ

ω(nj−ℓj)δ,j(t− τ1).1[τ1<t]

]

, (7)

where

ωδ,i(t) =

∫ ∞

t

e−δydWi(y). (8)

Then using (7), b̃n(t) in (6) admits the following expression with the help of Equation (34) in [21]:

b̃n(t) =
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

ϕℓ,n(t), (9)

and one has that M̃n(t) defined in (5) satisfies the following renewal equation (a direct consequence of Theorem
3 in [21])

M̃n(t) = b̃n(t) + M̃n ⋆ F (t), t ≥ 0, n ∈ Nk\{n(i), i = 1, . . . , k}. (10)

Lastly, throughout the paper, E(µi) denotes an exponential distribution with a mean 1/µi.
Structure of paper. For ease of presentation, in Section 2 we provide our main results without proof. It
includes (i) asymptotic behavior for the joint moment of Z(t) given in (4), (ii) bounds for (5), (iii) higher
order expansion for asymptotic case of (5) when n = n(i) and exponential time delay, (iv) convergence form of
eδtZ(t) in distribution, and (v) joint moments of the limiting distribution of eδtZ(t) in the case of exponential
time delays. In Section 3, we focus on queueing theoretic applications involving some particular G/G/∞
queue with correlated batch arrivals and determine the asymptotic expected workload and covariance of the
workload and queue size in the G/M/∞ queue. Section 4 presents limiting moments and covariances when
k = 1 or 2 in (4), and we profit by this section to give some (re)interpretation of Little’s Law. Finally, proofs
of all main results and applications are presented in Section 5.
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2 Main results

2.1 Asymptotics and bounds

In this section, we study some asymptotic behaviors and bounds for the joint moment of the process Z(t) in
(1) defined as (4).

Proposition 2 One finds the following asymptotic result for the moment of discounted compound delayed
process, for all n ∈ Nk:

Mn(t) ∼ χne
−ηnδt, t→ ∞,

where

χn :=

∫ ∞

0

b̃n(t)dtE[τ1] , (11)

and b̃n(t) is given by (9).

Proof. See Section 5.1. �

It turns out that coefficients χn, n ∈ Nk are in general not directly computable, as the function t 7→ b̃n(t)
in the integral (11) does not have an easy expression, and are defined recursively in the function of t 7→ M̃ℓ(t),
ℓ < n. We thus provide in the following easily computable bounds for the χn’s and a uniform upper bound
in t for M̃n(t).

Proposition 3 Let us suppose that (A) holds. One has the following bounds for all n ∈ Nk:

χn ≤
1E(τ1) Rn, (12)

M̃n(t) ≤ Rn, ∀t ≥ 0, (13)

where (Rn)n∈Nk is defined recursively by

Rn(i) = CE[Xi]δ
−1
{

1− E [e−δLi
]}

, i = 1, . . . , k,

Rn = C
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

min
i∈Cℓ

E[Li]. Rℓ, n ∈ Nk\{n(i), i = 1, . . . , k},
(14)

Here, the constant C is the upper bound for renewal density u(t) in Lemma 1.

Proof. See Section 5.2. �

We remark that coefficients Rn, n ∈ Nk, in (14) are easily obtained because Rn is a linear function of the
Rℓ, ℓ < n, and only involves the joint moments of X = (X1, ..., Xk), the Laplace transform of the L1,...,Lk

as well as their expectations. Proposition 3 thus provides a uniform upper bound for M̃n(t), it however lacks
the property that it does not say much what happens when t is small. The following bounds are established
under the conditions that the interarrival time distribution τ1 has either an increasing or a decreasing failure
rate.

Proposition 4 (Transient bounds) If τ1 has an increasing failure rate (IFR), then one has the lower bound
for all n ∈ Nk:

M̃n(t) ≥ hn(t), ∀t ≥ 0,

Conversely, τ1 has a decreasing failure rate (DFR), then one has the upper bound for all n ∈ Nk:

M̃n(t) ≤ hn(t), ∀t ≥ 0,
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where t 7→ hn(t) for n ∈ Nk is defined recursively by

hn(i)(t) = E[Xi]
∫ t

0 ωδ,i ⋆ Hδ(y)dy, i = 1, . . . , k,

hn(t) =
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

f(0+)

×
[

∫ t

0

∫ y

0 e
−ηnδzhℓ(y−z)e

−ηℓδ(y−z)
∏

j∈Cℓ
ω(nj−ℓj)δ,j(y−z)dF (z)dy

]

, n ∈ Nk\{n(i), i=1,. . ., k},

(15)

where f(0+) = limt→0+ f(t) and Hδ(t) =
∫ t

0 e
−δydF (y) is the discounted interarrival distribution.

Proof. See Section 5.3. �

2.2 High order expansions

In this section, we consider the case of n = n(i) for i ∈ {1, . . . , k} to study how fast M̃n(t) converges to χn

given in Proposition 2 when t → ∞. As M̃n(t) satisfies the renewal equation (10), using its solution it may
be expressed as

M̃n(t) =

∫ t

0

b̃n(t− s)dm(s), (16)

and from Proposition 2, recall that

M̃n(t) −→ χn =

∫∞

0
b̃n(t)dtE[τ1] , (17)

where here χn = χn(i) = {E[Xi]E[Li]w̃1,i(δ)}/E[τ1] and w̃1,i(δ) =
∫∞

0 e−δxW i(x)dx/E[Li] as given later in
Corollary 18, Expression (41). From [5], we use the result of higher order expansions for the function v(x)
which is related to the renewal function as

v(x) := m(x) −
xE[τ1] − E[τ21 ]

2E[τ1]2 , (18)

where F here is non-lattice (as it admits a density) and is light tailed, i.e. there exists R > 0 such that
∫ ∞

0

eRxdF (x) = E[eRτ1 ] < +∞. (19)

It admits the following expression

v(x) =
N
∑

j=1

γje
−zjx + o(e−zNx), (20)

where zj’s are the solution of E(ezjτ1) = 1 which are in the range of 0 ≤ Re(zj) ≤ R for some R > 0 and
ordered as Re(zj) ≤ Re(zj+1). In order to hold (20), we in addition require all roots z1, . . . , zN to be of
mutliplicity 1, i.e. such that ∂

∂zE(ezτ1)∣∣z=zj
6= 0 (the condition is not necessary but it enables us to avoid

some technicalities later), in which case one has

γj = −
1

zj
∂
∂zE(ezτ1)∣∣z=zj

, j = 1, . . . , N,

see [5, Theorem 3]. Although they are complex, the zj’s actually come in pair as one sees that if zj verifiesE(ezjτ1) = 1 then so does zj , so that one checks in (20) that the right-hand side is in fact real. Furthermore,
in the following result we need to write o(e−zNx) term in (20) in the form of

o(e−zNx) = η(x)e−zNx (21)

for some function η(x) such that limx→∞ η(x) = 0.
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Theorem 5 Let us assume that time delays Li are E(µi) distributed, and define

Ai = −E[Xi].
µi

µi + δ

[ E[τ21 ]
2E[τ1]2 +

N
∑

k=1

γk
µi

zk − µi
+ µi

∫ ∞

0

η(s)e(µi−zN )sds

]

Lτ (−µi) (22)

and
Bk,i = E[Xi].

µi

µi + δ

[

γk
zk

zk − µi

]

Lτ (−zk). (23)

Then M̃n(t) in (5) satisfies the following high order expansions

M̃n(t) = χn +A∗
i e

−µit +

N
∑

k=1

Bk,ie
−zkt + o(e−zN t), n = n(i), (24)

where A∗
i = Ai −

E[Xi]E[τ1] . 1
µi+δL

τ (−µi) with Ai in (22) and Bk,i in (23).

Proof. See Section 5.4. �

Note that in expansion (24) the Bk,i’s are explicit. On the other hand, Ai in (22) features an integral
involving function x 7→ η(x) which is not explicit in general. This means that (24) is explicit only if we
truncate the expansion to the i0th term where i0 = max{j = 1, ..., N | Re(zj) < µi}. We may write the
expansion in this way, however we prefer to keep a form as general as possible. Besides, we point out on a
similar note that an expansion akin to (24) was provided in [3, Lemma 1] for a general renewal reward process
in the particular context where there is no time delay, under the weaker assumption that interarrival times
and rewards admit the moment of order 1.

Remark 6 (Dependence of (24) in δ) Upon inspecting (22) and (23) one notices that

|A∗
i |, |Bk,i| ≤

M

µi + δ
, k = 1, . . . , N,

for all δ ≥ 0, where M > 0 is a constant independent from δ. On further analysis, one also checks that when
δ is complex and verifies |δ| < µi then

|A∗
i |, |Bk,i| ≤

M

µi − |δ|
, k = 1, . . . , N. (25)

In particular this inequality also holds when δ is negative and larger than −µi. Hence, from (25), it is shown
that that M̃n(t) and χn are defined for such a complex δ. This is particularly going to be the case in Section
3.2. Concerning the term o(e−zN t) in (24), one carefully checks from the proof of Theorem 5 that

|o(e−zN t)| ≤
1

µi − |δ|
ζ(t)e−Re(zN )t, (26)

when δ ∈ C, |δ| < µi, for some function ζ(.) independent from δ verifying limt→∞ ζ(t) = 0.

Remark 7 The exponential distribution assumption for Li may seem a bit restrictive. In fact, the result in
Theorem 5 can be similarly extended to the case of a combination of exponentials. For example, assume that
wi(x) =

∑2
j=1 pijµije

−µijx where
∑2

j=1 pij = 1. Then a key step in the proof of Theorem 5 in Section 5.4 is
to be able to prove a similar structure for the discounted survival function of Wi. For instance, (59) becomes

∫ ∞

z−τ1

e−δsdWi(s) =

2
∑

j=1

pijµij

µij + δ
e−(µij+δ)(z−τ1),

which is a combination of exponentials. It is thus not hard to be convinced that the rest of steps are similar,
hence the details are omitted here for brevity.
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2.3 Convergence in distribution of renormalized process

From the proof of Proposition 2, it is shown that M̃n(t) converges towards χn. Since M̃n(t) is the joint
moments of Rk valued process {eδtZ(t)}t≥0, convergence result suggests in turn that this process converges
in distribution. Since convergence of moments does not always implies convergence in distribution, we give in
this section some sufficient conditions such that this latter holds.

Theorem 8 Let us suppose that (A) holds and that each rv Xj for j = 1, . . . , k, is a.s. bounded by some
constant M . Then one has the result of convergence in distribution for eδtZ(t) given by

eδtZ(t)
D
−→ Z∞, t→ ∞,

where Z∞ = (Z∞,1, . . . ,Z∞,k) = Z∞(δ) is a light tailed vector valued rv with the joint momentsE[ k
∏

i=1

Zni

∞,i

]

= χn = χn(δ)

given by (11) for n ∈ Nk.

Proof. See Section 5.5. �

2.4 Exponentially distributed delays

Let us note that Theorem 8 actually holds for general light tailed interarrival times τi that satisfy (A), and
general time delays Lj ’s. In practice, it is not easy to compute explicitly limiting moments χn for n ∈ Nk,
as given by (11), although they are obtainable recursively in principle. Hence, we shall now restrict to the
case where the Lj’s are exponentially distributed. To make analysis simpler, we suppose that all Lj ’s for
j = 1, ..., k, are all E(µ) distributed for some µ > 0. In the same spirit as in Remark 7, we may obtain similar
results in the following for more general cases such as a mixture or a combination of exponentials.

To begin, some notations are introduced. Let LM
n (s) and Lb

n(s) for s ≥ 0 and n ∈ Nk, be the Laplace
transforms of M̃n(·) and b̃n(·) respectively

LM
n (s) :=

∫ ∞

0

e−syM̃n(y)dy, Lb
n(s) :=

∫ ∞

0

e−sy b̃n(y)dy.

Note that these Laplace transforms exist (i.e. the integrals converge) respectively when s > 0 and s ≥ 0 since
M̃n(y) converges to some finite limit χn as y → ∞, and b̃n(·) is integrable (as proved in Proposition 2). The
following lemma gives a recursive expression of Lb

n(s). We denote |A| as the cardinal of A for any finite set A.

Lemma 9 When time delays Lj are E(µ) distributed, the Laplace transform of b̃n(·) in (9) is obtained as

Lb
n(i)(s) = E[Xi]

µ

(µ+ δ)(µ + s)
Lτ (s), i = 1, . . . , k, (27)

and

Lb
n(s) = B0,n

Lτ (s)

s+ |C0|µ
+
∑

0<ℓ<n

Bℓ,n
Lτ (s)

1− Lτ (s+ |Cℓ|µ)
Lb
ℓ(s+ |Cℓ|µ), n ∈ Nk\{n(i), i = 1, . . . , k}, (28)

where

Bℓ,n :=

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ
, (29)

and we recall that Cℓ = Cℓ,n = {j = 1, . . . , k| ℓj < nj} ⊂ {1, . . . , k}.
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Proof. See Section 5.6. �

Theorem 10 Let us denote Dn(j) := Lb
n(jµ) for j ∈ N and n ∈ Nk. When time delays Lj are E(µ)

distributed, the joint moments χn = χδ
n for n ∈ Nk of Z∞ = Zδ

∞ (the limiting distribution of eδtZ(t)), are
given by

χn(i) =
E[Xi]E[τ1] ( 1

µ+ δ

)

, i = 1, . . . , k, (30)

and

χn =
1E[τ1] (B0,n

1

|C0|µ
+
∑

0<ℓ<n

Bℓ,n
1

1− Lτ (|Cℓ|µ)
Dℓ(|Cℓ|)

)

, n ∈ Nk\{n(i), i = 1, . . . , k}, (31)

where Dn(j)’s for j ∈ N and n ∈ Nk are obtained recursively as:

Dn(i)(j) = E[Xi]
µ

(µ+ δ)([j + 1]µ)
Lτ (jµ), i = 1, . . . , k, (32)

Dn(j) = B0,n
Lτ (jµ)

[j + |C0|]µ
+
∑

0<ℓ<n

Bℓ,n
Lτ (jµ)

1− Lτ ([j + |Cℓ|]µ)
Dℓ([j + |Cℓ|]), n ∈ Nk\{n(i), i = 1, . . . , k},

(33)

with Bℓ,n in (29).

Proof. From (11), using (27) and (28) when s = 0, we find (30) and (31) respectively. In addition, (32) and
(33) are obtainable by setting s = jµ in (27) and (28) respectively. �

We remark that a close look at (31) and (33) reveals that computation of the infinite sequences (Dℓ(j))j∈N
for all ℓ < n is not needed to obtain χn. Since |Cℓ| is bounded by k, it is not hard to see that one needs to
compute (recursively) Dℓ(j) for ℓ < n and for j ≤ kηn (i.e. only for a finite number of j’s). Moreover, the
values of Dn(j) may be stored in memory while computing the successive χn as ηn increases, and thus one
does not need to recompute them each time. Hence the algorithm (31) is relatively not too costly.

3 Applications to infinite server queues

Now we consider the following application related to queueing theory. To begin, we restate the model as-
sumptions described in Section 1 in terms of technical terms used in queueing theory. Let us consider a single
queue containing batches of k types of customers in the infinite-server model. Here queues arrive according
to a renewal process {Nt}t≥0 with corresponding arrival times {Ti}

∞
i=1. At each arrival instant Ti a batch of

(correlated) customers (Xi,1, . . . , Xi,k) arrive in the system, with each customer within batch j ∈ {1, . . . , k}
having the same service times Li,j . A random sequence (Xi,1, . . . , Xi,k) for i ∈ N, is iid and distributed as
(X1, . . . , Xk). In order to comply with the previous section we suppose furthermore that the Xj ’s are upper
bounded, i.e. there exists some M ∈ N such that all Xj ’s have support included in {0, . . . ,M}. Here, service
times (Li,j)i,j∈N2 are assumed to be independent, although Li,1, . . . , Li,k possibly have different distributions,
i.e. service times are different according to the type of customer class.

3.1 G/G/∞ queue with correlated batch arrivals and customer classes

We are first interested in the process Z(t) = Zδ(t) = {(Z1(t), . . . , Zk(t))}t≥0 defined in (1). Note in particular
that when δ = 0, Zj(t) is the number of customers of class j ∈ {1, . . . , k} in the system at time t. When
δ > 0, Z(t) has no real interpretation and can be seen as the number of customers of class j penalized with
respect to their departure times through a discount with rate δ; another interpretation of the rescaled process
eδtZ(t) is given in upcoming Remark 13. Theorem 8 then reads as follows in this context:
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Theorem 11 Let us suppose that (A) holds. The following convergence holds for the discounted queue size:

eδtZ(t)
D
−→ Z∞, t→ ∞,

where Z∞ = Z∞(δ) = (Z∞,1, . . . ,Z∞,k) is a light tailed vector valued rv with joint moments E [∏k
i=1 Z

ni

∞,i

]

=

χn = χn(δ) given by (11) for n ∈ Nk.
In particular, when δ = 0, we obtain that the joint number of customers within different classes (Z1(t),. . ., Zk(t))

converges in distribution as t→ ∞ to a stationary regime Z∞ with joint moments given by (χn)n∈Nk . �

Example 12 As an illustration, let us look at the particular case where (X1, . . . , Xk) follows a multinomial

distribution with parameters M ∈ N and probability vector (p1, . . . , pk) where pj ≥ 0 and
∑k

j=1 pj = 1. This
models a situation where at each instant Ti exactly M customers arrive, each of which belongs to class j with
probability pj. Xj is the number of customers of class j in this batch. See Figure 1. When M = 1, customers

Size M batch of customers

Z1(t) customers of class 1

Zj(t) customers of class j

Zk(t) customers of class k

Customer i of class j with probability pj ,
service time Li,j

Figure 1: The G/G/∞ queue with multinomial distributed classes batches (X1, . . . , Xk).

arrive according to renewal process {Nt}t≥0, and each arriving customer belongs to class j with probability pj.

Remark 13 (Another queueing interpretation in the case of δ > 0) As pointed out at the beginning
of this section, no direct interpretation of the vector valued process {Z(t)}t≥0 = {Zδ(t)}t≥0 is available in a
queueing context. One way to introduce a queueing interpretation is by using Fubini’s theorem and noticing
that for all t ≥ 0 and j = 1, ..., k,E[eδtZj(t)] = E[ ∞

∑

i=1

e−δ(Ti+Li,j−t)Xi,j1{Ti≤t<Ti+Li,j}

]

= E[ ∞
∑

i=1

1{Ti+Li,j−t≤Eδ}Xi,j1{Ti≤t<Ti+Li,j}

]

,

(34)
where Eδ is an E(δ) distributed rv independent from everything. Since Ti+Li,j− t is the residual service time
of the ith batch of customers of size Xi,j , (34) can then be interpreted as the expected number of customers
at time t of which residual service time does not exceed horizon Eδ, where δ > 0 is arbitrary. Thus, a
direct consequence of Theorem 11 is that this expected number converges towards χn(j)(δ) = E[Z∞,j(δ)], see
upcoming Remark 19 for another interesting insight on this convergence.

Similar to what observed at the beginning of Section 2.4 concerning Theorem 8, Theorem 11 holds for any
light tailed interarrival (that satisfies (A)) and service times. However, computing the χn’s for n ∈ Nk, is
theoretically feasible but practically complicated, as explained just before Proposition 3. On the other hand,
the case where the Li,j are exponentially distributed, i.e. when one considers the G/M/∞ queue with multiple
types of customer classes, is much more tractable and one may use the procedure given in Theorem 10 to
compute χn’s much more easily.
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3.2 Asymptotics for the workload of the G/M/∞ queue

We now turn to the asymptotic behaviour of the workload D(t) of the queue when k = 1, which is defined
as the time needed to empty the queue at time t if there is no arrival afterwards. As we deal with one queue
only, we drop a subscript in Li,1 for the ith service time (i.e. write Li for i ∈ N), and denote by L for the
generic service time. The workload has the following expression

D(t) :=

∞
∑

i=1

(Ti + Li − t)1{Ti≤t<Ti+Li},

and is obtained from Z̃(t, δ) := eδtZ1(t) as:

D(t) = −
∂

∂δ
Z̃(t, δ)

∣

∣

∣

∣

δ=0

, (35)

where here Z1(t) is the first entry of process Z(t) (i.e. (2) when k = 1). We assume in this subsection that
all Xi,1 for i ∈ N, are equal to one. In that case, Z1(t) in (2) is, when δ = 0, the size of this infinite server
queue at time t. A sample path of D(t) is depicted in Figure 2. Let us note that D(t) is also the sum of

D(t)

tT1 T2 T3 T5T4 T6

Figure 2: Sample path of workload for the G/G/∞ queue.

the residual times for all services to be completed at time t. We are interested in the limiting expectation
of workload and the covariance of queue size and workload. We thus need to study the two first moments
of Z̃(t, δ), i.e. quantities M̃n(1)(t, δ) = E[Z̃(t, δ)] and M̃2n(1)(t, δ) = E[Z̃(t, δ)2], where here n(1) = 1 and
2n(1) = 2 in the case k = 1, sticking with the notation introduced in Section 1. In the following, we write
n(1) = 1 and 2n(1) = 2 for notational convenience.

The main assumptions in this subsection are that service time L is E(µ) distributed, i.e.

E[exL] =
µ

µ− x
, ∀x ∈ (−∞, µ), (36)

so that this queue is the G/M/∞, and that interarrival times are light tailed, i.e. Condition (19) holds for
some R > 0. A few lemmas are first required. We need to define for r > 0, the disc Dr centered at 0 with the
radius r, included in C, by

Dr := {z ∈ C| |z| ≤ r}.

Lemma 14 Let a < µ. For all t > 0, M̃1(t, δ) and M̃2(t, δ) are respectively defined on Da and Da/2.

Furthermore, δ 7→ M̃1(t, δ) and δ 7→ M̃2(t, δ) are analytic on those sets, hence a fortiori at δ = 0.

Note that one implication of the above lemma is that quantities M̃1(t, δ) and M̃2(t, δ) (and, hence Z̃(t, δ))
are defined for some complex values of δ, and in particular for negative values (not only for δ ≥ 0). This is
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especially handy to express the workload as (35) and to be able to define analyticity of M̃1(t, δ) and M̃2(t, δ)
at δ = 0, which is needed to differentiate with respect to δ at 0.
Proof. See Section 5.7. �

Lemma 15 Let us suppose that (A) holds and let a < µ. M̃1(t, δ) and M̃2(t, δ) uniformly converge to χ1(δ)
and χ2(δ) respectively on Da and Da/2 as t→ +∞.

Proof. See Section 5.7. �

Now we are ready to provide some results for the long term behaviour of the expected workload, and the
covariance function of the workload and the queue size in the folloiwng.

Theorem 16 Let us suppose that (A) holds. The limiting expected workload for the G/M/∞ queue is given
by

lim
t→∞

E[D(t)] =
1

µ2E[τ1] =
E[L2]

2E[τ1] . (37)

The limiting covariance of the workload and queue size is given by

lim
t→∞

Cov[D(t), Z1(t, 0)] =
1

µ2E[τ1] [1 + Lτ (µ)

1− Lτ (µ)
−

1

µE[τ1] ] . (38)

Proof. See Section 5.7. �

4 Special cases

In this section, we use the results given in previous sections to obtain nice simple forms of asymptotic results
for some special cases. The following two corollaries are the results when k = 1 in (2). The last corollary is
the case of k = 2 which is useful to find the covariance of two types of inputs.

Corollary 17 (Single type of input, exponential time delays) The r-th moment of discounted com-
pound delayed process Z1(t) in (2) for k = 1 with exponential time lag is asymptotically obtained asE[Zr

1(t)] ∼ χr e
−rδt, t→ ∞, r ∈ N,

where

χ1 =
E[X1]E[τ1] ( 1

µ+ δ

)

, (39)

and

χr =
1E[τ1] (E[Xr

1 ]
1

µ+ rδ
+

r−1
∑

ℓ=1

(

r

ℓ

)E[Xr−ℓ
1

] µ

µ+ (r − ℓ)δ

Dℓ(1)

1− Lτ (µ)

)

, r = 2, 3, . . . , (40)

and Dℓ(1) recursively available from the formulas (32) and (33) respectively given by

D1(j) = E[X1]
µ

(µ+ δ)([j + 1]µ)
Lτ (jµ)

and

Dn(j) = E[Xn
1 ]

µ

µ+ nδ

Lτ (jµ)

[j + 1]µ
+

n−1
∑

ℓ=1

(

n

ℓ

)E[Xn−ℓ
1

] µ

µ+ (n− ℓ)δ

Lτ (jµ)

1− Lτ ([j + 1]µ)
Dℓ([j+1]), n = 2, 3, . . . .

11



Proof. When n(1) = 1 and n(i) = 0 for i 6= 1 together with ηn = r, ηℓ = ℓ, and |Cℓ| = 1, from Proposition
2 and Theorem 10, the result follows. �

We remark that the form given in Theorem 3 of [21] was not suitable to derive asymptotic behavior of
Z1(t). A comment therein reveals only that this quantity is asymptotically closed to zero. Hence Corollary 17
is useful for calculating higher moments of Z1(t) in any order for a large t when time delays are exponentially
distributed.

For a general time lag distribution, a direct consequence of Proposition 2 when k = 1 with (5.1) yields the
result for the first moment in the following corollary.

Corollary 18 (Single type of input, arbitrary time delays) The mean of discounted compound delayed
process Z1(t) in (2) for k = 1 with arbitrary time lag distribution is asymptotically obtained asE[Z1(t)] ∼ χ1 e

−δt, t→ ∞,

where

χ1 =
E[X1]E[L]w̃1,1(δ)E[τ1] , (41)

and w̃1,1(δ) =
∫∞

0
e−δxW 1(x)dx/E[L1]. This is a generalization of Corollary 3 in [21] in which it is assumed

that Xi = 1 and δ = 0.

Remark 19 (Little’s law revisited) Remark 13 as well as Expression (41) gives an interesting interpreta-
tion in a queuing context. Let us suppose here (without loss of generality) that X1 = 1 (i.e. customers do
not arrive in batches). Recall that we defined Z̃(t, δ) := eδtZ1(t), (41) then reads

lim
t→∞

E[Z̃(t, δ)] = χ1 =
E[L]w̃1,1(δ)E[τ1] . (42)

When δ = 0, Z̃(t, δ) = Z̃(t, 0) is the number of customers at time t in infinite server queues; In that case
w̃1,1(δ) = 1 and (42) is just a rephrasing of Little’s law which says that the limiting expected number of
customers in the queue is equal to the arrival rate mutliplied by the mean service time. When δ > 0, the
interpretation comes from (34): Noticing that E[L1]w̃1,1(δ) = Pr(L > Eδ)/δ, (42) reads

lim
t→∞

E[Z̃(t, δ)] = 1E[τ1] Pr(L > Eδ)

δ
=

1E[τ1] Pr(L > Eδ)E[Eδ] (43)

which says that the limiting expected number of customers of which residual service time is no more than
horizon Eδ ∼ E(δ) is equal to the arrival rate mutliplied by the expected horizon time, multiplied by the pro-
portion of customers of which service time did exceed this horizon Eδ. So, (43) can be seen as a generalization
of Little’s Law in the G/G/∞ context.

Next, to compute the covariance for different types of discounted compound delayed process, the first joint
moment of Xi and Xj for i 6= j is needed. For notational convenience, let us denote arbitrary pair of claims
as X1 and X2. Suppose that k = 2 and n1 = n2 = 1 (i.e. ℓ = (ℓ1, ℓ2) ∈ {(0, 0), (0, 1), (1, 0)}). From (9) and
(7), we have

b̃n(t) =
∑

ℓ1,ℓ2\(ℓ1,ℓ2)=(n1,n2)

(

n1

ℓ1

)(

n2

ℓ2

)E[ 2
∏

j=1

X
nj−ℓj
j

]

ϕℓ(t)

= E[X1X2]ϕ(0,0)(t) + E[X1]ϕ(0,1)(t) + E[X2]ϕ(1,0)(t), (44)

where ϕ(0,0)(t) = E[e2δ(t−τ1)ωδ,1(t − τ1)ωδ,2(t − τ1).1[τ1<t]

]

because of M̃(0,0)(t − τ1) = 1), ϕ(0,1)(t) =E[eδ(t−τ1)M̃(0,1)(t − τ1)ωδ,1(t − τ1).1[τ1<t]

]

, and ϕ(1,0)(t) = E[eδ(t−τ1)M̃(1,0)(t − τ1)ωδ,2(t − τ1).1[τ1<t]

]

. As
shown previously, (44) is simplified when Li for i = 1, 2 is exponentially distributed. In this case, the joint
expectation and the covariance of Z1(t) and Z2(t) are presented in the following.
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Corollary 20 (Two types of inputs, exponential time delays) The joint mean of two types of discounted
compound delayed processes (2) where the time delay of type-i input Li for i = 1, 2 is E(µ) distributed, is
asymptotically given by E[Z1(t)Z2(t)] ∼ χne

−2δt, t→ ∞,

where

χn =
1E[τ1] µ

(µ+ δ)2

[E[X1X2]

2
+
E[X1]E[X2]

2

Lτ (µ)

1− Lτ (µ)

]

. (45)

Consequently, the covariance is given by

Cov[Z1(t), Z2(t)] ∼ ξne
−2δt, t→ ∞,

where ξn = χn − E[X1]E[X2]E[τ1]2(µ+δ)2 with χn given in (45).

Proof. From Theorem 10 when n = (n1, n2) = (1, 1) (i.e |Cℓ| = 1 when ℓ = (ℓ1, ℓ2) ∈ {(1, 0), (0, 1)}), we
have

χn =
1E[τ1] [B(0,0),(1,1)

1

2µ
+B(1,0),(1,1)

D(1,0)(1)

1− Lτ (µ)
+B(0,1),(1,1)

D(0,1)(1)

1− Lτ (µ)

]

. (46)

But from (29), B’s are given by

B(0,0),(1,1) = E[X1X2]

(

µ

µ+ δ

)2

, B(1,0),(1,1) = E[X2]
µ

µ+ δ
, B(0,1),(1,1) = E[X1]

µ

µ+ δ
.

Also, Dn(i)(1) for i = 1, 2 is available from (32) as Dn(i)(1) = E[Xi]
µ

(µ+δ)(2µ) L
τ (µ). Combining results given

above, (46) is expressed as (45). �

5 Proofs

Proof of Lemma 1. When τ1 admits a density f(·) then density t 7→ u(t) of renewal function t 7→ m(t)
satisfies a renewal equation of the form

u(x) = f(x) +

∫ x

0

u(y)f(x− y)dy, x ≥ 0, (47)

(e.g. see Equation (3.6) of [6]). Since (A) holds, by [6, Lemma p.359] (47) admits a unique solution bounded
on finite intervals given by (3). Also, the derivative m′(t) = u(t) verifies limt→∞m′(t) = 1/E[τ1], see [6,
Theorem 2 p.367], and is thus bounded above by some constant C. �

5.1 Proof of Proposition 2

Since M̃n(t) satisfies the renewal equation in (10), asymptotics result in (11) is a direct consequence of
Blackwell’s renewal theorem, provided that we prove that

∫∞

0 b̃n(y)dy or equivalently
∫∞

0 ϕℓ,n(y)dy is finite

for all n ∈ Nk and ℓ < n. We shall demonstrate this by induction on n ∈ Nk. First, consider the case of
n = n(i) for some i ∈ {1, . . . , k}. From Example 3 in [21] one has

bn(t) = E[Xi].

∫ t

0

e−δyωδ,i(t− y)dF (y) = E[Xi]. ωδ,i ⋆ Hδ(t), (48)
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where ωδ,i(t) is given in (8) and Hδ(t) =
∫ t

0
e−δydF (y). But

∫∞

0
eδzωδ,i(z)dz =

∫∞

0
eδz
∫∞

z
e−δydWi(y)dz =

δ−1{1− E[e−δLi]}, the following integration yields

∫ ∞

0

b̃n(y)dy =

∫ ∞

0

eδybn(y)dy = E[Xi].

∫ ∞

0

eδy
∫ y

0

e−δxωδ,i(y − x)dF (x)dy

= E[Xi].

∫ ∞

0

e−δx

∫ ∞

x

eδyωδ,i(y − x)dydF (x)

= E[Xi]. δ
−1
{

1− E [e−δLi
]}

<∞, (49)

or equivalently
∫ ∞

0

b̃n(y)dy = E[Xi]E[Li]

∫ ∞

0

e−δxW i(x)E[Li]
dx = E[Xi]E[Li]w̃1,i(δ),

where w1,i(x) is an equilibrium pdf of Li defined as w1,i(x) = W i(x)/E[Li] and its Laplace transform is
w̃1,i(s) =

∫∞

0
e−sxw1,i(x)dx.

Moreover, recall Equation (36) in [21]

Mn(t) = E[Xi].

∫ t

0

e−δyωδ,i(t− y)dm(y) = E[Xi]. e
−δt

∫ t

0

eδ(t−y)ωδ,i(t− y)dm(y).

By Blackwell’s theorem, it satisfies

Mn(t) ∼
E[Xi]E[τ1] [ ∫ ∞

0

eδyωδ,i(y)dy

]

e−δt, t→ ∞.

In other words, one identifies

χn = χn(i) =
E[Xi]E[τ1] [ ∫ ∞

0

eδyωδ,i(y)dy

]

.

We now assume for all ℓ < n that M̃ℓ(t) → χℓ < +∞ as t → ∞ with χℓ defined as in (11). Hence
t 7→ M̃ℓ(t) is bounded for all ℓ < n by some constant Kℓ = supt≥0 M̃ℓ(t). Hence simple algebraic computation
results in the upper bound for (7) as

ϕℓ(t) ≤ KℓE[e(ηn−ηℓ)δ(t−τ1)
∏

j∈Cℓ

ω(nj−ℓj)δ,j(t− τ1).1[τ1<t]

]

= KℓE[e(ηn−ηℓ)δ(t−τ1)
∏

j∈Cℓ

[
∫ ∞

t−τ1

e−(nj−ℓj)δydWj(y)

]

.1[τ1<t]

]

≤ KℓE[e(ηn−ηℓ)δ(t−τ1)
∏

j∈Cℓ

[

e−(nj−ℓj)δ(t−τ1)W j(t− τ1)

]

.1[τ1<t]

]

= KℓE[ ∏
j∈Cℓ

W j(t− τ1).1[τ1<t]

]

.

Then integrating ϕℓ(t) from 0 and ∞ yields

∫ ∞

0

ϕℓ(t)dt ≤ KℓE[∫ ∞

0

∏

j∈Cℓ

[

W j(t− τ1)

]

.1[τ1<t] dt

]

= Kℓ

∫ ∞

0

∏

j∈Cℓ

W j(t) dt,
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and by Holder’s inequality, one finds

∫ ∞

0

ϕℓ(t)dt ≤ Kℓ

∏

j∈Cℓ

[
∫ ∞

0

W j(t)
|Cℓ| dt

]1/|Cℓ|

,

≤ Kℓ

∏

j∈Cℓ

[
∫ ∞

0

W j(t) dt

]1/|Cℓ|

= Kℓ

∏

j∈Cℓ

E[Lj]
1/|Cℓ|

≤ Kℓ min
j∈Cℓ

E[Lj] <∞, (50)

where |Cℓ| denotes the cardinal of set Cℓ. Hence from (9) we deduce that
∫∞

0
b̃n(y)dy is also finite, and the

induction is complete.

5.2 Proof of Proposition 3

Since m(t) admits u(t) as a density, one has from (10) that M̃n(t) =
∫ t

0 b̃n(y)u(t − y)dy, and in turn, from
Lemma 1 we arrive at the following upper bound

M̃n(t) ≤ C

∫ ∞

0

b̃n(y)dy. (51)

Combining (9) and (50) yields the following upper bound

∫ ∞

0

b̃n(y)dy ≤
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

Kℓ min
j∈Cℓ

E[Lj],

where we recall that Kℓ = supt≥0 M̃ℓ(t) (see the proof of Proposition 2). Thus the above inequality together
with (11) and (51) yields (12) and (13) respectively with (Rn)n∈Nk defined in (14), provided we initialize
value of Rn when n = n(i) for i ∈ {1, . . . , k}. This is done by again using upper bound (51) and remembering
that

∫∞

0
b̃n(y)dy is obatined by (49) when n = n(i).

5.3 Proof of Proposition 4

Since t 7→Mn(t) satisfies renewal equation in Theorem 3 of [21], one can write

Mn(t) =

∫ t

0

bn(t− y)dmηnδ(y), t ≥ 0, (52)

where mδ(y) is a discounted renewal function defined as
∑

j≥0H
(⋆)j
δ (y) with Hδ(t) =

∫ t

0
e−δydF (y). From

(47), applying Theorem 3.1 of [17], one has lower and upper bounds for a renewal density u(x) as αL(x) ≤

u(x) ≤ αU (x) for x ≥ 0 where αL(t) = infy∈[0,t] α(y) and αU (t) = supy∈[0,t] α(y) with α(y) := f(y)

F (y)
. Hence,

if τ1 is IFR, one has that y 7→ α(y) is nondecreasing, i.e. αL(t) = limt→0+ α(t) = α(0+) = f(0+) assuming
that F (0) = 0, and it implies that

d

dt
mηnδ(t) ≥ αL(t)e

−ηnδt = f(0)e−ηnδt, (53)

Substituting (53) into (52) results in

Mn(t) =

∫ t

0

bn(t− y)
d

dy
mηnδ(y).dy ≥

∫ t

0

bn(t− y)dy

[

inf
y∈[0,t]

d

dy
mηnδ(y)

]

≥

∫ t

0

bn(t− y)dy[f(0)e−ηnδt] = f(0)

∫ t

0

bn(y)dy.e
−ηnδt. (54)
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We then finish proving this Proposition by induction on n ∈ Nk. For n = n(i), one has a closed-form
expression for bn(y) as E[Xi].ωδ,i ⋆ Hδ(y) from Example 3 of [21], hence the explicit expression for hn(t) is
available in this case. Next, if lower bound Mℓ(t) ≥ hℓ(t)e

−ηℓδt is satisfies for all ℓ < n then, using expression
for t 7→ bn(t) given in Equation (34) of [21], one obtains lower bound

bn(y) ≥
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]
∫ y

0

e−ηnδzhℓ(y − z)e−ηℓδ(y−z)
∏

j∈Cℓ

ω(nj−ℓj)δ,j(y − z)dF (z),

and thus putting this lower bound into (54) yields (15) when n ∈ Nk\{n(i), i = 1, . . . , k}.
On the other hand, if τ1 is DFR then αU (x) = f(0), and the proof is similar.

5.4 Proof of Theorem 5

Substituting (18) into (16) for dm(s) yields

M̃n(t) =
1E[τ1] ∫ t

0

b̃n(t− s)ds+

∫ t

0

b̃n(t− s)dv(x).

A change of variable s := t− s in the first integral and a subtraction of χn in (17) on both sides result in

M̃n(t)− χn = −
1E[τ1] ∫ ∞

t

b̃n(s)ds+

∫ t

0

b̃n(t− s)dv(x). (55)

Let

I1(t) = −
1E[τ1] ∫ ∞

t

b̃n(s)ds, I2(t) =

∫ t

0

b̃n(t− s)dv(s), (56)

then (55) is essentially a sum of I1(t) and I2(t). In the sequel, we shall separately study the asymptotic
behaviors of I1(t) and I2(t) when t → ∞. First it is convenient to introduce the following quantity and its
asymptotic result as it will be often utilitized in the later analysis.E[1{τ1≥t}e

−µi(t−τ1)] = e−µit

∫ ∞

t

eµisdF (x)

= e−µit

∫ ∞

t

e(µi−R)seRsdF (s) ≤ e−µit

∫ ∞

t

e(µi−R)teRsdF (s)

≤ e−Rt

∫ ∞

t

eRsdF (x) = o(e−Rt), (57)

where the second last inequality is due to the assumption on µi < R for all i’s and the last result is due toE(eRτ1) = Lτ (−R) <∞ by (19).
We begin to analyze I1(t) in (56) when t→ ∞. From (6) and (48) with (8) we may write

∫ ∞

t

b̃n(z)dz = E[Xi].E[ ∫ ∞

t

eδ(z−τ1)1{τ1<z}

∫ ∞

z−τ1

e−δsdWi(s)dz
]

. (58)

When we assume that Lj’s are E(µi) distributed for µi > 0, then the second integral on the above equation
is simplified as

∫ ∞

z−τ1

e−δsdWi(s) =
µi

µi + δ
e−(µi+δ)(z−τ1). (59)

As 1{τ1≥t} + 1{τ1<t} = 1, inserting these two indicator functions in (58) together with (59) results in

∫ ∞

t

b̃n(z)dz = E[Xi].
µi

µi + δ
E[ (1{τ1<t} + 1{τ1≥t}

)

∫ ∞

t

1{τ1<z}e
−µi(z−τ1)dz

]

. (60)
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For the case of τ1 < t, as z > t and τ1 < z, the above expectation is reduced toE[1{τ1<t}

∫ ∞

t

1{τ1<z}e
−µi(z−τ1)dz

]

=
1

µi
E[1{τ1<t}e

−µi(t−τ1)]

=
1

µi
E[(1− 1{τ1≥t})e

−µi(t−τ1)]

=
1

µi

{

e−µitLτ (−µi)− E[1{τ1≥t}e
−µi(t−τ1)]

}

=
1

µi
e−µitLτ (−µi) + o(e−Rt),

where the last line is obtained by applying (57). On the other hand, when τ1 ≥ t,E[1{τ1≥t}

∫ ∞

t

1{τ1<z}e
−µi(z−τ1)dz

]

= E[1{τ1≥t}

∫ ∞

τ1

e−µi(z−τ1)dz
]

=
1

µi
Pr(τ1 ≥ t),

and note that, using Chernoff’s inequality, Pr(τ1 ≥ t) ≤ E(eRτ1)e−Rt = o(e−zN t) because of E(eRτ1) < ∞
(by (19)) and Re(zN) < R. Hence combining the above results using the fact that an o(e−Rt) is a fortiori an
o(e−zN t), it follows that

I1(t) = −
1E[τ1] ∫ ∞

t

b̃n(s)ds = −
E[Xi]E[τ1] . 1

µi + δ
Lτ (−µi)e

−µit + o(e−zN t). (61)

We now turn to I2(t) in (56). As b̃n(0) = 0, applying integration by parts for Stieltjes integrals on the right
side of I2(t) yields

I2(t) =

∫ t

0

b̃n(t− s)dv(x) = b̃n(t)v(0
−) +

∫ t

0

v(s)b̃′n(t− s)ds. (62)

But v(0−) = −E[τ21 ]/(2E[τ1]2) and using a similar reasoning applied to (57) we get

b̃n(t) = E[Xi].
µi

µi + δ
E[1{τ1<t}e

−µi(t−τ1)
]

= E[Xi].
µi

µi + δ
Lτ (−µi)e

−µit + o(e−Rt), (63)

i.e.

b̃n(t)v(0
−) = −

E[Xi]E[τ21 ]
2E[τ1]2 µi

µi + δ
Lτ (−µi)e

−µit + o(e−zN t), t→ ∞. (64)

Also we have b̃n(t) = E[Xi].
µi

µi+δ e
−µit

∫ t

0
eµisdF (s) and then b̃′n(t) = −µib̃n(t) + E[Xi]

µi

µi+δf(t). Thus

∫ t

0

e−zksb̃′n(t− s)dx = e−zkt

∫ t

0

ezksb̃′n(s)ds

= e−zkt

∫ t

0

ezks
[

− µib̃n(s) + E[Xi]
µi

µi + δ
f(s)

]

ds, k = 1, ..., N. (65)

On the first term of the above equation, from (63) it follows that

e−zkt

∫ t

0

ezksb̃n(s)ds = E[Xi].
µi

µi + δ

( 1

zk − µi

)E[1{τ1<t}{e
−µi(t−τ1) − e−zk(t−τ1)}

]

= E[Xi].
µi

µi + δ

( 1

zk − µi

)

{

e−µitLτ (−µi)− e−zktLτ (−zk)
}

+ o(e−Rt), (66)
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for k = 1, ..., N . Next, on the second term, one has

e−zkt

∫ t

0

ezksf(s)ds = e−zktLτ (−zk)− e−zkt

∫ ∞

t

ezksf(s)ds

= e−zktLτ (−zk) + o(e−zN t) (67)

since

∣

∣

∣
e−zkt

∫ ∞

t

ezksf(s)ds
∣

∣

∣
=
∣

∣

∣
e−zkt

∫ ∞

t

e(zk−R)seRsf(s)ds
∣

∣

∣
≤ e−Re(zk)t

∫ ∞

t

e(Re(zk)−R)seRsf(s)ds

≤ e−Re(zk)te(Re(zk)−R)t

∫ ∞

t

eRsf(s)ds = e−Rt

∫ ∞

0

eRsf(s)ds = o(e−zN t).

Then using (20) and (65) with (66) and (67), and since an o(e−Rt) is a fortiori an o(e−zN t), the second term
of (62) (except for the term involving o(e−zNx) in v(x) in (20)) is now given by

∫ t

0

[v(s)− o(e−zNs)]b̃′n(t− s)ds

= E[Xi].
µi

µi + δ

[

N
∑

k=1

γk

( µi

zk − µi

)

{

e−zktLτ (−zk)− e−µitLτ (−µi)
}

+ γke
−zktLτ (−zk)

]

+ o(e−zN t)

= E[Xi].
µi

µi + δ

[

N
∑

k=1

γk

(

zk
zk − µi

e−zktLτ (−zk)−
µi

zk − µi
e−µitLτ (−µi)

)

]

+ o(e−zN t). (68)

Recall that function η(.) is defined by (21). Then, putting the expression for b̃′n(t) into the integral, it follows
that

∫ t

0

o(e−zNs)b̃′n(t− s)ds =

∫ t

0

η(s)e−zNsb̃′n(t− s)ds

=

∫ t

0

η(s)e−zNs
[

− µib̃n(t− s) + E[Xi]
µi

µi + δ
f(t− s)

]

ds. (69)

We start by considering
∫ t

0
η(s)e−zNsf(t− s)ds which can be written as

∫ t

0

η(t− s)e−zN (t−s)f(s)ds = e−zN t

∫ ∞

0

η(t− s)1{0<s<t}e
zNsf(s)ds.

The fact that
∫∞

0
|ezNsf(s)ds| =

∫∞

0
e(Re(zN ))sf(s)ds is convergent implies, by dominated convergence,

∫ ∞

0

η(t− s)1{0<s<t}e
zNsf(s)ds −→ 0, t→ ∞.

Consequently,
∫ t

0

η(s)e−zNsf(t− s)ds = o(e−zN t), t→ ∞. (70)

Now we turn our attention to the first term of (69) involving
∫ t

0 η(s)e
−zNsb̃n(t− s)ds. Writing from (48) (see

also (63))

b̃n(t) = E[Xi].
µi

µi + δ
E[1{τ1<t}e

−µi(t−τ1)
]

= E[Xi].
µi

µi + δ
Lτ (−µi)e

−µit − E[Xi].
µi

µi + δ
E[1{τ1≥t}e

−µi(t−τ1)
]

,
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we then split
∫ t

0
η(s)e−zNsb̃n(t− s)ds into two parts, namely E[Xi].

µi

µi+δL
τ (−µi)

∫ t

0
η(s)e−zNse−µi(t−s)ds andE[Xi].

µi

µi+δ

∫ t

0
η(s)e−zNsE[1{τ1≥t−s}e

−µi((t−s)−τ1)
]

ds. The first term is expressed asE[Xi].
µi

µi + δ
Lτ (−µi)

∫ t

0

η(s)e−zNse−µi(t−s)ds

= E[Xi].
µi

µi + δ
Lτ (−µi)

[
∫ ∞

0

η(s)e−zNseµisds

]

e−µit − E[Xi].
µi

µi + δ
Lτ (−µi)

[
∫ ∞

t

η(s)e−zNseµisds

]

e−µit

= E[Xi].
µi

µi + δ
Lτ (−µi)

[
∫ ∞

0

η(s)e−zNseµisds

]

e−µit + o(e−zN t), (71)

where the latter term o(e−zN t) being again justified as in (57). Now (57) implies that the second term verifies,
by dominated convergenceE[Xi].

µi

µi + δ

∫ t

0

η(s)e−zNsE[1{τ1≥t−s}e
−µi((t−s)−τ1)

]

ds

= E[Xi].
µi

µi + δ
e−zN t

∫ t

0

η(t− s)ezNsE[1{τ1≥s}e
−µi(s−τ1)

]

ds = o(e−zN t). (72)

Gathering (71) and (72) thus yields

∫ t

0

η(s)e−zNsb̃n(t− s)ds = E[Xi].
µi

µi + δ
Lτ (−µi)

[

∫ ∞

0

η(s)e(µi−zN )sds
]

e−µit + o(e−zN t). (73)

Then from (68) and (69) with (70) and (73) we get

∫ t

0

v(s)b̃′n(t− s)ds = E[Xi].
µi

µi + δ

[

N
∑

k=1

γk

(

zk
zk − µi

e−zKtLτ (−zK)−
µi

zk − µi
e−µitLτ (−µi)

)

]

− E[Xi].
µ2
i

µi + δ
Lτ (−µi)

[

∫ ∞

0

η(s)e(µi−zN )sds
]

e−µit + o(e−zN t), t→ ∞.

Hence the above result together with (64) allows us to have an expression for (62) as

I2(t) = Aie
−µit +

N
∑

k=1

Bk,ie
−zkt + o(e−zN t), (74)

where Ai and Bk,i for k = 1, ..., N are defined by (22) and (23). As a result, combining (61) and (74) leads
the theorem.

5.5 Proof of Theorem 8

Let P (x1, . . . , xk) =
∑

ηn≤K anx
n1

1 · · ·xnk

k be a nonnegative polynomial in the variables x1. . .xk of degree K.

One has then that
∑

ηn≤K anE [∏k
i=1(e

δtZi(t))
ni

]

= E [P (eδtZ1(t), . . . , e
δtZk(t))

]

≥ 0 for all t, which, from

Proposition 2, yields
∑

ηn≤K anχn ≥ 0 as t → ∞. By the Riesz-Haviland theorem (see [8]), we deduce that
sequence (χn)n∈Nk is a sequence of moments associated to some random variable Z∞ = (Z∞,1, . . . ,Z∞,k).

Next we shall show that the moment generating function (mgf) of eδtZ(t) exists and converges to the mgf
of Z∞ as t→ ∞. To this end, we first introduce the mgfs of eδtZ(t) and of Z∞ denoted by ϕ̃t(q) and ϕZ∞

(q)
respectively in the following:

ϕ̃t(q) := E [e<q,eδtZ(t)>
]

=
∑

n∈Nk

k
∏

i=1

qni

i

ni!
M̃n(t), t ≥ 0, (75)
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and

ϕZ∞
(q) = E [e<q,Z∞>

]

=
∑

n∈Nk

k
∏

i=1

qni

i

ni!
χn, (76)

for q = (q1, . . . , qk) in the neighborhood of (0, . . . , 0). To apply the dominated convergence theorem to (75),
we need to show that M̃n(t) is bounded such as

M̃n(t) ≤ Un := (MmLe
k)ηn

k
∏

i=1

ni!, ∀n ∈ Nk, ∀t ≥ 0, (77)

where mL := max (1, C.maxi=1,...,k E[Li]) , so that, since

∑

n∈Nk

k
∏

i=1

|qi|
ni

ni!
Un =

k
∏

i=1

(

∞
∑

ni=1

|qiMmLe
k|ni

)

converges for

q = (q1, . . . , qk) ∈ J :=

[

−
1

MmLek
,

1

MmLek

]k

,

the dominated convergence theorem yields ϕ̃t(q) −→ ϕZ∞
(q) when t→ ∞ for q ∈ J .

Hence, we shall prove (77) by induction. Recall that in Proposition 3, we have already proved M̃n(t) ≤ Rn

where Rn is defined in (14). Thus we shall essentially show that Rn ≤ Un for all n ∈ Nk, so that (77) holds.
We start by n = n(i) for i ∈ {1, . . . , k}. In this case, upper bound (13) with (14) yields

Rn(i) = CE[Xi]δ
−1
{

1− E [e−δLi
]}

≤ CME[Li] ≤MmL = Un(i),

where the first inequality is due to δ−1
{

1− E [e−δLi
]}

=
∫∞

0
e−δxW i(x)dx ≤

∫∞

0
W i(x)dx. Let us now

suppose that n is such that Rℓ ≤ Uℓ for all ℓ < n. Using (14) as well as the induction assumption we get

Rn ≤ C
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)E[ k
∏

j=1

X
nj−ℓj
j

]

min
i∈Cℓ

E[Li]. Uℓ ≤ mL

∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)

Mηn−ηℓ . Uℓ. (78)

But, ℓ < n implies ηn − ηℓ ≥ 1 and mL and e are larger than 1, the following inequality is valid

mLM
ηn−ηℓ ≤ mηn−ηℓ

L Mηn−ηℓ(ek)ηn−ηℓ−1 = (mLMek)ηn−ηℓe−k.

Substituting the above inequality and Uℓ = (MmLe
k)ηℓ

∏k
i=1 ℓi! into (78), the right-hand side of (78) is now

bounded by

Rn ≤
∑

ℓ<n

(

n1

ℓ1

)

· · ·

(

nk

ℓk

)

(mLMek)ηn−ηℓe−k(MmLe
k)ηℓ

k
∏

i=1

ℓi!

= (MmLe
k)ηn

[

∑

ℓ<n

k
∏

i=1

ni!

(ni − ℓi)!

]

e−k = (MmLe
k)ηn

[ k
∏

i=1

ni!

][

∑

ℓ<n

k
∏

i=1

1

(ni − ℓi)!

]

e−k

= Un

[

∑

ℓ<n

k
∏

i=1

1

(ni − ℓi)!

]

e−k. (79)

We then conclude by noticing that

∑

ℓ<n

k
∏

i=1

1

(ni − ℓi)!
≤

∑

ℓi≤ni, i∈{1,...,k}

k
∏

i=1

1

(ni − ℓi)!

=
k
∏

i=1

[ ni
∑

ℓi=1

1

(ni − ℓi)!

]

=
k
∏

i=1

[ ni
∑

ℓi=1

1

ℓi!

]

≤
k
∏

i=1

[ ∞
∑

ℓi=1

1

ℓi!

]

= ek,
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which, plugged into (79), yields Rn ≤ Un. Therefore, by the dominated convergence theorem, ϕ̃t(q) in (75)
converges to ϕZ∞

(q) in (76) as t→ ∞.
Now it remains to show that the convergence in mgf implies the convergence in distribution. Since M̃n(t)

and χn are bounded as shown in Proposition 3, the mgfs of eδtZ(t) in (75) and Z∞ in (76) exist. Also, we
have shown that ϕt(q) −→ ϕZ∞

(q) when t→ ∞ for q ∈ J in some neighborhood of (0, . . . , 0). Hence, eδtZ(t)
converges to Z∞ in distribution.

5.6 Proof of Lemma 9

When n = n(i) and i ∈ {1, . . . , k}, we may obtain an expression of Lb
n(s) by using the expression of bn(t) in

Example 3 in [21], and applying similar idea as applied in (49). We now turn to proving (28). Since Lj ’s are
all E(µ) distributed, ϕℓ(t) = ϕℓ,n(t) given by (7) simplifies to

ϕℓ(t) = E[M̃ℓ(t− τ1)

{

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ

}

e−|Cℓ|µ(t−τ1).1[τ1<t]

]

.

Then using Fubini’s theorem to interchange the expectation with the integration as well as a change of variable
t := t− τ1, it follows that

∫ ∞

0

e−stϕℓ(t)dt =

[

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ

]E [∫ ∞

τ1

e−stM̃ℓ(t− τ1)e
−|Cℓ|µ(t−τ1)dt

]

=

[

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ

]E [e−sτ1

∫ ∞

0

e−stM̃ℓ(t)e
−|Cℓ|µtdt

]

=

[

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ

]

Lτ (s)LM
ℓ (s+ |Cℓ|µ). (80)

If ℓ = 0 where 0 is a zero vector in Nk then M̃ℓ(t) = 1 hence LM
ℓ (s+ |C0|µ) =

1
s+|C0|µ

, and we get

∫ ∞

0

e−stϕ0(t)dt =

[

∏

j∈C0

µ

µ+ (nj − ℓj)δ

]

Lτ (s)

s+ |C0|µ
=

[ k
∏

j=1

µ

µ+ njδ

]

Lτ (s)

s+ |C0|µ
.

In the case ℓ > 0, let us now observe that taking Laplace transforms in renewal equation (10) satisfied by
M̃n(.) yields the following classical relation between LM

n (s) and Lb
n(s):

LM
n (s) =

Lb
n(s)

1− Lτ (s)
, ∀s > 0, n ∈ Nk\{n(i), i = 1, . . . , k},

so that (80) leads to

∫ ∞

0

e−stϕℓ(t)dt =

[

∏

j∈Cℓ

µ

µ+ (nj − ℓj)δ

]

Lτ (s)

1− Lτ (s+ |Cℓ|µ)
Lb
ℓ(s+ |Cℓ|µ).

With the above result, the Laplace transform of (9) becomes (28).

5.7 Proof of Theorem 16

Proof of Lemma 14. We shall start by proving the properties for M̃1(t, δ), as those for M̃2(t, δ) are a bit
more technical but follow in a similar way. Let us write

M̃1(t, δ) =

∞
∑

i=1

ψi(t, δ), ψi(t, δ) := E[e−δ(Ti+Li−t)1{Ti≤t<Ti+Li}], i ∈ N. (81)
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We first start by proving that ψi(t, δ) is defined and analytic on set Da. Indeed, inequality

∣

∣

∣

∣

δj
(−1)j

j!
[Ti + Li − t]j1{Ti≤t<Ti+Li}

∣

∣

∣

∣

≤ aj
1

j!
Lj
i , j ∈ N, δ ∈ Da, (82)

coupled with the fact that
∑∞

j=0 E

(

aj 1
j!L

j
i

)

= E[eaL] = µ
µ−a < +∞ by (36), yields that

∞
∑

j=0

δjE

[

(−1)j

j!
[Ti + Li − t]j1{Ti≤t<Ti+Li}

]

is a convergent series on δ ∈ Da and that δ 7→ ψi(t, δ) is analytic on that set for all t ≥ 0, and admits the
above power series expansion in δ. Now one checks easily, by independence of Li and Ti,

ψi(t, δ) ≤ E[eaLi1{Ti≤t}] = E[eaL] Pr[Ti ≤ t], ∀δ ∈ Da, (83)

with
∑∞

i=1 E[e
aL] Pr[Ti ≤ t] = E[eaL]m(t) < +∞. This yields that for all t ≥ 0, series

∑∞
i=1 ψi(t, δ) converges

normally on δ ∈ Da. Thus for all t ≥ 0, δ 7→ M̃1(t, δ) is thus analytic as the uniform limit of an analytic
sequence of functions on compact set Da.

We then move on M̃2(t, δ). Similar to (81), one has

M̃2(t, δ) =

∞
∑

r,j=1

πr,j(t, δ), πr,j(t, δ) := E[e−δ(Tr+Lr−t)1{Tr≤t<Tr+Lr}e
−δ(Tj+Lj−t)1{Tj≤t<Tj+Lj}].

The analog of (82) is

∣

∣

∣

∣

δp
(−1)p

p!
[(Tr + Lr − t) + (Tj + Lj − t)]p 1{Tr≤t<Tr+Lr}1{Tj≤t<Tj+Lj}

∣

∣

∣

∣

≤ (a/2)p
1

p!
[Lr + Lj ]

p,

r ∈ N, j ∈ N, δ ∈ Da/2,

with
∑∞

p=0(a/2)
p 1
p! [Lr + Lj]

p = E
(

ea(Lr+Lj)/2
)

≤ E
(

eaL
)

(by Jensen’s inequality), a finite quantity, so that

δ ∈ Da/2 7→ πr,j(t, δ) is analytic. The analog of (83) is

πr,j(t, δ) ≤ E

[

ea(Lr+Lj)/21{Tr≤t}1{Tj≤t}

]

, r ∈ N, j ∈ N, δ ∈ Da/2, (84)

with, again thanks to Jensen’s inequality as well as independence of (Lr, Lj) from (Tr, Tj),

∞
∑

r,j=1

E[ea(Lr+Lj)/21{Tr≤t}1{Tj≤t}] ≤ E
(

eaL
)

∞
∑

r,j=1

E
[1{Tr≤t}1{Tj≤t}

]

= E
(

eaL
)

E
(

N(t)2
)

< +∞.

Hence, from (84),
∑∞

r,j=1 πr,j(t, δ) = M̃2(t, δ) converges normally on δ ∈ Da/2, and is analytic on this set by

the same argument as δ 7→ M̃1(t, δ). Note that we used that N(t) admits the second moment, a fact that
holds because E[τ21 ] < +∞, see e.g. [1, Chapter V.6]. �

Prior to proving Lemma 15, we prove a few upper bounds concerning M̃1(t, δ). First, we note that deriving

b̃1(t) =
µ

µ+δ e
−µt

∫ t

0 e
µsdF (s) yields b̃′1(t) = −µb̃1(t)+

µ
µ+δ f(t). Besides, since (A) holds, a density u(t) = m′(t)

of renewal function exists and is bounded by above by C > 0 thanks to Lemma 1. Both these facts entail,
deriving (16), the following

∣

∣

∣
M̃ ′

1(t)
∣

∣

∣
=

∣

∣

∣

∣

∫ t

0

b̃′1(t− s)m′(s)ds+ b̃1(0)m
′(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

b̃′1(t− s)m′(s)ds

∣

∣

∣

∣
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as f(.) is a density, so that b̃1(0) = 0. Then one finds

∣

∣

∣
M̃ ′

1(t)
∣

∣

∣
≤ µ

∫ t

0

∣

∣

∣
b̃1(t− s)m′(s)

∣

∣

∣
ds+

∣

∣

∣

∣

µ

µ+ δ

∣

∣

∣

∣

∫ t

0

|f(t− s)m′(s)| ds

≤ µC

∫ ∞

0

∣

∣

∣
b̃1(s)

∣

∣

∣
ds+

∣

∣

∣

∣

µ

µ+ δ

∣

∣

∣

∣

C

∫ ∞

0

f(s)ds

≤ C

[
∣

∣

∣

∣

µ

µ+ δ

∣

∣

∣

∣

+

∣

∣

∣

∣

µ

µ+ δ

∣

∣

∣

∣

]

≤
2Cµ

µ− |δ|
, (85)

where the last line is due to the fact that f(·) is a density, and
∫∞

0 |b̃1(s)|ds ≤ C
∣

∣

µ
µ+δ

∣

∣ from (49).

Proof of Lemma 15. We again start with M̃1(t, δ). The key to is to use expansions for M̃1(t) = M̃1(t, δ)
in Theorem 5 and particularly the dependence of this expansion in δ as discussed in Remark 6. Indeed, an
immediate consequence of (25) and (26) from Remark 6 is that

∣

∣

∣
M̃1(t, δ)− χ1(δ)

∣

∣

∣
≤

M∗

µ− |δ|

[

e−µt +

N
∑

k=1

e−Re(zk)t + ζ(t)e−Re(zN )t

]

≤
M∗

µ− a

[

e−µt +

N
∑

k=1

e−Re(zk)t + ζ(t)e−Re(zN )t

]

, ∀δ ∈ Da,

for some constant M∗ independent from δ and t, which implies uniform convergence of M̃1(t, δ) as t → ∞
towards χ1(δ) on δ ∈ Da.

We then move on to M̃2(t, δ). Relation (9) when k = 1, Xj = 1, L ∼ E(µ), along with (7) and (8) yields
the following expression

b̃2(t) = b̃2(t, δ) = ϕ0(t) + 2ϕ1(t), (86)

ϕ0(t) = ϕ0(t, δ) =
µ

µ+ 2δ
E[e−µ(t−τ1)1{τ1<t}] =

µ

µ+ 2δ

∫ t

0

e−µ(t−s)f(s)ds, (87)

ϕ1(t) = ϕ1(t, δ) =
µ

µ+ δ
E[M̃1(t− τ1, δ)e

−µ(t−τ1)1{τ1<t}] =
µ

µ+ δ

∫ t

0

M̃1(t− s, δ)e−µ(t−s)f(s)ds. (88)

Differentiating (87) and (88) with respect to t results in

ϕ′
0(t) =

µ

µ+ 2δ

[

−µ

∫ t

0

e−µ(t−s)f(s)ds+ f(t)

]

, (89)

ϕ′
1(t) =

µ

µ+ δ

[
∫ t

0

(

M̃ ′
1(t− s, δ)− µM̃1(t− s, δ)

)

e−µ(t−s)f(s)ds+ f(t)

]

. (90)

We are also going to need the following upper bounds for ϕ0(t, δ), ϕ1(t, δ), obtained from (87), (88), and the
fact that t 7→ M̃1(t, δ) is uniformly bounded in δ ∈ Da/2 by some constant C̃ (independent from δ and t, a
consequence of the fact that it converges uniformly on that set):

|ϕ0(t, δ)| ≤

∣

∣

∣

∣

µ

µ+ 2δ

∣

∣

∣

∣

e−µt

∫ ∞

0

eµsf(s)ds ≤
µ

µ− a
C0e

−µt, δ ∈ Da/2, (91)

|ϕ1(t, δ)| ≤

∣

∣

∣

∣

µ

µ+ δ

∣

∣

∣

∣

C̃e−µt

∫ ∞

0

eµsf(s)ds ≤
µ

µ− a/2
C1e

−µt, δ ∈ Da/2, (92)

for some constants C0 and C1 independent from δ ∈ Da/2 and t. We also wish to obtain similar bounds for
ϕ′
0(t, δ) and ϕ

′
1(t, δ). The following upper bound for ϕ′

0(t, δ) is easily obtained thanks to (89):

|ϕ′
0(t, δ)| ≤

∣

∣

∣

∣

µ

µ+ 2δ

∣

∣

∣

∣

[

µe−µt

∫ ∞

0

eµsf(s)ds+ f(t)

]

≤
µ

µ− a
[C∗

0e
−µt + f(t)], δ ∈ Da/2, (93)
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for some constant C∗
0 . As to ϕ′

1(t, δ), the fact that t 7→ M̃1(t, δ) and t 7→ M̃ ′
1(t, δ) are uniformly bounded in

δ ∈ Da/2 respectively by C̃ and 2C µ
µ−a/2 (thanks to (85)), easily yields from (90)

|ϕ′
1(t, δ)| ≤

µ

µ− a/2
[C∗

1e
−µt + f(t)], δ ∈ Da/2,

for some constant C∗
1 > 0. Getting back to our original concern of showing that M̃2(t, δ) converges uniformly,

we first note that, in view of (16) and (86), it is clear that it is necessary and sufficient to prove that

δ 7→

∫ t

0

ϕl(t− s, δ)dm(s), l = 0, 1,

converges uniformly on δ ∈ Da/2 as t→ ∞ towards 1E[τ1] ∫∞

0
ϕl(s, δ)ds for l = 0, 1. Details will be given only

for l = 0 as similar proof is applicable for l = 1. The starting point is the following decomposition, already
used in Relation (55) in Section 5.4:

∫ t

0

ϕ0(t− s, δ)dm(s)−
1E[τ1] ∫ ∞

0

ϕ0(s, δ)ds = −
1E[τ1] ∫ ∞

t

ϕ0(s, δ)ds+

∫ t

0

ϕ0(t− s, δ)dv(x)

:= I1(t, δ) + I2(t, δ). (94)

Thus, in view of (94), it suffices to prove that I1(t, δ) and I2(t, δ) uniformly converge towards 0 as t→ ∞ on
δ ∈ Da/2. Uniform convergence of I1(t, δ) is obtained thanks to (91) that entail:

sup
δ∈Da/2

|I1(t, δ)| ≤
1E[τ1] 1

µ− a
C0e

−µt −→ 0, t→ ∞.

As to I2(t, δ), performing an integration by parts as in (62) yields

I2(t, δ) = ϕ0(t, δ)v(0
−) +

∫ t

0

v(s)ϕ′
0(t− s, δ)ds.

The first term on the right-hand side uniformly converges to 0 on δ ∈ Da/2 thanks to (91). As to the second
term, we use the inequality (93) to get

∣

∣

∣

∣

∫ t

0

v(s)ϕ′
0(t− s, δ)ds

∣

∣

∣

∣

≤

∫ t

0

|v(s)||ϕ′
0(t−s, δ)|ds ≤

µ

µ− a

∫ t

0

|v(s)|[C∗
0 e

−µ(t−s)+f(t−s)]ds, δ ∈ Da/2. (95)

Note that
∫ t

0 |v(s)|e
−µ(t−s)ds tends to zero by dominated convergence theorem, as

∫∞

0 |v(s)|ds is finite (a direct
consequence of expansion (20)). Also, the light tailed assumption in (36) for τ1 entails that for all j = 1, ..., N

one has
∫ t

0 e
−zjsf(t−s)ds = e−zjt

∫ t

0 e
zjsf(s)ds −→ 0 as t→ ∞. Similarly,

∫ t

0 η(s)e
−zjsf(t−s)ds −→ 0 where

η(x) is defined by (21). Hence
∫ t

0 |v(s)|f(t− s)ds tends to zero as t→ ∞. Then, from (95) I2(t, δ) uniformly

converges to 0 on δ ∈ Da/2. Thus, all in all, M̃2(t, δ) converges uniformly on δ ∈ Da/2 towards χ2(δ). �

Proof of Theorem 16. Since 0 ≤ − ∂
∂δ Z̃(t, δ)

∣

∣

∣

δ=0
= D(t) ≤

∑N(t)
i=1 Li is integrable, it is possible to exchange

derivation with respect to δ and expectation and one has for all t > 0

−
∂

∂δ
M̃1(t, δ)

∣

∣

∣

∣

δ=0

= −
∂

∂δ
E[Z̃(t, δ)]∣∣∣

∣

δ=0

= −E [ ∂
∂δ
Z̃(t, δ)

∣

∣

∣

∣

δ=0

]

= E[D(t)]. (96)

The main point in the proof is to be able to pass to the limit in (96) as t → ∞. To do this, we use the fact
that we proved in Lemma 14 that δ 7→ M̃n(1)(t, δ) is analytic on the set Da where a < µ is arbitrary. Since

by Lemma 15, M̃1(t, δ) uniformly converges towards χ1(δ) on this set, a standard result in complex analysis
states that the limiting function δ 7→ χ1(δ) is analytic on the same set, hence in particular at δ = 0 (which is
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known from its expression (39)), but, more importantly, that one can interchange derivation and passage to
the limit, i.e.

lim
t→∞

∂

∂δ
M̃1(t, δ)

∣

∣

∣

∣

δ=0

=
∂

∂δ

[

lim
t→∞

M̃1(t, δ)
]

∣

∣

∣

∣

δ=0

=
∂

∂δ
χ1(δ)

∣

∣

∣

∣

δ=0

.

Expression of χ1(δ) in the case k = 1 is given in Corollary 17, Expression (39) with Xj = 1, yielding (37).
Let us move on to the covariance ofD(t) and queue size Z1(t, 0). One has− ∂

∂δ [Z1(t, δ)]
2
∣

∣

δ=0
= 2D(t)Z1(t, 0),

and since the latter is integrable due to D(t)Z1(t, 0) ≤
(

∑N(t)
i=1 Li

)

N(t), as in (96), interchanging expectation

and derivation results in

−
∂

∂δ
M̃2(t, δ)

∣

∣

∣

∣

δ=0

= 2E[D(t)Z1(t, 0)].

The same argument of analyticity of δ 7→ M̃2(t, δ) on δ ∈ Da/2 in Lemma 14, coupled with the fact that

uniform convergence result as t → ∞ in Lemma 15 yields that limt→∞
∂
∂δM̃2(t, δ)

∣

∣

∣

δ=0
= ∂

∂δχ2(δ)
∣

∣

δ=0
. Now

the fact that limt→∞ M̃1(t, 0) = χ1(0) and limt→∞
∂
∂δM̃1(t, δ)

∣

∣

∣

δ=0
= ∂

∂δχ1(δ)
∣

∣

δ=0
implies

lim
t→∞

Cov[D(t), Z1(t, 0)] = lim
t→∞

E[D(t)Z1(t, 0)]− E[D(t)]E[Z1(t, 0)]

= −
1

2

∂

∂δ
χ2(δ)

∣

∣

∣

∣

δ=0

+ χ1(0).
∂

∂δ
χ1(δ)

∣

∣

∣

∣

δ=0

. (97)

Expression (40) with Xj = 1 yields χ2(δ) =
1E[τ1] ( 1

µ+2δ + µ
(µ+δ)2

Lτ (µ)
1−Lτ (µ)

)

, and in turn,

∂

∂δ
χ2(δ)

∣

∣

∣

∣

δ=0

= −
1E[τ1] ( 2

(µ+ 2δ)2
+

2µ

(µ+ δ)3
Lτ (µ)

1− Lτ (µ)

)
∣

∣

∣

∣

δ=0

= −
2

µ2E[τ1] (1 + Lτ (µ)

1− Lτ (µ)

)

.

Hence, substitution of the above expression together with χ1(δ) obtained previously into (97) yields (38) for
the limiting covariance. �
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