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ON A DEGENERATE PROBLEM IN THE CALCULUS OF VARIATIONS

GUY BOUCHITTÉ AND PIERRE BOUSQUET

Abstract. We establish the uniqueness of the solutions for a degenerate scalar problem in the
multiple integrals calculus of variations. The proof requires as a preliminary step the study of the
regularity properties of the solutions and of their level sets. We exploit the uniqueness and the
regularity results to explore some of their qualitative properties. In particular, we emphasize the
link between the supports of the solutions and the Cheeger problem.

1. Introduction

Two problems in Optimal Design. We study a problem in the multiple integrals calculus of
variations which is both singular and degenerate. This problem arises as the relaxation of the non
convex functional introduced by Kohn and Strang in [20, 21, 22]:

(1.1) I0 : u 7→
∫

Ω
Φ(∇u)

where Ω is a bounded open set in RN , N ≥ 2, and

Φ(y) :=

{
0 if y = 0,
1
2(|y|2 + 1) if |y| > 0.

The admissible functions u belong to the Sobolev space H1(Ω) and must agree with a given function
ψ : RN → R on the boundary ∂Ω of Ω.

The functional I0 is not lower semicontinuous under weak convergence in H1(Ω). Therefore, one
cannot rely on the direct method in the calculus of variations to find a minimum as the limit of a
minimizing sequence. Actually, it may happen that there is no minimum.

However, the infimum of I0 is equal to the infimum of the relaxed functional (see [20, Theorem
1.1]):

(1.2) I0 : u 7→
∫

Ω
ϕ(∇u)

where ϕ is the convexification of Φ, namely the largest convex function less than or equal to Φ:

(1.3) ϕ(y) =

{
|y| if |y| < 1,
1
2(|y|2 + 1) if |y| ≥ 1.

In contrast to the original problem, the relaxed problem is lower semicontinuous under weak H1

convergence. It follows that it has at least one minimizer, and for every such minimizer u, I0(u) =
inf I0. Moreover, the minimizers of I0 are exactly the weak limits of minimizing sequences of I0.
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2 BOUCHITTÉ AND BOUSQUET

In order to prove the non existence of a minimizer for I0, a possible strategy is to establish
the uniqueness of the minimizer for I0, see [24]. Indeed, assume that I0 has a unique minimum
u such that |∇u| < 1 on a positive measure set. Then I0(u) < I0(u) (here, we use the fact that
ϕ(y) < Φ(y) for every 0 < |y| < 1) and for every admissible v 6= u, I0(u) < I0(v) ≤ I0(v). Since
inf I0 = inf I0 = I0(u), this proves that I0 has no minimum.

For some specific choice of Ω and ψ, this situation may arise, as illustrated in [22, Example 7.4]
where Ω is the unit square and ψ a polynomial function of degree 2. However, generally speaking,
this is a delicate matter to prove the uniqueness of minimizers for I0, since I0 is not strictly convex.
This is one of the main contributions of this paper to establish this uniqueness property under a
mild condition on Ω, see Theorem 1.1 below.

More recently, a related problem was considered in [2] for the same functional I0, when the
boundary condition ψ is equal to 0 everywhere and when Ω is an open bounded subset of R2 that
we assume to be simply connected1. More precisely in the context of shape optimization of thin
elastic structures, Bouchitté and al. proved in [7] that the section of an optimal torsion rod can be
obtained from the following parametrized problem

(1.4) m(s) := inf

{
I0(u) ,

∫
Ω
u = s , u ∈ H1

0 (Ω)

}
.

Here, s is a positive parameter which gives the intensity of the applied torsion load. If the infimum
in m(s) is attained at some u ∈ H1

0 (Ω), then the subset [|∇u| > 1] corresponds to the optimal
subregion where the material should be placed. The plateau of u, namely the set [∇u = 0],
represents the void subregion.

By [2, Proposition 3.8], m is differentiable on (0,∞). The constraint
∫

Ω u = s can be included in
the cost functional through a Lagrange multiplier. More specifically, for every λ ≥ 0, let us define

(1.5) Iλ : u 7→
∫

Ω
ϕ(∇u)− λ

∫
Ω
u.

Then for every s > 0, an admissible u is a solution of m(s) if and only if u minimizes Im′(s) on

H1
0 (Ω), see [2, (3.5) and Proposition 3.3].
A major issue, still beyond the scope of this paper, is the existence or the non existence of a

special solution for m(s); that is, a solution u with the following property:

|∇u| ∈ {0} ∪ (1,+∞ ) a.e. in Ω.

Observe that u is a special solution for I0 if and only if it is a minimizer of I0. For every λ ≥ 0,
one can construct non spherical domains Ω for which there exist special solutions, see [2, Section
6]. When such a solution exists, an optimal design contains no homogenized region corresponding
to a fine mixture of material and void. It was proved in [2, Corollary 3.5] that if there exists a
special solution, then this is the unique solution of m(s). As a consequence of Theorem 1.1 below,
we obtain a deeper result which does not require the existence of a special solution: for every s > 0,
m(s) has a unique solution.

In order to embrace the two situations arising in [20, 21, 22] and [2, 7], we consider henceforth
any Lipschitz function ψ : RN → R for the boundary condition and any open bounded subset
Ω ⊂ RN , N ≥ 2. Given λ ≥ 0, we study the problem:

(Pλ) To minimize u 7→ Iλ(u) on H1
ψ(Ω),

1In fact, this assumption that we introduce here for simplicity, was not required in [2].
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where H1
ψ(Ω) := ψ +H1

0 (Ω).2

Main results. Our first main result is the uniqueness of solutions for (Pλ) under fairly general
assumptions on Ω.

Theorem 1.1. Assume that Ω is Lipschitz and that ∂Ω is connected. Then for every λ ∈ R, the
solution of (Pλ) is unique.

The proof of Theorem 1.1 heavily relies on the regularity properties of the solutions of (Pλ).
There are serious obstacles to establish them: the function ϕ is singular at the origin and is not
twice differentiable on the unit sphere. Moreover, the Hessian ∇2ϕ(ξ) of ϕ at ξ has a non trivial
kernel for every ξ in the unit ball. Hence, (Pλ) is both singular and degenerate. In spite of these
facts, recent results for this class of integrands can be used to obtain the following regularity
properties:

Proposition 1.2. Let λ ≥ 0 and u a solution of (Pλ). Then u is bounded on Ω and locally Lipschitz
continuous. Moreover, there exists an open set U ⊂ Ω such that u is smooth on U . In fact, |∇u| > 1
on U and |∇u| ≤ 1 a.e. on Ω \ U .

When Ω is assumed to be Lipschitz, then the solutions of (Pλ) are Hölder continuous on Ω, see
Section 2. On the complement of U , the regularity of u itself is still open. However, generically,
the super-level sets [u ≥ t] = {x ∈ Ω : u(x) ≥ t}, with t ∈ R+, satisfy a variational problem on
Ω \ U . It then follows that for a.e. t ∈ R+, the level sets ∂[u ≥ t] are C1 hypersurfaces, up to a
small singular term:

Proposition 1.3. Let λ ≥ 0, u a solution of (Pλ) and U as in Proposition 1.2. Then for a.e.
t ∈ R, there exists an open set W in Ω such that W ∩ (∂e[u ≥ t]) is a C1 hypersurface and
Hs(Ω \ (W ∪ ∂U)) = 0 for every s > N − 8.

Here, ∂e[u ≥ t] is the essential boundary of the set [u ≥ t], namely the set of those x ∈ RN such
that for every ρ > 0,

(1.6) 0 < |[u ≥ t] ∩Bρ(x)| < |Bρ(x)|.
Both Propositions 1.2 and 1.3 are essential steps in the proof of Theorem 1.1. However, when

N = 2, almost every level set of a Lipschitz function is a Lipschitz curve, see e.g. [1, Theorem 2.5].
It is then possible to rely on this property instead of Proposition 1.3 in order to prove Theorem
1.1.

In the case when Ω is the ball of radius R > 0 and ψ ≡ 0, the solution has the following explicit
expression, see Remark 4.2 below:

(1.7) u(x) = − λ

2N

(
|x|2 − N2

λ2

)
+

+
λ

2N

(
R2 − N2

λ2

)
+
.

In particular, the solution is Lipschitz continuous, but not even C1 (except when it is the trivial
solution).

The regularity and the uniqueness of the solutions for (Pλ) have important consequences for the
study of their qualitative properties. Given Ω and ψ as in Theorem 1.1, for every λ ≥ 0, we denote
by uλ the unique solution of (Pλ) on H1

ψ(Ω).

2To be more specific, H1
0 (Ω) is the set of those u ∈ H1(Ω) such that the extension of u by 0 on RN belongs to

H1(RN ).
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Proposition 1.4. The map λ ∈ [0,+∞) 7→ uλ ∈ C0(Ω) is continuous and nondecreasing3.

Assume now that ψ ≡ 0 and Ω is any bounded open Lipschitz set in RN . When λ = 0, the
solution is the constant function equal to 0. It turns out that for small values of λ, 0 is still the
unique solution of (Pλ). An interesting fact is that the critical value of λ for which 0 is not the
solution any more is exactly the Cheeger constant hΩ of Ω:

(1.8) hΩ = inf
D⊂Ω

Per D

|D|
.

Here, Per refers to the perimeter in RN (or equivalently in Ω since all the sets that we consider
are contained in Ω). The precise link of hΩ with (Pλ) is given in the following statement, which
corresponds to [2, (4.5)]:

Proposition 1.5. Let λ > 0

• If λ > hΩ, then 0 is not a solution of (Pλ).
• If λ ≤ hΩ, then 0 is the unique solution of (Pλ).

A Cheeger set for Ω is a subset of Ω for which the infimum in (1.8) is attained. Together with
the Cheeger constant hΩ, the Cheeger sets play a natural role in the framework of (Pλ):

Theorem 1.6. The set
Ω0 := ∩λ>hΩ

[uλ > 0]

is a solution of the Cheeger problem for Ω.

On some proofs of uniqueness for some multiple integrals variational problems. There
are many uniqueness results for variational problems with a lack of strict convexity. We just quote
four of them, which have been important sources of inspiration to us. First, in the seminal paper
[24, Theorem 3] (see also [25]), Marcellini considers the problem

Minimize v 7→
∫

Ω
g(|∇v(x)|) dx

with g : [0,+∞)→ [0,+∞) an increasing convex function. The bounded open set Ω is assumed to
be convex and C1. If there exists a solution u ∈ C1(Ω) such that ∇u does not vanish on Ω, then u
is proved to be the unique solution on the class of Lipschitz functions agreeing with u on ∂Ω. The
proof of this result is based on two observations:

• Step 1 Each level set of a solution u intersects the boundary of the domain ∂Ω.
• Step 2 If v is another solution, then v is constant on the level sets of u.

Since u and v agree on ∂Ω, it follows from the two above steps that u agrees with v on each
level set of u, which finally proves that u = v on Ω. The first step is based on the fact that g is
(strictly) increasing. The second step uses in a crucial way that the integrand only depends on the
norm of the gradient of u. Both steps exploit the C1 regularity of the level sets of u. For a general
variational problem which is not stricly convex, such a regularity assumption is difficult to establish
(see however [30]). In the two dimensional setting, more precisely when Ω is a bounded open set
with connected boundary in R2, the uniqueness result remains true without the two assumptions:
u is C1 and ∇u does not vanish on Ω, see [23].

The above strategy has been exploited in many different contexts. In [31], the authors consider
the case when g(t) = t and prove the uniqueness of the solutions in the class {u ∈ BV (Ω)∩C0(Ω) :

3In the sense that if λ1 ≤ λ2, then uλ1(x) ≤ uλ2(x) for every x ∈ Ω.
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u|∂Ω = ψ|∂Ω} under additional geometric conditions on Ω. The fact that the (regular components of
the) level sets of a solution intersect the boundary of Ω (which corresponds to Step 1 in Marcellini’s
proof) arises as an essential argument in the proof of [31, Lemma 3.4]. This is also a key tool in
[19], see [19, Lemma 4.2], where the authors consider the more general problem

To minimize v 7→
∫

Ω
g(x,∇v(x)) dx

with an integrand g such that 7→ g(x, ·) is a norm for every x. In this extended framework, the
uniqueness is established under the same assumptions on Ω as in Theorem 1.1, namely that Ω is
Lipschitz and has a connected boundary.

The common feature of all the papers quoted above is that the integrand does not depend on the
variable u. Adding a lower order term of the form λ

∫
Ω u as in our problem (Pλ) involves important

consequences for the level sets of the solutions, as illustrated by the example of the explicit solution
on the ball (1.7). Indeed, generically, level sets do not intersect the boundary of Ω any more. It
follows that one cannot directly use the fact that two solutions agree on ∂Ω to deduce therefrom
that they agree on Ω.

Moreover, the regularity of the level sets required by the proof in [24] cannot be established in
the framework of (Pλ). Indeed, the explicit example on the ball shows that one cannot expect
better than Lipschitz regularity for the solutions. In addition, the assumption that ∇u does not
vanish on Ω is far from being satisfied: we can even prove that a solution u is necessarily constant
on a positive measure set, see Lemma 2.1 below.

In [31, 19], the general regularity theory for area minimizing sets is exploited in an essential way
to get the C1 regularity of the level sets. In our case, the function y 7→ ϕ(y) behaves differently
depending on whether y is small or outside the unit ball. As a consequence, the super-level sets
of u do not minimize a simple variational problem on the whole Ω. We thus have to use two
different strategies to establish the regularity of the level sets of u, first on [|∇u| > 1] and then on
its complement.

Plan of the paper. In the next section, we present the proof of the regularity results Proposition
1.2 and 1.3. For the latter, we need to introduce a minimization problem for the super-level sets of
solutions, but only on an open subset of Ω where the gradient is small. In section 3, we establish
the uniqueness result Theorem 1.1. The qualitative properties Propositions 1.4 and 1.5 are proved
in section 4 as well as a more precise version of Theorem 1.6, see Theorem 4.8. Finally, for the
convenience of the reader, we have presented in an appendix the proof of the Lipschitz continuity
of the solutions which readily follows from the arguments used in [13, Theorem 2.7].

Acknowledgements. We warmly thank Lorenzo Brasco, Giuseppe Buttazzo and Cédric Galusin-
ski for very interesting discussions on this subject. Numerical solutions obtained by Cédric Galusin-
ski on different two dimensional domains helped us to get a better insight on the qualitative pro-
perties of the minima. Part of this work has been written during a visit of the second author to
Toulon. The IMATH institute is kindly acknowledged.

2. Regularity and Euler equation

2.1. Lipschitz regularity. We first enumerate some continuity properties satisfied by the solutions
of (Pλ), λ ≥ 0. These properties readily follow from the classical regularity theory for Lagrangians
with quadratic growth: By [18, Theorem 7.5, Theorem 7.6], every solution u is locally Hölder con-
tinuous in Ω. If one further assumes that Ω is Lipschitz, then [18, Theorem 7.8] implies that u is
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globally Hölder continuous (remember that the boundary condition is given by the restriction to
∂Ω of a Lipschitz function ψ : RN → R).

Regarding the L∞ estimate on u, we have the following result which holds true on every bounded
open set Ω:

Lemma 2.1. There exists C > 0 which depends only on N such that for every x ∈ Ω,

min
∂Ω

ψ ≤ u(x) ≤ max
∂Ω

ψ + CλN‖(u−max
∂Ω

ψ)+‖L1(Ω).

Moreover, if supΩ u > max∂Ω ψ, then

|{x ∈ Ω : u(x) = sup
Ω
u}| ≥ 1

CλN
.

Remark 2.2. That supΩ u > max∂Ω ψ holds true is closely related to the value of λ. Actually, when
Ω is Lipschitz and has a connected boundary, we can prove that there exists λ∗ = λ∗(ψ,Ω) ∈ [0,+∞)
such that for every λ ≤ λ∗, supΩ u = max∂Ω ψ while for every λ > λ∗, supΩ u > max∂Ω ψ, see
Lemma 4.7 below.

Proof of Lemma 2.1. We denote by a := min∂Ω ψ. We first prove that u ≥ a on Ω. Let v :=
max(u, a). Then v is admissible for (Pλ). From the minimality of u,∫

Ω
ϕ(∇u)− λu ≤

∫
Ω
ϕ(∇v)− λv

which implies ∫
[u<a]

ϕ(∇u) ≤ λ
∫

[u<a]
u− a.

Since u− a < 0 on the set [u < a] while ϕ(∇u) ≥ 0, it follows that |[u < a]| = 0; that is, u ≥ a on
Ω.

We now prove that u is bounded from above. Let b := max∂Ω ψ. For every t ≥ b, let w :=
min(u, t). As above, one has ∫

[u>t]
ϕ(∇u) ≤ λ

∫
[u>t]

u− t.

Since ϕ(y) ≥ |y| for every y ∈ RN , this gives∫
[u>t]
|∇u| ≤ λ

∫
[u>t]

u− t.

By the Sobolev inequality in the left hand side and the Hölder inequality in the right hand side,
this implies

(2.1) ‖(u− t)+‖LN′ (Ω) ≤ Cλ‖(u− t)+‖LN′ (Ω)|[u > t]|
1
N ,

where C depends only on N . If ‖(u − t)+‖LN′ (Ω) > 0, then |[u > t]| ≥ 1/(Cλ)N . Integrating the

latter inequality on an interval [b, T ] for some T > b yields

T − b
(Cλ)N

≤
∫

[u≥b]
min(u, T )− b ≤ ‖(u− b)+‖L1(Ω).

This implies that the inequality |[u > t]| ≥ 1/(Cλ)N can only hold true for t ≤ T0 := b+(Cλ)N‖(u−
b)+‖L1(Ω). Consequently, ‖(u− t)+‖LN′ (Ω) = 0 for every t > T0 and thus u is bounded from above

by T0 on Ω.
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Finally, if supΩ u > max∂Ω ψ, there exists a sequence (ti)i∈N ⊂ (b, supΩ u) converging to supΩ u.
Applying (2.1) to ti gives |[u > ti]| ≥ 1/(Cλ)N so that in the limit |[u = supΩ u]| ≥ 1/(Cλ)N .

�

By [13, Theorem 2.7], u is locally Lipschitz continuous in Ω. Actually, this theorem applies to
integrands of the form f(x,∇u) ; however, the proof can be easily generalized to integrands of the
form f(∇u)−λu, see Theorem 5.1 in the appendix for a proof in the specific case that we consider
in this paper ; for a more general result in this direction, see also [8, Theorem 2.1].

2.2. The Euler equation. Let λ ≥ 0 and u a solution of (Pλ). One can establish the Euler
equation for u exactly as in the proof of [2, Lemma 3.2] where this is done for the problem stated
in (1.4).

Lemma 2.3. There exists σ ∈ (L2 ∩ L∞loc)(Ω;RN ) such that div σ = −λ and

(2.2) σ ∈ ∂ϕ(∇u) a.e.

Proof. We introduce the convex function

Kϕ : g ∈ L2(Ω;RN ) 7→
∫

Ω
ϕ(g(x) +∇ψ(x)) dx,

and the two continuous linear maps

J : v ∈ H1
0 (Ω) 7→ −λ

∫
Ω
v(x) dx , A : v ∈ H1

0 (Ω) 7→ ∇v ∈ L2(Ω;RN ).

Since u ∈ H1
ψ(Ω) is a minimum of (Pλ),

0 ∈ ∂ (Kϕ ◦A+ J) (u− ψ).

where ∂(· · · ) is the convex subgradient. Now, ∂Kϕ(g) is the set of those ζ ∈ L2(Ω;RN ) such that

(2.3) ζ(x) ∈ ∂ϕ(g(x) +∇ψ(x)) a.e. x ∈ Ω.

Since A is linear and continuous, ∂(Kϕ ◦A)(u−ψ) = A∗[∂Kϕ(A(u−ψ))]. Finally, J being linear
and continuous, one deduces that there exists σ ∈ L2(Ω;RN ) such that σ ∈ ∂ϕ(∇u) a.e. on Ω and

(2.4) λ

∫
Ω
v =

∫
Ω
〈σ,∇v〉 ∀v ∈ H1

0 (Ω).

Equivalently, div σ = −λ. Finally, since ∇u ∈ L∞loc(Ω), it follows that σ ∈ L∞loc(Ω;RN ). The proof
is complete. �

One can use the Euler equation together with a regularity result due to Colombo and Figalli
[11] to prove that any solution is smooth on the set where the norm of its gradient is larger than
1. More precisely,

Lemma 2.4. There exists an open subset U ⊂ Ω such that u is smooth on U , |∇u(x)| > 1 for
every x ∈ U and |∇u(x)| ≤ 1 for a.e. x ∈ Ω \ U . Moreover, |∇u| is continuous on U ∩ Ω and
|∇u| = 1 on ∂U ∩ Ω.

Proof. By [11, Theorem 1.1], for every continuous function H : RN → R such that H = 0 on
B1(0), the function H(∇u) has a continuous representative on Ω. By applying this result to
H(y) = (|y| − 1)+, one obtains that (|∇u| − 1)+ has a continuous representative on Ω and the set
U := [H(∇u) > 0] is open.
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On the open set U , |∇u| > 1 a.e. so that the function σ introduced in Lemma 2.3 satisfies
σ = ∇u a.e. on U . Hence, u is a (weak and thus a strong) solution of ∆u = −λ. In particular, u
is smooth on U . Since |∇u| = H(∇u) + 1 is uniformly continuous on U ∩ Ω′ for every Ω′ b Ω, it
follows that |∇u| extends as a continuous function on U ∩ Ω which is equal to 1 on ∂U ∩ Ω.

Finally, on Ω \ U , H(∇u) = 0 and thus |∇u| ≤ 1 a.e. there.
�

The proof of Proposition 1.2 is now complete. In a similar way to [2, Proposition 3.1], we have:

Remark 2.5. On the open set V := Ω\U , |σ(x)| ≤ 1 a.e. and since ϕ is differentiable on RN \{0},
σ(x) = ∇ϕ(∇u(x)) a.e. on [∇u 6= 0]. In particular,

(2.5) 〈σ(x),
∇u(x)

|∇u(x)|
〉 = 1 a.e. x ∈ [|∇u| 6= 0] ∩ V.

In view of (2.4), one also has

(2.6) λ

∫
Ω
v ≤

∫
[∇u=0]

|∇v|+
∫

[∇u6=0]
〈∇ϕ(∇u),∇v〉 , ∀v ∈ H1

0 (Ω).

2.3. Minimizing properties of the super-level sets. Using the Euler equation, one can prove
that in V = Ω\U , the super-level sets of a solution u have constant mean curvature, in a generalized
sense. We first recall some basic results on BV functions.

Let u ∈ BV (Ω). The distributional gradient of u is a vector valued Radon measure Du such that
|Du|(Ω) < ∞, where |Du| is the total variation of Du. Given a Borel set E ⊂ Ω, we say that E
has finite perimeter in Ω if the characteristic function χE of E belongs to BV (Ω). The perimeter
Per (E,Ω) is then defined as the total variation of χE on Ω:

Per (E,Ω) =

∫
Ω
|DχE | = sup

{∫
E

div g : g ∈ C1
c (Ω;RN ), |g(x)| ≤ 1 , ∀x ∈ Ω

}
.

The reduced boundary ∂∗E of E in Ω is the set of those x ∈ (supp |DχE |) ∩Ω such that the limit

νE(x) := lim
ρ→0

∫
Bρ(x)DχE∫
Bρ(x) |DχE |

exists in RN and satisfies |νE(x)| = 1. The reduced boundary ∂∗E is a subset of the essential
boudary ∂eE introduced in (1.6), see [17, Chapter 3]. By the Besicovitch derivation theorem (see
e.g. [5, Theorem 2.22]), |DχE | is concentrated on ∂∗E and DχE = νE |DχE |. Moreover, ∂∗E is a
countably (N − 1) rectifiable set and for every Borel set B ⊂ Ω,

(2.7)

∫
B
|DχE | = HN−1(B ∩ ∂∗E),

see e.g. [5, Theorem 3.59] or [17, Theorem 4.4].
For a.e. s ∈ R, the super-level set Es := [u ≥ s] has finite perimeter in Ω and the coarea formula

(see e.g. [5, Theorem 3.40]) asserts that for every Borel set B ⊂ Ω,

(2.8)

∫
B
|Du| =

∫
R
ds

∫
B
|DχEs |.

In view of (2.7), this equality can be formulated as follows:

(2.9)

∫
B
|Du| =

∫
R
HN−1(B ∩ ∂∗Es) ds.
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In terms of the characteristic function of B, this gives:∫
Ω
χB d|Du| =

∫
R
ds

∫
∂∗Es

χB dHN−1.

By linearity and the monotone convergence theorem, this implies that for every nonnegative Borel
function f : Ω→ R+,

(2.10)

∫
Ω
f d|Du| =

∫
R
ds

∫
∂∗Es

f dHN−1.

This identity remains true for every bounded measurable map f compactly supported in Ω. The
following lemma asserts that the gradient of a Sobolev function u ∈ W 1,1(Ω) is orthogonal (in a
generalized sense) to the level sets of u.

Lemma 2.6. Let u ∈ W 1,1(Ω). Then for a.e. s ∈ R and HN−1 a.e. x ∈ ∂∗Es, ∇u(x) 6= 0.
Moreover, one has

(2.11) νEs =
DχEs
|DχEs |

=
∇u
|∇u|

|DχEs | a.e.

Proof. Since u ∈ W 1,1(Ω), the measure Du coincides with the L1 function ∇u. Let S∗ be a
negligeable Borel set such that every point in RN \ S∗ is a Lebesgue point of ∇u and let S =
S∗ ∪ [∇u = 0]. By (2.9) with B = S, one gets∫

R
HN−1(∂∗Es ∩ S) ds =

∫
S
|∇u(x)| dx = 0.

Hence, for a.e. s ∈ R, ∇u(x) 6= 0 for HN−1 a.e. x ∈ ∂∗Es.
For every a < b, define ua,b := (min(u, b)− a)+. For every κ ∈ C∞c (Ω;RN ),

(2.12)

∫
[a≤u≤b]

〈∇u, κ〉 =

∫
Ω
〈∇ua,b, κ〉 = −

∫
Ω
ua,b div κ.

On the set [∇ua,b 6= 0], we define

f(x) := 〈
∇ua,b(x)

|∇ua,b(x)|
, κ〉 = 〈 ∇u(x)

|∇u(x)|
, κ〉.

We then extend f by 0 on Ω. Then 〈∇ua,b, κ〉 = f |∇ua,b| on Ω. Hence, by (2.10),∫
[a≤u≤b]

〈∇u, κ〉 =

∫
R
ds

∫
∂∗[ua,b≥s]

f dHN−1.

For s ≤ 0, [ua,b ≥ s] = Ω while for s > b − a, [ua,b ≥ s] = ∅. Moreover, for s ∈ (0, b − a),

[ua,b ≥ s] = [u ≥ s+a]. Moreover, for a.e. s ∈ (0, b−a), ∇ua,b(x) 6= 0 forHN−1 a.e. x ∈ ∂∗[ua,b ≥ s]
and thus f(x) = 〈 ∇u(x)

|∇u(x)| , κ〉. It follows that∫
[a≤u≤b]

〈∇u, κ〉 =

∫ b−a

0
ds

∫
∂∗[ua,b≥s]

〈 ∇u
|∇u|

, κ〉 dHN−1 =

∫ b

a
ds

∫
∂∗Es

〈 ∇u
|∇u|

, κ〉 dHN−1.

Inserting this identity in (2.12) and using Fubini theorem in the right hand side, one gets∫ b

a
ds

∫
∂∗Es

〈 ∇u
|∇u|

, κ〉 dHN−1 = −
∫ b

a
ds

∫
Es

div κ.
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Dividing by b− a and letting b− a→ 0, this gives for a.e. s ∈ R,∫
∂∗Es

〈 ∇u
|∇u|

, κ〉 dHN−1 = −
∫
Es

div κ.

Using (2.7), one has∫
∂∗Es

〈κ, DχEs
|DχEs |

〉 dHN−1 =

∫
Ω
〈κ, DχEs
|DχEs |

〉 d|DχEs | = −
∫

Ω
χEsdiv κ = −

∫
Es

div κ.

Hence, ∫
∂∗Es

〈κ, DχEs
|DχEs |

〉 dHN−1 =

∫
∂∗Es

〈 ∇u
|∇u|

, κ〉 dHN−1.

Since κ is arbitrary, this implies (2.11). The proof is complete. �

We now present the main result of this section : the super-level sets of a solution u satisfy a
minimization problem on the subset of Ω where the gradient of u is lower than 1:

Proposition 2.7. Given λ ≥ 0, let u be a solution of (Pλ). Let V := Ω \ U where U is the open
set [|∇u| > 1] introduced in Lemma 2.4. For a.e. s ∈ R, for every set F ⊂ Ω with finite perimeter
in Ω such that F∆Es b V ,

(2.13) Per (Es, V )− λ|Es ∩ V | ≤ Per (F, V )− λ|F ∩ V |.

Here, F∆Es is the set (F \Es)∪ (Es \ F ). The argument below is inspired from [3, Proposition
4] which in turn is based on [6, Proposition 2.7]. For the convenience of the reader, we present a
self-contained proof.

Proof. We divide the proof into three steps.
Step 1. In the first step, we introduce an approximation of the map σ introduced in the Euler
equation, see Lemma 2.3. We extend σ by 0 outside Ω and we define σj := σ ∗ ρj , where (ρj)j≥1 ⊂
C∞c (B1/j) is a standard mollifier. Then σj converges to σ a.e. on Ω. Moreover, for every compact
K b Ω, for every j ≥ 1/dist (K, ∂Ω),

div σj = (div σ) ∗ ρj = −λ ∗ ρj = −λ a.e. on K.

We claim that there exists a subsequence, still denoted by (σj)j≥1, such that for a.e. s > 0, for
every K b Ω,

lim
j→+∞

∫
K∩∂∗Es

|σj − σ| = 0.

Indeed, let K b Ω. By the coarea formula (2.10), for every j ≥ 1,

(2.14)

∫
R
ds

∫
K∩∂∗Es

|σj − σ| dHN−1 =

∫
K
|∇u||σj − σ|.

Let j0 ≥ 1 be such that K + B1/j0 b Ω. For every j ≥ j0, the integrand in the right hand side is
bounded from above by

‖∇u‖L∞(K)|(‖σj‖L∞(K) + ‖σ‖L∞(K)) ≤ 2‖∇u‖L∞(K)‖σ‖L∞(K+B1/j0
).

Using that (σj) converges a.e. to σ on Ω, the dominated convergence theorem implies that

lim
j→+∞

∫
K
|∇u||σj − σ| = 0.
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In view of (2.14), there exists a subsequence (we do not relabel) such that for a.e. s ∈ R,

(2.15) lim
j→+∞

∫
K∩∂∗Es

|σj − σ| dHN−1 = 0.

Let (Kn)n≥1 be a sequence of compact subsets of Ω such that ∪n≥1int Kn = Ω. By applying
the above reasoning to each Kn, one can extract, through a diagonal process, a subsequence, still
denoted by (σj)j≥1, such that for a.e. s ∈ R, (2.15) holds true for every Kn, and thus for every
compact subset K b Ω.
Step 2. In the second step, we prove that for every F ⊂ Ω as in the statement of the proposition,
for a.e. s ∈ R and for every θ ∈ C∞c (V ) such that θ ≡ 1 on F∆Es and 0 ≤ θ ≤ 1, we have

(2.16) λ

∫
RN

(χF − χEs)θ ≤ Per (F, V )−
∫
∂∗Es

θdHN−1.

By the coarea formula and (2.5), for a.e. s ∈ R, for HN−1 a.e. x ∈ V ∩ ∂∗Es, ∇u(x) 6= 0 and
〈σ(x),∇u(x)/|∇u(x)|〉 = 1. We fix any s for which this property as well as (2.11) and (2.15) hold
true. Observe that a.e. s satisfies these conditions.

Let θ ∈ C∞c (V ) such that θ ≡ 1 on F∆Es and 0 ≤ θ ≤ 1 on V .
Since ∇θ = 0 on Es∆F ,

(2.17) −
∫
RN

(χF − χEs)θdiv σj = −
∫
RN

(χF − χEs)div (θσj).

Remember that σj = σ ∗ ρj and |σ| ≤ 1 a.e. on V . By construction, θσj ∈ C∞c (V ) and for every
j > 1

dist (supp θ,∂V ) , |θσj | ≤ 1. Hence,

(2.18)

∣∣∣∣∫
RN

χFdiv (θσj)

∣∣∣∣ ≤ |DχF |(V ) = Per (F, V ).

Using (2.11), ∫
RN

χEsdiv (θσj) = −
∫
RN

θ〈σj ,
DχEs
|DχEs |

〉d|DχEs |

= −
∫
RN

θ〈σj ,
∇u
|∇u|

〉d|DχEs |

= −
∫
∂∗Es

θ〈σj ,
∇u
|∇u|

〉dHN−1.(2.19)

The last line relies on (2.7). Now,∣∣∣∣∫
∂∗Es

θ〈σj ,
∇u
|∇u|

〉dHN−1 −
∫
∂∗Es

θ〈σ, ∇u
|∇u|

〉dHN−1

∣∣∣∣ ≤ ∫
supp θ∩∂∗Es

|σj − σ| dHN−1.

In view of (2.15), the right hand side goes to 0 when j → +∞. Hence,

(2.20) lim
j→+∞

∫
∂∗Es

θ〈σj ,
∇u
|∇u|

〉dHN−1 =

∫
∂∗Es

θ〈σ, ∇u
|∇u|

〉dHN−1.

But for HN−1 a.e. x ∈ V ∩∂∗Es, 〈σ(x),∇u(x)/|∇u(x)|〉 = 1. It thus follows from (2.19) and (2.20)
that

(2.21) lim
j→+∞

∫
RN

χEsdiv (θσj) = −
∫
∂∗Es

θdHN−1.
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In the left hand side of (2.17), we use the fact that F∆Es is compactly contained in Ω, so that
for every j sufficiently large, div σj = −λ on F∆Es. Our claim (2.16) is now a consequence of
(2.17), (2.18) and (2.21).
Step 3. Completion of the proof.

We replace the function θ introduced in the previous step by a sequence (θk)k≥ such that each
θk satisfies the same assumptions as θ, and θk → 1 a.e. on V . By letting k → +∞, we thus obtain

(2.22) λ

∫
RN

(χF − χEs) ≤ Per (F, V )−HN−1(V ∩ ∂∗Es) = Per (F, V )− Per (Es, V ).

Since F \ V = Es \ V ,

λ(|F ∩ V | − |Es ∩ V |) = λ(|F | − |Es|) = λ

∫
RN

(χF − χEs).

Together with (2.22), this implies that

Per (Es, V )− λ|Es ∩ V | ≤ Per (F, V )− λ|F ∩ V |.
The proof is complete. �

2.4. Regularity of the level sets. This section is devoted to the proof of Proposition 1.3 which
states that the level sets of a solution are C1 up to a small singular set.

Proposition 2.8. Given λ ≥ 0, let u be a solution of (Pλ) and U be the open set in Ω defined by
[|∇u| > 1]. Then for a.e. t ∈ R, there exists an open set W in Ω such that W ∩ ∂e[u ≥ t]) is a C1

hypersurface and Hs(Ω \ (W ∪ ∂U)) = 0 for every s > N − 8.

Remember that ∂e[u ≥ t] is the essential boundary of the set [u ≥ t], see (1.6).

Proof of Proposition 2.8. On the open set U , u is smooth and ∇u does not vanish. Hence each
level set is a smooth hypersurface. Let t ∈ R such that the super-level set Et := [u ≥ t] satisfies
the conclusion of Proposition 2.7. Then by [26, Theorems 5.1 and 5.2], there exists an open set
W0 in V = Ω \ U such that ∂eEt ∩W0 is an N − 1 dimensional manifold of class C1,α for some
0 < α < 1 and Hs(V \W0) = 0 for every s > N − 8. The set W = U ∪W0 satisfies the required
properties. �

Remark 2.9. The proof of [26, Theorems 5.1 and 5.2] shows that for every x ∈ W0 ∩ ∂eEt, there
exists δ > 0 such that Bδ(x) ∩ ∂eEt = Bδ(x) ∩ ∂∗Et. In particular, the vector νEt(y) is defined for
every y ∈ Bδ(x) ∩ ∂eEt and it is proved to be (Hölder) continuous on this set. If we choose t as in
Lemma 2.6: ∇u(x) 6= 0 for HN−1 a.e. x ∈ ∂∗Et and (2.11) holds true, we deduce that ∇u|∇u| is equal

to the continuous function νEt HN−1 a.e. on W0∩∂eEt. Hence, the smooth hypersurface W0∩∂eEt
has a well defined orientation which is given by (the continuous extension of) ∇u

|∇u| |W0∩∂eEt .

3. Uniqueness

In this section, we present the proof of Theorem 1.1, namely the uniqueness of the solutions of
(Pλ). We first explain the strategy that we follow:

Let λ ≥ 0 and u, v be two solutions of (Pλ).
Step 1 The two open sets [|∇u| > 1] and [|∇v| > 1] coincide : this is an easy consequence of the

fact that ϕ is strictly convex outside the unit ball. We denote by U this open set. Still by strict
convexity, ∇u = ∇v on U . This step corresponds to Lemma 3.1.

Step 2 Every connected component of U intersects the boundary ∂Ω. This is Lemma 3.3.
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It follows from the two above steps that u = v on U .
Step 3 The fact that ϕ only depends on the norm of the gradient of u implies that ∇u and ∇v

are colinear a.e. (Lemma 3.1 again). By using the regularity of the level sets of u, one can deduce
that v is constant on the level sets of u.

Step 4 For a.e. t ∈ R, every connected component of u−1(t) with positive measure intersect
U ∪ ∂Ω. This step involves a geometrical result, see Lemma 3.8, which is a weak generalization of
the fact that a compact hypersurface without boundary is the boundary of a bounded open set.

From Step 3 and Step 4 together with the fact that u = v on U , we finally deduce that u = v on
almost every level set of u, which is enough to conclude that u = v on Ω.

3.1. A comparison principle.

Lemma 3.1. Let λ ≥ 0 and let u, v be two solutions of (Pλ). Then for a.e. x ∈ Ω, either

max(|∇u(x)|, |∇v(x)|) ≤ 1 and ∇u(x),∇v(x) are colinear

or

∇u(x) = ∇v(x).

Proof. Since u is a solution of (Pλ),

Iλ(u) ≤ Iλ
(
u+ v

2

)
.

By convexity of ϕ,

Iλ

(
u+ v

2

)
=

∫
Ω
ϕ

(
∇u+∇v

2

)
− λu+ v

2

≤ 1

2

∫
Ω

(ϕ(∇u)− λu) +
1

2

∫
Ω

(ϕ(∇v)− λv)

=
1

2
Iλ(u) +

1

2
Iλ(v).

(3.1)

Since v is another solution,

Iλ(u) =
1

2
Iλ(u) +

1

2
Iλ(v).

This implies that a.e. on Ω,

ϕ

(
∇u+∇v

2

)
− λu+ v

2
=

1

2
(ϕ(∇u) + ϕ(∇v))− λ

2
(u+ v),

or equivalently,

ϕ

(
∇u+∇v

2

)
=

1

2
(ϕ(∇u) + ϕ(∇v)).

Hence for a.e. x ∈ Ω, ϕ is affine on the segment [∇u(x),∇v(x)]. In view of the definition of ϕ, this
implies the desired conclusion.

�

Lemma 3.2. Assume that the boundary condition ψ satisfies ψ ≡ 0. Given λ ≥ 0, let u be a
solution of (Pλ). Then for every µ > 0, the super-level set Eµ := [u ≥ µ] has finite perimeter and

Per (Eµ,Ω) ≤ λ|Eµ|.



14 BOUCHITTÉ AND BOUSQUET

Proof. For every 0 < µ < ν, let

uµ,ν = max(min(u, µ), u− ν + µ) =


u if u ≤ µ,
µ if µ ≤ u ≤ ν,
u− ν + µ if ν ≤ u.

Then uµ,ν ∈ H1
0 (Ω). Hence Iλ(u) ≤ Iλ(uµ,ν) and thus∫

Eµ\Eν
ϕ(∇u) ≤ λ

∫
Ω

(u− uµ,ν).

Since ϕ(∇u) ≥ |∇u|, this implies ∫
Eµ\Eν

|∇u| ≤ λ
∫

Ω
(u− uµ,ν).

By the coarea formula, we get ∫ ν

µ
Per (Et,Ω) dt ≤ λ

∫
Ω

(u− uµ,ν).

By definition of uµ,ν , it follows that∫ ν

µ
Per (Et,Ω) dt ≤ λ

∫
Eµ\Eν

(u− µ) + λ

∫
Eν

(ν − µ)

≤ λ(ν − µ)|Eµ|.

Assume first that µ is a Lebesgue point of the map t 7→ Per (Et,Ω). Then, dividing the above
inequality by ν − µ and letting ν → µ yield the desired result.

Now, for every µ > 0, there exists an increasing sequence of such Lebesgue points µi converging
to µ. Hence, Eµ = ∩iEµi and thus, limi→+∞ |Eµi | = |Eµ|. Moreover, by semicontinuity of the total
variation on BV (Ω),

Per (Eµ,Ω) ≤ lim inf
i→+∞

Per (Eµi ,Ω).

By the previous case, for every i ≥ 0, Per (Eµi ,Ω) ≤ λ|Eµi |. This implies

Per (Eµ,Ω) ≤ λ|Eµ|.

The proof is complete.
�

3.2. Uniqueness on the set U . A crucial step in the proof of Theorem 1.1 is the uniqueness of
the solution on the open set where the norms of the gradients are larger than 1.

Lemma 3.3. Given λ ≥ 0, let u ∈ H1
0 (Ω) be a solution of (Pλ). Then each connected component

U0 of the open set U = [|∇u| > 1] satisfies

∂U0 ∩ ∂Ω 6= ∅.

The proof below is inspired from the one of [2, Proposition 7.3].
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Proof. Assume by contradiction that U0 ⊂ Ω. Since U is open and |∇u| can be extended as a
uniformly continuous function on U0, |∇u| ≡ 1 on ∂U0, see Lemma 2.4. But on the set U0, where
u is smooth,

(3.2) ∆|∇u|2 = 2
∑
i,j

(∂2
iju)2 + 2

∑
j

∂ju∂j∆u = 2
∑
i,j

(∂2
iju)2 ≥ 0.

Here, we have used that ∆u = −λ on U so that ∂j∆u = 0 for every j. This proves that |∇u|2 is
subharmonic on U0, and thus |∇u|2 attains its maximum on ∂U0. But this contradicts the facts
that |∇u| ≡ 1 on ∂U0 and |∇u| > 1 on U0. Hence, ∂U0 ∩ ∂Ω 6= ∅, as desired. �

Remark 3.4. It also follows from (3.2) that the interior of the set [|∇u| = 1] is empty, when
λ > 0. Indeed, assume by contradiction that there exists an open connected set W ⊂ Ω where
|∇u| = 1 a.e. Then the Euler equation on W is

∫
Ω〈∇u,∇θ〉−λθ = 0, for every θ ∈ C∞c (W ). Hence,

∆u = −λ on W (in the sense of distributions and thus in the classical sense). Since |∇u| = 1 on
W , ∆|∇u|2 = 0. From (3.2), we deduce that |∇2u| = 0, which implies that u is affine, and thus
∆u = 0, a contradiction with λ > 0. This proves the remark.

In the proof of Theorem 1.1, we will also need the following variant of Lemma 3.3.

Lemma 3.5. Given λ ≥ 0, let u be a solution of (Pλ) and U := [|∇u| > 1]. For every r > 0, let
Hr := {x ∈ RN : dist (x,RN \ Ω) ≤ r}. If ∂Ω is connected, then the set U ∪Hr is connected.

Proof. We first prove that the set Kr := {x ∈ Ω : dist (x, ∂Ω) ≤ r} is connected. Consider a
continuous function χ : Kr → R with values into {0, 1}. Since K0 = ∂Ω is connected, χ is constant
on K0, e.g. χ ≡ 0 on K0. Let r∗ := inf{s ∈ [0, r] : χ 6≡ 0 on Ks}. Then by continuity of χ, χ−1(0)
is an open set of Kr containing K0 and thus r∗ > 0. Moreover, for every 0 < r′ < r∗, χ ≡ 0
on Kr′ so that χ ≡ 0 on Kr∗ . Assume by contradiction that r∗ < r. Then there exists ri ↓ r∗
and xi ∈ Kri such that χ(xi) = 1. Up to a subsequence, (xi)i converges to some x in Kr∗ , which
implies χ(x) = 1, a contradiction. This proves that r∗ = r; that is, χ ≡ 0 on Kr. Hence, Kr is

connected. We can prove in a similar way that K̃s := {x ∈ RN \Ω : dist (x, ∂Ω) ≤ s} is connected

for every s ≥ 0. Since every K̃s contains ∂Ω, it follows that RN \Ω = ∪s≥0K̃s is connected and so
is Hr = Kr ∪ (RN \ Ω).

For every connected component U0 of U , Lemma 3.3 implies that U0 ∩Hr 6= ∅. Hence, U0 ∪Hr

is connected. It follows that the set U ∪Hr is connected and the same is true for its closure

U ∪Hr = U ∪Hr = U ∪Hr.

The lemma is proved. �

We now establish the main result of this section: two solutions agree on the set where their
gradients do not belong to the unit ball.

Lemma 3.6. Given λ ≥ 0, let u, v ∈ H1
0 (Ω) be two solutions of (Pλ). Then

• the two open sets [|∇u| > 1] and [|∇v| > 1] coincide. We denote by U the corresponding
set.
• u = v on U .

Proof. The first assertion follows from Lemma 3.1. Still by Lemma 3.1, ∇(u − v) = 0 on U and
thus u − v is constant on each connected component of U . Since u − v = 0 on ∂Ω, the second
assertion is a consequence of Lemma 3.3. �
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Another important tool in the proof of Theorem 1.1 is the fact that a level set of a solution cannot
be contained in Ω \ U except if its interior is not empty. Here is a first result in that direction.

Lemma 3.7. Given λ ≥ 0, let u be a solution of (Pλ). Let G be an open subset of Ω \ U , where
U is the open set defined by U = [|∇u| > 1]. Assume that u is continuous on G 4 and that u is
constant on ∂G. Then u is constant on G.

Proof. By assumption, there exists c ∈ R such that u|G − c belongs to H1
0 (G). Moreover, it

minimizes the functional

(3.3) v 7→
∫
G
ϕ(∇v)− λv.

By Lemma 2.1 applied to this functional on H1
0 (G), u ≥ c on G. We now prove that u ≤ c on G.

Assume by contradiction that maxG u > c. Then

A := {x ∈ G : u(x) = max
G

u}

is a compact subset contained in G. By Lemma 3.2 with µ := maxG u,

Per A = Per (A,G) ≤ λ|A|.

Since A b G, sA b G for every s sufficiently close to 1. Fix such an s > 1. Then

(3.4) Per sA = sN−1Per A ≤ sN−1λ|A| < λ|sA|.

We claim that there exists v ∈ H1
0 (G) such that

(3.5)

∫
G
|∇v| < λ

∫
G
v.

Indeed, let (ρk)k≥1 ⊂ C∞c (B 1
k
) be a regularization kernel. Then for k > 1

dist (sA,∂G) , the map

vk := 1sA ∗ ρk belongs to H1
0 (G) and converges in L1(G) to 1sA. Moreover, by [17, Remark 1.16],

lim
k→+∞

∫
G
|∇vk| = lim

k→+∞

∫
RN
|∇vk| = Per sA.

In view of (3.4), there exists k ∈ N such that∫
G
|∇vk| < λ

∫
G
vk.

This proves the claim (3.5) with v := vk.
However, by (2.6) applied to the minimization problem (3.3),

λ

∫
G
v ≤

∫
[∇u=0]∩G

|∇v|+
∫

[∇u6=0]∩G
〈∇ϕ(∇u),∇v〉.

Using the fact that G ⊂ Ω \ U , this yields

λ

∫
G
v ≤

∫
[∇u=0]∩G

|∇v|+
∫

[|∇u|≤1]∩G
|∇v| ≤

∫
G
|∇v|.

This contradicts (3.5). Hence u ≡ c on G. �

4This is the case when G ⊂ Ω or when Ω is Lipschitz.
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3.3. A geometrical result. The following lemma will be crucial to prove that generically, the
level sets of u which intersect V = Ω \ U are not contained in V .

Lemma 3.8. Let V be an open bounded subset of RN such that RN \ V is connected. Let R be a
C1 orientable hypersurface compactly contained in V . If HN−1(R) < ∞ and HN−2(R \ R) = 0,
then there exists a non empty open set E ⊂ V such that ∂E ⊂ R.

Remark 3.9. If one further assumes that R is connected, then one can prove a deeper result: there
exists a set F b V with finite perimeter such that ∂F = R, see [19, Lemma 4.2] which inspired us
for the first paragraph of the proof below.

Proof. Since R is an orientable C1 hypersurface of RN with HN−1(R) < ∞, it defines an integer
multiplicity rectifiable current that we denote by [R]. We first claim that the boundary (in the
sense of currents) of [R] is trivial: ∂[R] = 0. Indeed, ∂[R] is a flat chain as the boundary of an
integer multiplicity rectifiable current, see e.g. [27, Section 4.3]. Since ∂[R] is supported in R \ R
and HN−2(R \ R) = 0, this implies that ∂[R] = 0, see e.g. [27, Theorem 4.7]. It follows that
there exists an N dimensional integer multiplicity rectifiable current H with finite mass such that
∂H = [R], see e.g. [14, Sections I.2.3 and I.2.4]. Actually, one can take for H the cone over [R],
namely the push-forward by the map h(t, x) = tx of the product of the two currents [0, 1] × R:
H = h]([0, 1]×R).

We now prove that RN \R is not connected. Assume by contradiction that this is not the case.
Since the support of [R] is contained in R, H has no boundary (in the sense of currents) in the
open set RN \R. It follows from the Constancy theorem, see e.g. [14, Theorem I.2.3.4], that there
exists r ∈ R such that for every smooth N form ω compactly supported in RN \R,

(3.6) H(ω) = r

∫
RN\R

ω.

Since H is an N dimensional integer rectifiable current andHN (R) = 0, it follows that (3.6) remains
true for every smooth N form with compact support. Hence, H is constant as a current on RN
and thus ∂H = [R] = 0, a contradiction. This proves that RN \R is not connected.

Since RN \R is open, each connected component of RN \R is open. By assumption, R ⊂ V and
thus RN \V ⊂ RN \R. Since RN \R is not connected, there exists at least one connected component
E of RN \ R which does not intersect the open connected component of RN \ R containing the
connected set RN \ V . This implies that E ⊂ V . Moreover, ∂E ⊂ R. This completes the proof.

�

3.4. Proof of Theorem 1.1. We can now complete the proof of Theorem 1.1. We assume through-
out this section that Ω is Lipschitz and has a connected boundary.

Proof. Let u and v be two solutions of (Pλ). By Lemma 3.1, ∇u(x) and ∇v(x) are colinear for a.e.
x ∈ Ω.

Let S be the set of those x ∈ Ω such that

(1) either u or v is not differentiable at x,
(2) or ∇u(x) = 0,
(3) or ∇u(x) and ∇v(x) are not colinear.

Since
∫
S |∇u| = 0, the coarea formula yields the existence of a negligeable set N0 ⊂ R such that

for every t ∈ R \ N0, [u ≥ t] is a set of finite perimeter with HN−1(u−1(t) ∩ S) = 0. In view of
Proposition 2.8 and Remark 2.9, there exists a negligeable set N1 ⊂ R with the following property:
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for every t ∈ R \ N1, there exists an open set Wt such that ∂e[u ≥ t] ∩Wt is an orientable C1

hypersurface and Hs(Ω \ (Wt ∪ ∂U)) = 0 for every s > N − 8 (as usual, U is the open subset of Ω
defined by [|∇u| > 1]).

Let N := N0∪N1 and t ∈ (0,∞) \N . We define Et := [u ≥ t]. Let R be a connected component
of ∂eEt ∩Wt. Since u is constant on the C1 hypersurface R and ∇v(x) is colinear to ∇u(x) HN−1

a.e. x ∈ R, it follows that for such x ∈ R, ∇v(x) is orthogonal to R at x. This implies that the
tangential gradient of v on the connected manifold R vanishes. Thus v is constant on R and, by
continuity of v, on R as well.

We claim that

(3.7) R ∩ (∂Ω ∪ U) 6= ∅.
Indeed, assume by contradiction that R∩(∂Ω∪U) = ∅. Then there exists r > 0 such that R∩Hr = ∅
where Hr := {x ∈ RN : dist (x,RN \ Ω) ≤ r}. We set Vr := Ω \ (U ∪Hr) = RN \ (U ∪Hr). Then
by Lemma 3.5, RN \ Vr = U ∪Hr is connected.

The essential boundary ∂eEt is a closed subset of RN , as the complement of the open set E0
t ∪E1

t

where
E0
t = {x ∈ RN : ∃ρ > 0 such that |Et ∩Bρ(x)| = 0},

E1
t = {x ∈ RN : ∃ρ > 0 such that |Et ∩Bρ(x)| = |Bρ(x)|}.

(The fact that E0
t and E1

t are open is proved in [17, Proposition 3.1]). Since R ⊂ ∂eEt, we also have
R ⊂ ∂eEt. Since the closure of a connected component of the C1 hypersurface ∂eEt ∩Wt cannot
intersect another connected component of this hypersurface, this implies that (R \R)∩Wt = ∅ and
thus

R \R ⊂ Vr \Wt ⊂ Ω \ (Wt ∪ ∂U).

It follows that HN−2(R \ R) = 0. By Lemma 3.8 applied to Vr and R, there exists a non empty
open set E ⊂ Vr such that ∂E ⊂ R. Observe that u ≡ t on R ⊃ ∂E. Applying Lemma 3.7 to E
yields u ≡ t on E. In particular, ∇u = 0 HN a.e. on E and thus HN (E \S) = 0. Since E ⊂ u−1(t)
and HN−1(u−1(t)∩S) = 0, one has HN−1(E ∩S) = 0. It follows that HN (E) = 0, a contradiction.
Our claim (3.7) is thus proved.

Since Ω is assumed to be Lipschitz, the solutions u and v are continuous on Ω, see section 2.1.
Moreover, u = v on ∂Ω∪U and v and u are constant on R. It then follows from (3.7) that v = u = t
on R. Since this is true for every component of ∂eEt ∩Wt, one gets v = t on ∂eEt ∩Wt.

For every x ∈ u−1(t) \ S, u is differentiable at x and ∇u(x) 6= 0. This implies that for every
ρ > 0 sufficiently small,

{y ∈ Bρ(x) : 〈 ∇u(x)

|∇u(x)|
, y−x〉 ≥ 1

2
|y−x|} ⊂ Bρ(x)∩Et ⊂ {y ∈ Bρ(x) : 〈 ∇u(x)

|∇u(x)|
, y−x〉 ≥ −1

2
|y−x|},

which proves that x ∈ ∂eEt. It follows that u−1(t) \S ⊂ ∂eEt. Since v = t on ∂eEt ∩ (Wt ∪U), one
thus gets

HN−1(u−1(t) ∩ [u 6= v]) ≤ HN−1
((
u−1(t) ∩ S

)
∪ (Ω \ (Wt ∪ ∂U))

)
= 0.

By the coarea formula, this implies ∫
[u6=v]

|∇u| = 0.

Hence, ∇u = 0 a.e. on the open set [u 6= v]. Similarly, ∇v = 0 a.e. on [u 6= v]. Since ∇(u− v) = 0
a.e. on the set [u = v], it follows that ∇(u− v) = 0 a.e. on Ω. But u = v = 0 on ∂Ω. This implies
that u = v on Ω. The proof is complete.
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�

Remark 3.10. When ψ is a constant map, the assumption that Ω is Lipschitz is unnecessary.
Indeed, this regularity assumption was made to guarantee the continuity of the solutions up to
the boundary. But in the case when ψ is constant, the level sets of the solutions do not intersect
the boundary (except for the level set corresponding to the value of ψ) and the continuity of the
solutions inside Ω is enough for the above argument to remain true.

4. Some qualitative properties of the solutions

In this section, we assume that Ω is Lipschitz. This implies that every solution is continuous on
Ω, see section 2.1.

4.1. A comparison principle.

Lemma 4.1. Let λ2 ≥ λ1 > 0, u1 a solution of (Pλ1) on u1 + H1
0 (Ω) and u2 a solution of (Pλ2)

on u2 +H1
0 (Ω). We also assume that u1|∂Ω ≤ u2|∂Ω. If λ2 > λ1 or if u1 is the unique minimum of

(Pλ1) on u1 +H1
0 (Ω) or if u2 is the unique minimum of (Pλ2) on u2 +H1

0 (Ω), then u1 ≤ u2 on Ω.

The assumption u1|∂Ω ≤ u2|∂Ω means that (u1 − u2)+ ∈ H1
0 (Ω).

Proof. Since Iλ1(u1) ≤ Iλ1(min(u1, u2)), we have

(4.1)

∫
[u1>u2]

ϕ(∇u1)− λ1u1 ≤
∫

[u1>u2]
ϕ(∇u2)− λ1u2.

Since Iλ2(u2) ≤ Iλ2(max(u1, u2)),

(4.2)

∫
[u1>u2]

ϕ(∇u2)− λ2u2 ≤
∫

[u1>u2]
ϕ(∇u1)− λ2u1.

The sum of (4.1) and (4.2) gives

0 ≤ (λ2 − λ1)

∫
[u2<u1]

u2 − u1.

We first assume that λ2 > λ1. Since u2 − u1 is nonpositive on the set [u2 < u1], it follows that
u1 ≤ u2 on Ω, which completes the proof in that case. Otherwise, λ1 = λ2 and assume for instance
that u1 is the unique minimum of (Pλ1) on u1 +H1

0 (Ω). Then (4.1), (4.2) imply∫
[u1>u2]

ϕ(∇u1)− λ1u1 =

∫
[u1>u2]

ϕ(∇u2)− λ1u2.

This yields

Iλ1(u1) = Iλ1(min(u1, u2)).

Since u1 is the unique minimum, it follows that u1 = min(u1, u2). Hence, u1 ≤ u2 on Ω, which
completes the proof in that case as well.

�

As a consequence of Theorem 1.1, the above comparison principle applies when Ω is Lipschitz
and has a connected boundary, since under these assumptions, the solutions of (Pλ) are unique. In
the particular case when Ω is a ball, we even know the solution explicitly:
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Remark 4.2. If Ω is the ball BR(x0) of center x0 ∈ RN and radius R > 0 and if ψ ≡ 0, then the
unique solution of (Pλ) on BR(x0) is the function

(4.3) ξλ,x0,R =
−N
2λ

(( λ2

N2
|x− x0|2 − 1

)
+
−
( λ2

N2
R2 − 1

)
+

)
.

The above remark can be seen as a consequence of a more general result due to Cellina, see [10,
Theorem 1]:

Theorem 4.3. Let Ω ⊂ RN be a bounded open set in RN and F : RN → R a convex function. We

assume that F is superlinear: limx→+∞
F (x)
|x| = +∞. Given c ∈ R, x0 ∈ RN , let

hx0,c(x) =
−N
λ
F ∗(
−λ
N

(x− x0)) + c , x ∈ Ω,

where F ∗(y) := supx∈RN (〈x, y〉 − F (x)). Then hx0,c is the unique minimum of the variational
problem:

To Minimize u 7→
∫

Ω
F (∇u)− λu

on hx0,c +H1
0 (Ω).

Proof. Let ζ be the affine map x 7→ −λ
N (x − x0). Then hx0,c = −N

λ F ∗ ◦ ζ + c. Since F ∗ is convex,
hx0,c is concave. Hence, both F ∗ and hx0,c are locally Lipschitz continuous and thus differentiable
a.e. Moreover, for a.e. x ∈ Ω, the convex subdifferential ∂F ∗(ζ(x)) is reduced to the singleton
{∇F ∗(ζ(x))} and

(4.4) ∇hx0,c(x) = ∇F ∗(ζ(x)).

By convex duality, this implies that

ζ(x) ∈ ∂F (∇hx0,c(x)).

Let u ∈ hx0,c +H1
0 (Ω). Then by definition of a convex subgradient,

(4.5)

∫
Ω
F (∇u)− F (∇hx0,c)− λ(u− hx0,c) ≥

∫
Ω
〈ζ,∇u−∇hx0,c〉 − λ(u− hx0,c).

Since u− hx0,c ∈ H1
0 (Ω), Stokes formula implies∫

Ω
F (∇u)− F (∇hx0,c)− λ(u− hx0,c) ≥

∫
Ω
λ(u− hx0,c)− λ(u− hx0,c) = 0.

This proves that hx0,c is a minimum. If u is another minimum, then the left hand side in (4.5) is 0
which implies that

F (∇hx0,c(x)) = F (∇u(x)) + 〈ζ(x),∇hx0,c(x)−∇u(x)〉 a.e. x ∈ Ω.

Hence, ζ(x) ∈ ∂F (∇u(x)). By convex duality together with (4.4), we get for a.e. x ∈ Ω,

∇u(x) ∈ ∂F ∗(ζ(x)) = {∇hx0,c(x)}.

Hence ∇u(x) = ∇hx0,c(x) a.e. and thus hx0,c = u. This proves that hx0,c is the unique solution on
hx0,c +H1

0 (Ω).
�
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Observe that Remark 4.2 follows from Theorem 4.3 since the convex conjugate of F = ϕ is
F ∗(y) = 1

2(|y|2− 1)+. We can now use the explicit solution on the ball as a barrier which, together
with the comparison principle Lemma 4.1, yields certain bounds on the solutions when Ω is any
bounded open set. As an illustration, we give an explicit upper bound on the solutions of (Pλ)
which does not depend on the L1 norm of the solutions, in contrast to Lemma 2.1, but only on Ω,
λ and the boundary condition ψ:

Lemma 4.4. Let λ > 0 and u a solution of (Pλ) on ψ|Ω +H1
0 (Ω). Then

max
Ω

u ≤ N

2λ

(
λ2

N2
R2 − 1

)
+

+ max
∂Ω

ψ,

where R = diamΩ.

Proof. The proof is based on the following elementary observation. If v is the unique solution of
(Pλ) on v + H1

0 (Ω1), for some bounded open set Ω1 ⊂ RN , then for every bounded open subset
Ω2 ⊂ Ω1, v|Ω2 is the unique solution on v|Ω2 + H1

0 (Ω2). Indeed, if ṽ were another solution on Ω2,
then the extension of ṽ by v on Ω1 would be another solution on Ω1, which would contradict the
uniqueness of the solution on Ω1.

Now, let R = diamΩ and x0 ∈ Ω. Then Ω ⊂ BR(x0). The unique solution of (Pλ) onH1
0 (BR(x0))

is the map ξλ,x0,R defined in (4.3). Then v := ξλ,x0,R|Ω + max∂Ω ψ is the unique minimum of (Pλ)
on v + H1

0 (Ω). Since ξλ,x0,R ≥ 0 on BR(x0), it follows that v ≥ max∂Ω ψ ≥ ψ on ∂Ω. By Lemma
4.1, this implies that on Ω

u ≤ v ≤ max
BR(x0)

ξλ,x0,R + max
∂Ω

ψ =
N

2λ

(
λ2

N2
R2 − 1

)
+

+ max
∂Ω

ψ,

and the lemma follows. �

The next lemma gives a lower bound on the solutions of (Pλ):

Lemma 4.5. Let BR(x0) ⊂ BR′(x0) ⊂ Ω. Let λ ≥ N/R and u be a solution of (Pλ) on ψ+H1
0 (Ω).

Then

min
BR(x0)

u ≥ λ

2N
(R′2 −R2) + min

∂Ω
ψ.

Proof. Let ξλ,x0,R′ be the unique solution of (Pλ) on H1
0 (BR′(x0)) given by (4.3). Then ξλ,x0,R′ +

min∂Ω ψ is the unique solution of (Pλ) on min∂Ω ψ + H1
0 (BR′(x0)). Since u|BR′ (x0) is a solution of

(Pλ) on u|BR′ (x0) + H1
0 (BR′(x0)) and inferring from Lemma 2.1 that u ≥ min∂Ω ψ on Ω and thus

on ∂BR′(x0), it follows from Lemma 4.1 that on BR′(x0),

u ≥ ξλ,x0,R′ + min
∂Ω

ψ.

In particular, if λ ≥ N/R, then on BR(x0),

u ≥ λ

2N
(R′2 −R2) + min

∂Ω
ψ,

which implies the desired result.
�
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4.2. On the family {uλ}λ>0. In this section, we assume that Ω is Lipschitz and that ∂Ω is
connected. We also fix the boundary condition ψ which is assumed to be Lipschitz continuous.
As a consequence of Theorem 1.1, for every λ ≥ 0, there exists a unique solution uλ of (Pλ) on
H1
ψ(Ω) = ψ + H1

0 (Ω). We then consider the map λ 7→ uλ. A continuity property is established in
the next proposition.

Proposition 4.6. The function λ 7→ uλ ∈ C0(Ω) is continuous.

Proof. Since Ω is Lipschitz, for every λ ≥ 0, uλ is Hölder continuous on Ω. Actually, for every
bounded subset Λ ⊂ [0,+∞), there exist C > 0 and α > 0 (which depend on Λ, ψ and Ω) such
that for every λ ∈ Λ, for every x, y ∈ Ω,

(4.6) |uλ(x)− uλ(y)| ≤ C|x− y|α.
Indeed, the functional in (Pλ) satisfies the following growth assumptions:

1

2
|∇u|2 −A|u| ≤ ϕ(∇u)− λu ≤ 1

2
|∇u|2 +A|u|+ 1

2
,

with A := sup Λ. The proof of [18, Theorem 7.8] implies that the Hölder norm and the Hölder
exponent of uλ can be estimated5 only in terms of A,ψ and Ω. In particular, the constants C and
α in (4.6) can be estimated independently of λ ∈ Λ.

Fix λ ≥ 0. Let λi → λ and uλi the solution of (Pλi). We claim that uλi uniformly converges to uλ.
Indeed, since by (4.6) the sequence (uλi)i≥1 is equicontinuous on Ω, Arzela-Ascoli theorem implies
that a subsequence (we do not relabel) uniformly converges to a function v ∈ C0(Ω). Since (uλi)i≥1

is bounded in H1
ψ(Ω), there exists a subsequence (we do not relabel) which weakly converges in

H1
ψ(Ω), necessarily to v. In particular, v ∈ H1

ψ(Ω). Now, let w ∈ H1
ψ(Ω). Then for every i ≥ 1,∫

Ω
ϕ(∇uλi)− λiuλi ≤

∫
Ω
ϕ(∇w)− λiw.

Letting i→ +∞ and using the weak lower semicontinuity in the left hand side, one gets∫
Ω
ϕ(∇v)− λv ≤

∫
Ω
ϕ(∇w)− λw.

This proves that v is a solution of (Pλ). By uniqueness for the problem (Pλ), this implies that
v = uλ. Hence, by uniqueness of the limit, the whole original sequence (uλi)i≥1 uniformly converges
to uλ, which completes the proof of the lemma. �

In the next lemma, we prove the existence of a critical value of λ for which the supremum of u
on Ω becomes larger than the supremum of u on ∂Ω.

Lemma 4.7. There exists λ∗ = λ∗(ψ,Ω) ∈ [0,+∞) such that for every 0 ≤ λ ≤ λ∗, supΩ u =
max∂Ω ψ while for every λ > λ∗, supΩ u > max∂Ω ψ

Proof. By Proposition 4.6, the function λ 7→ uλ ∈ C0(Ω) is continuous. This implies that the
function ` : λ 7→ maxΩ uλ is continuous as well. By Lemma 4.1, ` is also nondecreasing. From
Lemma 4.5, we deduce that for every BR(x0) b Ω,

lim
λ→+∞

min
BR(x0)

uλ = +∞.

5In particular, the Lagrangian F (u,∇u) = 2ϕ(∇u) − 2λu satisfies [18, Assumption (7.2)] with γ = p = 2,
s = σ =∞, ε = 2/N , L = 1, b = 2A and a = 2A+ 1.
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It follows that limλ→+∞ `(λ) = +∞. Finally, when λ = 0, the constant function v :≡ max∂Ω ψ is a
solution of (P0) and v ≥ u0 on ∂Ω. It follows from Lemma 4.1 that u0 ≤ maxΩ ψ on Ω and thus
`(0) = max∂Ω ψ. Hence `([0,+∞)) = [max∂Ω ψ,+∞). This proves the existence of the value λ∗ as
in the statement. �

4.3. On the supports of the solutions. In this section, we describe some properties of the
supports of the solutions and present some connections with the Cheeger subsets of Ω. We assume
throughout that Ω is any bounded open Lipschitz set but that the boundary condition ψ is constant
and equal to 0. This implies by Lemma 2.1 that every solution is nonnegative on Ω.

As explained in the introduction, the Cheeger constant of Ω is given by

hΩ = inf
D⊂Ω

Per D

|D|
.

Alternatively (see for instance [29]), hΩ can be defined as the minimum value of a variational
problem on H1

0 (Ω):

hΩ = inf

(∫
Ω
|∇u| : u ∈ H1

0 (Ω),

∫
Ω
u = 1

)
.

This constant arises naturally in the framework of (Pλ), as stated in Proposition 1.5 that we now
prove:

Proof of Proposition 1.5. Assume first that 0 is a solution of (Pλ). Then for every v ∈ H1
0 (Ω),

λ

∫
Ω
v ≤

∫
Ω
ϕ(∇v) ≤

∫
[|∇v|≤1]

|∇v|+
∫

[|∇v|>1]
|∇v|2.

By replacing v by sv for some s > 0 and dividing by s, one gets

λ

∫
Ω
v ≤

∫
[|∇v|≤s−1]

|∇v|+ s

∫
[|∇v|>s−1]

|∇v|2.

We now let s→ 0+:

λ

∫
Ω
v ≤

∫
Ω
|∇v|.

This implies that λ ≤ hΩ. Moreover, if u is another solution of (Pλ), then it follows from Lemma
3.1 and the fact that 0 is a solution that |∇u| ≤ 1 a.e. Hence Ω = Ω \ [|∇u| > 1] and u is constant
on ∂Ω. From Lemma 3.7, we deduce that u is constant on Ω: u ≡ 0; that is, 0 is the unique solution
of (Pλ).

Assume now that λ ≤ hΩ. Then for any u ∈ H1
0 (Ω),∫

Ω
ϕ(∇u)− λ

∫
Ω
u ≥

∫
Ω
|∇u| − hΩ

∫
Ω
u ≥ 0.

This proves that 0 is a solution of (Pλ). �

When λ increases and becomes larger than hΩ, a non trivial solution suddenly appears inside the
Cheeger sets of Ω. Here is a precise result, which implies Theorem 1.6 stated in the introduction:

Theorem 4.8. For λ > hΩ, let uλ be a solution of (Pλ). Then the family ([uλ > 0])λ>hΩ
is

nondecreasing. Moreover, the set

Ω0 := ∩λ>hΩ
[uλ > 0]
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is a solution of the Cheeger problem for Ω:

Per Ω0

|Ω0|
= hΩ.

Remark 4.9. The Cheeger problem has a unique solution when the domain is convex, see [4].
Hence, when Ω is convex, Ω0 is the unique Cheeger set contained in Ω. When Ω is not convex, we
conjecture that Ω0 is the maximal Cheeger set (for the characterization of the maximal Cheeger
set, we refer for instance to [9]).

Proof of Theorem 4.8. By Lemma 4.1, if hΩ < λ < λ′, then uλ ≤ uλ′ . Hence [uλ > 0] ⊂ [uλ′ > 0]
and the first assertion follows.

By Lemma 3.2, for every ε > 0,

Per [uλ ≥ ε] ≤ λ|[uλ ≥ ε]|.
Here, we also use the fact that Per [uλ ≥ ε] = Per ([uλ ≥ ε],Ω) since [u ≥ ε] b Ω. For every
λ > hΩ, the family of characteristic functions χ[uλ≥ε] converges to χ[uλ>0] a.e. when ε → 0 and

thus, by the dominated convergence theorem, in L1(Ω). The lower semicontinuity of the perimeter
then yields

(4.7) Per [uλ > 0] ≤ λ|[uλ > 0]|.
On the other hand, by definition of hΩ, for every λ > hΩ,

(4.8) Per [uλ > 0] ≥ hΩ|[uλ > 0]|.
When λ→ hΩ, |[uλ > 0]| tends to |Ω0|. From the inequalities (4.7) and (4.8) above, one thus gets

lim
λ→hΩ
λ>hΩ

Per [uλ > 0] = hΩ|Ω0|.

Since by lower semicontinuity of the perimeters,

lim inf
λ→hΩ

Per [uλ > 0] ≥ Per Ω0,

this gives

(4.9) Per Ω0 ≤ hΩ|Ω0|.
For every λ > hΩ, Lemma 1.5 implies that uλ 6≡ 0. Hence, for every ε > 0 sufficiently small,
|[uλ ≥ ε]| > 0. It then follows from the proof of Lemma 2.1, see (2.1), that |[uλ ≥ ε]| ≥ (Cλ)−N

for some constant C which depends only on N . This implies |[uλ > 0]| ≥ (Cλ)−N > 0 and finally
letting λ→ hΩ,

|Ω0| ≥ (ChΩ)−N > 0.

Together with (4.9), this completes the proof of Theorem 4.8.
�

Remark 4.10. If Ω is convex and a Cheeger set of itself, then Ω = Ω0 and thus for every λ > hΩ,
uλ > 0 on Ω. On the contrary, if Per Ω

|Ω| > hΩ, then for λ ∈ (hΩ,
Per Ω
|Ω| ), we deduce from the

inequality (4.7) that [uλ > 0] 6= Ω; that is, uλ vanishes on a subset of Ω of positive measure. This
emphasizes the fact that the strong maximum principle does not apply for this degenerate (not
uniformly elliptic) problem.

For a fixed λ > hΩ, the support of a solution uλ is related to the geometry of Ω in the following
sense:
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Proposition 4.11. Given λ > hΩ, let uλ be a solution of (Pλ). Then [uλ > 0] contains the set
Ωλ defined as the union of all open convex sets A ⊂ Ω which are Cheeger sets of themselves with
hA < λ.

Proof. Indeed, let A ⊂ Ω be an open convex set which is a Cheeger set of itself. Then by [4], A is
the unique Cheeger set contained in A. Hence A = A0, where A0 is defined in Theorem 4.8, with
A instead of Ω. Let λ > hA. By Theorem 1.1, there exists a unique solution uA,λ to the problem
(Pλ) on A with a homogeneous Dirichlet boundary condition. It follows from Theorem 4.8 that
uA,λ is stricly positive on A. Since uλ|∂A ≥ 0 = (uA,λ)|∂A, Lemma 4.1 implies that uλ ≥ uA,λ > 0
on A. Finally, uλ > 0 on Ωλ. �

5. Appendix

In this appendix, we detail the proof of the Lipschitz continuity of the solutions of (Pλ). Our
strategy is essentially the same as the one introduced in [13, Theorem 2.7] for Lagrangians which
depend only on x and ∇u. In our situation, the dependence on u is linear, so that it plays no
role and does not involve any additional difficulty in the proof. Moreover, the specific form of the
function ϕ outside the unit ball simplifies the main estimates obtained in [13].

Theorem 5.1. Let u be a solution of (Pλ). Then the function u is locally Lipschitz on Ω.

We first introduce a sequence of variational problems approximating (Pλ) and for which the
solutions vj , j ≥ 1, are known to be smooth. This is the role of Lemma 5.2 below. We then obtain
a uniform Lipschitz bound on vj in Lemma 5.3, which finally implies Theorem 5.1.

Lemma 5.2. There exists a sequence (ϕj)j≥1 of C∞ uniformly convex6 functions which converges
uniformly to ϕ on bounded sets and such that for every j ≥ 1,

(5.1) ∀y ∈ RN \B2(0) , ∇2ϕj(y) = (1 +
1

j
) Id,

(5.2) ∀y ∈ RN , ϕ(y) ≤ ϕj(y) ≤ 2(ϕ(y) + 1).

Proof. Let ρ ∈ C∞c (B1(0)) such that ρ ≥ 0,
∫
RN ρ = 1 and ρ(−y) = ρ(y) for every y ∈ RN . We

then define ρj(·) = jNρ(j·) and

ϕj(y) = ϕ ∗ ρj(y) +
1

2j
|y|2 , y ∈ RN .

Then ϕj is a smooth uniformly convex function which uniformly converges to ϕ on bounded sets.
By the change of variables z 7→ −z and the property ρj(−z) = ρj(z), one has∫

RN
zρj(z) dz = 0.

6By this, we mean that there exists mj > 0 such that ∇2ϕj ≥ mj Id.
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By convexity of ϕ, Jensen inequality implies ϕ ∗ ρj(y) ≥ ϕ(y). Moreover, for every |y| ≥ 2,

ϕ ∗ ρj(y) =

∫
RN

ϕ(y − z)ρj(z) dz =

∫
RN

1

2
(|y − z|2 + 1)ρj(z) dz

=
1

2
(|y|2 + 1)

∫
RN

ρj(z) dz +
1

2

∫
RN
|z|2ρj(z) dz +

∫
RN
〈y, z〉ρj(z) dz

=
1

2
(|y|2 + 1) +

1

2

∫
RN
|z|2ρj(z) dz = ϕ(y) + cj

where cj := 1
2

∫
RN |z|

2ρj(z) dz belongs to (0, 1
2j2

). When |y| ≤ 2, using the fact that ϕ(y − z) ≤
(|y − z|2 + 1)/2 for every z ∈ RN , the same calculation leads to ϕ ∗ ρj(y) ≤ ϕ(y) + cj . Then (5.1)
and (5.2) easily follow. The proof is complete.

�

Let BR be a ball compactly contained in Ω. For every j ≥ 1, we consider the variational problem
(Qj)

To minimize v 7→
∫
BR

ϕj(∇v)− λv

on the set of those v ∈ H1(BR) which coincide with u on ∂BR.
By the direct method in the calculus of variations, for every j ≥ 1, there exists a unique solution

vj to the above problem. By minimality of vj ,

(5.3)

∫
BR

ϕj(∇vj)− λvj ≤
∫
BR

ϕj(∇u)− λu.

Since for every j ≥ 1, y ∈ RN ,

1

2
|y|2 ≤ ϕ(y) ≤ ϕj(y) ≤ 2(ϕ(y) + 1),

the sequence (vj)j≥1 is bounded inH1(BR). Hence, we can extract (we do not relabel) a subsequence
which converges weakly in H1(BR) and strongly in L2(BR) to a certain function v ∈ H1(BR) which
agrees with u on ∂BR. Using that ϕ ≤ ϕj , one has∫

BR

ϕ(∇vj) ≤
∫
BR

ϕj(∇vj).

By weak lower semicontinuity, this gives∫
BR

ϕ(∇v) ≤ lim inf
j→+∞

∫
BR

ϕj(∇vj).

Together with (5.3) and the L2 convergence of vj , this implies∫
BR

ϕ(∇v)− λ
∫
BR

v ≤ lim inf
j→+∞

∫
BR

ϕj(∇u)− λ
∫
BR

u.

Since ϕj ≤ 2(ϕ+ 1) and ϕj converges pointwisely to ϕ, one may apply the dominated convergence
theorem to get ∫

BR

ϕ(∇v)− λ
∫
BR

v ≤
∫
BR

ϕ(∇u)− λ
∫
BR

u.

By minimality of u, the opposite inequality is true. Hence, v is a minimum. By Lemma 3.1, this
implies that |∇v −∇u| ≤ 1. Hence, Theorem 5.1 follows from the following lemma.
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Lemma 5.3. The function v is locally Lipschitz on BR.

Proof. We only need to prove that there exists a constant C0 such that for every j ≥ 1,

(5.4) ‖∇vj‖L∞(BR/2) ≤ C0.

Since ϕj is smooth, uniformly convex and has a bounded Hessian, it follows from the standard
elliptic regularity theory that vj is smooth on BR and thus satisfies the Euler equation: for every
θ ∈ C∞c (BR) ∫

BR

〈∇ϕj(∇vj),∇θ〉 = λ

∫
BR

θ.

Let 1 ≤ s ≤ N and take θ = ∂sζ, with ζ ∈ C∞c (BR), in the above equality. By integration by parts,
this gives

(5.5)

∫
BR

∑
i,k

∂ikϕj∂ksvj∂iζ = 0.

This equality holds true for every ζ ∈ H1(BR) with compact support in BR. Set

V+ = 1 +

N∑
h=1

(∂hvj − 2)2
+ , V− = 1 +

N∑
h=1

(∂hvj + 2)2
−.

Let η ∈ C∞c (BR) and take ζ := η2(∂svj − 2)+V
β

+ , where β ≥ 0. This yields∫
BR

η2
∑
i,k

∂ikϕj∂ksvjV
β

+∂i(∂svj − 2)+ + β

∫
BR

η2
∑
i,k

∂ikϕj∂ksvjV
β−1

+ (∂svj − 2)+∂iV+

= −2

∫
BR

η
∑
i,k

∂ikϕj∂ksvj(∂svj − 2)+V
β

+∂iη.

Since the integrals above vanish when ∂sv ≤ 2, one gets∫
BR

η2
∑
i,k

∂ikϕj∂k(∂svj−2)+V
β

+∂i(∂svj−2)++β

∫
BR

η2
∑
i,k

∂ikϕj∂k(∂svj−2)+V
β−1

+ (∂svj−2)+∂iV+

= −2

∫
BR

η
∑
i,k

∂ikϕj∂k(∂svj − 2)+(∂svj − 2)+V
β

+∂iη.

Using that ∇2ϕj(y) = (1 + 1
j ) Id when |y| ≥ 2, this implies∫

BR

η2
∑
i

(∂i(∂svj − 2)+)2V β
+ + β

∫
BR

η2
∑
i

∂i(∂svj − 2)+V
β−1

+ (∂svj − 2)+∂iV+

= −2

∫
BR

η
∑
i

∂i(∂svj − 2)+(∂svj − 2)+V
β

+∂iη.
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Summing over s and differentiating ∂iV+ in the second term of the left hand side, we get

(5.6)

∫
BR

η2
∑
i,s

(∂i(∂svj − 2)+)2V β
+ + 2β

∫
BR

η2V β−1
+

∑
i

(∑
s

Ais

)2

= −2

∫
BR

η
∑
i,s

∂i(∂svj − 2)+(∂svj − 2)+V
β

+∂iη.

where

Ais := (∂svj − 2)+∂i(∂svj − 2)+.

Since
∑N

s=1(∂svj − 2)2
+ ≤ V+, and using the Cauchy-Schwarz inequality, we obtain∫

BR

η2V β−1
+

∑
i

(∑
s

Ais

)2

≤
∫
BR

η2
∑
i,s

(∂i(∂svj − 2)+)2V β
+ .

In view of the above inequality, (5.6) implies

(5.7) (1 + 2β)

∫
BR

η2V β−1
+

∑
i

(∑
s

Ais

)2

≤ −2

∫
BR

η
∑
i,s

∂i(∂svj − 2)+(∂svj − 2)+V
β

+∂iη.

Writing Ais = 1
2∂i(∂svj − 2)2

+ and taking into account the definition of V+, this gives∫
BR

η2|∇V+|2V β−1
+ ≤ C

∣∣∣∣∣
∫
BR

ηV β
+

∑
i

∂iV+∂iη

∣∣∣∣∣ ≤ C
∫
BR

ηV β
+ |∇V+||∇η|,

where C = 4/(1 + 2β). Writing that V β
+ = V

β−1
2

+ V
β+1

2
+ , this implies∫

BR

η2|∇V+|2V β−1
+ ≤ C2

∫
BR

|∇η|2V β+1
+ .

Inserting now the function ζ = η2(∂svj + 2)−V
β
− in (5.5), a similar calculation leads to∫

BR

η2|∇V−|2V β−1
− ≤ C2

∫
BR

|∇η|2V β+1
− .

By summing the two last inequalities, one gets∫
BR

η2|∇V |2V β−1 ≤ 2C2

∫
BR

|∇η|2V β+1.

where V := max(V+, V−). Equivalently,∫
BR

η2|∇V γ |2 ≤ 2C2γ2

∫
BR

|∇η|2V 2γ ,

with γ = (β + 1)/2. Hence,∫
BR

|∇(ηV γ)|2 ≤ (4C2γ2 + 2)

∫
BR

|∇η|2V 2γ .

By the Sobolev inequality and the arbitrariness of β ≥ 0, we get that for every γ ≥ 1/2,

‖V γη‖L2χ(BR) ≤ c‖V γ |∇η|‖L2(BR),
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where χ = N/(N − 2) if N ≥ 3 or any number > 1 if N = 2, and c is a constant which depends
only on N (and on R when N = 2). Considering the sequence of radii ri := (1/2+1/2i)R for i ≥ 0,
we apply the above inequality to γ = γi := χi/2, and choose η ∈ C1

c (Bri) such that η = 1 on Bri+1 ,

0 ≤ η ≤ 1, |Dη| ≤ c02i. This yields

‖V ‖L2γi+1 (Bri+1) ≤ (c12i)
1
γi ‖V ‖L2γi (Bri )

.

Iterating the above formula and letting i→ +∞, one gets

‖V ‖L∞(BR/2) ≤ c2‖V ‖L1(BR) ≤ c3(1 + ‖∇vj‖2L2(BR)).

Since the sequence (vj)j≥1 is bounded in H1(BR), this implies that ‖V ‖L∞(BR/2) can be bounded

independently of j. In view of the definition of V , (5.4) follows. The proof of Lemma 5.3 is complete.
�
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[26] U. Massari, Esistenza e regolarità delle ipersuperfice di curvatura media assegnata in Rn, Arch. Rational Mech.
Anal., 55 (1974), 357–382.

[27] F. Morgan, Geometric measure theory, Fourth edition, Elsevier/Academic Press, Amsterdam, 2009.
[28] T. Napier, M. Ramachandran, An introduction to Riemann surfaces, Birkhäuser/Springer, New York, 2011.
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