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Multi-scale arithmetization of the linear
transformations

Loïc Mazo

University of Strasbourg

Abstract—A constructive non-standard interpretation of a multi-scale affine transformation scheme is exposed. It is

based on the Ω-numbers of Laugwitz and Schmieden and on the discrete model of the real line of Reeb and Harthong.

In this setting, the non-standard version of the Euclidean affine transformation gives rise to a sequence of so-called

quasi-linear transformations over integer spaces, allowing integer-only computations.

Index Terms—affine transformation, discretization, multigrid convergence, Omega-number, Harthong-Reeb line, digital

geometry, Nonstandard analysis, Constructive mathematics

✦

1 INTRODUCTION

In the past decade, a series of papers [1],
[2], [3], [4], [5], [6] was devoted to the the arith-
metization of the continuum with the goal to
solve numerical problem using only integers. In
particular, a multi-scale arithmetization of the
Euler scheme for solving differential equations
was developed and used to produce discrete
representations of continuous functions and
curves. These works are rooted on the one hand
in the studies of G. Reeb and J Harthong on
nonstandard analysis [7] that led to a discrete
model of R, the Hartong-Reeb line. This model,
though it requires to dispose of an infinitely
large number (which was axiomatically as-
sumed), allowed Reveillès [8], [9] to construct a
discretization scheme which resulted in its sem-
inal work on the digital line. On the other hand,
Laugwitz and Schmieden [10], [11] proposed a
constructive definition of infinitely large num-
bers: the Ω-numbers. Mixing the Harthong-Reeb
line with the Ω-numbers was done in the PhD.
thesis of Chollet [12] and gaves rise to the Ω-
arithmetization scheme.

In the present paper, we aim at using the
multi-scale discretization scheme of Chollet to
obtain a multi-scale discretization of the affine
transformations between Euclidean spaces. In
her PhD thesis [13], Jacob-Da Col, which was
a student of Reveillès, studied the properties

of an arithmetization of the affine transforma-
tions of R2, called Quasi-affine transformations
(QAT). Then, the study was extended to the nD-
spaces [14], [15], [16], [17], [18], [19], [20]. Nev-
ertheless, in these works, the QAT are studied
per se and do not result from a discretization
scheme, a fortiori a multi-scale one. Here, we
exhibit the link between an Ω-arithmetization
scheme derived from the one of Chollet et al.
and sequences of QATs and prove the con-
vergence of the scheme toward the Euclidean
transformation.

The article is organized as follows. In Sec. 2,
we introduce the Ω-numbers and the Harthong-
Reeb line. We recall their properties and the
skeleton of the Ω-arithmetization scheme. The
section ends with the definition of the QATs.
Section 3 links sequences of QATs with the
affine transformations between spaces over the
Harthong-Reeb line. Section 4 concludes the
article.

2 BACKGROUND

2.1 Notations

Below are the notations used throughout the
article.
x, y, z : reals.
a, b, c : rationals.
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p, q, r : integers.
⌊x⌋ : floor of x, that is max{p ∈ N | p ≤ x}.
÷ : integer division : p÷ q = ⌊p/q⌋.
Sequences are indexed by N and noted 〈ns〉
where ns is the (n+ 1)th term of the sequence.
i : x ∈ R 7→ 〈nx〉 ∈ RN where nx = x for any n is
the canonical injection of R into RN.
α, β, γ, ω : increasing sequence of positive
integers.
O : big O (Landau notation)
o : little o (Landau notation)
〈E〉α : sequences in E (E ⊆ R) that are in O(α)
(〈E〉1 stands for 〈E〉i(1)).
HRω : the Harthong-Reeb line related to ω (see
page 2).
u, v, w : elements of HRω.
d, d′ : space dimension.
f : affine transform between Rd and Rd′ whose
matrix is denoted f.
g : quasi-affine transform between Zd and Zd′

whose matrix is denoted g (see page 3).
ℓ : linear map between HRω-modules whose
matrix is denoted l.
i, j : indices for the matrices.
The coefficients of the matrix m are denoted
mi,j (mj for a column matrix). The anonymous
matrix whose coefficients is an expression mi,j

is denoted
(

mi,j

)

i,j
(
(

mj

)

j
for a column matrix).

Vectors are in bold and often identified with
their matrix representation. So, we can write:
f(x) = fx and ℓ(u) = lu.
No difference is made between sequence
matrices and matrix sequences. For instance,
the sequence of matrices 〈nf〉 is a matrix whose
coefficients are the sequences 〈nfi,j〉.
Given an equivalent relation,
– [x] denotes the equivalent class of x,
– ẏ denotes an element picked in the equivalent
class y.
Qlim : a quotient space of the rational sequences
(see page 2).
QCau : subspace of Qlim which contains the
projections of the Cauchy rational sequences.
π, ρ : element of Qlim.
If C is a collection (sequence, vector, matrix or
equivalence class) of elements in a set X and
h a map from X to some set Y , h(C) denotes
the collection obtained by applying h to each

term of C. When C is an equivalence class,
it is assumed that h is invariant under the
equivalence relation.
Alike, the operations +, ×, /, ÷, the relations
<, ≤ and so on are termwise on sequences,
vectors and matrices (but not necessarily on
equivalence classes).
ψα : s 7→ ⌊α× s⌋, or s 7→ [⌊α× ṡ⌋] depending
whether s is a number sequence or a number
sequence equivalence class and ϕα : s 7→ s/α or
s 7→ [ṡ/α]. Note that ψα ◦ ϕα is the identity map
of ZN.

2.2 Ω-rationals and the Harthong-Reeb line

Let ω be an increasing sequence of positive inte-
gers. Such a sequence is called an infinitely large
number. Using the Landau notations, we con-
sider the subsets O(ω) and o(ω) of ZN. Then, the
Harthong-Reeb line, HRω is the quotient space
O(ω)/o(ω). We denote by =ω the corresponding
equivalence relation. The Harthong-Reeb line is
equipped with the following operations.

u+ v
def
= [u̇+ v̇] ;

u×ω v
def
= [(u̇ × v̇)÷ ω] .

All these operations are well-defined. The tuple
(HRω,+,×) is a commutative ring [3], [5], [6].

Let us now consider the subsets O(1) and
o(1) of the rational sequences. We denotes
by Qlim the quotient space O(1)/o(1) of the
bounded sequences of rational up to the se-
quences converging toward 0. In Qlim, we set:

π + ρ
def
= [π̇ + ρ̇] ;

π × ρ
def
= [π̇ × ρ̇] .

It was proved in [3], [5] that HRω and
Qlim are isomorph via the map ϕω : HRω →
Qlim defined by ϕω(u) = [u̇/ω] whose con-
verse is the map ψω : Qlim → HRω defined by
ψω(π) = [⌊ω × π̇⌋]. Both maps are well-defined.
The restriction of Qlim to the classes of the
Cauchy sequences is noted QCau. It is plain that
the limit operator provides an isomorphism
from (QCau,+,×,≤) to (R,+,×,≤). It should be
noted that neither HRω nor Qlim are fields in the
classical sense since many of their elements do
not have any inverse.
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〈R〉
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ψβ

//
ψβ

oo

ψβ

//oo
ϕβ //

ψω

ϕωoo

ioo i //
55

lim

ii

lim

Fig. 1. The skeleton of the arithmetization scheme described in [5] which link the Euclidean function f with a sequence of integer
functions 〈nf〉. Basically, the integer function nf is the arithmetized expression at the scale n of the Euclidean function f . The
sequence 〈nf〉 itself is obtained as a section of the function F which translate f when R is replaced by the Harthong-Reeb line.
The function F is computed using a non-standard version of the Euler scheme for solving differential equations.

2.3 Ω-arithmetization scheme

The ω-arithmetization scheme provides a way
to digitize a real function which is the solution
of a Cauchy problem. The differential equa-
tion is solved using the Euler scheme through
non-standard analysis, substituting HRω to R

and infinitely small steps to standard steps.
Then, going back to the very definition of the
Harthong-Reeb line and taking any section of
the non-standard solution, one obtains a se-
quence of integer functions that converges in
some sense toward the real function to digitize.
The commutative diagram of Fig. 1 summarizes
the relation between a real continuous func-
tion and the corresponding multi-scale integer
function in the Ω-arithmetization scheme as
exposed in [5] except that many of the maps
exposed in the commutative diagram are im-
plicit in the paper. The sets ZΩ and QΩ are
defined by ZΩ = ZN/∼ and QΩ = QN/∼ where
∼ is the equivalence relation on the real se-
quences defined by 〈nx〉 = 〈ny〉 iff nx = ny for
any n greater than some threshold (formally,
〈nx〉 ∼ 〈ny〉 ⇐⇒ ∃N, ∀n ≥ N, nx = ny). In
the present paper, for simplicity, we jump over
these spaces to directly refer to Qlim, or QCau,
and HRω or HRβ .

2.4 Quasi affine transformations

Let f : Zd → Zd′ be an affine transformation
whose linear part is f0 and r be a positive
integer. The QAT (quasi affine transformation)
⌊f⌋r is defined by

⌊f⌋r : p ∈ Zd −→ f(p)÷ r ∈ Zd′ .

A QLT (quasi linear transformation) is a QAT
that leaves invariant the origin: ⌊f⌋r is a QLT if
f(p) = f0(p) + q where 0 ≤ q < r coordinate-
wise.

Given a QLT g, the triple (r, f0,v) defining
g that has the smallest r is called the canonical
representative of g and r is called the scale of g.

The reader interested by the properties of
QATs is referred back to the articles cited in the
introduction.

In the following section, we show that Ω-
arithmetization scheme extends well to the lin-
ear transformations between Euclidean spaces,
involving sequences of QLTs

3 Ω-ARITHMETIZATION OF AFFINE

TRANSFORMATIONS

Let us consider again the commutative diagram
presented in Fig. 1. In this section, we want to
generalize it by replacing the rings by modules
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over these rings, the Euclidean function by a
linear transformation between Rd and Rd′ . Since
affine transformations are easily characterized
by their matrices, we don’t need to use any
numerical algorithm like the Euler scheme. A
priori, we want to keep the possibility to use
distinct grids in the source and the destination
spaces. So we will again use two infinitely large
numbers, denoted α and β. Practically, for a
linear transformation over Rd, the sequence α
can be viewed as a sequence of resolutions
— or a sequence of finer and finer grids —
while the sequence β allows to quantify the
matrix coefficients more and more accurately.
Nevertheless, α 6= β implies generally that the
rings HRα and HRβ are distinct. Thus, we need
to extend the inner product of HRω to an outer
product. Firstly, we observe that one has the
following property.

Lemma 1. Let α, β, ω be three infinitely large
numbers such that ω = β2 ÷ α. Then, for any
u ∈ HRα, v ∈ HRω,

ψβ ◦ ϕω(v)×β ψβ ◦ ϕα(u) = [(u̇ × v̇)÷ β] .

Proof:

ψβ ◦ ϕω(v)×β ψβ ◦ ϕα(u)

=

[⌊

β
v̇

ω

⌋]

×β

[⌊

β
u̇

α

⌋]

=

[(⌊

β
v̇

ω

⌋

×

⌊

β
u̇

α

⌋)

÷ β

]

=

[

βv̇u̇

β2 + o(β2)
+ O

( v̇

ω

)

+ O
( u̇

α

)

]

= [v̇u̇÷ β]

for v̇ ∈ O(ω) and u̇ ∈ O(α)

= v ×ω
α u .

Then, given two infinitely large numbers α,
β such that ω = β2 ÷α is also an infinitely large
number, that is, α ∈ o(β2), we define the outer
product ×ω

α as follows:

HRω ×HRα −→ HRβ

(v, u) 7−→ v ×ω
α u

def
= [(u̇ × v̇)÷ β] .

From Lemma1, because the maps ψ and ϕ are
morphisms, we readily derive that this product

is well-defined and satisfies the following two
properties:

∀u1, u2 ∈ HRα, ∀v ∈ HRβ,

v ×ω
α (u1 + u2) = v ×ω

α u1 + v ×ω
α u2 ;

∀λ ∈ HRα, ∀u ∈ HRα, ∀v ∈ HRβ,

v ×ω
α (λu) = ψβ ◦ ϕα(λ)(v ×

ω
α u) .

Provided α ∈ o(β2), this outer product allows
to define a matrix product from Md′d(HRω) ×
Md,1(HRα) to Md′,1(HRβ) by setting ω = β2 ÷
α. Note that this matrix product is a shortcut
for a succession of morphisms. Indeed, thanks
to the pair of converse isomorphisms (ϕ, ψ), the
Harthong-Reeb lines HRα and HRβ are bound
to HRω via the following isomorphisms:

ψω ◦ ϕα : HRα −→ HRω

x 7−→

[⌊

ω
ẋ

α

⌋]

ψω ◦ ϕβ : HRβ −→HRω

x 7−→

[⌊

ω
ẋ

β

⌋]

.

Then, using the outer matrix product is equiva-
lent to apply ψω ◦ ϕα on the vector coordinates,
then to perform the inner matrix product and
finally to apply ψβ ◦ ϕω on the resulting coordi-
nates.

Eventually, the proposed arithmetization
scheme for the Euclidean linear transforma-
tions is defined in the commutative diagramm
of Fig. 3. In the scheme, the starting point is
the d′ × d matrix f with real coefficients. These
coefficients yield non standard versions in HRω

which results in a matrix l and a map ℓ between
the modules HRα

ω and HRd′

β . We say that ℓ is an
Ω-linear transformation (Ω-LT) derived form the
matrix l. In the following section, we study the
relation between the map ℓ and the Euclidean
linear map f .

3.1 Ω-LT

In the commutative diagramme of Fig 2, follow-
ing the external arrows from Re to HRe

γ , where
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〈R〉
d
1 Rd Rd

′

〈R〉
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1

〈Q〉
d
1

〈Z〉
d
α 〈Z〉

d′

β 〈Q〉
d′

1

Qd
lim HRd

α HRd′

β Qd
′

lim

ioo i //f //

〈ng〉

//

ℓ

//

oo ϕα

ψα

//
ϕβoo //
ψβ

oo ϕα

ψα

//
ψβ

oo //
ϕβ

OO

��

OO

��

OO

sections /

��

OO

projections

��

ϕα◦ψα

��

ϕβ◦ψβ

��

11

lim

ll

lim

·

·

Matrix f

standard

yy

nonstandard

ff

Fig. 2. The Ω-arithmetization scheme which associates to the linear transformation f the sequence of quasi-affine transformations

〈ng〉 from 〈Z〉d
α

to 〈Z〉d
′

β
which is a section of a non-standard translation of the matrix f of f .

(e, γ) ∈ {(d, α), (d′, β)}, we observe that, for any
real vector x,

ψγ([ϕγ ◦ ψγ(i(x))]) = [ψγ ◦ ϕγ ◦ ψγ(i(x))]

= [ψγ(i(x))]

= [⌊γx⌋] .

We denote by ξHR
γ the function ψγ ◦ i from Re

to HRe
γ that maps x to [⌊γx⌋]. It is plain that

ξHR
γ : R → HRe

γ is a ring morphism since the
maps i, ϕ, ψ and the projection map of the
equivalence relation are all ring morphisms.
Furthermore, it is easy to show that ξHR

γ is an
injection whose image is ψγ

(

Qe
Cau

)

and whose
converse maps a vector u ∈ ψγ

(

Qe
Cau

)

to the
real vector lim ρ̇ where ρ = ϕγ(u). Note that the
choice of the representative ρ̇ does not matter
since, by definition of Qlim, all the sequences
belonging to the class ρ share the same limit
if any. The converse map can be extended to
HRe

γ by the function χHR
γ : HRe

γ → Re defined
by χHR

γ (u) = lim sup(ρ̇) where ρ = ϕγ(u). Again,
we observe that the choice of the representative
ρ̇ does not matter since two sequences whose
difference tends toward zero have the same
upper limit. We have χHR

γ ◦ξHR
γ = id where id is

the identity map. The converse map ξHR
γ ◦ χHR

γ

is neither injective nor surjective. Nevertheless,
its restriction to ξHR

γ

(

Rd
)

is the identity map.
We are now able to specify the relation

between the linear map ℓ and the Ω-LT ℓ in the
commutative diagram of Fig 2.

Proposition 1. Let f be a linear transformation
between Rd and Rd′ whose matrix is f = (fi,j) and
α, β be two infinitely large numbers such that α ∈
o(β2). Then, setting ω = β2 ÷ α, the Ω-LT ℓ from
HRd

α to HRd′

β whose matrix is l =
(

ξHR
ω (fi,j)

)

is
such that

ξHR
β ◦ f = ℓ ◦ ξHR

α .

In other words, one has the commutative diagram:

xf y = fx

ul v = lu

ξHR
α

�� ��

ξHR
βξHR

ω

��

f //

ℓ
//

Proof: Since ξHR
β is a ring morphism, we

have

ξHR
β (f x) =

(

ξHR
β

(

∑

fi,j × xj
)

)

j

=
(

∑

ξHR
β (fi,j)×β ξ

HR
β (xj)

)

j

=
(

∑

ξHR
ω (fi,j)×

ω
α ξ

HR
α (xj)

)

j

(from Lemma 1)

= lu .

With some restriction on the underlying
Harthong-Reeb lines, Prop. 1 allows to com-
pute the Ω-LT ℓ from the linear map f and
conversely.
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Corollary 1. With the notations of Prop. 1, one has

f = χβ ◦ ℓ ◦ ξ
HR
α ;

ℓ↾ξHR
α (Rd) = ξHR

β ◦ f ◦ χα .

Proof: In Prop. 1, we have u = ξHR
α (x),

then u ∈ ξHR
α (Rd

)

. Since the restriction of χα

to ξHR
α

(

Rd
)

is the inverse function of ξHR
α , we

conclude straightforwardly.
In the following section we study the rela-

tion between the map ℓ and the sequence of
maps 〈ng〉 in the diagram of Fig. 2. We will
show that the maps ng are QLTs.

3.2 Ω-LTs and QATs

Forgetting the scheme illustrated in Fig. 2, we
now focus on the understanding of the Ω-LTs
per se, that is going back to the very definition
of HRω.

Firstly, we show that the definition of the
multiplication in HRω has a natural extension
with matrices.

Lemma 2. Let α, β, ω be three infinitely large
numbers such that α ∈ o(β2) and ω = β2 ÷ α.
Let w ∈ Md′,d(HRω) et u ∈ Md,1(HRα). Then,

wu =
[(

ẇu̇
)

÷ β
]

,

where ẇ is any matrix (ẇi,j)i,j , u̇ is any vector (u̇j)j .

Proof: Starting from the matrix product
definition, we have

wu =

(

∑

j

wi,j ×
ω
α uj

)

i

=

(

∑

j

[

(ẇi,j × u̇j)÷ β
]

)

i

=

([

∑

j

(ẇi,j × u̇j)÷ β

])

i

for + respects =β

=
[(

ẇu̇
)

÷ β
]

.

It appears that Lemma 2 is the key to intro-
duce the relation between Ω-LTs defined over
non-standard spaces and quasi-linear transfor-
mations over integer spaces. Let ℓ : HRd

α →
HRd′

β be a Ω-LT whose matrix is noted l (l ∈

Md′,d(HRω) where ω = β2 ÷ α). Let 〈nl〉 be a
sequence of integer matrices such that [〈nli,j〉] =

li,j . We write ℓ̇, or
〈

nℓ̇
〉

, for the sequence of QLTs

whose canonical representatives are (nβ, n l̇,0)
and, given a sequence p = 〈np〉 of integer vec-

tors, we denote by ℓ̇(p) the sequence
〈

nℓ̇
(

np
)

〉

.

Then, from Lemma 2, we derive the next asser-
tion that links Ω-LTs and sequences of QLTs.

Corollary 2. Let ℓ : HRd
α → HRd′

β be a Ω-LT.
Then, for any vector u ∈ HRd

α, one has

ℓ(u) =
[

ℓ̇(u̇)
]

.

Proof: Let l and u be the matrices arising
from ℓ and u.

On the one hand, the nth element of the
sequence ℓ̇(u̇) is the vector nℓ̇

(

nu̇
)

which, by

definition of nℓ, has matrix
(

n
l̇
nu̇
)

÷ nβ.

On the other hand, from Lemma 2, the vec-

tor ℓ(u) has matrix
[

(

l̇u̇
)

÷ β
]

and, since +, ×

and ÷ are termwise operations in ZN, the nth
element of the sequence

(

l̇u̇
)

÷ β is
(

n
l̇
nu̇
)

÷ nβ.

The following theorem characterizes the re-
lationship between the Ω-LT from HRd

α to HRd′

β

and the quasi-linear transformations from Zd to
Zd′ .

Theorem 1. Let ℓ be a map from HRd
α to HRd′

β

where α ∈ o(β2). If ℓ is an Ω-LT with matrix l,
then, for any sequence 〈ng〉 of QLTs with canonical
representatives

(

nγ, ng, np
)

such that 〈nγ〉 =β β,
〈‖ng‖

∞
〉 ∈ O(ω) where ω = β2 ÷ α and [〈ng〉] = l,

one has, for any u ∈ HRd
α, ℓ(u) =

[〈

ng
(

nu̇
)〉]

.
Conversely, ℓ is an Ω-LT if there exists a sequence
of QLTs 〈ng〉 with scales nγ such that 〈nγ〉 =ω β,
〈‖ng‖

∞
〉 ∈ O(ω) where ω = β2÷α and, for any u ∈

HRd
α, there exists u̇ such that ℓ(u) =

[〈

ng
(

nu̇
)〉]

.

Proof: Firstly, we assume that ℓ is an Ω-LT.
Let l ∈ Md,d′(HRω) be the matrix of ℓ. Let 〈ng〉
be a sequence of QLTs whose canonical repre-
sentatives are

(

nγ, ng, np
)

where 〈nγ〉 =β β and
[〈ng〉] = l. We derive from Corollary 2 that, for
any vector u ∈ HRd

α, ℓ(u) has a representative
whose nth term is

(

ngnu̇
)

÷ nβ. Then, to achieve
the first part of the proof, it suffices to show
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that the sequences 〈
(

ngnu̇
)

÷ nβ〉 and 〈ng(nu̇)〉
are equivalent for the relation =β .

∣

∣

(

ng(nu̇) ÷nβ
)

− ng(nu̇)
∣

∣ =
∣

∣

(

ng(nu̇)÷ nβ
)

−
(

(ng(nu̇) + np)÷ nγ
)∣

∣

≤ 1 +

∣

∣

∣

∣

ng(nu̇)
nβ

−
ng(nu̇) + np

nγ

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

ng(nu̇)
nβ

∣

∣

∣

∣

∣

∣

∣

∣

1−
nβ
nγ

∣

∣

∣

∣

+

∣

∣

∣

∣

np

nγ

∣

∣

∣

∣

.

Since, for any integer n, ng is a QLT, we derive
that

∣

∣

(

ng(nu̇)÷ nβ
)

− ng(nu̇)
∣

∣

≤ 2 +

∣

∣

∣

∣

ng(nu̇)
nβ

∣

∣

∣

∣

∣

∣

∣

∣

1−
nβ
nγ

∣

∣

∣

∣

. (1)

As u ∈ HRd
α, ‖nu̇‖∞ is in O(α) and by hypothe-

sis, 〈‖ng‖
∞
〉 ∈ O(β2÷α). Then, in Eq. (1), the ra-

tio ng(nu̇)/nβ is in O(β). Moreover, by hypoth-
esis, the ratio nβ/nγ tends toward 1. Therefore,
the difference between

(

ngnu̇
)

÷ nβ and ng(nu̇)
is in o(β), that is, 〈

(

ngnu̇
)

÷ nβ〉 =β 〈ng(nu̇)〉.

Conversely, we assume a sequence of QLTs
〈ng〉 with scales nγ such that 〈nγ〉 =β β,
〈‖ng‖

∞
〉 ∈ O(β2 ÷ α) and, for any u ∈ HRd

α,
there exists u̇ such that ℓ(u) =

[〈

ng
(

nu̇
)〉]

.
Let ng be the matrix of the canonical repre-
sentative of ng. Since, as shown in the first
part of the proof, the sequences 〈

(

ngnu̇
)

÷ nβ〉
and 〈ng(nu̇)〉 are equivalent for the relation =β ,
we derive that, for any u there exists u̇ such
that ℓ(u) =

[

〈
(

ngnu̇
)

÷ nβ〉
]

. Actually, since
〈‖ng‖

∞
〉 ∈ O(β2 ÷ α), it is plain that the latter

equality is true for any representative of u.
Then,

ℓ(u+ v) = [〈ng(nu̇+ nv̇)÷ nβ〉]

=
[

〈
(

ng(nu̇) + ng(nv̇)
)

÷ nβ〉
]

= [〈ng(nu̇)÷ nβ + ng(nu̇)÷ nβ + nR〉] ,

where nR ∈ {0, 1}d
′

. Thus,

ℓ(u+ v) = [〈ng(nu̇)÷ nβ〉] + [〈ng(nu̇)÷ nβ〉]

= ℓ(u) + ℓ(v) .

Alike, we prove that ℓ(λu) = ψβ ◦ ϕα(λ) ℓ(u) for
any λ ∈ HRα.
On the one hand,

ℓ(λu) = ℓ
(

[〈nλ nu̇÷ nα〉]
)

=
[

〈

ng(nλ̇nu̇÷ nα)÷ nβ
〉

]

=

[〈

nλ̇
nαnβ

ng(nu̇) +O
(β

α

)

〉]

=

[〈

nλ̇
nαnβ

ng(nu̇)

〉]

.

On the other hand,

ψβ ◦ ϕα(λ) ℓ(u) =

[⌊

β
λ̇

α

⌋]

×β

[

〈ng(nu̇)÷ nβ〉
]

=

[〈

nλ̇
nαnβ

ng(nu̇) +O(1)

〉]

=

[〈

nλ̇
nαnβ

ng(nu̇)

〉]

.

Eventually, we conclude that ℓ is an Ω-LT.
In Sec. 3.2, we have shown that sequences

of QLTs arise from the Ω-LTs between HRd
α

and HRd′

β and in Sec. 3.1, it was established
that those Ω-LTs are in correspondance with
the Euclidean linear maps. Thereby, we can
achieve the Ω-arithmetization scheme for the
Euclidean linear maps. This the purpose of the
next section.

3.3 Convergence

Corollary 1 establishes a point wise conver-
gence property of some sequences of maps
— involving Ω-LTs — towards the Euclidean
linear transformations. The main result of this
section, Theorem 2 enforces the latter result by
showing that the convergence is uniform on
any compact subset of Rn and by describing the
convergence speed. Furthermore, rather than
appealing to Ω-LT, the result is now expressed
in terms of sequences of QLTs.

Before stating and proving our theorem,
let us assess the relations between Euclidean
linear maps, QLTs and Ω-LT through a new
commutative diagram (Fig 3). Besides, in the
same way we defined in Sec. 3.1 the maps
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Rd Rd
′

〈Z〉
d
α 〈Z〉

d′

β

HRd
α HRd′

β

f //

〈nℓ〉

//

ℓ

//

OO

sections/projections

��

OO

��

ξZα

��

OO

χZ

α

ξZβ
��

OO

χZ

β

ξHR
α

""

;;

χHR
α ξHR

β

||

cc

χHR
β

Fig. 3. The skeleton of the Ω-arithmetization scheme of an
Euclidean linear map f . The Ω-LT ℓ has for matrix the non-
standard version (over the ring HRω where ω = β2 ÷ α) of the
matrix of f . The sections of the Ω-LT for the involved equivalence
relations give raise to sequences of QLTs 〈nℓ〉 which uniformly
converge, up to a rescaling, toward the linear map f .

ξHR
γ : Re → HRe

γ and χHR
γ : HRe

γ → Re (e ≥ 1),
we now define, for any infinitely large number
ω, the maps ξZω : Re → 〈Z〉eω and χZ

ω : 〈Z〉eω → Re

by ξZω (x) = ⌊ωx⌋ and χZ
ω(〈

np〉) = lim sup〈np/nω〉.
These maps have the same properties as ξHR

γ

and χHR
γ : ξZγ is an injective linear map and

χZ
γ ◦ ξZγ is the identity map of Re. Furthermore,

the restriction of ξZγ ◦χZ
γ to ξZγ (R

e) is the identity
map of ξZγ (R

e).

Theorem 2. Let f : Rd → Rd′ be a linear trans-
formation, f its matrix and K ⊂ Rd a compact set.
Given α, β, ω three infinitely large numbers such
that α ∈ o(β2) and ω = β2 ÷ α, we consider the
sequence 〈ng〉 where ng is the QLT whose canoni-
cal representation is (nβ, ⌊nω f⌋ ,0). Then, for any
x ∈ K,

∥

∥

∥

∥

∥

f(x)−
ng
(

⌊nαx⌋
)

nβ

∥

∥

∥

∥

∥

∞

≤

‖f‖
∞

nα
+

(‖f‖
∞
+ 1 + d)(‖x‖

∞
+ 1)

nω
+

1
nβ

.

Proof: We set p = n(ξZα(x)) = ⌊nαx⌋ and
g = n(ξZω (f)) = ⌊nω f⌋. Moreover, we write α, β,

ω instead of nα, nβ and nω. Then,

f(x)−
ng
(

p
)

β

= f x−

⌊

1
β
g p
⌋

β

=

(

f x−
f p

α

)

+





f p

α
−

⌊

1
β
g p
⌋

β





=
1

α
f (αx− p) +

1

αω
(ω f − g) p+

(

1

αω
g p−

1

β

⌊

1

β
g p

⌋)

=
1

α
f (αx− p) +

1

αω
(ω f − g) p+

(

β2

αω
− 1

)(

1

β2
g p

)

+
1

β

(

1

β
g p−

⌊

1

β
g p

⌋)

.

The four terms of the latter sum in the right
hand side of the above equation can easily be
upper bounded in infinite norm.

• ‖(1/α)f (αx− p)‖
∞

≤
(1/α) ‖f‖

∞
‖(αx− p‖

∞
≤

(1/α) ‖f‖
∞

,
for p = ⌊α x⌋;

• ‖(1/αω)(ωf − g) p‖
∞

≤
(1/αω) ‖ωf − g‖

∞
‖p‖

∞
≤

(d/αω) ‖p‖
∞

,
for the coefficients of the matrix ωf−g are
fractional parts: (ωf−g)i,j = ωfi,j−⌊ωfi,j⌋.
Since ‖p‖

∞
< α ‖x‖

∞
+ 1 ≤ α(‖x‖

∞
+ 1),

it follows that:
‖(1/αω)(ωf − g) p‖

∞
≤ (d/ω)(‖x‖

∞
+ 1);

• By definition of ω, there exists r,
0 < r < α, such that β2 = αω +
r. Furthermore, ‖g‖

∞
< ω(‖f‖

∞
+

1) and ‖p‖
∞

< α(‖x‖
∞

+ 1). Then,
‖((β2/αω)− 1) ((1/β2)g p)‖

∞
is bounded

from above by (1/ω)(‖f‖
∞
+1)(‖x‖

∞
+1).

• (1/β) ‖(1/β) g p− ⌊(1/β) g p⌋‖
∞

is clearly
bounded from above by 1/β.

Putting together all these upper bounds, we
obtain the desired inequality.

4 CONCLUSION

Via a constructive non-standard version of the
real numbers, we have obtained a multi-scale
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arithmetization scheme of the Euclidean affine
transformations. In this framework, an infinite
sequence of quasi-linear transformations is the
translation of a single Euclidean affine map.
Depending, on the choices of the infinitely large
numbers α, β, ω, the obtained sequence can be
more or less obvious. Nevertheless, the merit
of this approach is to bring an insight on the
properties of discrete computations of affine
maps and to open a new field of study. In-
deed, it is well known that computer affine
transformation implementations are not one-
to-one, do not preserve fixed points, topology
and so on. But the no-standard model show
that such implementations operate on sections
of equivalence classes instead of equivalence
classes. Then, for instance, an Euclidean vector
may have a singular preimage while its section
on a computer have a non-singular preimage
which contains the points of the equivalence
class that are exposed by the section (preim-
age structures are studied in the papers [17],
[20] among others). Then, the next task in the
proposed framework is to revisit the properties
of the quasi-linear transformations under this
multi-scale and non-standard interpretation.
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