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Abstract

We propose iterative inversion algorithms for weighted Radon transforms RW along hyperplanes in R
3.

More precisely, expanding the weight W = W (x, θ), x ∈ R
3, θ ∈ S

2, into the series of spherical harmonics in
θ and assuming that the zero order term w0,0(x) 6= 0, x ∈ R

3, we reduce the inversion of RW to solving a
linear integral equation. In addition, under the assumption that the even part of W in θ (i.e., 1

2
(W (x, θ) +

W (x,−θ))) is close to w0,0, the aforementioned linear integral equation can be solved by the method of
successive approximations. Approximate inversions of RW are also given. Our results can be considered as
an extension to 3D of two-dimensional results of Kunyansky (1992), Novikov (2014), Guillement, Novikov
(2014). In our studies we are motivated, in particular, by problems of emission tomographies in 3D. In
addition, we generalize our results to the case of dimension n > 3.

1 Introduction

We consider the weighted Radon transforms RW defined by the formula

RW f(s, θ) =

∫

xθ=s

W (x, θ)f(x) dx, (s, θ) ∈ R× S
2, x ∈ R

3, (1.1)

where W = W (x, θ) is the weight, f = f(x) is a test function.
In this work we assume that

W ∈ C(R3 × S
2) ∩ L∞(R3 × S

2), (1.2)

w0,0(x)
def
=

1

4π

∫

S2

W (x, θ) dθ, w0,0(x) 6= 0, x ∈ R
3, (1.3)

f ∈ L∞(R3), supp f ⊂ D, (1.4)

where W and f are complex-valued, dθ is element of standard measure on S2, D is an open bounded domain
(which is fixed apriori).

If W ≡ 1, then RW is reduced to the classical Radon transform along hyperplanes in R3 introduced in
[Rad17]; see also, e.g., [Nat86], [Den2016].

For known results on the aforementioned transforms RW with non-constant W we refer to [Qui83], [Bey84],
[BQ87], [GN16]. In particular, in [Qui83] it was shown that RW is injective on Lp

0(R
3), p ≥ 2 (Lp functions

on R
3 with compact support) if W ∈ C2 and is real-valued, strictly positive and satisfies the strong symmetry

assumption of rotation invariancy (see [Qui83] for details). On the other hand, in [BQ87] it was also proved
that RW is injective if W is real-analytic and strictly positive.

Besides, in [Bey84] the inversion of RW is reduced to solving a Fredholm type linear integral equation in the
case of infinitely smooth strictly positive W with the symmetry W (x, θ) = W (x,−θ).

In turn, [GN16] extends to the case of weighted Radon transforms along hyperplanes in multidimensions the
two-dimensional Chang approximate inversion formula (see [Cha78]) and the related two-dimensional result of
[Nov11]. In particular, [GN16] describes all W for which such Chang-type formulas are simultaneously explicit
and exact in multidimensions.

We recall that inversion methods for RW admit tomographical applications in the framework of the scheme
described as follows (see [GN16]).
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It is well-known that in many tomographies measured data are modeled by weighted ray transforms Pwf
defined by the formula

Pwf(x, α) =

∫

R

w(x + αt, α)f(x + αt) dt, (x, α) ∈ TS2, (1.5)

TS2 = {(x, α) ∈ R
3 × S

2 : xα = 0},

where f is an object function defined on R3, w is the weight function defined on R3 × S2, and TS2 can be
considered as the set of all rays (oriented straight lines) in R3, see, e.g., [Cha78], [Nat86], [Kun92], [GuNo14].

In addition, in [GN16] (Section 3) it was shown that if Pwf are given for all rays parallel to some fixed
plane Σ in R3 then RW f with appropriate W can be obtained by the explcit formulas from Pwf and w (in a
similair way with the case w ≡ 1, W ≡ 1, see Chapter 2, formula (1.1) of [Nat86] and also [Gra91], [Den2016]).
Therefore, reconstruction of f from data modeled by Pwf , defined by (1.5) and restricted to all rays parallel to
Σ, can be reduced to reconstruction of f from RW f , defined by (1.1). In [GN16] it was aslo indicated that the
reduction from Pwf to RW f with subsequent reconstruction of f from RW f and W can drastically reduce the
impact of the random noise in the initial data modeled as Pwf .

In the present work we continue studies of [GN16], on one hand, and of [Kun92], [Nov14], [GuNo14], on
the other hand. In particular, we extend to the case of weighted Radon transforms along hyperplanes in mul-
tidimensions the two-dimensional results of [Kun92], [Nov14], [GuNo14]. In particular, under the assumptions
(1.2), (1.3), expanding W = W (x, θ) into the series of spherical harmonics in θ we reduce the reconstruc-
tion of f to solving a linear integral equation (see Section 3). In particular, if the even part of W in θ (i.e.,
W̃ (x, θ) = 1

2 (W (x, θ) + W (x,−θ))) is close to w0,0, then such linear integral equation can be solved by the
method of successive approximations (see Subsections 3.1, 3.3 for details).

Note that our linear integral equation is very different from the aforementioned linear integral equation of
[Bey84] (in particular, in our conditions on W̃ , ensuring the applicability of the method of successive approxi-
mations).

Note also that in [Cha78], [Kun92], [Nov14], [GuNo14] the two-dimensional prototype of our inversion ap-
proach was developed in view of its numerical efficiency in problems of emission tomographies, including good
stability to strong random noise in the emission data.

In more details our results can be sketched as follows.
We use the following expansion for W :

W (x, θ(γ, φ)) =

∞∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), x ∈ R

3, (1.6)

Y n
k (γ, φ)

def
= p

|n|
k (cos γ)einφ, k ∈ N ∪ {0}, n = −k, k, (1.7)

θ(γ, φ) = (cos γ, sin γ cosφ, sin γ sinφ) ∈ S
2 ⊂ R

3, γ ∈ [0, π], φ ∈ [0, 2π], (1.8)

where pnk (x), x ∈ [−1, 1], are the associated Legendre polynomials. Polynomials pnk are well-known in literature
(see e.g. [SW16]) and are defined using the ordinary Legendre polynomials pk by the formulas:

pnk (x) = (−1)n(1− x2)n/2
dn

dxn
(pk(x)), n, k ∈ N ∪ {0}, (1.9)

pk(x) =
1

2kk!

dk

dxk
[(x2 − 1)k], x ∈ [−1, 1], (1.10)

see also [SW16], [ZT79] for other properties of the associated Legendre polynomials. In addition, coefficients
wk,n in (1.6) are defined by the formulas:

wk,n(x) = c(k, n)

2π∫

0

dφ e−inφ

π∫

0

W (x, θ(γ, φ))p
|n|
k (cos γ) sin γ dγ, (1.11)

c(k, n) =
(2k + 1)

4π

(k − |n|)!
(k + |n|)! , k ∈ N ∪ {0}, n = 0,±1, · · · ,±k.

Under assumption (1.2), for each fixed x, series (1.6) converge in L2(S2); see e.g. [SW16] (Chapter 4),
[Mor98] (Chapter 2), [ZT79].
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We consider also

σ
W̃ ,D,m =

1

2π

m∑

k=1

2k∑

n=−2k

sup
x∈D

∣∣∣∣
w2k,n(x)

w0,0(x)

∣∣∣∣ for m ∈ N, (1.12)

σ
W̃ ,D,m = 0 for m = 0,

σ
W̃ ,D,∞ = lim

m→∞
σW,D,m, (1.13)

WN (x, θ(γ, φ)) =
N∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), (1.14)

W̃N (x, θ(γ, φ)) =

[N/2]∑

k=0

2k∑

n=−2k

w2k,n(x)Y
n
2k(γ, φ), (1.15)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π],

where coefficients wk,n are defined in (1.11), [N/2] denotes the integer part of N/2.
Our expansion (1.6) and the related formulas are motivated by their two-dimensional prototypes of [Kun92],

[Nov14], [GuNo14].

In the present article we obtained, in particular, the following results under assumptions (1.2), (1.3), (1.4):

1. If σ
W̃ ,D,∞ < 1, then RW is injective and, in addition, the inversion of RW is given via formulas (3.2),

(3.3); see Subsection 3.1 for details.

2. If σ
W̃ ,D,∞ ≥ 1, then f can be approximately reconstructed from RW f as f ≈ (R

W̃N
)−1RW f , where R

W̃N

is defined according to (1.1) for W̃N defined by (1.15) for N = 2m, where m is chosen as the largest while
condition σW,D,m < 1 holds. More precisely, approximate inversion of RW f is given via the formulas
(3.7), (3.8); see Subsection 3.2 for details.

In addition, if W = WN defined by (1.14) and σ
W̃ ,D,m < 1, m = [N/2], then RWN

is injective and

invertible by formula (3.17); see Subsection 3.3 for details.

In addition, in these results assumptions (1.2), (1.3) can be relaxed as follows:

W ∈ L∞(R3 × S
2), (1.16)

w0,0 ≥ c > 0 on R
3, (1.17)

where w0,0 is defined (1.3), c is some positive constant.
Prototypes of these results for the weighted Radon transforms in 2D were obtained in [Kun92], [Nov14],

[GuNo14].
The present work also continues studies of [GN16], where approximate inversion of RW was realized as

(RWN
)−1 for N = 0 or by other words as an approximate Chang-type inversion formula. We recall that

the original two-dimensional Chang formula ([Cha78]) is often used as an efficient first approximation in the
framework of slice-by-slice reconstructions in the single photon emission computed tomography.

In Section 2 we give some notations and preliminary results.
The main results of the present work are presented in detail in Section 3.
In Section 4 we generalize results of Sections 2, 3 for the case of dimension n > 3.
Proofs of results of Sections 2, 3, 4 are presented in Sections 5, 6.

2 Some preliminary results

2.1 Some formulas for R and R−1

We recall that for the classical Radon transform R (formula (1.1) for W ≡ 1) the following identity holds (see
[Nat86], Theorem 1.2, p.13):

R(f ∗R3 g) = Rf ∗R Rg, (2.1)

where ∗R3 , ∗R denote the 3D and 1D convolutions (respectively), f, g are test functions.
The classical Radon inversion formula is defined as follows (see, e.g., [Nat86]):

R−1q(x) = − 1

8π2

∫

S2

q(2)(xθ, θ)dθ, x ∈ R
3, (2.2)

q(2)(s, θ) =
d2

ds2
q(s, θ), (s, θ) ∈ R× S

2,
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where q is a test function on R× S2.
In addition, from the Projection theorem (see [Nat86], Theorem 1.1, p.11) it follows that:

R−1q(x)
def
=

1

(2π)5/2

∫

R

ρ2

2
dρ

∫

S2

q̂(ρ, ω)eiρ(xω)dω, x ∈ R
3, (2.3)

q̂(s, θ)
def
=

1√
2π

∫

R

q(t, θ)e−its dt, (s, θ) ∈ R× S
2, (2.4)

where q(t, θ) is a test function on R× S2.
For the case of q̂ even (i.e., q̂(s, θ) = q̂(−s,−θ), (s, θ) ∈ R× S2, where q̂ is defined in (2.4)), formulas (2.3),

(2.4) can be rewritten as follows:

R−1q =
1

2π
F [q̂] =

1

2π
F−1[q̂], (2.5)

where F [·],F−1[·] denote the Fourier transform and its inverse in 3D, respectively, and are defined by the
following formulas (in spherical coordinates):

F [q](ξ)
def
=

1

(2π)3/2

+∞∫

0

ρ2dρ

∫

S2

q(ρ, ω)e−iρ(ξω)dω, (2.6)

F−1[q](ξ)
def
=

1

(2π)3/2

+∞∫

0

ρ2dρ

∫

S2

q(ρ, ω)eiρ(ξω)dω, ξ ∈ R
3, (2.7)

where q(ρ, ω) is a test-function on [0,+∞)× S
2 (identified with R

3).

2.2 Symmetrization of W

Let
AW f = R−1RW f, (2.8)

where RW is defined in (1.1), f is a test function, satisfying assumptions of (1.4).
Let

W̃ (x, θ)
def
=

1

2
(W (x, θ) +W (x,−θ)), x ∈ R

3, θ ∈ S
2. (2.9)

The following formulas hold:

AW f = R−1R
W̃
f, (2.10)

R
W̃
f(s, θ) =

1

2
(RW f(s, θ) +RW f(−s,−θ)), (s, θ) ∈ R× S

2, (2.11)

W̃ (x, θ(γ, φ)) =

∞∑

k=0

2k∑

n=−2k

w2k,n(x)Y
n
2k(γ, φ), (2.12)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π].

Identity (2.10) is proved in [GN16] in 3D, where W̃ is denoted as Wsym.
Identity (2.12) follows from (1.6), (1.7), (2.9) and the following identities:

pnk (−x) = (−1)n+kpnk (x), x ∈ [−1, 1], (2.13)

ein(φ+π) = (−1)neinφ, k ∈ N ∪ {0}, n = −k, k. (2.14)

Note also that W̃N defined by (1.15) is the approximation of W̃ defined by (2.9) and

W̃N (x, ·) L2(S2)−−−−→
N→∞

W̃ (x, ·) for each fixed x ∈ R
3. (2.15)

Using formulas (2.11)-(2.12) we reduce inversion of RW to the inversion of R
W̃

defined by (1.1) for W = W̃ .
In our work AW f (or, more precisely, (w0,0)

−1AW f) is used as the initial point for our iterative inversion
algorithms (see Section 3).

Note that the simmetrization W̃ of W arises in (2.10).
In addition, prototypes of (2.8), (2.10), (2.12) for the two-dimensional case can be found in [Kun92], [Nov11].
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2.3 Operators QW,D,m and numbers σW,D,m

Let

c
def
= inf

x∈D
|w0,0(x)| > 0, (2.16)

where the inequality follows from the continuity of W on D (closure of D) and assumption (1.3).

Let D be the domain of (1.4), and χD denote the characteristic function of D, i.e.

χD ≡ 1 on D, χD ≡ 0 on R
3\D. (2.17)

Let

Q
W̃ ,D,m

u(x)
def
= R−1(R

W̃ ,D,m
u)(x), m ∈ N (2.18)

Q
W̃ ,D,m

u(x) = 0 for m = 0,

Q
W̃ ,D,∞u(x)

def
= R−1(R

W̃ ,D,∞u)(x), (2.19)

where

R
W̃ ,D,m

u(s, θ(γ, φ))
def
=

∫

xθ=s

(
m∑

k=1

2k∑

n=−2k

w2k,n(x)

w0,0(x)
Y n
2k(γ, φ)

)
χD(x)u(x) dx, (2.20)

R
W̃ ,D,∞u(s, θ(γ, φ))

def
= lim

m→∞
R

W̃ ,D,mu(s, θ(γ, φ))

=

∫

xθ=s

(
∞∑

k=1

2k∑

n=−2k

w2k,n(x)

w0,0(x)
Y n
2k(γ, φ)

)
χD(x)u(x) dx, (2.21)

x ∈ R
3, s ∈ R, θ(γ, φ) ∈ S

2,

where Y n
k are defined in (1.7), R−1 is defined by (2.3) (or (2.2)), u is a test function, w0,0, w2k,n are the Fourier-

Laplace coefficients defined by (1.11) and w2k,n/w0,0, χD are considered as multiplication operators on R3. Note
also that R

W̃ ,D,∞f = R
W̃
f under assumptions (1.2)-(1.4).

Let

d2k,n(x)
def
= R−1(δ(·)Y n

k )(x), x ∈ R
3, k ∈ N, n = −2k, 2k, (2.22)

where δ = δ(s) denotes the 1D Dirac delta function. In (2.22) the action of R−1 on the generalized functions is
defined by formula (2.3).

Lemma 2.1. Let d2k,n be defined by (2.22). Then

d2k,n(x(r, γ, φ)) =
(−1)k

√
2Γ(32 + k)

πΓ(k)

Y n
2k(γ, φ)

r3
, r > 0, (2.23)

where Γ(·) is the Gamma-function, x(r, γ, φ) is defined by the identity:

x(r, γ, φ) = (r cos γ, r sin γ cosφ, r sin γ sinφ) ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π], r ≥ 0. (2.24)

In addition, the following inequality holds:

|F [d2k,n](ξ)| ≤ 1/2π, ξ ∈ R
3, (2.25)

where F [·] is the Fourier transform, defined in (2.6).

The following lemma gives some useful expressions for operators Q
W̃ ,D,m

, Q
W̃ ,D,∞

defined in (2.18), (2.19).

Lemma 2.2. Let operators Q
W̃ ,D,m

, Q
W̃ ,D,∞

be defined by (2.18), (2.19), respectively, and u be a test function

satisfying (1.4). Then

Q
W̃ ,D,m

u =

m∑

k=1

2k∑

n=−2k

d2k,n ∗R3

w2k,n

w0,0
u, (2.26)

Q
W̃ ,D,∞u =

∞∑

k=1

2k∑

n=−2k

d2k,n ∗R3

w2k,n

w0,0
u, (2.27)

where coefficients wk,n are defined in (1.11), d2k,n is defined by (2.23) (or equivalently by (2.22)), ∗R3 denotes
the convolution in 3D.
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Remark 2.1. Convolution terms in the right-hand side of (2.26), (2.27) are well defined functions in L2(R3). This
follows from identity (2.23) and the Calderón-Zygmund theorem for convolution-type operators with singular
kernels (see [Kna05], p.83, Theorem 3.26).

The following lemma shows that Q
W̃ ,D,m

, Q
W̃ ,D,∞

are well-defined operators in L2(R3).

Lemma 2.3. Operator Q
W̃ ,D,m

defined by (2.26) (or equivalently by (2.18)) is a linear bounded operator in

L2(R3) and the following estimate holds:

‖Q
W̃ ,D,m‖L2(R3)→L2(R3) ≤ σ

W̃ ,D,m, (2.28)

where σ
W̃ ,D,m

is defined by (1.12).

If σ
W̃ ,D,∞

< +∞, where σ
W̃ ,D,∞

is defined by (1.13), then Q
W̃ ,D,∞

, defined by (2.27) (or equivalently by

(2.19)), is a linear bounded operator in L2(R3) and the following estimate holds:

‖Q
W̃,D,∞‖L2(R3)→L2(R3) ≤ σ

W̃ ,D,∞. (2.29)

Lemma 2.4. Let
∞∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞, (2.30)

where wk,n are defined in (1.11). Then
R−1RW f ∈ L2(R3). (2.31)

In addition, the following formula holds:

R−1RW f = w0,0f +

∞∑

k=1

2k∑

n=−2k

d2k,n ∗R3 w2k,nf = (I +Q
W̃ ,D,∞)(w0,0f), (2.32)

where f satisfies (1.4), operator R−1 is defined by (2.3) and QW̃ ,D,∞ is given by (2.27).

3 Main results

3.1 Case of σ
W̃ ,D,∞

< 1

Let
σ
W̃ ,D,∞

< 1, (3.1)

where σ
W̃ ,D,∞

is defined by (1.13).

Inequality (3.1) and upper bound (2.29) in Lemma 2.3 imply that operator I + Q
W̃ ,D,∞

is continuosly

invertible in L2(R3) and the following identity holds (in the sense of the operator norm in L2(R3)):

(I +Q
W̃ ,D,∞)−1 = I +

∞∑

j=1

(−Q
W̃ ,D,∞)j , (3.2)

where I is the identity operator in L2(R3).

Theorem 3.1. Let conditions (1.2)-(1.4), (3.1) be fulfilled. Then RW , defined by (1.1), is injective and the
following exact inversion formula holds:

f = (w0,0)
−1(I +Q

W̃ ,D,∞
)−1R−1RW f, (3.3)

where w0,0 is defined in (1.3), R−1 is defined in (2.2), operator (I +Q
W̃ ,D,∞)−1 is given in (3.2).

Remark 3.1. Formula (3.3) can be considered as the following linear integral equation for the w0,0f :

w0,0f +Q
W̃ ,D,∞(w0,0f) = R−1RW f. (3.4)

Inequality (3.1) and identity (3.2) imply that equation (3.4) can be solved by the method of successive approx-
imations.

One can see that, under conditions (1.2)-(1.4) and (3.1), Theorem 3.1 gives an exact inversion of RW .
However, condition (3.1) is not always fulfilled in practice; see [GuNo14] for related numerical analysis in 2D.
If condition (3.1) is not fulfilled, then, approximating W by finite Fourier series, in a similar way with [Cha78],
[Kun92], [Nov14], [GuNo14] we suggest approximate inversion of RW ; see Subsections 3.2, 3.3.
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3.2 Case of 1 ≤ σ
W̃ ,D,∞

< +∞
Let

σ
W̃ ,D,m < 1, for some m ∈ N ∪ {0}, (3.5)

σ
W̃ ,D,∞

< +∞, (3.6)

where σ
W̃ ,D,m is defined by (1.12), σ

W̃ ,D,∞ is defined by (1.13).

Inequality (3.5) and upper bound (2.28) in Lemma 2.3 imply that I +Q
W̃ ,D,m

is continuously invertible in

L2(R3) and the following identity holds (in the sense of the operator norm in L2(R3)):

(I +Q
W̃ ,D,m)−1 = I +

∞∑

j=1

(−Q
W̃ ,D,m)j , (3.7)

where I is the identity operator in L2(R3).

Theorem 3.2. Let conditions (1.2)-(1.4), (3.5), (3.6) be fulfilled. Then

f ≈ fm
def
= (w0,0)

−1(I +Q
W̃ ,D,m

)−1R−1RW f, (3.8)

f = fm − (w0,0)
−1(I +Q

W̃ ,D,m
)−1R−1RδWm

f, (3.9)

‖f − fm‖L2(D) ≤
‖f‖∞

2πc(1− σ
W̃ ,D,m

)

∞∑

k=m+1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞, (3.10)

where

δWm(x, θ(γ, φ))
def
= W (x, θ(γ, φ)) −

2m+1∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), (3.11)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π], m ∈ N ∪ {0}, (3.12)

w0,0 is defined in (1.3), θ(γ, φ) is defined in (1.8), Y n
k are defined in (1.7), operator (I +Q

W̃ ,D,m)−1 is given

in (3.7), constant c is defined in (2.16).

Remark 3.2. Formula (3.8) can be considered as the following linear integral equation for w0,0f :

w0,0f +Q
W̃ ,D,m

(w0,0f) = R−1RW f. (3.13)

Inequality (3.5) and identity (3.7) imply that equation (3.13) is solvable by the method of successive approxi-
mations.

Note also that condition (3.6) can be relaxed to the following one:

∞∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞, (3.14)

where w2k,n are defined in (1.11).

Formula (3.8) is an extension to 3D of the Chang-type two-dimensional inversion formulas in [Cha78],
[Nov14], [GuNo14]. In addition, formula (3.8) is an extension of approximate inversion formula in [GN16],
where this formula was given for m = 0.

If (3.5) is fulfilled for some m ≥ 1, then fm is a refinement of the Chang-type approximation f0 and, more
generally, fj is a refinement of fi for 0 ≤ i < j ≤ m. In addition, fj = fi if w2k,n ≡ 0 for i < k ≤ j, n = −2k, 2k.
Thus, we propose the following approximate reconstruction of f from RW f :

(i) find maximal m such that (3.5) is still efficiently fulfilled,

(ii) approximately reconstruct f by fm using (3.8).

3.3 Exact inversion for finite Fourier series weights

Let
W = WN , N ∈ N ∪ {0}, (3.15)

where WN is defined by (1.14).
Suppose that

σ
W̃ ,D,m < 1 for m = [N/2], (3.16)

where σ
W̃ ,D,m

is defined by (1.12).
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Theorem 3.3. Let conditions (1.2)-(1.4), (3.15), (3.16) be fulfilled. Then RW defined by (1.1) is injective and
the following exact inversion formula holds:

f = (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RW f, (3.17)

where w0,0 is defined in (1.2), (I +Q
W̃ ,D,m)−1 is given in (3.7), R−1 is defined by (2.2).

Remark 3.3. Formula (3.17) can be considered as the following linear integral equation for w0,0f :

w0,0f +Q
W̃ ,D,m(w0,0f) = R−1RW f. (3.18)

Identity (3.16) imply that (3.18) can be solved by the method of successive approximations.

Remark 3.4. Note that Theorems 3.1, 3.2, 3.3 remain valid under assumptions (1.16), (1.17) in place of (1.2),
(1.3). This follows from the fact that in the proofs in Sections 5, 6 it is required only existence of integral
transforms, given by operators RW , R−1, F [·], F−1[·], QW,D,∞, QW,D,m and their compositions (see Subsec-
tions 2.1, 2.3) and of uniform upper bound on (w0,0)

−1.

4 Generalization to multidimensions

Definition (1.1) and assumptions (1.2)-(1.4) are naturally extended as follows to the case of dimension n > 3:

RW f(s, θ) =

∫

xθ=s

W (x, θ)f(x) dx, (s, θ) ∈ R× S
n−1, x ∈ R

n, (4.1)

W ∈ L∞(Rn × S
n−1), (4.2)

w0,0(x)
def
=

1

|Sn−1|

∫

Sn−1

W (x, θ) dθ, w0,0 ≥ c > 0, (4.3)

f ∈ L∞(Rn), supp f ⊂ D, (4.4)

where |Sn−1| denotes the standard Euclidean volume of Sn−1, c is some positive constant, D is an open bounded
domain in Rn.

For the weight W we consider the Fourier-Laplace expansion:

W (x, θ) =

∞∑

k=0

ak,n−1∑

i=0

wk,i(x)Y
i
k (θ), x ∈ R

n, θ ∈ S
n−1, (4.5)

where

wk,i(x) = ‖Y i
k‖−2

L2(Sn−1)

∫

Sn−1

W (x, θ)Y i
k (θ) dθ, (4.6)

ak,n+1 =
(n+ k)!

k!n!
− (n+ k − 2)!

(k − 2)!n!
, n, k ≥ 2; a0,n = 1, a1,n = n, (4.7)

where {Y i
k | k = 0,∞, i = 0, ak,n − 1} is the Fourier-Laplace basis of harmonics on Sn−1, Y i

k denotes the com-
plex conjugate of Y i

k ; see [SW16], [Mor98]. In the present work we choose the basis Y i
k as in [Hig87] without

normalizing constants nc
l
L (i.e., {Y i

k} are the products of the Legendre polynomials with one complex exponent
and without any additional constants).

In dimension n > 3, formulas (1.12), (1.13), (2.18), (2.19), are rewritten as follows:

σ
W̃ ,D,m

def
= (2π)(1−n)/2

m∑

k=1

a2k,n−1∑

i=0

sup
x∈D

∣∣∣∣
w2k,i(x)

w0,0(x)

∣∣∣∣ , (4.8)

σ
W̃ ,D,∞

def
= lim

m→+∞
σ
W̃ ,D,m (4.9)

Q
W̃ ,D,mu(x)

def
= R−1(R

W̃ ,D,mu)(x), m ∈ N (4.10)

Q
W̃ ,D,m

u(x) = 0 for m = 0,

Q
W̃ ,D,∞

u(x)
def
= R−1(R

W̃ ,D,∞
u)(x), (4.11)
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where

R
W̃ ,D,m

u(s, θ)
def
=

∫

xθ=s




m∑

k=1

a2k,n−1∑

i=0

w2k,i(x)

w0,0(x)
Y i
2k(θ)


χD(x)u(x) dx, (4.12)

R
W̃ ,D,∞

u(s, θ)
def
= lim

m→∞
R

W̃ ,D,m
u(s, θ), (4.13)

x ∈ R
n, s ∈ R, θ ∈ S

n−1,

where R−1 is defined further in (4.14).
Under assumptions (4.2), (4.4) series of (4.5) converge in L2(Sn−1); see e.g. [SW16] (Chapter 4), [Mor98]

(Chapter 2), [ZT79].
Formula (2.3) is extended as follows:

R−1q(x) = (2π)1/2−n

∫

R

|ρ|n−1

2

∫

Sn−1

q̂(ρ, θ)eiρ(xθ)dθ, x ∈ R
n, (4.14)

where q(s, θ) is a test function on R× Sn−1, q̂(s, θ) is defined as in (2.4) (with Sn−1 in place of S2).
The Fourier transforms, defined in (2.6), (2.7), are extended as follows:

F [q](ξ)
def
= (2π)−n/2

+∞∫

0

ρn−1dρ

∫

Sn−1

q(ρ, ω)e−iρ(ξω)dω, (4.15)

F−1[q](ξ)
def
= (2π)−n/2

+∞∫

0

ρn−1dρ

∫

Sn−1

q(ρ, ω)eiρ(ξω)dω, ξ ∈ R
n, (4.16)

where q(ρ, ω) is a test function on [0,+∞)× S
n−1 (identified with R

n).
In dimension n > 3, formulas (2.8)-(2.12) remain valid with Y m

k defined in (1.7) replaced by general basis of
spherical harmonics {Y i

k} on Sn−1. In particular, the following multidimensional analog of formula (2.12) holds:

Y i
k (−θ) = (−1)kY i

k (θ), θ ∈ S
n−1, k ∈ N ∪ {0}, i = 0, ak,n − 1, (4.17)

where ak,n is defined by (4.7). Identity (4.17) reflects the fact that Y i
k (θ) = Y i

k (θ1, θ2, · · · , θn), θ = (θ1, θ2, · · · , θn) ∈
Sn−1, i = 0, ak,n − 1 is a homogenous polynomial of degree k, see e.g. [SW16], [Mor98].

Formula (2.22) is now rewritten as follows:

d2k,i(x)
def
= R−1(δ(·)Y i

2k)(x), x ∈ R
n, i = 0, ak,n − 1. (4.18)

Results of Lemma 2.1 remain valid with formula (2.23) replaced by the following one:

d2k,i(r, θ) = c(k, n)
(−1)kY i

2k(θ)

rn
, r > 0, θ ∈ S

n−1, (4.19)

where

c(k, n) =

√
2π(1−n)/2Γ(k + 1

2 )Γ(k + n
2 )

Γ(k)Γ(k + n−1
2 )

·
(
Γ(k + 1)

Γ(k + 1
2 )

)n−2

, (4.20)

Γ(·) is the Gamma function.
In addition, inequality (2.25) is rewritten as follows:

|F [d2k,i](ξ)| ≤ (2π)(1−n)/2, ξ ∈ R
n, (4.21)

where F [·] is the Fourier transform defined in (4.15). The constant c(k, n) in (4.20) is obtained using formulas
(4.14), (4.18) and Theorems 1, 2 in [Gon16].

The results of Lemma 2.2 remain valid in the case of dimension n > 3, with formulas (2.26), (2.27) rewritten
as follows:

Q
W̃ ,D,mu =

m∑

k=1

ak,n−1∑

i=0

d2k,i ∗Rn

w2k,i

w0,0
u, (4.22)

Q
W̃ ,D,∞

u =

∞∑

k=1

ak,n−1∑

i=0

d2k,i ∗Rn

w2k,i

w0,0
u, (4.23)
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where coefficients w2k,i, w0,0 are defined in (4.6), ak,n is defined in (4.7), d2k,i is defined in (4.19), ∗Rn denotes
the convolution in Rn.

The result of Lemma 2.3 remains valid with R3 replaced by Rn, n > 3, where we use definitions (4.8), (4.10),
(4.11).

Assumption (2.30) in Lemma 2.4 is rewritten now as follows:

∞∑

k=1

ak,n−1∑

i=0

∣∣∣∣
∣∣∣∣
w2k,i

w0,0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞. (4.24)

Under assumption (4.24), property (2.31) of Lemma 2.4 remains valid in dimension n > 3. In particular, formula
(2.32) is rewritten as follows:

R−1RW f = w0,0f +

∞∑

k=1

ak,n−1∑

i=0

d2k,i ∗Rn w2k,if, (4.25)

where R−1 is defined in (4.14), f is a test function satisfying (4.4), d2k,i is now defined in (4.19).
Using formulas and notations from (4.5)-(4.23) we obtain straightforward extensions of Theorems 3.1, 3.2, 3.3.

• The result of Theorem 3.1 remains valid in dimension n > 3, under assumptions (4.2)-(4.4) and under
condition (3.1), where w0,0 is defined in (4.3), R−1 is defined in (4.14), σ

W̃ ,D,∞ is defined in (4.9), Q
W̃ ,D,∞

is defined in (4.11).

• The result of Theorem 3.2 remains valid in dimension n > 3, under assumptions (4.2)-(4.4) and under
conditions (3.5), (3.6), where w0,0 is defined in (4.3), R−1 is defined in (4.14), σ

W̃ ,D,m is defined in (4.8),

Q
W̃ ,D,m

is defined in (4.10) and where formulas (3.9)-(3.11) are rewritten as follows:

‖f − fm‖L2(D) ≤
‖f‖∞

(2π)(n−1)/2c(1− σ
W̃ ,D,m

)

∞∑

k=m+1

ak,n−1∑

i=0

‖w2k,i‖L2(D) < +∞, (4.26)

δWm(x, θ)
def
= W (x, θ) −

2m+1∑

k=0

ak,n−1∑

i=0

wk,i(x)Y
i
k (θ), (4.27)

x ∈ R
n, θ ∈ S

n−1.

• The result of Theorem 3.3 remains valid in dimension n > 3, under assumptions (4.2)-(4.4) and under
conditions (3.15), (3.16), where w0,0 is defined in (4.3), R−1 is defined in (4.14), σ

W̃ ,D,m is defined in

(4.8), Q
W̃ ,D,m

is defined in (4.10).

The related proofs are the straightforward extensions to the case of dimension n > 3 of proofs in Section 6 for
n = 3.

5 Proofs of Lemma 2.1, 2.2, 2.3, 2.4

5.1 Proof of Lemma 2.1

We consider x(r, γ, φ) defined by (2.24) and ω(γ, φ) = x(1, γ, φ) (i.e., ω ∈ S2).
Identity (2.24) implies the following expression for the scalar product (xω) in spherical coordinates in R3:

(xω) = (x(r, γ̃, φ̃), ω(γ, φ)) = r(cos γ cos γ̃ + sin γ sin γ̃ cos(φ− φ̃)), (5.1)

where γ, γ̃ ∈ [0, π], φ, φ̃ ∈ [0, 2π], r ≥ 0.
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From formulas (1.7), (2.3), (2.22), (5.1) it follows that

(2π)5/2d2k,n(x(r, γ̃, φ̃)) =

∫

R

ρ2

2
dρ

∫

S2

eiρ(xω(γ,φ))Y n
2k(γ, φ) dω(γ, φ)

=

∫

R

ρ2

2
dρ

π∫

0

sin(γ) p
|n|
k (cos γ) dγ

2π∫

0

eiρ(xω(γ,φ))+inφdφ

= einφ̃
∫

R

ρ2

2
dρ

π∫

0

sin(γ)p
|n|
k (cos γ)dγ

2π∫

0

eiρr sin γ sin γ̃ cos(φ−φ̃)+in(φ−φ̃)dφ

= einφ̃
∫

R

ρ2

2
dρ

π∫

0

sin(γ)p
|n|
k (cos γ)dγ

2π∫

0

eiρr sin γ sin γ̃ cosφ+inφdφ

= 2πein(φ̃−π/2)(−1)n
∫

R

ρ2

2
dρ

π∫

0

sin(γ)p
|n|
2k (cos γ)e

iρr cos γ cos γ̃Jn(ρr sin γ sin γ̃) dγ, (5.2)

where Jn is the n-th standard Bessel function of the first kind; see e.g. [Tem11]. In (5.2) we used the well
known formula for the Bessel function Jn:

Jn(t)
def
=

1

2π

π∫

−π

einφ−t sinφdφ =
(−1)neinπ/2

2π

2π∫

0

einφ+t cosφdφ.

The integral in dγ in the right-hand side of (5.2) was considered in [NPF+06], where the following exact
analytic solution was given:

π∫

0

sin(γ)p
|n|
2k (cos γ)e

iρr cos γ cos γ̃Jn(ρr sin γ sin γ̃) dγ = 2i2k−np
|n|
2k (cos γ̃)j2k(ρr), (5.3)

where j2k is the standard spherical Bessel function of order 2k; see e.g. [Tem11].
From identities (5.2), (5.3) it follows that:

d2k,n(x(r, γ̃, φ̃)) =
(−1)k

(2π)3/2
p
|n|
2k (cos γ̃)e

inφ̃

∫

R

ρ2j2k(ρr) dρ

=
4
√
π(−1)kΓ(32 + k)

(2π)3/2Γ(k)

p
|n|
2k (cos γ̃)e

inφ̃

r3
, r > 0. (5.4)

where Γ(·) is the Gamma function.
Defenition (1.7) and identity (5.4) imply formula (2.23).

Formulas (2.5), (2.13), (2.14), (2.22) imply that

(2π)d2k,n(x(r, γ̃, φ̃)) = F−1[Y n
2k](x(r, γ̃, φ̃)), r > 0, γ̃ ∈ [0, π], φ̃ ∈ [0, 2π], (5.5)

where F−1[·] is defined in (2.7).
From the invertibility of the Fourier transform defined in (2.6) and identity (5.5) the following identity holds:

2πF [d2k,n] = FF−1[Y n
2k] = Y n

2k. (5.6)

For Y n
k defined in (1.7) the following inequality holds (see e.g. [SW16]):

|Y n
k (γ, φ)| ≤ 1, γ ∈ [0, π], φ ∈ [0, 2π]. (5.7)

Identities (5.5) and inequality (5.7) imply (2.25).
Note that |F [d2k,n](ξ)|, ξ ∈ R

3, is uniformly bounded by 1/2π except only one point ξ = 0, where direction
ξ/|ξ| ∈ S2 is not defined. However, point ξ = 0 is of Lebesgue measure zero and F [d2k,n] can be defined with
any value at the origin in R3.

Lemma 2.1 is proved.
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5.2 Proof of Lemma 2.2

From identity (2.18) it follows that

Q
W̃ ,D,m

u = R−1

(
m∑

k=1

2k∑

n=−2k

Y n
2kR

(
w2k,n

w0,0
χDu

))

= R−1

(
m∑

k=1

2k∑

n=−2k

(δ(·)Y n
2k) ∗R R

(
w2k,n

w0,0
χDu

))
(5.8)

= R−1

(
m∑

k=1

2k∑

n=−2k

R(d2k,n) ∗R R

(
w2k,n

w0,0
χDu

))

where ∗R denotes the 1D convolution, δ = δ(s) is the 1D Dirac delta function, d2k,n is defined by (2.22).
Identities (2.1), (5.8) imply (2.26).
For the operator Q

W̃ ,D,∞ defined by (2.19) we proceed according to identity (5.8) with m → +∞. Identites

(2.1), (5.8) and linearity of operator R−1 defined by (2.2) imply (2.27).
Lemma 2.2 is proved.

5.3 Proof of Lemma 2.3

From formula (2.26) and the fact that the Fourier transform defined in (2.6) does not change the L2-norm we
obtain:

‖Q
W̃ ,D,m

u‖L2(R3) ≤
m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣d2k,n ∗R3

w2k,n

w0,0
χDu

∣∣∣∣
∣∣∣∣
L2(R3)

=

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣F [d2k,n]F

[
w2k,n

w0,0
χDu

]∣∣∣∣
∣∣∣∣
L2(R3)

. (5.9)

From inequalities (2.25), (5.9) we obtain:

‖Q
W̃ ,D,m

u‖L2(R3) ≤
1

2π

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣F
(
w2k,n

w0,0
χDu

)∣∣∣∣
∣∣∣∣
L2(R3)

=
1

2π

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0
χDu

∣∣∣∣
∣∣∣∣
L2(R3)

≤ σ
W̃ ,D,m‖u‖L2(D), (5.10)

where σ
W̃ ,D,m

is defined by (1.12).

Inequality (5.10) implies (2.28).
Estimate (2.29) follows from definition (2.19), formula (2.27), linearity of operator R−1 defined by (2.2) and

inequalities (5.9), (5.10) for m → +∞.
Lemma 2.3 is proved.

5.4 Proof of Lemma 2.4

From formulas (1.1), (1.6) it follows that

RW f(s, θ(γ, φ)) =

∞∑

k=0

k∑

n=−k

Y n
k (γ, φ)R(wk,nf)(s, θ(γ, φ)), (5.11)

s ∈ R, γ ∈ [0, π], φ ∈ [0, 2π], (5.12)

where θ(γ, φ) is defined in (1.8), Y n
k (γ, φ) are defined by (1.7), wk,n are defined in (1.11).

Formula (2.32) follows from formulas (2.8), (2.10), (2.12), (2.19) and formula (2.27) in Lemma 2.2, where
test function u is replaced by w0,0u.
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From inequality (2.25), formulas (2.1), (2.32) and the fact that the Fourier tranfsform defined in (2.6) does
not change the L2-norm we obtain:

‖R−1RW f‖L2(R3) ≤ ‖w0,0f‖L2(R3) +

∞∑

k=1

2k∑

n=−2k

‖d2k,n ∗R3 w2k,nf‖L2(R3)

= ‖w0,0f‖L2(R3) +

∞∑

k=1

2k∑

n=−2k

‖F [d2k,n]F [w2k,nf ]‖L2(R3) (5.13)

≤ ‖w0,0f‖L2(R3) +
‖f‖∞
2π

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D),

where ‖ · ‖∞ denotes the L∞-norm, F [·] is defined in (2.6).
From assumption (2.30) and formula (2.16) it follows that

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞. (5.14)

Assumptions (1.2)-(1.4) and inequalities (5.13), (5.14) imply that

‖R−1RW f‖L2(R3) ≤ ‖w0,0f‖L2(R3) +
‖f‖∞
2π

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞. (5.15)

Lemma 2 is proved.

6 Proofs of Theorems 3.1, 3.2, 3.3

6.1 Proof of Theorem 3.1

From formulas (2.19), (2.27), (2.32) we obtain:

R−1RW f = (I +Q
W̃ ,D,∞

)(w0,0f), (6.1)

where I is the identity operator in L2(R3), w0,0 is defined in (1.3).
By assumption (3.1) property (2.31) of Lemma 2.4 holds. Such property with identity (3.2) and formula

(6.1) imply formula (3.3).
The injectivity of RW follows from formula (3.3).
Theorem 3.1 is proved.

6.2 Proof of Theorem 3.3

From formulas (2.18), (2.26), (2.32) we obtain:

R−1RW f = (I +Q
W̃ ,D,m

)(w0,0f), (6.2)

where I is the identity operator in L2(R3), w0,0 is defined in (1.3).
By assumption (3.16) property (2.31) of Lemma 2.4 holds. Such property with identity (3.7) and formula

(6.2) imply formula (3.17).
The injectivity of RW follows from formula (3.17).
Theorem 3.3 is proved.

6.3 Proof of Theorem 3.2

By assumption (3.6) inequality (2.30) holds. Hence, formulas (2.31), (2.32) (in Lemma 2.4) hold.
Assumptions (1.2)-(1.4), (3.5) and inequality (2.28) from Lemma 2.3 imply that fm ∈ L2(R3), where fm is

defined in (3.8).
We split expansion (1.6) of weight W defined by (1.2) in the following way:

W (x, θ) = WN+1(x, θ) + δWm(x, θ), θ ∈ S
2, x ∈ R

3, m = [N/2], (6.3)

where WN+1 is defined by (1.14), [N/2] denotes the integer part of N/2, δWm is defined by (3.11).
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From (1.2)-(1.4) and from (6.3) it follows that

RW f = RWN+1
f +RδWm

f, (6.4)

where RW f,RWN+1
f,RδWm

f are defined by (1.1) for the case of weights W,WN+1, δWm defined in (1.2), (1.11),
(3.11), respectively.

Identity (6.4) implies that
R−1RW f = R−1RWN

f +R−1RδWm
f, (6.5)

where R−1 is defined by (2.2). By assumption (3.6) inequality (2.30) holds for the cases of weightsW, WN , δWm,
respectively. Therefore, Lemma 2.4 holds for weights W, WN , δWm and, in particular, from (2.31) we have that:

R−1RWN
f ∈ L2(R3), R−1RδWm

f ∈ L2(R3). (6.6)

By assumption (3.5) Theorem 3.3 holds for W = WN , N = 2m. Therefore, from formula (3.17) we obtain:

f = (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RWN
f, (6.7)

where operator Q
W̃ ,D,m

is defined in (2.18) for m arising in (3.5).

From (3.8), (6.5), (6.6), (6.7) it follows that:

fm = (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RW f

= (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RWN
f

+ (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RδWm
f

= f + (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RδWm
f.

(6.8)

Formula (3.9) directly follows from (6.8).
Inequality (3.5) and identities (3.7), (3.9) imply the following inequality:

‖f − fm‖L2(R3) ≤
1

c
‖(I +Q

W̃ ,D,m)−1‖L2(R3)→L2(R3) · ‖R−1RδWm
f‖L2(R3), (6.9)

where c is defined in (2.16), Q
W̃ ,D,m

is defined by (2.18) for m in (3.5).

From (2.28) of Lemma 2.3 and from identity (3.7) it follows that:

‖(I +Q
W̃ ,D,m

)−1‖L2(R3)→L2(R3) ≤ 1 +

∞∑

j=1

‖Q
W̃ ,D,m

‖jL2(R3)→L2(R3) ≤
1

1− σ
W̃ ,D,m

. (6.10)

From formulas (2.32), (3.11) and according to (5.13) it follows that

‖R−1RδWm
f‖L2(R3) ≤

‖f‖∞
2π

∞∑

k=m+1

2k∑

n=−2k

‖w2k,n‖L2(D), (6.11)

where R−1 is defined by (2.2), w2k,n are defined by (1.11).
Putting the estimates (6.10), (6.11) in the right-hand side of (6.9) we obtain (3.10).
Theorem 3.2 is proved.
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