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Iterative inversion of weighted Radon transforms in 3D

F.O. Goncharov∗

November 29, 2016

Abstract

We propose iterative inversion algorithms for weighted Radon transforms in 3D. Our results can be
considered as extension to 3D of two-dimensional results of Kunyansky (1992), Novikov (2014), Guillement,
Novikov (2014). In addition, we generalize our results to the case of dimension n > 3.

1 Introduction

Generalized Radon transforms arise in many domains of pure and applied mathematics; see e.g. [BQ87], [Dea07],
[DB84], [GGV14], [GN16], [Gra91], [Kun92].

In the present article we consider the weighted Radon transforms RW defined by the formula

RW f(s, θ) =

∫

xθ=s

W (x, θ)f(x) dx, (s, θ) ∈ R× S
2, x ∈ R

3, (1.1)

where W = W (x, θ) is the weight, f = f(x) is a test function.
In this work we assume that

W ∈ C(R3 × S
2) ∩ L∞(R3 × S

2), (1.2)

w0,0(x)
def
=

1

4π

∫

S2

W (x, θ) dθ, w0,0(x) 6= 0, x ∈ R
3, (1.3)

where W is complex-valued weight, dθ is element of standard measure on S2. If W ≡ 1, then RW is reduced to
the classical Radon transform R3, see e.g. [Rad17], [Nat86].

For the test function we assume that

f ∈ L∞(R3), supp f ⊂ D, (1.4)

where D is an open bounded domain (which is fixed apriori).
Let

c
def
= inf

x∈D
|w0,0(x)| > 0, (1.5)

where D is the domain in (1.4) (inequality (1.5) holds by assumptions (1.2)-(1.4)).
We recall that inversion methods for RW admit tomographical applications in the framework of the scheme

described as follows.
It is well-known that in many tomographies measured data are modeled by weighted ray transforms Pwf

defined by the formula

Pwf(x, α) =

∫

R

w(x + αt, α)f(x + αt) dt, (x, α) ∈ TS2, (1.6)

TS2 = {(x, α) ∈ R
3 × S

2 : xα = 0},

where f is an object function defined on R3, w is the weight function defined on R3 × S2, and TS2 can be
considered as the set of all rays (oriented straight lines) in R3, see e.g. [Cha78], [Nat86], [Kun92].

In addition, in [GN16] (Section 3) it was shown that if Pwf are given for all rays parallel to some fixed plane
Σ in R3 then RW f with appropriate W can be obtained by the explcit formulas from Pwf and w (in a similair
way with the case w ≡ 1, see [Nat86], Chapter 2, Formula (1.1); see also [Gra91]). Therefore, reconstruction
of f from data modeled by Pwf , defined by (1.6) and restricted to all rays parallel to Σ, can be reduced to
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reconstruction of f from RW f , defined by (1.1). In [GN16] it was aslo indicated that the reduction from Pwf
to RW f with subsequent reconstruction of f from RW f can drastically reduce the impact of the noise in the
initial data.

In the present article we use the expansion for weight W :

W (x, θ(γ, φ)) =

∞∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), x ∈ R

3, (1.7)

Y n
k (γ, φ)

def
= p

|n|
k (cos γ)einφ, (1.8)

θ(γ, φ) = (cos γ, sin γ cosφ, sin γ sinφ) ∈ S
2 ⊂ R

3, γ ∈ [0, π], φ ∈ [0, 2π], (1.9)

where pnk (x), x ∈ [−1, 1], k ∈ N ∪ {0}, n = −k, k are the associated Legendre polynomials. Polynomials pnk (x)
are well-known in literature (see e.g. [SW16]) and are defined using ordinary Legendre polynomials pk(x) by
the formulas:

pnk (x) = (−1)n(1− x2)n/2
dn

dxn
(pk(x)), n, k ∈ N ∪ {0}, (1.10)

p−n
k (x) = (−1)n

(k − n)!

(k + n)!
pnk (x), p

n
k(x) ≡ 0 if |n| > k, (1.11)

pk(x) =
1

2kk!

dk

dxk
[(x2 − 1)k], x ∈ [−1, 1], k ∈ N ∪ {0}, (1.12)

see also [SW16], [ZT79] for other properties of associated Legendre polynomials. In addition, coefficients wk,n(x)
in (1.7) are defined by the formulas:

wk,n(x) = c(k, n)

2π∫

0

dφ e−inφ

π∫

0

W (x, θ(γ, φ))p
|n|
k (cos γ) sin γ dγ, (1.13)

c(k, n) =
(2k + 1)

4π

(k − |n|)!
(k + |n|)! , k ∈ N ∪ {0}, n = 0,±1, · · · ,±k,

where function θ(γ, φ) is defined in (1.9).
Under assumption (1.2), for each fixed x, series (1.7) converge in L2(S2); see e.g. [SW16] (Chapter 4),

[Mor98] (Chapter 2), [ZT79].
We consider also

σ
W̃ ,D,m

=
1

2π

m∑

k=1

2k∑

n=−2k

sup
x∈D

∣∣∣∣
w2k,n(x)

w0,0(x)

∣∣∣∣ for m ∈ N, (1.14)

σ
W̃ ,D,m

= 0 for m = 0,

σ
W̃ ,D,∞

= lim
m→∞

σW,D,m, (1.15)

WN (x, θ(γ, φ)) =

N∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), (1.16)

W̃N (x, θ(γ, φ)) =

[N/2]∑

k=0

2k∑

n=−2k

w2k,n(x)Y
n
2k(γ, φ), (1.17)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π], (1.18)

where coefficients wk,n(x) are defined in (1.13), Y n
k (γ, φ) are defined by (1.8), [N/2] denotes the integer part of

N/2.
In the present article we obtained, in particular, the following results under assumptions (1.2), (1.3), (1.4):

1. If σW,D,∞ < 1, then RW is injective and, in addition, the inversion of RW f is given via formulas (3.2),
(3.3); see Section 3 for details.

2. If σW,D,∞ ≥ 1, then f can be approximately reconstructed from RW f as f ≈ (R
W̃N

)−1RW f , where R
W̃N

is defined according to (1.1) for W̃N defined by (1.17) for N = 2m, where m is chosen as the largest while
condition σW,D,m < 1 holds. More precisely, approximate inversion of RW f is given via the formulas
(3.7), (3.8).

In addition, if W = WN defined by (1.16) and σW,D,m < 1, m = [N/2], where [N/2] denotes the integer
part of N/2, then RWN

is injective and invertible by formula (3.17); see Section 3 for details.
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Prototypes of these results for the weighted Radon transforms in 2D were obtained in [Kun92], [Nov14],
[GuNo14].

The present work also continues the studies of [GN16], where approximate inversion of RW was realized as
(RWN

)−1 for N = 0 or by other words as an approximate Chang-type inversion formula.
In Section 2 we give some notations and preliminary results.
Main results of the present work are presented in detail in Section 3.
In Section 4 we generalize results of Sections 2, 3 for the case of dimension n ≥ 3.
Proofs of results of Sections 2, 3, 4 are presented in Sections 5, 6.

2 Some preliminary results

2.1 Some formulas for R and R−1

We recall that for the classical Radon transform R (formula (1.1) for the case of W ≡ 1) the following identity
holds (see [Nat86], Theorem 1.2, p.13):

R(f ∗R3 g) = Rf ∗R Rg, (2.1)

where ∗R3 , ∗R denote the 3D and 1D convolutions (respectively), f, g are test functions.
The classical Radon inversion formula is defined as follows (see e.g. [Nat86]):

R−1q(x) = − 1

8π2

∫

Sn−1

q(2)(xθ, θ)dθ, x ∈ R
3, (2.2)

q(2)(s, θ) =
d2

ds2
q(s, θ), s ∈ R, θ ∈ S

2,

where q is a test function on R× S2.
In addition, from the Projection Theorem (see [Nat86], Theorem 1.1, p.11) it follows that:

R−1q(x)
def
=

1

(2π)5/2

∫

R

ρ2

2
dρ

∫

S2

q̂(ρ, ω)eiρ(xω)dω, x ∈ R
3, (2.3)

q̂(s, θ)
def
=

1√
2π

∫

R

q(t, θ)e−its dt, (s, θ) ∈ R× S
2, (2.4)

where q(t, θ) is a test function on R× S2.
For the case of q̂ even (i.e. q̂(s, θ) = q̂(−s,−θ), (s, θ) ∈ R× S

2, where q̂ is defined in (2.4)), formulas (2.3),
(2.4) can be rewritten as follows:

R−1q =
1

2π
F [q̂] =

1

2π
F−1[q̂], (2.5)

where F [·],F−1[·] denote the Fourier transform and its inverse in 3D, respectively, and are defined by the
formulas (in spherical coordinates):

F [q](ξ)
def
=

1

(2π)3/2

+∞∫

0

ρ2dρ

∫

S2

q(ρ, ω)e−iρ(ξω)dω, (2.6)

F−1[q](ξ)
def
=

1

(2π)3/2

+∞∫

0

ρ2dρ

∫

S2

q(ρ, ω)eiρ(ξω)dω, ξ ∈ R
3, (2.7)

where q(ρ, ω) is a test-function on [0,+∞)× S2 (identified with R3).

2.2 Symmetrization of W

Let
AW f = R−1RW f, (2.8)

where RW is defined in (1.1), f is a test function, satisfying assumptions (1.4).
Let

W̃ (x, θ)
def
=

1

2
(W (x, θ) +W (x,−θ)), x ∈ R

3, θ ∈ S
2. (2.9)
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The following formulas hold:

1

2
(RW f(s, θ) +RW f(−s,−θ)) = R

W̃
f(s, θ), (s, θ) ∈ R× S

2, (2.10)

AW f = R−1R
W̃
f, (2.11)

W̃ (x, θ(γ, φ)) =

∞∑

k=0

2k∑

n=−2k

w2k,n(x)Y
n
2k(γ, φ), (2.12)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π],

where wk,n are defined in (1.13), θ(γ, φ) is defined in (1.9), Y n
k (γ, φ) are defined in (1.8). Identity (2.11) is

proved in [GN16] in 3D, where W̃ is denoted as Wsym.
Identity (2.12) follows from (1.8) and the following identities:

pnk (−x) = (−1)n+kpnk (x), x ∈ [−1, 1], (2.13)

ein(φ+π) = (−1)neinφ (2.14)

where pnk (x), k ∈ N∪{0}, n = −k, k are the associated Legendre polynomials, defined by identites (1.10), (1.11),
(1.12) (see e.g. [SW16]).

Note also that W̃N defined by (1.17) is the approximation of W̃ defined by (2.9) and

W̃N (x, ·) L2(S2)−−−−→
N→∞

W̃ (x, ·) for each fixed x ∈ R
3. (2.15)

Using formulas (2.10)-(2.12) we reduce inversion of RW to the inversion of R
W̃

defined by (1.1) for W = W̃ .
Prototypes of (2.8), (2.11), (2.12) for the two-dimensional case can be found in [Kun92], [Nov11].

2.3 Operators QW,D,m and numbers σW,D,m

Let D be the domain of (1.4), and χD denote the characteristic function of D, i.e.

χD ≡ 1 on D, χD ≡ 0 on R
3\D. (2.16)

Let

Q
W̃ ,D,m

u(x)
def
= R−1(R

W̃ ,D,m
u)(x), m ∈ N (2.17)

Q
W̃ ,D,m

u(x) = 0 for m = 0,

Q
W̃ ,D,∞

u(x)
def
= R−1(R

W̃ ,D,∞
u)(x), (2.18)

where

R
W̃ ,D,m

u(s, θ(γ, φ))
def
=

∫

xθ=s

(
m∑

k=1

2k∑

n=−2k

w2k,n(x)

w0,0(x)
Y n
2k(γ, φ)

)
χD(x)u(x) dx, (2.19)

R
W̃ ,D,∞

u(s, θ(γ, φ))
def
= lim

m→∞
R

W̃ ,D,m
u(s, θ(γ, φ))

=

∫

xθ=s

(
∞∑

k=1

2k∑

n=−2k

w2k,n(x)

w0,0(x)
Y n
2k(γ, φ)

)
χD(x)u(x) dx, (2.20)

x ∈ R
3, s ∈ R, θ(γ, φ) ∈ S

2,

where R−1 is defined by (2.2) or (2.3), u is a test function, Y n
k (γ, φ) are defined in (1.8), w0,0, w2k,n are the

Fourier-Laplace coefficients defined by (1.13) and w2k,n/w0,0, χD are considered as multiplication operators on
R3. Note that R

W̃ ,D,∞f = R
W̃
f under assumption (1.4).

Let

d2k,n(x)
def
= R−1(δ(·)Y n

k )(x), x ∈ R
3, k ∈ N, n = −2k, 2k, (2.21)

where R−1 is defined by (2.3), δ = δ(s) denotes the 1D Dirac delta function, Y n
k is defined in (1.8).

Lemma 1. Let d2k,n be defined by (2.21). Then

d2k,n(x(r, γ, φ)) =
(−1)k

√
2Γ(32 + k)

πΓ(k)

Y n
2k(γ, φ)

r3
, r > 0, (2.22)
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where Γ(·) is the Gamma-function, x(r, γ, φ) is defined by the identity:

x(r, γ, φ) = (r cos γ, r sin γ cosφ, r sin γ sinφ) ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π], r ≥ 0. (2.23)

In addition, the following inequality holds:

|F [d2k,n](ξ)| ≤ 1/2π, ξ ∈ R
3, (2.24)

where F [·] is the Fourier transform defined in (2.6).

The following lemma gives some useful expressions for operators Q
W̃ ,D,m

, Q
W̃ ,D,∞

defined in (2.17), (2.18).

Lemma 2. Let operators Q
W̃ ,D,m, Q

W̃ ,D,∞ be defined by (2.17), (2.18), respectively, and u be a test function

satisfying (1.4). Then

Q
W̃ ,D,mu =

m∑

k=1

2k∑

n=−2k

d2k,n ∗R3

w2k,n

w0,0
u, (2.25)

Q
W̃ ,D,∞

u =
∞∑

k=1

2k∑

n=−2k

d2k,n ∗R3

w2k,n

w0,0
u, (2.26)

where coefficients wk,n are defined in (1.13), d2k,n is defined by (2.21), ∗R3 denotes the convolution in 3D.

Remark 1. Convolution terms in the right hand-side of (2.25), (2.26) are well defined functions in L2(R3).
This follows from identity (2.22) and Calderón-Zygmund Theorem for convolution-type operators with singular
kernels (see [Kna05], p.83, Theorem 3.26).

The following lemma shows that the operators Q
W̃ ,D,m, Q

W̃ ,D,∞ are well-defined in L2(R3).

Lemma 3. Operator Q
W̃ ,D,m, defined by (2.17), is a linear bounded operator in L2(R3) and the following

estimate holds:
‖Q

W̃ ,D,m
‖L2(R3)→L2(R3) ≤ σ

W̃ ,D,m
, (2.27)

where σ
W̃ ,D,m is defined by (1.14).

If σ
W̃ ,D,∞

< +∞, where σ
W̃ ,D,∞

is defined by (1.15), then Q
W̃ ,D,∞

, defined by (2.18), is a linear bounded

operator in L2(R3) and the following estimate holds:

‖Q
W̃,D,∞‖L2(R3)→L2(R3) ≤ σ

W̃ ,D,∞. (2.28)

Lemma 4. Let
∞∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞, (2.29)

where wk,n are defined in (1.13). Then
R−1RW f ∈ L2(R3). (2.30)

In addition, the following formula holds:

R−1RW f = w0,0f +

∞∑

k=1

2k∑

n=−2k

d2k,n ∗R3 w2k,nf, (2.31)

where RW is defined by (1.1), W satisfies (1.2), (1.3), f satisfies (1.4), operator R−1 is defined by (2.3), d2k,n
is defined by (2.21).

3 Main results

3.1 Case of σ
W̃ ,D,∞

< 1

Let
σ
W̃ ,D,∞ < 1, (3.1)

where σ
W̃ ,D,∞

is defined by (1.15).

Inequality (3.1) and upper bound (2.28) in Lemma 3 imply that operator I+Q
W̃ ,D,∞ is continuosly invertible

in L2(R3) and the following identity holds (in the sense of the operator norm in L2(R3)):

(I +Q
W̃ ,D,∞)−1 = I +

∞∑

j=1

(−Q
W̃ ,D,∞)j , (3.2)

where I is the identity operator in L2(R3), operator Q
W̃ ,D,∞

is defined in (2.18).

5



Theorem 1. Let conditions (1.2)-(1.4), (3.1) be fulfilled. Then RW , defined by (1.1), is injective and the
following exact inversion formula holds:

f = (w0,0)
−1(I +Q

W̃ ,D,∞)−1R−1RW f, (3.3)

where w0,0 is defined in (1.3), operator (I +Q
W̃ ,D,∞)−1 is defined by (3.2), R−1 is defined in (2.2).

Remark 2. Formula (3.3) can be considered as the following Fredholm’s second kind linear integral equation for
the w0,0f :

w0,0f +Q
W̃ ,D,∞

(w0,0f) = R−1RW f. (3.4)

Inequality (3.1) and identity (3.2) imply that equation (3.4) can be solved by the method of successive approx-
imations.

3.2 Case of 1 ≤ σ
W̃ ,D,∞

< +∞
Let

σ
W̃ ,D,m < 1, for some m ∈ N ∪ {0}, (3.5)

σ
W̃ ,D,∞ < +∞. (3.6)

Inequality (3.5) and upper bound (2.27) in Lemma 3 imply that I+Q
W̃,D,m is continuously invertible in L2(R3)

and the following identity holds (in the sense of the operator norm in L2(R3)):

(I +Q
W̃ ,D,m)−1 = I +

∞∑

j=1

(−Q
W̃ ,D,m)j , (3.7)

where I is the identity operator in L2(R3), operator Q
W̃ ,D,m

is defined in (2.17).

Theorem 2. Let conditions (1.2)-(1.4), (3.5), (3.6) be fulfilled. Then

f ≈ fm
def
= (w0,0)

−1(I +Q
W̃ ,D,m)−1R−1RW f, (3.8)

f = fm − (w0,0)
−1(I +Q

W̃ ,D,m)−1R−1RδWm
f, (3.9)

‖f − fm‖L2(D) ≤
‖f‖∞

2πc(1− σ
W̃ ,D,m

)

∞∑

k=m+1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞, (3.10)

where

δWm(x, θ(γ, φ))
def
= W (x, θ(γ, φ)) −

2m+1∑

k=0

k∑

n=−k

wk,n(x)Y
n
k (γ, φ), (3.11)

x ∈ R
3, γ ∈ [0, π], φ ∈ [0, 2π], m ∈ N ∪ {0}, (3.12)

function θ(γ, φ) is defined in (1.9), coefficients wk,n are defined in (1.13), Y n
k are defined in (1.8), σ

W̃ ,D,m is

defined in (1.14), operator (I +Q
W̃ ,D,m)−1 is defined in (3.7), constant c is defined in (1.5).

Remark 3. Formula (3.8) can be considered as the following Fredholm’s second kind linear integral equation for
w0,0f :

w0,0f +Q
W̃ ,D,m

(w0,0f) = R−1RW f. (3.13)

Inequality (3.5) and identity (3.7) imply that equation (3.13) is solvable by the method of successive approxi-
mations.

Note also that condition (3.6) can be relaxed to the following one:

∞∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞, (3.14)

where w2k,n are defined in (1.13).
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Formula (3.8) is an extension to 3D of the Chang-type two-dimensional inversion formulas in [Cha78],
[Nov14], [GuNo14]. In addition, formula (3.8) is an extension of approximate inversion formula in [GN16],
where this formula was given for m = 0.

If (3.5) is fulfilled for some m ≥ 1, then fm is a refinement of the Chang-type approximation f0 and, more
generally, fj is a refinement of fi for 0 ≤ i < j ≤ m. In addition, fj = fi if w2k,n ≡ 0 for i < k ≤ j, n = −2k, 2k.
Thus, we propose the following approximate reconstruction of f from RW f :

(i) find maximal m such that (3.5) is still efficiently fulfilled,

(ii) approximately reconstruct f by fm using (3.8).

3.3 Exact inversion for finite Fourier series weights

Let
W = WN , N ∈ N ∪ {0}, (3.15)

where WN is defined by (1.16).
Suppose that

σ
W̃ ,D,m < 1 for m = [N/2], (3.16)

where σ
W̃ ,D,m

is defined by (1.14), [N/2] denotes the integer part of N/2.

Theorem 3. Let conditions (1.2)-(1.4), (3.15), (3.16) be fulfilled. Then RW defined by (1.1) is injective and
the following exact inversion formula holds:

f = (w0,0)
−1(I +Q

W̃ ,D,m
)−1R−1RW f, (3.17)

where w0,0 is defined in (1.2), (I +Q
W̃ ,D,m

)−1 is defined by (3.7), R−1 is defined by (2.2).

Remark 4. Formula (3.17) can be considered as the following Fredholm’s second type linear integral equation
for w0,0f :

w0,0f +Q
W̃ ,D,m

(w0,0f) = R−1RW f. (3.18)

Identity (3.16) imply that (3.18) can be solved by the method of successive approximations.

4 Generalization for multidimensions

Formulas (1.1)-(1.4) admit straightforward extensions to the case of dimension n > 3. In particular, in this
case RW f is defined as corresponding integrals along (n − 1)-dimensional hyperplanes in Rn; see e.g. [GN16],
[BQ87].

For weight W we consider Fourier-Laplace expansion:

W (x, θ) =

∞∑

k=0

ak,n∑

i=1

wi
k(x)Y

i
k (θ), x ∈ R

n, θ ∈ S
n−1, (4.1)

where

wi
k(x) = ‖Y i

k‖−2
L2(Sn−1)

∫

Sn−1

W (x, θ)Y i
k (θ) dθ, (4.2)

ak,n+1 =
(n+ k)!

k!n!
− (n+ k − 2)!

(k − 2)!n!
, n, k ≥ 2; a0,n = 1, a1,n = n, (4.3)

where {Y i
k | k = 0,∞, i = 1, ak,n} is the Fourier-Laplace basis of harmonics on Sn−1, Y i

k denotes the complex
conjugate of Y i

k ; see [SW16], [Mor98]. In this work we choose basis Y i
k as in [Hig87] without normalizing

constants nc
l
L (i.e. {Y i

k} are the products of Legendre polynomials with one complex exponent and without any
additional constants).

Formula (1.3) can be rewritten now as follows:

w1
0(x)

def
=

1

vol(Sn−1)

∫

Sn−1

W (x, θ) dθ, x ∈ R
n, w1

0(x) 6= 0, x ∈ R
n, (4.4)

where vol(Sn−1) denotes the standard Euclidean volume of Sn−1.
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Under assumptions (1.2), (1.4) for dimension n > 3, series (4.1) converge in L2(Sn−1); see e.g. [SW16]
(Chapter 4), [Mor98] (Chapter 2), [ZT79].

Formula (2.3) is extended as follows:

R−1q(x) = (2π)1/2−n

∫

R

|ρ|n−1

2

∫

Sn−1

q̂(ρ, θ)eiρ(xθ)dθ, x ∈ R
n, (4.5)

where q(s, θ) is a test function on R× Sn−1, q̂(s, θ) is defined as in (2.4) (with S2 replaced by Sn−1).
Fourier transforms defined in (2.6), (2.7) are rewritten now as follows:

F [q](ξ)
def
= (2π)−n/2

+∞∫

0

ρn−1dρ

∫

Sn−1

q(ρ, ω)e−iρ(ξω)dω, (4.6)

F−1[q](ξ)
def
= (2π)−n/2

+∞∫

0

ρn−1dρ

∫

Sn−1

q(ρ, ω)eiρ(ξω)dω, ξ ∈ R
n, (4.7)

where q(ρ, ω) is a test function on [0,+∞)× Sn−1 (identified with Rn).
In dimension n > 3, formulas (2.8)-(2.12) remain valid with Y m

k defined in (1.8) replaced by general basis
of spherical harmonics {Y i

k} on Sn−1. In particular, multidimensional analog of formula (2.12) (with x ∈ Rn,
θ ∈ Sn−1) holds by the following property of harmonic Y i

k (θ):

Y i
k (−θ) = (−1)kY i

k (θ), θ ∈ S
n−1, k ∈ N ∪ {0}, i = 1, ak,n, (4.8)

where ak,n is defined by (4.3). Identity (4.8) reflects the fact that Y i
k (θ) = Y i

k (θ1, θ2, · · · , θn), θ = (θ1, θ2, · · · , θn) ∈
S
n−1, i = 1, ak,n is a homogenous polynomial of degree k, see e.g. [SW16], [Mor98].
The extensions of (1.14), (1.15), (2.17), (2.18), to the case of dimension n > 3, are defined as follows:

σ
W̃ ,D,m

def
= (2π)(1−n)/2

m∑

k=1

a2k,n∑

i=1

sup
x∈D

∣∣∣∣
wi

2k(x)

w1
0(x)

∣∣∣∣ , (4.9)

σ
W̃ ,D,∞

def
= lim

m→+∞
σ
W̃ ,D,m

(4.10)

Q
W̃ ,D,mu(x)

def
= R−1(R

W̃ ,D,mu)(x), m ∈ N (4.11)

Q
W̃ ,D,mu(x) = 0 for m = 0,

Q
W̃ ,D,∞u(x)

def
= R−1(R

W̃ ,D,∞u)(x), (4.12)

where

R
W̃ ,D,m

u(s, θ)
def
=

∫

xθ=s

(
m∑

k=1

a2k,n∑

i=1

wi
2k(x)

w1
0(x)

Y i
2k(θ)

)
χD(x)u(x) dx, (4.13)

R
W̃ ,D,∞

u(s, θ)
def
= lim

m→∞
R

W̃ ,D,m
u(s, θ), (4.14)

x ∈ R
n, s ∈ R, θ ∈ S

n−1,

where R−1 is defined in (4.5), coefficients wi
k are defined in (4.2).

Formula (2.21) is now rewritten as follows:

d2k,i(x)
def
= R−1(δ(·)Y i

2k)(x), x ∈ R
n, i = 1, ak,n, (4.15)

where R−1 is defined in (4.5), Y i
2k is the spherical harmonic on Sn−1.

Results of Lemma 1 remain valid with formula (2.22) replaced by the following one:

d2k,i(r, θ) = c(k, n)
(−1)kY i

2k(θ)

rn
, r > 0, θ ∈ S

n−1, (4.16)

where

c(k, n) =

√
2π(1−n)/2Γ(k + 1

2 )Γ(k + n
2 )

Γ(k)Γ(k + n−1
2 )

·
(
Γ(k + 1)

Γ(k + 1
2 )

)n−2

, (4.17)
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Γ(·) is the Gamma function, and inequality (2.24) is rewritten as follows:

|F [d2k,i](ξ)| ≤ (2π)(1−n)/2, ξ ∈ R
n, (4.18)

where F [·] is the Fourier transform defined in (4.6), d2k,i is defined in (4.15). Constant c(k, n) in (4.17) is
obtained using formulas (4.5), (4.15) and Theorems 1, 2 in [Gon16].

Results of Lemma 2 remain valid, for the case of dimension n > 3, with formulas (2.25), (2.26) rewritten as
follows:

Q
W̃ ,D,m

u =
m∑

k=1

ak,n∑

i=1

d2k,i ∗Rn

wi
2k

w1
0

u, (4.19)

Q
W̃ ,D,∞

u =
∞∑

k=1

ak,n∑

i=1

d2k,i ∗Rn

wi
2k

w1
0

u, (4.20)

where coefficients wi
2k(x), w

1
0(x) are defined in (4.2), ak,n is defined in (4.3), d2k,i is defined in (4.16), ∗Rn denotes

the convolution in Rn.
Results of Lemma 3 remain valid with R

3 replaced by R
n, n > 3, where we use definitions (4.9), (4.11),

(4.12).
Assumption (2.29) in Lemma 4 is rewritten now as follows:

∞∑

k=1

ak,n∑

i=1

∣∣∣∣
∣∣∣∣
wi

2k

w1
0

∣∣∣∣
∣∣∣∣
L2(D)

< +∞, (4.21)

where coefficients wi
k are defined in (4.2), ak,n is defined in (4.3), D is the open bounded domain defined

according to (1.4) in Rn. Under assumption (4.21), result (2.30) of Lemma 4 remains valid, with R3 replaced
by Rn and with the following analog of formula (2.31), for the case of dimension n > 3:

R−1RW f = w1
0f +

∞∑

k=1

ak,n∑

i=1

d2k,i ∗Rn wi
2kf, (4.22)

where R−1 is defined in (4.5), f is a test function satisfying (1.4) (with R3 replaced by Rn), ak,n is defined in
(4.3), d2k,i is defined in (4.16).

Under assumption (3.1) (with σ
W̃ ,D,∞ defined in (4.10)), results of Theorem 1 remain valid in dimension

n > 3.
Under assumptions (3.5), (3.6) (with σ

W̃ ,D,m
, σ

W̃ ,D,∞
defined in (4.9), (4.10); operators Q

W̃ ,D,m
, Q

W̃ ,D,∞

defined in (4.11), (4.12); operator R−1 defined in (4.5); coefficients wk,n replaced by wi
k, defined in (4.2)) results

of Theorem 2 remain valid in the case of dimension n > 3.
Under assumption (3.16) (with σ

W̃ ,D,m
defined in (4.9)) results of Theorem 3 also remain valid.

5 Proofs of Lemma 1, 2, 3, 4

5.1 Proof of Lemma 1

We consider x(r, γ, φ) defined by (2.23) and ω(γ, φ) = x(1, γ, φ) (i.e. ω ∈ S2).
Identity (2.23) implies the following expression of the scalar product (xω) in spherical coordinates in R3:

(xω) = (x(r, γ̃, φ̃), ω(γ, φ)) = r(cos γ cos γ̃ + sin γ sin γ̃ cos(φ− φ̃)), (5.1)

where γ, γ̃ ∈ [0, π], φ, φ̃ ∈ [0, 2π], r ≥ 0.
From formulas (1.8), (2.3), (2.21), (5.1) it follows that

(2π)5/2d2k,n(x(r, γ̃, φ̃)) =

∫

R

ρ2

2
dρ

∫

S2

eiρ(xω(γ,φ))Y n
2k(γ, φ) dω(γ, φ) (5.2)

=

∫

R

ρ2

2
dρ

π∫

0

sin(γ) p
|n|
k (cos γ) dγ

2π∫

0

eiρ(x,ω(γ,φ))+inφdφ

= ein(φ̃−π/2)

∫

R

ρ2

2
dρ

π∫

0

sin(γ)p
|n|
2k (cos γ)e

iρr cos γ cos γ̃

2π∫

0

einφ+ρr sin γ sin γ̃ sinφdφ

= 2πein(φ̃−π/2)(−1)n
∫

R

ρ2

2
dρ

π∫

0

sin(γ)p
|n|
2k (cos γ)e

iρr cos γ cos γ̃Jn(ρr sin γ sin γ̃) dγ, (5.3)
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where Jn(·) is the n-th standard Bessel function of the first kind; see e.g. [Tem11].
Integrand in dγ in the right hand-side of (5.3) was considered in [NPF+06], where the following exact

analytic solution was given:

π∫

0

sin(γ)p
|n|
2k (cos γ)e

iρr cos γ cos γ̃Jn(ρr sin γ sin γ̃) dγ = 2i2k−np
|n|
2k (cos γ̃)j2k(ρr), (5.4)

where j2k is the standard spherical Bessel function of order 2k; see e.g. [Tem11].
From identities (5.3), (5.4) it follows that:

d2k,n(x(r, γ̃, φ̃)) =
(−1)k

(2π)3/2
p
|n|
2k (cos γ̃)e

inφ̃

∫

R

ρ2j2k(ρr) dρ

=
4
√
π(−1)kΓ(32 + k)

(2π)3/2Γ(k)

p
|n|
2k (cos γ̃)e

inφ̃

r3
, r > 0. (5.5)

where Γ(·) is the Gamma function.
Defenition (1.8) and identity (5.5) imply formula (2.22).

Formulas (2.5), (2.13), (2.14), (2.21) imply that

(2π)d2k,n(x(r, γ̃, φ̃)) = F−1[Y n
2k](x(r, γ̃, φ̃)), r > 0, γ̃ ∈ [0, π], φ̃ ∈ [0, 2π], (5.6)

where F−1[·] is defined in (2.7), Y n
k is defined in (1.8).

From the invertibility of the Fourier transform defined in (2.6), (2.7) and identity (5.6) the following identity
holds:

2πF [d2k,n] = FF−1[Y n
2k] = Y n

2k. (5.7)

For Y n
k defined in (1.8) the following inequality holds (see e.g. [SW16]):

|Y n
k (γ, θ)| ≤ 1, γ ∈ [0, π], φ ∈ [0, 2π]. (5.8)

Identities (5.6) and inequality (5.8) imply (2.24).
Note that |F [d2k,n](ξ)|, ξ ∈ R3, is uniformly bounded by 1/2π except only one point ξ = 0, where direction

ξ/|ξ| ∈ S2 is not defined. However, point ξ = 0 is of Lebesgue measure zero and F [d2k,n] can be defined with
any value at the origin in R3.

Lemma 1 is proved.

5.2 Proof of Lemma 2

From identity (2.17) it follows that

Q
W̃ ,D,m

u = R−1

(
m∑

k=1

2k∑

n=−2k

Y n
2kR

(
w2k,n

w0,0
χDu

))

= R−1

(
m∑

k=1

2k∑

n=−2k

(δ(·)Y n
2k) ∗R R

(
w2k,n

w0,0
χDu

))
(5.9)

= R−1

(
m∑

k=1

2k∑

n=−2k

R(d2k,n) ∗R R

(
w2k,n

w0,0
χDu

))

where ∗R denotes the 1D convolution, δ = δ(s) is the 1D-Dirac delta function, d2k,n is defined by (2.21).
Identities (2.1), (5.9) imply (2.25).
For operator Q

W̃ ,D,∞ defined by (2.18) we proceed according to identity (5.9) with m → +∞. Linearity of

operator R−1 defined by (2.2) and identites (2.1), (5.9) imply (2.26).
Lemma 2 is proved.

5.3 Proof of Lemma 3

From formula (2.25) and the fact that Fourier transform defined in (2.6) does not change the L2-norm we obtain:

‖Q
W̃ ,D,mu‖L2(R3) ≤

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣d2k,n ∗R3

w2k,n

w0,0
χDu

∣∣∣∣
∣∣∣∣
L2(R3)

=

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣F [d2k,n]F

[
w2k,n

w0,0
χDu

]∣∣∣∣
∣∣∣∣
L2(R3)

. (5.10)
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From inequalities (2.24), (5.10) we obtain:

‖Q
W̃ ,D,mu‖L2(R3) ≤

1

2π

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣F
(
w2k,n

w0,0
χDu

)∣∣∣∣
∣∣∣∣
L2(R3)

=
1

2π

m∑

k=1

2k∑

n=−2k

∣∣∣∣
∣∣∣∣
w2k,n

w0,0
χDu

∣∣∣∣
∣∣∣∣
L2(R3)

≤ σ
W̃ ,D,m

‖u‖L2(D), (5.11)

where σ
W̃ ,D,m is defined by (1.14).

Inequality (5.11) implies (2.27).
Estimate (2.28) follows from definition (2.18), formula (2.26), linearity of operator R−1 defined by (2.2),

inequalities (5.10), (5.11) for m → +∞.
Lemma 3 is proved.

5.4 Proof of Lemma 4

From formulas (1.1), (1.7) it follows that

RW f(s, θ(γ, φ)) =

∞∑

k=0

k∑

n=−k

Y n
k (γ, φ)R[wk,nf ](s, θ(γ, φ)), (5.12)

s ∈ R, γ ∈ [0, π], φ ∈ [0, 2π], (5.13)

where θ(γ, φ) is defined in (1.9), Y n
k (γ, φ) are defined by (1.8), wk,n are defined in (1.13).

Formula (2.31) follows from formulas (2.8), (2.11), (2.12), (2.18) and formula (2.26) in Lemma 2, where test
function u is replaced by w0,0u.

From inequality (2.24), formulas (2.1), (2.31) and the fact that Fourier tranfsform defined in (2.6) does not
change the L2-norm we obtain:

‖R−1RW f‖L2(R3) ≤ ‖w0,0f‖L2(R3) +

∞∑

k=1

2k∑

n=−2k

‖d2k,n ∗R3 w2k,nf‖L2(R3)

= ‖w0,0f‖L2(R3) +

∞∑

k=1

2k∑

n=−2k

‖F [d2k,n]F [w2k,nf ]‖L2(R3) (5.14)

≤ ‖w0,0f‖L2(R3) +
‖f‖∞
2π

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D),

where ‖ · ‖∞ denotes the L∞-norm, F [·] is defined in (2.6).
From assumption (2.29) and formula (1.5) it follows that

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞. (5.15)

Inequalities (5.14), (5.15) and formulas (1.2), (1.3), (1.4) imply that

‖R−1RW f‖L2(R3) ≤ ‖w0,0f‖L2(R3) +
‖f‖∞
2π

∞∑

k=1

2k∑

n=−2k

‖w2k,n‖L2(D) < +∞. (5.16)

Lemma 2 is proved.

6 Proofs of Theorems 1, 2, 3

6.1 Proof of Theorem 1

From formulas (2.18), (2.26), (2.31) we obtain:

R−1RW f = (I +Q
W̃ ,D,∞

)(w0,0f), (6.1)

where I is the identity operator in L2(R3), w0,0 is defined in (1.3).
Assumption (3.1) implies that identity (2.30) holds (by Lemma 4).
Formula (3.3) follows from assumption (3.1), inequality (2.28) in Lemma 3 and formula (6.1).
Theorem 1 is proved.
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6.2 Proof of Theorem 3

From formulas (2.17), (2.25), (2.31) we obtain:

R−1RW f = (I +Q
W̃ ,D,m

)(w0,0f), (6.2)

where I is the identity operator in L2(R3), w0,0 is defined in (1.3).
Assumption (3.16) implies that identity (2.30) holds (by Lemma 4).
Formula (3.17) follows from assumption (3.16), inequality (2.27) in Lemma 3 and formula (6.2).
Theorem 3 is proved.

6.3 Proof of Theorem 2

By assumption (3.6) inequality (2.29) holds. Hence, formulas (2.30), (2.31) (in Lemma 4) hold.
Formulas (1.2)-(1.4), assumption (3.5) and inequality (2.27) from Lemma 3 imply that fm ∈ L2(R3), where

fm is defined in (3.8).
We split expansion (1.7) of weight W defined by (1.2) in the following way:

W (x, θ) = WN+1(x, θ) + δWm(x, θ), θ ∈ S
2, x ∈ R

3, m = [N/2], (6.3)

where WN+1 is defined by (1.16), [N/2] denotes the integer part of N/2, δWm is defined by (3.11).
From formulas (1.2)-(1.4) it follows that

RW f = RWN+1
f +RδWm

f, (6.4)

where RW f,RWN+1
f,RδWm

f are defined by (1.1) for the case of weights W,WN+1, δWm defined in (1.2), (1.13),
(3.11), respectively.

Identities (2.8), (2.11), (6.3), (6.3) imply that

R−1RW f = R−1RWN
f +R−1RδWm

f, (6.5)

where R−1 is defined by (2.2). By assumption (3.6) inequality (2.29) holds for the cases of weightsW, WN , δWm,
respectively. Therefore, Lemma 4 holds for weights W, WN , δWm and, in particular, from identity (2.30) we
obtain:

R−1RWN
f ∈ L2(R3), R−1RδWm

f ∈ L2(R3). (6.6)

By assumption (3.5) Theorem 3 holds for W = WN , N = 2m. Therefore, from formula (3.17) we obtain:

f = (w0,0)
−1(I +Q

W̃ ,D,m
)−1R−1RWN

f, (6.7)

where operator Q
W̃ ,D,m

is defined in (2.17) for m in (3.5).

Formula (3.9) follows from formula (3.8), identities (6.5), (6.6), (6.7).
Identities (3.7), (3.9) and inequality (3.5) imply the following sequence of inequalities:

‖f − fm‖L2(R3) ≤
1

c
‖(I +Q

W̃ ,D,m
)−1‖ · ‖R−1RδWm

f‖L2(R3) ≤
1

c(1 − σ
W̃ ,D,m

)
‖R−1RδWm

f‖L2(R3) (6.8)

where c is defined in (1.5), Q
W̃ ,D,m

is defined by (2.17) for m in (3.5).

From formulas (2.31), (3.11) and according to (5.14) it follows that

‖R−1RδWm
f‖L2(R3) ≤

‖f‖∞
2π

∞∑

k=m+1

2k∑

n=−2k

‖w2k,n‖L2(D), (6.9)

where R−1 is defined by (2.2), w2k,n are defined by (1.13).
Identities (6.8), (6.9) imply (3.10).
Theorem 2 is proved.

7 Aknowledgments
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