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[terative inversion of weighted Radon transforms in 3D

F.O. Goncharov*
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Abstract

We propose iterative inversion algorithms for weighted Radon transforms in 3D. Our results can be
considered as extension to 3D of two-dimensional results of Kunyansky (1992), Novikov (2014), Guillement,
Novikov (2014). In addition, we generalize our results to the case of dimension n > 3.

1 Introduction

Generalized Radon transforms arise in many domains of pure and applied mathematics; see e.g. [BQ87], [Dea07],
[DB84], [GGV14], [GN16], [Gra9l], [Kun92].
In the present article we consider the weighted Radon transforms Ry, defined by the formula

Rw f(s,0) = / W (x,0)f(x)dz, (5,0) € R x S*, 2 € R?, (1.1)

zh=s

where W = W (z, 0) is the weight, f = f(z) is a test function.
In this work we assume that

W € C(R? x §*) N L= (R? x §?), (1.2)
e 1
wo,0(x) = pp /W(x,@) d, woo(r) #0, x € R, (1.3)
™
SZ

where W is complex-valued weight, df is element of standard measure on S?. If W = 1, then Ry is reduced to
the classical Radon transform R3, see e.g. [Rad17], [Nat86].
For the test function we assume that

fe L°°(R3), supp f C D, (1.4)

where D is an open bounded domain (which is fixed apriori).
Let
¢ ™ inf Jwoo(a)] > 0 (1.5)
€D 0,0 ’ '

where D is the domain in (1.4) (inequality (1.5) holds by assumptions (1.2)-(1.4)).

We recall that inversion methods for Ry admit tomographical applications in the framework of the scheme
described as follows.

It is well-known that in many tomographies measured data are modeled by weighted ray transforms P, f
defined by the formula

P, f(z,a) = /w(ac +at,a)f(x + at)dt, (z,a) € TS?, (1.6)
R
TS? = {(z,a) € R® x §* : za = 0},

where f is an object function defined on R?, w is the weight function defined on R?® x S%, and T'S? can be
considered as the set of all rays (oriented straight lines) in R3, see e.g. [Cha78], [Nat86], [Kun92].

In addition, in [GN16] (Section 3) it was shown that if P, f are given for all rays parallel to some fixed plane
¥ in R3 then Ry f with appropriate W can be obtained by the explcit formulas from P, f and w (in a similair
way with the case w = 1, see [Nat86], Chapter 2, Formula (1.1); see also [Gra91]). Therefore, reconstruction
of f from data modeled by P, f, defined by (1.6) and restricted to all rays parallel to 3, can be reduced to
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reconstruction of f from Ry f, defined by (1.1). In [GN16] it was aslo indicated that the reduction from P, f
to Rw f with subsequent reconstruction of f from Ry, f can drastically reduce the impact of the noise in the
initial data.

In the present article we use the expansion for weight W:

on’% Zzwkn Yk ’Yd)) ;L'E]Rs, (17)
k=0n=—k
n def |n in
Y (v,6) < p(cos)em?, (1.8)
0(7,6) = (cos, siny cos é, sinysing) € §2 C R?, 7 € [0, ], ¢ € [0, 2n), (1.9)
where p(z), z € [-1,1], k € NU {0}, n = —k, k are the associated Legendre polynomials. Polynomials p}(z)

are well-known in hterature (see e.g. [SW16]) and are defined using ordinary Legendre polynomials py(z) by
the formulas:

P(E) = ()" (1= 22" (o), m, k€ NU{0), (110)

(o) = (1) (k). ph) 01 ] > (111)
k

pr(r) = 2k1k' ddxk (2 = 1)*], z € [-1,1], k e NU {0}, (1.12)

see also [SW16], [ZT79] for other properties of associated Legendre polynomials. In addition, coefficients wy, ,, (z)
in (1.7) are defined by the formulas:

wn(z) = c(k, n)/dqﬁe_md’/W x,0(y, qﬁ)) (cosv) siny dr, (1.13)
0
_ @Ck+1) (k= [n|)! _
c(k,n) = PP R ke NuU{0},n=0,%1,--- +k,

where function (v, ¢) is defined in (1.9).

Under assumption (1.2), for each fixed x, series (1.7) converge in L%*(S?); see e.g. [SW16] (Chapter 4),
[Mor98] (Chapter 2), [ZT79].

We consider also

m
W2k, n )
0% sup for m € N, 1.14
vom=3y 3 mpl et s
UWDm:0form:0,
UW,D,OO = 7r}1moo OW,D,m, (115)

@I ) =3 S @Y. 0) (1.16)

k=0n=—k
[N/2] 2k

W (@, 007,0) = > Y wakn(@)Y5(7,0), (1.17)
k=0 n=-2k

z € R® v €0,7], ¢ €[0,2n], (1.18)

where coefficients wy, ,, () are defined in (1.13), (7, ¢) are defined by (1.8), [N/2] denotes the integer part of
N/2.
In the present article we obtained, in particular, the following results under assumptions (1.2), (1.3), (1.4):

1. If ow.p,co < 1, then Ry is injective and, in addition, the inversion of Ry f is given via formulas (3.2),
(3.3); see Section 3 for details.
2. If ow,p,00 > 1, then f can be approximately reconstructed from Ry f as f =~ (RWN)flRWf, where Ry

is defined according to (1.1) for Wy defined by (1.17) for N = 2m, where m is chosen as the largest while
condition ow,p,m < 1 holds. More precisely, approximate inversion of Ry f is given via the formulas

(3.7), (3.8).
In addition, if W = Wy defined by (1.16) and ow,p» < 1, m = [N/2], where [N/2] denotes the integer
part of N/2, then Ry, is injective and invertible by formula (3.17); see Section 3 for details.



Prototypes of these results for the weighted Radon transforms in 2D were obtained in [Kun92], [Nov14],
[GuNol14].

The present work also continues the studies of [GN16], where approximate inversion of Ry, was realized as
(Rw,)~! for N =0 or by other words as an approximate Chang-type inversion formula.

In Section 2 we give some notations and preliminary results.

Main results of the present work are presented in detail in Section 3.

In Section 4 we generalize results of Sections 2, 3 for the case of dimension n > 3.

Proofs of results of Sections 2, 3, 4 are presented in Sections 5, 6.

2 Some preliminary results

2.1 Some formulas for R and R!

We recall that for the classical Radon transform R (formula (1.1) for the case of W = 1) the following identity
holds (see [Nat86], Theorem 1.2, p.13):

R(f *gs g) = Rf *r Ry, (2.1)

where #pgs, xg denote the 3D and 1D convolutions (respectively), f, g are test functions.
The classical Radon inversion formula is defined as follows (see e.g. [Nat86]):

R q(z) = —% q(2)(x9,9)d9, z € R3, (2.2)
m o
2

¢ (s,0) = @q(sﬁ), seR, 0eS?

where ¢ is a test function on R x S2.
In addition, from the Projection Theorem (see [Nat86], Theorem 1.1, p.11) it follows that:

Rlga) % 1 Py i(p,w)eP™) dw, x € R3 (2.3)
@) = G | 3 | dlewle w, T , -
R S2
. def 1 —its 2
q(s,0) = —/q(t,@)e dt, (s,0) € R x S, (2.4)
V2
T R

where q(t,0) is a test function on R x S2.
For the case of § even (i.e. ¢(s,0) = G(—s,—0), (s,0) € R x S?, where § is defined in (2.4)), formulas (2.3),
(2.4) can be rewritten as follows:

Rl = 5 Flal = 5 F ) (25)

where F[-], F7![] denote the Fourier transform and its inverse in 3D, respectively, and are defined by the
formulas (in spherical coordinates):

+oo
Flal§) < ﬁ / pdp / q(p,w)e” ") dw, (2.6)
0 S2
+oo
Flale) < (27:)3/2 / Pde/q(p,w)eiP(f“>dw, £ R, (2.7)
0 S2

where ¢(p,w) is a test-function on [0, +00) x S? (identified with R?).

2.2 Symmetrization of W

Let
Awf=R'Rwf, (2.8)
where Ry is defined in (1.1), f is a test function, satisfying assumptions (1.4).
Let
N or 1
W(x,0) 5(W(.0) + W(z,—6)), « € R®,0 € 5%, (2.9)



The following formulas hold:

S (R £(5,0) + R f(—s,~6)) = R £(5,0), (5,0) € B x S, (210)

Aw f =R 'Ry f, (2.11)

:c 0(vy,9)) Z Z wagn (2)Yor (77, @), (2.12)
k=0 n=—2k

r €R3 v €0,7], ¢ €10,2n],

where wy,, are defined in (1.13), 6(y, ¢) is defined in (1.9), Y;*(v, ¢) are defined in (1.8). Identity (2.11) is
proved in [GN16] in 3D, where W is denoted as Wy,

Identity (2.12) follows from (1.8) and the following identities:
pR(=z) = (=1)"**pi(), w € [-1,1], (2.13)
MOt — (_1)nen® (2.14)

where pjl(z), k € NU{0}, n = —Fk, k are the associated Legendre polynomials, defined by identites (1.10), (1.11),
(1.12) (see e.g. [SW16]).

Note also that Wy defined by (1.17) is the approximation of W defined by (2.9) and

W (z,-) L), W (z,-) for each fixed z € R®. (2.15)

N—o00
Using formulas (2.10)-(2.12) we reduce inversion of Ry to the inversion of Ry; defined by (1.1) for W = w.
Prototypes of (2.8), (2.11), (2.12) for the two-dimensional case can be found in [Kun92], [Nov11].

2.3 Operators Qw,p,, and numbers ow p .,

Let D be the domain of (1.4), and xp denote the characteristic function of D, i.e.

xp=1on D, xp=0onR*D. (2.16)
Let
def
Qi p mul@) = R Ry, u)(z), m €N (2.17)
Qw pu(z) =0 for m =0,
def
Qi pooul@) = R (R p u)(@), (2.18)
where
m w n
Ry p (s, 0(y,)) < / <Z > 2%, ng(% qs)) Yo (z)u(z) de, (2.19)
k=1n=-2k 0,0

zh=s

Rip poouls,007,0) Y lim Ry, u(s,0(+,0))

/ <Z ) w%f %(%qﬁ)) xp(z)u(z)dz, (2.20)

20—s k=1n=-2k

r €R3 s €R, 0(y,¢) € S?

where R™! is defined by (2.2) or (2.3), u is a test function, Y;"(v,¢) are defined in (1.8), wo o, ok, are the
Fourier-Laplace coefficients defined by (1.13) and way »/wo.0, Xp are considered as multiplication operators on
R3. Note that R f = Ry f under assumption (1 4).

Let

W,D,0c0
don () & RSV (2), € R3, k € N, n = —2F, oF, (2.21)

where R~ is defined by (2.3), 6 = §(s) denotes the 1D Dirac delta function, Y;" is defined in (1.8).

Lemma 1. Let dak,, be defined by (2.21). Then

(—D*VIL (3 + k) Y33 (7, 9)
7l'(k) rs

dopn (x(1, 77, 9)) = r >0, (2.22)



where T'(+) is the Gamma-function, x(r,~,d) is defined by the identity:
x(r,7, ¢) = (rcosy,rsinycos ¢, rsinysing) € R3, v € [0,7], ¢ € [0,27], r > 0. (2.23)
In addition, the following inequality holds:
| Fldak,n] ()] < 1/2m, £ € R?, (2.24)
where F[] is the Fourier transform defined in (2.6).
The following lemma gives some useful expressions for operators QW,D,m’ Qw,Dm defined in (2.17), (2.18).

Lemma 2. Let operators Qv p . Qv p o be defined by (2.17), (2.18), respectively, and u be a test function
satisfying (1.4). Then

m 2k w
2k,n
QW,D,mu = g E dak.n *r3 u, (2.25)
1 Wo,0
k=1n=-2k
) 2k w
2k,n
QW,D,oou = E dgkyn *R3 u, (226)
. = wo,0
k=1n=-2k

where coefficients wy, n, are defined in (1.13), dak.n is defined by (2.21), *gs denotes the convolution in 3D.

Remark 1. Convolution terms in the right hand-side of (2.25), (2.26) are well defined functions in L?(R3).
This follows from identity (2.22) and Calderén-Zygmund Theorem for convolution-type operators with singular
kernels (see [Kna05], p.83, Theorem 3.26).

The following lemma shows that the operators Q; 1 .., Qi p o are well-defined in L2(R3).

Lemma 3. Operator Q; ., defined by (2.17), is a linear bounded operator in L?(R3) and the following
estimate holds: o

Q% p.mllL2@)—r2@e) < 03 b s (2.27)
where o 1, is defined by (1.14).
If O Do < 100, where O Doo U8 defined by (1.15), then QW,D,oo’ defined by (2.18), is a linear bounded
operator in L?(R3) and the following estimate holds:
||QW,D,OO||L2(R3HL2(R3) S O Dot (2.28)
Lemma 4. Let
o 2k
3y |[B < to0, (2.29)
h=1n=—ak 1 0.0 llL2(D)
where wy,, are defined in (1.13). Then
R™'Rw f € L*(R%). (2.30)
In addition, the following formula holds:
o 2k
R 'Ry f = wo,0f + Z Z dak,n *r3 Wak,n f, (2.31)
k=1n=—2k

where Ry is defined by (1.1), W satisfies (1.2), (1.3), f satisfies (1.4), operator R~ is defined by (2.3), dak.n
is defined by (2.21).

3 Main results

3.1 Case of O Do <1

Let

OW Do < 1, (3.1)

where o3 is defined by (1.15).
Inequality (3.1) and upper bound (2.28) in Lemma 3 imply that operator I+Qg , . is continuosly invertible

in L?(R3) and the following identity holds (in the sense of the operator norm in L?(R?)):

I+ Qi po) ' =1+ Z(—QW,D,OO)j, (3.2)

Jj=1

where I is the identity operator in L*(R?), operator Qg ,, . is defined in (2.18).



Theorem 1. Let conditions (1.2)-(1.4), (3.1) be fulfilled. Then Ry, defined by (1.1), is injective and the
following exact inversion formula holds:

f=(wo0) "I+ Q po) 'R Rwf, (3.3)
where wo,o is defined in (1.3), operator (I + Qwr )~ " is defined by (3.2), R™" is defined in (2.2).

Remark 2. Formula (3.3) can be considered as the following Fredholm’s second kind linear integral equation for
the ’woﬁofi
wo,0f + Qi p o (Wo0f) = R~ 'Ry f. (3.4)

Inequality (3.1) and identity (3.2) imply that equation (3.4) can be solved by the method of successive approx-
imations.

3.2 Caseofl< O Do < 100

Let

0% p.m < 1, for some m € NU {0}, (3.5)

OF Do < +00. (3.6)

Inequality (3.5) and upper bound (2.27) in Lemma 3 imply that I +Q; f, ,,, is continuously invertible in L?(R?)
and the following identity holds (in the sense of the operator norm in L?(R?)):

I+ Qwpm) " =T+ (—Qp p.m) (3.7)
j=1

where I is the identity operator in L*(R?), operator Qg ,, , is defined in (2.17).

Theorem 2. Let conditions (1.2)-(1.4), (3.5), (3.6) be fulfilled. Then

de _ _ _
F~ fm ® (wo0) MU+ Qg ) PRI Rw S, (3.8)
f=fm— (wo0) "I+ Q p,,) 'R Rsw, . (3.9)
[
1 = Fllazo) < g p— Z Z lwak,nll L2y < +00, (3.10)
5 77” k=m+1n=-—2k
where
def 2m-+1 k
W (2,0(7,8)) = W(x,0(7,0)) = > > win(@)V3'(1,9), (3.11)
k=0 n=—k
r €R? v €0,7], ¢ €[0,2n], m € NU {0}, (3.12)

function 0(vy, ¢) is defined in (1.9), coefficients wy., are defined in (1.13), Y;* are defined in (1.8), o 18

defined in (1.14), operator (I + Qo ,.)"" is defined in (3.7), constant c is defined in (1.5).

W,D,m

Remark 3. Formula (3.8) can be considered as the following Fredholm’s second kind linear integral equation for
wo,of :
wo,0f + Qg p (W00 f) = R~ R f. (3.13)

Inequality (3.5) and identity (3.7) imply that equation (3.13) is solvable by the method of successive approxi-
mations.
Note also that condition (3.6) can be relaxed to the following one:

Sy

k=1n=-2k

L2hn < +00, (3.14)

L2(D)

Wo,0

where way, ,, are defined in (1.13).



Formula (3.8) is an extension to 3D of the Chang-type two-dimensional inversion formulas in [Cha7§],
[Nov14], [GuNol4]. In addition, formula (3.8) is an extension of approximate inversion formula in [GN16],
where this formula was given for m = 0.

If (3.5) is fulfilled for some m > 1, then f,, is a refinement of the Chang-type approximation f; and, more
generally, f; is a refinement of f; for 0 <+ < j < m. In addition, f; = f; if wa, =0fori <k < j, n = -2k, 2k.
Thus, we propose the following approximate reconstruction of f from Ry f:

(1) find maximal m such that (3.5) is still efficiently fulfilled,
(7i) approximately reconstruct f by f,, using (3.8).

3.3 Exact inversion for finite Fourier series weights

Let
W =Wy, N e NU{0}, (3.15)
where Wy is defined by (1.16).
Suppose that
0w pm < 1 for m =[N/2], (3.16)
where o - is defined by (1.14), [N/2] denotes the integer part of N/2.

Theorem 3. Let conditions (1.2)-(1.4), (3.15), (3.16) be fulfilled. Then Rw defined by (1.1) is injective and
the following exact inversion formula holds:

f=(wo0) "I+ Q. p,,) 'R 'Rwl, (3.17)
where wo o is defined in (1.2), (I + Qw )" " is defined by (3.7), R™" is defined by (2.2).

Remark 4. Formula (3.17) can be considered as the following Fredholm’s second type linear integral equation
for wo o f:
wo,0f + Qp p . (woof) = R R f. (3.18)

Identity (3.16) imply that (3.18) can be solved by the method of successive approximations.

4 Generalization for multidimensions

Formulas (1.1)-(1.4) admit straightforward extensions to the case of dimension n > 3. In particular, in this
case Ry f is defined as corresponding integrals along (n — 1)-dimensional hyperplanes in R™; see e.g. [GN16],
[BQ8T].

For weight W we consider Fourier-Laplace expansion:

oo Qk,n
W(z,0) = Z Z wi (2)Y;(0), x € R", § € "1, (4.1)
k=0 i=1
where
wh(o) = Y gy [ W 0)7716) db (42)
§n—1

(n+k)! (n+k—2)
kln!  (k—2)ln! "’

ak,nJrl - n, k 2 27 aO,n == 1; al,n =n, (43)

where {Ykl |k =0,00,i =1, ag,n} is the Fourier-Laplace basis of harmonics on sn—t Yki denotes the complex
conjugate of Y} ; see [SW16], [Mor98]. In this work we choose basis Y} as in [Hig87] without normalizing
constants ,c; (i.e. {Y}'} are the products of Legendre polynomials with one complex exponent and without any
additional constants).

Formula (1.3) can be rewritten now as follows:

1 dif 1 n 1 n
wy(x) = olET) / W(x,0)dd, x € R", wy(z) #0, z € R", (4.4)
S§n—1

where vol(S"~1!) denotes the standard Euclidean volume of S"~1.



Under assumptions (1.2), (1.4) for dimension n > 3, series (4.1) converge in L*(S"71); see e.g. [SW16]
(Chapter 4), [Mor98] (Chapter 2), [ZT79].
Formula (2.3) is extended as follows:

n—1 )
R4 = o [P oo, » e v (45)
R Sn—1

where q(s,0) is a test function on R x S~ G(s, 0) is defined as in (2.4) (with S? replaced by S*~1).
Fourier transforms defined in (2.6), (2.7) are rewritten now as follows:

+oo
Flg©) Y @m [ prtdp | alp,w)e ) duw, (4.6)
[ ]
+oo
Fae 2 en [ [ alpwereian, € e v (47)
0 sn—1

where ¢(p,w) is a test function on [0, +00) x S~ (identified with R™).

In dimension n > 3, formulas (2.8)-(2.12) remain valid with Y;™ defined in (1.8) replaced by general basis
of spherical harmonics {Y}’} on S"~'. In particular, multidimensional analog of formula (2.12) (with z € R"™,
0 € S"~1) holds by the following property of harmonic Y;'(6):

Yi(—0) = (-1D)FYi(0), 0 € S" 1 ke NU{0}, i =T, ar.n, (4.8)

where ay, ,, is defined by (4.3). Identity (4.8) reflects the fact that Y;'(0) = Y/ (61,02, ,0,), 0 = (61,02,--- ,0,) €
S"=1 i =1, ar., is a homogenous polynomial of degree k, see e.g. [SW16], [Mor98].
The extensions of (1.14), (1.15), (2.17), (2.18), to the case of dimension n > 3, are defined as follows:

m QA2k,n

def )(1=n)/2
7w (2 4.9
w0 Y G (49)
1 i=1
def
OW,Doo ml_l,IEOOUWDm (4.10)
def
Qi pmu(r) = R (R p,,u)(@), m €N (4.11)
Qv p.mu(r) =0 for m =0,
def
Qi pot(®) = BN (R p o u)(@), (4.12)

where

a2k ,n

RW,D,m é / <Z 7“::1 )XD( Ju(z) dx, (4.13)

—1 i= 0
20—s k=1 i=1

u(s, 0) “ lim R

m—r oo

reR”, seR, eSS,

R u(s, 0), (4.14)

W,D,oo W,D,m

where R™! is defined in (4.5), coefficients w}, are defined in (4.2).
Formula (2.21) is now rewritten as follows:

dori(z) < R=YS()Y5,)(x), z € R, i = T, apn, (4.15)

where R™! is defined in (4.5), Y3, is the spherical harmonic on S"~1.
Results of Lemma 1 remain valid with formula (2.22) replaced by the following one:

do,i(r,0) = c(k,n)(fl)iw, r>0,0ecS" (4.16)
where Ry ( - :
VIR DU ) (T D)
i == (Rep) e



I'(-) is the Gamma function, and inequality (2.24) is rewritten as follows:
[ Fldaea)(€)] < (2m) 772, ¢ e R, (4.18)

where F[-] is the Fourier transform defined in (4.6), dak; is defined in (4.15). Constant c¢(k,n) in (4.17) is
obtained using formulas (4.5), (4.15) and Theorems 1, 2 in [Gonl6].

Results of Lemma 2 remain valid, for the case of dimension n > 3, with formulas (2.25), (2.26) rewritten as
follows:

w
QW,D m Z Z dok,i *rn U}Q(l)k u, (4.19)
k=
oo Qk,n wi
QW,D,OOU = Z Z dog,i *¥rn w21k u, (4.20)
k=1 i=1 0

where coefficients w, (), w} (z) are defined in (4.2), ay ,, is defined in (4.3), day; is defined in (4.16), g~ denotes
the convolution in R™.

Results of Lemma 3 remain valid with R? replaced by R™, n > 3, where we use definitions (4.9), (4.11),
(4.12).

Assumption (2.29) in Lemma 4 is rewritten now as follows:

oo Qk,n

2.2 %

k=1 1=1

w% < +o0, (4.21)

L2(D)

where coefficients w} are defined in (4.2), ay, is defined in (4.3), D is the open bounded domain defined
according to (1.4) in R™. Under assumption (4.21), result (2.30) of Lemma 4 remains valid, with R? replaced
by R™ and with the following analog of formula (2.31), for the case of dimension n > 3:

oo Ak,n
R'Rwf=wif+> Y doki*en whyf, (4.22)
k=1 i=1
where R™! is defined in (4.5), f is a test function satisfying (1.4) (with R? replaced by R™), aj , is defined in
(4.3), dag,; is defined in (4.16).

Under assumption (3.1) (with o
n > 3.

Under assumptions (3.5), (3.6) (w1th 0% D.ms O .D.0o defined in (4.9), (4.10); operators Q1 .. @ p
defined in (4.11), (4.12); operator R~! defined in (4.5); coefficients wy,, replaced by wi, defined in (4.2)) results
of Theorem 2 remain valid in the case of dimension n > 3.

Under assumption (3.16) (with o defined in (4.9)) results of Theorem 3 also remain valid.

W D oo defined in (4.10)), results of Theorem 1 remain valid in dimension

W,D,m

5 Proofs of Lemma 1, 2, 3, 4

5.1 Proof of Lemma 1

We consider x(r, 7, ¢) defined by (2.23) and w(7y, ¢) = z(1,7,¢) (i.e. w € S?).
Identity (2.23) implies the following expression of the scalar product (zw) in spherical coordinates in R?:

(2w) = (2(r, 7, 6),w(7,9)) = r(cosycos§ + sinysiny cos(¢ — 9)), (5.1)
where 7,4 € [0,7], ¢, ¢ € [0, 27], r 2 0
From formulas (1.8), (2.3), (2.21), (5.1) it follows that
2
(2 2 (o105, 3)) = [ o / PO (1,6) du(,6) (52)
R s2
27
:/?dp/sm cosv) dv/ezﬂ(z’“’(%@)“mdqﬁ
R 0 0
9 27
:ein(d;—fr/Q)/%dp/Sln ka COS’)/) zprcoswcos%/eind)-i—prsin'ysin%sinqﬁdqﬁ
R 0
— 2rein(® /2 / /sm pl%‘(cosv)eipmos”ws:ﬂ]n(prsinvsinﬁ) dvy, (5.3)
R



where J,,(+) is the n-th standard Bessel function of the first kind; see e.g. [Tem11].
Integrand in dv in the right hand-side of (5.3) was considered in [NPF+06], where the following exact
analytic solution was given:

/sin(’y)pgﬁ (cosy)elPrcosT ST I (prsiny siny) dy = 2i2k*”p|27;‘ (cos ) jak (pr), (5.4)
0
where jo, is the standard spherical Bessel function of order 2k; see e.g. [Tem11].
From identities (5.3), (5.4) it follows that:
Do (1 7,8)) = ol cos3)e™? [ ina(pr) dp
sn s 1 (27T)3/2 2k
R
_ 4y/m(—=1)FT (3 + k) p'ﬁc‘ (cos7)ein?
(2m)3/21 (k) r3

 r > 0. (5.5)

where I'(+) is the Gamma function.
Defenition (1.8) and identity (5.5) imply formula (2.22).
Formulas (2.5), (2.13), (2.14), (2.21) imply that

(2m)dan (2(r, 7, 0)) = F [Y3i] (2(r, 7, 9)), v > 0, 7 € [0,7], & € [0, 2x], (5.6)

where F~1[] is defined in (2.7), Y} is defined in (1.8).
From the invertibility of the Fourier transform defined in (2.6), (2.7) and identity (5.6) the following identity
holds:

2 Fldog,n] = FF ' [Ya}] = Vi (5.7)
For Y} defined in (1.8) the following inequality holds (see e.g. [SW16]):
|Ykn(’y’9)| < 17 v e [Oaﬂ-]a ¢ € [Oa 277] (58)

Identities (5.6) and inequality (5.8) imply (2.24).

Note that |Fldak,»](€)], £ € R3, is uniformly bounded by 1/27 except only one point & = 0, where direction
/€| € S? is not defined. However, point £ = 0 is of Lebesgue measure zero and F[dag ] can be defined with
any value at the origin in R3.

Lemma 1 is proved.

5.2 Proof of Lemma 2
From identity (2.17) it follows that

m 2k
N o1 n W2k, n
QW,D,mu =R (Z Z Yo R < oo XD ))

k=1 n——2k ,
m 2k w

—r (303 G0vg) e R () (5.9
k=1 n——2k wo,0
m 2 w

=R! Z Z R(dokn) *r R ( 2hn XDU>
k=1 n——2k wo,0

where *r denotes the 1D convolution, § = d(s) is the 1D-Dirac delta function, day . is defined by (2.21).
Identities (2.1), (5.9) imply (2.25).
For operator Qg ,, . defined by (2.18) we proceed according to identity (5.9) with m — +oco. Linearity of

operator R~1 defined by (2.2) and identites (2.1), (5.9) imply (2.26).
Lemma 2 is proved.

5.3 Proof of Lemma 3

From formula (2.25) and the fact that Fourier transform defined in (2.6) does not change the L?-norm we obtain:

m 2k

1Qw pmtllzzen <3 >

k=1n=-2k

m 2k w
=3 N || Fldarn] F [—2’“’” XDu]
k=1n=-2k

- Wo,0 L2(R3)

W2k n

dak,n *R3 XDU

Wo,0 L2(R3)

(5.10)
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From inequalities (2.24), (5.10) we obtain:

m
W2k,
Q5 p sy < 5= > 3 ( ”XDU)
k 1n=—2k L2(R3)
m
= Z Z 2Ry
(L —y woo L2(R3)

<o (5.11)

W,D,WHUHLZ@
where oy 1, is defined by (1.14).

Inequahty (5.11) implies (2.27).

Estimate (2.28) follows from definition (2.18), formula (2.26), linearity of operator R~! defined by (2.2),
inequalities (5.10), (5.11) for m — +o0.

Lemma 3 is proved.

5.4 Proof of Lemma 4
From formulas (1.1), (1.7) it follows that

k=0n=—k
s € R, v €[0,7], ¢ € [0,27], (5.13)

where 0(v, ¢) is defined in (1.9), Y;* (v, ¢) are defined by (1.8), wg,, are defined in (1.13).

Formula (2.31) follows from formulas (2.8), (2.11), (2.12), (2.18) and formula (2.26) in Lemma 2, where test
function u is replaced by wg gu.

From inequality (2.24), formulas (2.1), (2.31) and the fact that Fourier tranfsform defined in (2.6) does not
change the L2-norm we obtain:

%S 2k

IR™'Rw flL2rs) < llwo,of L2y + Z Z | dak,n *rs Wakn fllL2(r3)
k=1n=-2k

00 2k
= lwoofllc2@ + > > IFldekn] Flwaen 1l L2 @e) (5.14)

k=1n=-2k
1/l 5= ¥
< Hw070f||L2(R3) + 27:0 ; Z2k ||w2k,n||L2(D)a
=1 n=—

where || - ||co denotes the L*-norm, F|-] is defined in (2.6).
From assumption (2.29) and formula (1.5) it follows that

0o 2k
Z Z | wak,n|lL2(py < +o0. (5.15)

k=1n=—2k
Inequalities (5.14), (5.15) and formulas (1.2), (1.3), (1.4) imply that

IR Ruy fl| oz < [lwoofllzeces) + Hooz Z w3kl 22Dy < +00. (5.16)
k=1n=-2k

Lemma 2 is proved.

6 Proofs of Theorems 1, 2, 3

6.1 Proof of Theorem 1
From formulas (2.18), (2.26), (2.31) we obtain:
RM'Rwf=(I+ Qwﬁpm)(wo,of)v (6.1)

where I is the identity operator in L?(R?), wp o is defined in (1.3).
Assumption (3.1) implies that identity (2.30) holds (by Lemma 4).
Formula (3.3) follows from assumption (3.1), inequality (2.28) in Lemma 3 and formula (6.1).
Theorem 1 is proved.
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6.2 Proof of Theorem 3
From formulas (2.17), (2.25), (2.31) we obtain:

R'Rwf=(I+ Qw . p.m)(wo,0f), (6.2)

where [ is the identity operator in L?(R?), wq o is defined in (1.3).
Assumption (3.16) implies that identity (2.30) holds (by Lemma 4).
Formula (3.17) follows from assumption (3.16), inequality (2.27) in Lemma 3 and formula (6.2).
Theorem 3 is proved.

6.3 Proof of Theorem 2

By assumption (3.6) inequality (2.29) holds. Hence, formulas (2.30), (2.31) (in Lemma 4) hold.

Formulas (1.2)-(1.4), assumption (3.5) and inequality (2.27) from Lemma 3 imply that f,, € L?(R?), where
fm is defined in (3.8).

We split expansion (1.7) of weight W defined by (1.2) in the following way:

W(x,0) = Wyii(z,0) + Wy, (2,0), 0 € S*, 2 € R®, m = [N/2], (6.3)

where Wiy 41 is defined by (1.16), [N/2] denotes the integer part of N/2, §W,, is defined by (3.11).
From formulas (1.2)-(1.4) it follows that

RWf = RWN+1f + R(SWmf) (64)

where Ry f, Rwy., f, Rsw,, f are defined by (1.1) for the case of weights W, Wx 4.1, dW,, defined in (1.2), (1.13),
(3.11), respectively.
Identities (2.8), (2.11), (6.3), (6.3) imply that

R 'Rwf=R'Rw,f+R 'Rsw, f, (6.5)

where R™! is defined by (2.2). By assumption (3.6) inequality (2.29) holds for the cases of weights W, Wy, §W,,,
respectively. Therefore, Lemma 4 holds for weights W, Wy, 6W,,, and, in particular, from identity (2.30) we
obtain:

R 'Ry, f € L*(R?), R™'Rsw,, f € L*(R?). (6.6)
By assumption (3.5) Theorem 3 holds for W = Wy, N = 2m. Therefore, from formula (3.17) we obtain:
f = (wO,O)_l(I + QW,D,W)_lR_lRWNfa (67)

where operator Qg 5, is defined in (2.17) for m in (3.5).

Formula (3.9) follows from formula (3.8), identities (6.5), (6.6), (6.7).
Identities (3.7), (3.9) and inequality (3.5) imply the following sequence of inequalities:

1

1 ~ _ _
1 = Fnllzes) < <+ Q) - 1B Rows fllzqes) < - IR~ Rsw,, fllrz@s)  (6.8)

(1 - W,D,m)

where c is defined in (1.5), Q4 p ,, is defined by (2.17) for m in (3.5).
From formulas (2.31), (3.11) and according to (5.14) it follows that

00 2k
~1 fll
R Rsw,, fllL2ms) < 5 k;l ;kHka,nHLZ(D)a (6.9)

where R™! is defined by (2.2), wag,, are defined by (1.13).
Identities (6.8), (6.9) imply (3.10).
Theorem 2 is proved.

7 Aknowledgments

The present work was fulfilled in the framework of research conducted under the direction of Prof. R.G. Novikov.
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