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Influence of Network Deployment on Resource
Block Allocation

J.S. Gomez, A. Vergne, P. Martins, L. Decreusefond, and Wei Chen

Abstract—In this paper, the influence of network deployment
on downlink dimensioning under an interference limited regime
is studied. Theoretical and numerical results are derived for
a network deployed as a Poisson point process. We show that
slightly degraded propagation conditions has a beneficial effect on
network dimensioning and performance. Spatial influence is also
studied thanks to the β-Ginibre model. Simulations show that
a regularly deployed network improves dramatically spectrum
usage and network performances.

Index Terms—β-Ginibre Point Process, Poisson Point Process,
Network dimensioning.

I. INTRODUCTION

SMARTPHONES and their ecosystem pushed user experi-
ence towards throughput intensive services. In this context,

fourth generation wireless networks and 802.16e standard
introduced OFDM on the radio link. The band is divided into
orthogonal sub-carriers, which minimizes spectrum occupancy
and fulfills capacity demand. In order to further increase spec-
trum capacity and mitigate interference, LTE and WiMax have
introduced dynamic frequency and time access (OFDMA).
Sub-carriers are aggregated in Resource Blocks (RB) of 1ms
length and 180kHz wide. A typical LTE eNodeB can manage
up to 100 RB per 10ms, for a total band of 20MHz. One can
increase the number of RBs per eNodeB, however, provided
some user demand and some loss requirement, is there a limit
in the number of RBs one can allow? Inter-site interference
also plays a great role since the number of resources block
allocated to one user depends on the quality of the channel,
which is strongly linked to the statistical properties of the
eNodeB deployment.

Statistical properties of wireless networks have been widely
explored in literature. Pioneer works of Baccelli [1] have
provided a strong baseline for analyzing properties of networks
deployed as a Poisson point process. However, such Poisson
based models does not fit ideally real deployments, since there
exists a strong probabilistic dependency between base station
locations. Other point processes have been considered. Among

J.S. Gomez is with the Institut Mines-Télécom, Télécom ParisTech, CNRS,
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them, the β-Ginibre point process, which properties has been
studied in [2], successfully fitted the network deployment of
four operators on Paris, France [3]. The β parameter gives
insights on the regularity of the deployment: if β is near zero,
the point process is considered as uniform and is tending
to a Poisson point process. If β is near one, there is a
strong dependency between the placement of the base stations.
The point process is considered as regular and its statistical
properties are the ones of a Ginibre point process. For the
Poisson point process and the β-Ginibre point process, the
SINR distribution has been studied respectively in [4] and [5].
This means that one can induce the quality of the radio signal
on a network level, providing the type of point process used.

The objective of this paper is to study the influence of the
network deployment on the dimensioning of the base stations.
Especially, general downlink performances of a cell placed in
the middle of a network deployed as a Poisson or β-Ginibre
point process will be analyzed. Path-loss and fading are also
considered in the channel model. As for frequency planning,
the worst case scenario is considered since all base stations
share the same band. The users are placed in the network
following a Poisson point process. We evaluate the maximum
number of RB that one base station can allocate, provided
known user demand and outage probability. Since the exact
maximum number of RB is computationally hard to obtain, we
propose a pessimistic lower bound based on the concentration
inequality, that fits both engineering requirements for computa-
tional complexity and robustness. We also evaluate the outage
probability in function of the path-loss exponent, provided a
fixed number of RB and user demand. Thanks to the results of
Błaszczyszyn et al. [4] it is possible to provide an theoretical
analysis for Poisson deployed networks. Simulation analysis
will also explore the differences of performances induced by
the type of deployment, as we consider several β-Ginibre
deployed networks.

Resource allocation algorithms for OFDMA systems have
been studied extensively. In [6], many optimization based al-
gorithm are proposed for allocating and scheduling resources.
Other works have included Markov chains [7], queuing theory
or game theory to conceive original algorithms. In [8], the
optimal resource allocation strategy is modeled as a Nash
bargaining equilibrium. However, dimensioning and planning
issues have been more recently investigated. In this paper, we
adopt the same theoretical foundations as in [9]. However, its
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results are only valid in noise limited systems, since only one
base station is considered. This paper extends and completes
its results on a network level. It also gives insights on the link
between network performances and deployment.

This paper is organized as follows. In the first section, the
system model and theoretical hypothesis are given. A theoret-
ical analysis is provided for Poissonnian deployed networks in
Section II. In Section III, simulation analysis and performance
analysis are provided for Poisson deployed and β-Ginibre
deployed networks. In Section IV, conclusions are drawn.

II. SYSTEM MODEL

A. Channel model

The system is composed of a network of identical omni-
directional OFDMA base stations. They are deployed in the
plane according to a certain point process of a given intensity
λn. The state of the network is considered at a given time
slot. For each given time slot, active users are localized in
the plane according to a Poisson point process with intensity
λu. Each user asks for the same capacity C and each base
station shares the same spectrum and without any cooperation
scheme. Furthermore, each base station can allocate up to
Navail RBs per time slot. A user belongs to the base station
under the condition that it provides him with the best SIR.
Channel model includes path-loss and fading. Therefore, the
power received by a mobile from a base station i is modeled
by:

P (dij) = PiGijd
−γ
ij ,

where Pi is the transmission power of the base station, dij
the distance between the base station i and the mobile j
and γ is the path-loss exponent. The channel fading Gij is
a random value following a exponential law of parameter one.
Furthermore, the number of resource blocks allocated to each
user, given by the following equation:

Nj=min

(⌈
C

Wrb log2(1 + maxi(SIRi,j)

⌉
, lm

)
.

Wrb denotes the bandwidth of one resource block and dxe is
the ceil value of x. lm is the maximum number of RBs that
can be allocated to one user. The SIR between the ith base
station and the jth user is given by:

SIRi,j =
P (dij)∑
k 6=i P (dkj)

.

The total number of RBs that are demanded in one cell is the
random integer given by:

Ntot =
∑
j

Nj

Quality of the network deployment is assessed thanks to the
loss probability:

P(Ntot > Navail) .

Three case scenarios are investigated:

• considering a given loss-probability, the influence of γ on
E [Ntot] is studied,

• considering a given Navail, the influence of γ on the loss-
probability is studied,

• considering a given loss-probability, an approximation of
Navail thanks to the concentration inequality.

B. Influence of γ on dimensioning.

Theorem 1. In Poisson point process deployed network and
for a provided loss probability ε, E [Ntot] decreases as γ
increases.

Proof. For a given poissonian deployed network, the SIR at
each point of the network is assumed to be independent to
one another. This assumptions is reasonable since the homoge-
neous PPP is a stationary process. We model the users location
and traffic demand by a marked PPP on E = [|1, . . . , lm|]×C:

λudν(z) = λu (α(l)⊗ dz)

α(l) = αl corresponds to the probability that a user demands
l RBs and each αl defined as follows:

αl =


P(t1 < SIR) if l = 1,
P(tlm ≤ SIR) if l = lm,
P(tl ≤ SIR < tl−1) otherwise,

where tl = 2C/lWrb−1.
The family (α1, . . . , αlm) corresponds to the mean propor-

tion of the plane where one can allocate receptively 1, . . . , lm
RBs to a user. Hence, for each cell in the network, the number
of RBs demanded by the users Ntot follows a compound
Poisson distribution:

Ntot =

lm∑
l=1

lMl.

Each Ml is an independent Poisson of parameter ml = λuαl.
The mean total number E [Ntot] of RBs allocated in the cell
C, for users distributed according to a PPP is the sum:

E [Ntot] =

lm∑
l=1

∫
x∈C

l αlλudx

According to Błaszczyszyn et al. [4], for all t ≥ 1 and γ >
2 the SIR coverage probability for a poissonian network is
expressed as:

P(SIR ≥ t) = γ sin (2π/γ)

2π
t−2/γ

Therefore, it is proven in Appendix citer that the coefficient
αl becomes dominant for small values of l as γ increases.
E [Ntot] thus decreases with γ.
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C. Influence of γ on loss probability.

Theorem 2. In Poisson point process deployed network, for
a fixed threshold Navail, the loss probability decreases as γ
increases.

Proof. As in [9], the distribution of lMl s constructed by the
rule:

pl (ω) =

{
0 if ωmod l 6= 0,
exp (−ml)m

q
l /q! if ∃ q ∈ N, ω = ql.

As the random variable Ntot is a linear combination of
independent random variable, its density can be recovered by
convolution of the densities of lMl. Since αl for small values
of l becomes more dominant, the probability of small values
occurring increases.

In interference limited networks, the path-loss γ has a
beneficial impact on the overall quality of the signal since
it limits mutual cell interference.

D. Approximation of Navail.

Since the probability density of Ntot is known, numerical
simulations are conducted to find Navail such that:

P (Ntot ≥ Navail) ≤ ε,

ε being the desired loss threshold. For engineering purposes,
a lower robust bound is provided thanks to the concentration
inequality.

Theorem 3. The lower bound is given by:

P(Ntot ≥ E[Ntot] + a) ≤ exp

(
−

E
[
N2
tot

]
lm

g

(
a lm

E[N2
tot]

))
,

where g(θ) = (1+θ) ln (1 + θ)−θ and the moments are given
for any p natural integer:

E [Np
tot] =

lm∑
l=1

∫
x∈C

lp αlλudx.

Proof. Since the number of RBs l is a positive integer with
maximum lm, Theorem 4 of [9] is applied to derive the
expression.

The lower bound of Navail is then given by:

Navail = E[Ntot] + a,

where a is the solution of:

g

(
a lm

E[N2
tot]

)
= − ln(ε) lm

E[N2
tot]

.

TABLE I: Simulation parameters

λn 3.0 per km square

λu 400 per unit square

lm 10

C 1 Mb/s

WRB 180 kHz

Path-loss exponent from 2 to 5

Network radius 1,8 km
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Fig. 1: E [Ntot] for a loss-probability of ε = 10−2 in function
of γ

III. SIMULATIONS

In this section, the previous theoretical analysis are con-
firmed by numerical simulations. We also explore the influence
of the regularity of the deployment on resource block alloca-
tion and loss probability in the network. Simulation parameters
are summarized in Table I. The values λn and λu are chosen
to match a busy urban environment. Users are assumed to be
identical and ask for a download throughput of 1 Mb/s.

Figure 1 illustrates Theorem 1, where the mean number of
RB needed decreases dramatically from 170 to 120 with γ.
Such results are coherent with the fact that this study focuses
on interference limited systems. Since radio propagation con-
ditions becomes harsher with a high value of γ, interfering
signals are therefore less strong compared to the main signal,
granting more surface of the cell a higher SNR. Likewise,
Figure 3 shows that for a fixed number of RBs per cell, the
loss probability decreases with γ, as stated in Theorem 2.
Figure 2 shows that the approximation given by the inequality
concentration stated in Theorem 3 is as expected pessimistic
and over estimate the exact result by 10%. The authors in [3]
have shown that the β-Ginibre Point Process (β-GPP) provides
a robust model for fitting real deployment. The PPP indeed
fails to catch the underlying repulsiveness that exists between
base station sites, since location of the points are considered to
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Fig. 2: E [Ntot] for a loss-probability of ε = 10−2 in function
of γ
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Fig. 3: Loss-probability for Ntot = 100 in function of γ

be independent with one another. Therefore, cluster of points
might occur. A network deployed such as a PPP is qualified
as uniform. On the contrary, a network where clusters occur
with infinitesimal probability is qualified as regular. The β-
GPP stands in between, thanks to β. When β goes to zero, the
β-GPP converges to a PPP in law. However, the 1-GPP is the
Ginibre Point Process. For each figure, the worst case scenario
is held by the PPP whereas the best case scenario is given by
the 1-GPP. The SIR is indeed improved in the network with
β going to one as shown in [5]. Figure 1 and Figure 2 show
that the improvement between PPP and 1-GPP varies between
12% and 26% depending on the value of γ. Likewise, the loss-
probability is improved up to a factor of four between the PPP
and 1-GPP.

IV. CONCLUSION

In this paper, the impact of the path-loss exponent on
network dimensioning has been studied. Theoretical and nu-
merical analysis demonstrated that in a PPP deployed network,
a higher path-loss exponent has a beneficial effect on network
performances under interference limited regime. Numerical
analysis performed with β-GPP deployed networks has shown
that spatial regularity has a dramatic effect on increasing
network performances. Future works will aim at understanding
the role of the noise in dimensioning cellular networks.

APPENDIX A

Influence of γ on the coefficients αl.

According to the definition of the family (α1, . . . , αlm) , α1

and αlm are strictly monotonously increasing and decreasing
respectively for γ ≥ 2. In order to prove that the coefficients
αl for small l become preponderant in the weight sums, one
must consider the pairwise difference:

dl(γ) = αl+1 − αl,

=
γ sin(2π/γ)

2π

(
2t
−2/γ
l − t−2/γl−1 − t

−2/γ
l+1

)
.

A necessary and sufficient condition for the pairwise differ-
ences to be positive is

ql(γ) =

(
tl−1
tl

)− 2
γ

+

(
tl+1

tl

)− 2
γ

≤ 2.

A study of the variations of ql(γ) establishes that this function
satisfies to the condition if and only if:

tl+2 tl
t2l+1

≥ 1,

The variation study of this ratio proves that this condition is
always verified.

Therefore for γ large enough:
1) α1 ≥ . . . ≥ αlm ,
2) limγ→∞ α1 = 1,
3) limγ→∞ αl = 0, with l 6= 1.

This proves that the coefficients αl for small l become pre-
ponderant in the weight sums with γ increasing.
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