
HAL Id: hal-01405186
https://hal.science/hal-01405186v1

Submitted on 29 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient local search for L_1 and L_2 binary matrix
factorization

Hamid Mirisaee, Eric Gaussier, Alexandre Termier

To cite this version:
Hamid Mirisaee, Eric Gaussier, Alexandre Termier. Efficient local search for L_1 and L_2 binary
matrix factorization. Intelligent Data Analysis, 2016, 20, pp.783 - 807. �10.3233/IDA-160832�. �hal-
01405186�

https://hal.science/hal-01405186v1
https://hal.archives-ouvertes.fr


Efficient Local Search for L1 and L2 Binary
Matrix Factorization

Hamid Mirisaee∗1, Eric Gaussier1 and Alexandre Termier†2

1University of Grenoble Alps/CNRS, France
2University of Rennes I, France

Abstract

Rank K Binary Matrix Factorization (BMF) approximates a bi-
nary matrix by the product of two binary matrices of lower rank, K.
Several researchers have addressed this problem, focusing on either
approximations of rank 1 or higher, using either the L1 or L2-norms
for measuring the quality of the approximation. The rank 1 prob-
lem (for which the L1 and L2-norms are equivalent) has been shown
to be related to the Integer Linear Programming (ILP) problem. We
first show here that the alternating strategy with the L2-norm, at the
core of several methods used to solve BMF, can be reformulated as
an Unconstrained Binary Quadratic Programming (UBQP) problem.
This reformulation allows us to use local search procedures designed
for UBQP in order to improve the solutions of BMF. We then intro-
duce a new local search dedicated to the BMF problem. We show in
particular that this solution is in average faster than the previously
proposed ones. We then assess its behavior on several collections and
methods and show that it significantly improves methods targeting the
L2-norms on all the datasets considered; for the L1-norm, the improve-
ment is also significant for real, structured datasets and for the BMF
problem without the binary reconstruction constraint.
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1 Introduction

Many datasets of interest for scientific or industrial applications are high
dimensional binary matrices. The high dimensionality negatively impacts
the performance of traditional data analysis algorithms such as clustering or
association rule mining. Matrix factorization is a way to compress the data
while preserving most of the characteristic patterns found inside. When the
input matrix and the factors are both binary matrices, the operation is called
a Binary Matrix Factorization (BMF). BMF has been successfully applied
in the context of gene expression analysis [23, 24], digit reconstruction [16],
document clustering [13,24] and frequent itemset mining [20].

Given X ∈ {0, 1}M×N and K ∈ N, K << min(M,N), the general prob-
lem of rank K binary matrix factorization takes the following form:

argmin
W,H

||X−W ×H||p (p = 1 or p = 2)

subject to W ∈ {0, 1}M×K ,H ∈ {0, 1}K×N

(optional) W ×H ∈ {0, 1}M×N

(1)

where ||.||p denotes either the L1-norm (p = 1) or the L2-norm (p = 2). In
this paper, we denote the L1 and L2 cases as L1-BMF and L2-BMF respec-
tively. The optional constraint is here referred to as the binary reconstruction
constraint.

Different methods have been proposed to solve (more precisely, to pro-
vide an approximation of the solution of) the above problem. For the L2-
BMF, efficient approaches usually solve a relaxed version of the problem, e.g.
through non-negative matrix factorization (NMF) or singular value decom-
position (SVD), and then project the solution into the admissible domain.
Alternatively, one can iteratively solve simpler problems with K = 1, and
then aggregate the solutions to obtain the solution to the original prob-
lem. This is typically the approach adopted in the Proximus system [9, 10].
In both NMF-based approaches and Proximus, the approximate solution is
found by iteratively fixing one matrix, W or H, and solving for the other.
For the L1-BMF, the most efficient approaches, to our knowledge, consider
the problem as a clustering problem and make use of a variant of the K-
means algorithm to solve it [6]. These related studies are presented in more
detail in Section 2 of this paper.

Previous studies have shown that computing a rank 1 (K = 1) approx-
imation could be reformulated as a 0 − 1 integer linear programming prob-
lem [21]. They exploit this reformulation to guarantee the computation of
an optimal solution on small matrices, and through relaxations provide ap-
proximations with a bounded error rate on larger matrices.

Our first contribution, presented in Section 3, is to show that in the
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general case (rankK ≥ 1), L2-BMF can be reformulated as an Unconstrained
Binary Quadratic Programming (UBQP) problem [2]. The relation to UBQP
suggests the use of p-opt local search procedures developed in that context
for L2-BMF. We explore this direction and, as our second contribution, we
propose (in Section 4) a new p-opt local search, which can be applied to
both L1- and L2-BMF, that we prove to be more efficient comparing to
other approaches.

With thorough experiments on both synthetic and real data, presented
in Section 5, we demonstrate that the heuristic we propose significantly im-
proves the quality of existing methods in a reasonable amount of time. We
also show that this local search procedure fares well when compared to other
heuristic strategies [7].

2 Related work

The optimization problem (1) can be seen as an NMF [11,12] problem with
additional binary constraints. Two main approaches have been followed
along this line. The first one (used in [19]) amounts to first solve a stan-
dard NMF problem and then to project the solution into the {0, 1}M×K ×
{0, 1}K×N sub-space. The projection step amounts to setting to 1 all values
of W (resp. H) above a threshold θw (resp. θh) and to 0 all the other ones.
θw and θh are either learned from the data (typically using a grid search)
or set to a pre-defined value, as 0.5. Learning the thresholds, even though
more costly, usually leads to better results [19]. The second approach (used
in [23] and [24] for example) amounts to integrating, through regularization
terms, the binary constraints into the objective function being minimized in
NMF, leading to:

argmin
W,H

||X−W ×H||2

+λ1||W(2) −W||2 + λ2||H(2) −H||2
subject to W ≥ 0,H ≥ 0

(2)

where W
(2)
ij = (Wij)

2 (and similarly for H2). Hence, the second and third
terms of the objective function force the factors to be binary, as ||W(2)−W||F
(resp. ||H(2) −H||F ) is null for binary matrices and strictly positive other-
wise. Setting λ1 and λ2 to very high values may result in binary factors, but
at the expense of having a large reconstruction error. It is nevertheless pos-
sible to couple this approach with the preceding one, as the factors obtained
prior to thresholding will be closer to binary values than the ones obtained
through standard NMF. The same approach can be used for SVD, dropping
in this case the positive constraints in the optimization problem (as done
in [18] for example, for a similar problem on boolean, and not binary, matrix
decomposition).
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A problem similar to (1) is formulated in [13]. In this latter work, how-
ever, a third, non-binary matrix is introduced, making the problem addressed
differently from the one we are interested in. This said, the approach devel-
oped in [13] bears strong similarities with the ones used for solving Problem
(1).

A simple and efficient heuristics to solve Problem (1) is the one at the
basis of the Proximus system [9,10]. In this approach, one iteratively solves
rank 1 decompositions and combines them to form the global solution. The
rank 1 problems are solved through an alternate rule that fixes either w or h
(we use here a vector notation as W and H reduce to vectors for K = 1) and
finds the best w or h; this can be done efficiently by noticing that, given w,
the element hl should be 1 if at least half of the non-zero elements of w are
covered in X.l (the lth column of X). In between each iteration, the original
matrix X is decomposed and a new rank 1 solution is searched on a subpart
of it. As the presence vectors (i.e. the different h vectors) are orthogonal to
each other, the global solution, obtained by concatenating the different rank
1 solutions, satisfies all the constraints in (1).

In a more recent work, Shen et. al. [21] show that the rank 1 binary
matrix factorization problem can be formulated as a 0 − 1 integer linear
program (ILP) through the maximum weight problem. They then study
a continuous relaxation of this problem, as well as a minimum s − t cut
approximation that can be solved with maximum flow algorithms. Finally,
they use this approach as an initialization step for Proximus.

These two latter studies, with a focus on rank 1 decompositions, are
suitable for both L1- and L2-BMF. The study recently presented in [6] pro-
vides an original approach, called Constrained Binary Matrix Factorization
(CBMF), for L1-BMF. In this work, the complete problem (with the binary
reconstruction constraint) is addressed via K−means clustering, by selecting
initial cluster representatives from column vectors of X and reassigning each
column vector to the class of the closest representative. New representatives
are computed at each iteration, and the process is repeated until the clus-
ters do not evolve anymore. A "zero" cluster, the representative of which
does not change and is set to the null vector, is used to capture column
vectors of X that are best approximated by the null vector in the recon-
structed matrix. Using results from [5], the authors furthermore show that
their approach yields a 4(2 + logK)-approximation of the optimal solution.
A variant of this problem, called Unconstrained Binary Matrix factorization
(UBMF), has been also presented in [6] for the unconstrained case.

The NMF problem as well as the K−means clustering one are known
to be NP-hard [1, 3]. A related problem to the one considered here, namely
the weighted rank 1 binary matrix factorization, is also shown to be NP-
complete in [15]. This problem, defined for K = 1, however differs from ours
in that the errors made in the reconstruction (having a 1 instead of a 0 or a
0 instead of a 1) are weighted differently (they have the same weight, 1, in
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our formulation). Even though this difference may seem marginal, it suffices
to obtain a reduction from the maximum edge weight biclique problem, and
the reduction proposed in [15] can not be directly applied to our problem.
In fact, even though Problem (1) has been claimed in several places to be
NP-hard, we know of no formal proof for this fact. Several relations, as the
one we display here in Section 3, to NP-hard problems have been established;
however, no clear reduction from an NP-hard problem has been shown to our
knowledge. This said, no proof that the problem can be solved in polynomial
time has been proposed either, and all the methods proposed so far to solve it
are heuristics. We conjecture here, as done in several prior studies (e.g. [21]),
that the rank K binary matrix factorization problem is NP-hard.

3 General considerations

We are interested here in studying a local search heuristic that can improve
the solutions provided by standard methods for the rank K binary factor-
ization problem, for both L1- and L2-BMF. A general way to solve such
problems is to relate them to known problems and use the solutions of the
latter to solve or improve the solutions the former. For instance, as mention
in Section 2, BMF has been reformulated as an ILP problem in [21] or as
a clustering problem in [6]. In the following, we establish another relation
between L2-BMF and the Unconstrained Binary Quadratic Programming
(UBQP) problem in order to open a new direction for this problem. This
relation allows us to use the local search procedures designed for UBQP [2]
to improve the solutions of L2-BMF.

3.1 L2-BMF and UBQP

As mentioned above, standard methods for L2-BMF fix one matrix, W or
H, and solve for the other. The quantity to be minimized in L2-BMF can
be rewritten as:

||X−WH||22 =
M∑
i=1

N∑
j=1

(xij −
K∑
k=1

wikhkj)
2

with:

(xij −
K∑
k=1

wikhkj)
2 = x2ij + (

K∑
k=1

wikhkj)
2 − 2xij

K∑
k=1

wikhkj

Fixing e.g. H and solving for W thus amounts to solve the following mini-
mization problem, ∀i, 1 ≤ i ≤M (i.e. for all rows of W):

argminwi.

N∑
j=1

(x2ij + (

K∑
k=1

wikhkj)
2 − 2xij

K∑
k=1

wikhkj) (3)
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where wi. is the ith row vector of W. The above quantity is equal to

argminwi.

N∑
j=1

(

K∑
k=1

wikhkj)
2 +

K∑
k=1

wik

N∑
j=1

(−2xijhkj) (4)

since xij is not subject to any change and does not play any role in the
minimization problem. The first term in (4),

∑N
j=1(

∑K
k=1wikhkj)

2, can be
rewritten as:

N∑
j=1

(
K∑
k=1

wikhkj)
2 =

K∑
k=1

wik

N∑
j=1

hkj +
K∑
k=1

K∑
k′=k+1

wikwik′2
N∑
j=1

hkjhk′j (5)

Now if we use (5) to extend (4), we need to minimize the following quantity
with respect to wi.:
K∑
k=1

wik

N∑
j=1

hkj︸ ︷︷ ︸
α

+

K∑
k=1

K∑
k′=k+1

wikwik′2

N∑
j=1

hkjhk′j+

K∑
k=1

wik

N∑
j=1

(−2xijhkj)︸ ︷︷ ︸
β

(6)

Now we factorize
∑K

k=1wik in α and β:

K∑
k=1

wik(
N∑
j=1

hkj −
N∑
j=1

(2xijhkj)) +
K∑
k=1

K∑
k′=k+1

wikwik′2
N∑
j=1

hkjhk′j (7)

which is equal to
K∑
k=1

wik(
N∑
j=1

hkj(1− 2xij)) +
K∑
k=1

K∑
k′=k+1

wikwik′2
N∑
j=1

hkjhk′j (8)

Now, let us consider the symmetric matrix Q of size K ×K:

qkk =
N∑
j=1

hkj(1− 2xij), qkk′ =
N∑
j=1

hkjhk′j (k 6= k′)

The quantity minimized in problem (4) can be rewritten with Q as follows:

K∑
k=1

w2
ikqkk +

K∑
k=1

K∑
k′=k+1

2wikwik′qkk′ = wi.QwT
i.

and thus problem (4) can be reformulated as:

argminwi.
wi.QwT

i. (9)

which corresponds to a UBQP problem [2, 17]. One should note that the
placement of the transposed vector is not important in this problem and it
could be either before the weighting matrix (Q) or after that. Applying the
same development to H (when W is fixed) leads to the following property.

6



Property 1 Iteratively solving the L2-BMF problem by fixing either W or
H and solving for the other is equivalent to iteratively solving UBQP problems
of the form:

argminv vTQv (10)

with:

qkk =
∑N

j=1 hkj(1− 2xij) OR
∑M

i=1wik(1− 2xij)

qkk′ =
∑N

j=1 hkjhk′j (k 6= k′) OR
∑M

i=1wikwik′ (k 6= k′)

Note that when k = 1, the optimal W or H, when the other one is fixed, is
directly obtained by setting the ith element of W (or H) to 1 if more than half
of the elements with a 1 in H (or W) have also a 1 in the ith row (or column)
of X, and to 0 otherwise. This corresponds to the alternating strategy used
in Proximus. When k > 1, this not longer holds and approximate solutions
are usually obtained. Using UBQP solvers in this case does not however
represent an interesting alternative, as the solutions provided by e.g. NMF
in the continuous space are in general faster to obtain (and the projection
on the binary domain can be done efficiently as mentioned in Section 2).

3.2 p-opt local search for UBQP and relation to L2-BMF

Despite the fact mentioned above, it might still be interesting to improve the
NMF, SVD or Proximus solutions through local search algorithms designed
for UBQP. Local search algorithms are heuristics aimed at improving a cur-
rent solution by searching in its neighborhood for a better solution (hence
the name "local"). In the context of BMF, the neighborhood of size p of a
given W (or H) is defined by the set of matrices that can be obtained from
W (or H) by flipping at most p cells (here, flipping means changing a 1 to a 0
and vice versa). [2] and [17] present such local search heuristics, called p-opt
local search, for UBQP. The 1-opt local search algorithm proposed in [17]
looks for the solution in the neighborhood of size 1 that maximizes the gain
with respect to the current solution and adopts this solution if the gain is
positive. The p-opt local search, which parallels the Tabu search of [4] dis-
cussed in [2] and based on [8] and [14], is similar for the neighborhood of size
p, except that, for computational reasons, one does not look for the solution
that maximizes the gain but only explores a part of the neighborhood looking
for a solution that improves the current one. This exploration corresponds
to a recursive application of the 1-opt solution.

Complexity Considerations

p-opt local search algorithms are of course interesting if the gains can be
computed efficiently; the complexity of the p-opt local search algorithm pro-
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posed in [17], when applied to the ith row of W, i.e. Problem (9), is O(K2)
once the matrix Q, which depends on i, has been constructed.

In each round of updating W, the matrix Q is constructed for the first
row with a cost of O(K2N) as the diagonal of Q can be computed via K
dot products with vectors of size N and the upper triangle of Q has K(K−1)

2
elements, each of which requiring a dot product of vectors of size N . Note
that Q is symmetric and one only needs to compute the upper (or the lower)
triangle part. Once Q is constructed for the first row of W, it can then
be reused for other rows with a simple update of the diagonal which could
be done in O(KN), as explained before. Accordingly, computing Q for all
rows of W has a time complexity of O(KMN) as it is one time K2N and
(M − 1) times KN . As updating each row is done in O(K2), for M rows
we have O(MK2) for the update phase. As a result, the total complexity
for updating W in one round is O(MKN + MK2) and since N ≥ K the
complexity will be O(MKN). By dividing this quantity by the number of
rows, M , one will have O(KN) as the complexity of updating one row of W
with the UBQP-based technique, denoted as 1-opt-UBQP hereafter. One can
simply see that updating a column of H has exactly the same complexity.

4 p-opt local search for L1- and L2-BMF

As discussed in Section 3, L2-BMF can be reformulated as UBQP which
enables us to apply the UBQP’s p-opt local heuristic on L2-BMF solutions.
As mentioned in that section, the time complexity of updating one row of
W is O(KN). In this section, a more efficient p-opt local search procedure
is introduced and its time complexity is studied.

As mentioned before, rows of W (or columns of H) can be optimized
independently. We show here how to optimize, in a neighborhood of size
1, a row of W (the reasoning is the same for a column of H). For each
row wi. of W, we first compute a partition of columns of H. The main
rationale of such partitioning is to compute, for each partition, the gains
separately. Furthermore, using this partitioning, one is able to replace many
vector multiplications with straightforward summations. In the following,
we first show how this partitioning is done. We then provide examples to
illustrate how this technique works on real matrices and how it can accelerate
the process.

Definition 1 For a given row wi. (1 ≤ i ≤ M) of W and a given H, we
define three sets of column vectors of H:

(i) W 0
i = {h.l | 1 ≤ l ≤ N, xil = 0}

(ii) W⊥i = {h.l | 1 ≤ l ≤ N, xil = 1, < wi.,h.l >= 0}

(iii) W 6⊥i = {h.l | 1 ≤ l ≤ N, xil = 1, < wi.,h.l >6= 0}
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where h.l is the binary vector corresponding to the lth column of H, xil the
cell of X at row i and column l; < ., . > denotes the dot product. We have
of course: |W 0

i |+ |W⊥i |+ |W
6⊥
i | = N .

The following example illustrates the three sets defined above.

Example 1

Let xi. =
(
1 1 0 0 1 1

)
, wi. =

(
0 0 1

)
and

H =

0 1 1 1 1 0
1 1 1 0 0 0
1 0 1 1 0 1


Then:

W 0
i = {h.3,h.4} =

1 1
1 0
1 1

 W⊥i = {h.2,h.5} =

1 1
1 0
0 0



W 6⊥i = {h.1,h.6} =

0 0
1 0
1 1


Given a row of W (resp. a column of H), the idea is to exploit the

characteristics of the corresponding row (resp. column) of X and H (resp.
W) in order to efficiently compute the gain that we obtain by flipping a bit.
What we need now, in order to define an efficient p-opt local search, is a fast
way to compute the gain when flipping the jth bit of wi. from 0 to 1 and
vice versa. Such a gain (which can be positive or negative) is defined as

∆E(i, j) = E(i, j)new − E(i, j)old = ||xi. −wj
i.H||p − ||xi. −wi. ×H||p

where wj
i. is obtained from wi. by flipping the jth bit, either from 0 to 1

or from 1 to 0. Theorem 1 provides simple expressions for ∆E(i, j) for
improving the solutions of both L1- and L2-BMF; expressions that can be
computed efficiently with respect to other methods, as it will be shown in
Theorem 2.

Theorem 1 Let ∆E(i, j; 0→ 1, L2) (resp. ∆E(i, j; 1→ 0, L2)) be the gain
obtained when flipping the jth bit of wi. from 0 to 1 (resp. from 1 to 0),
measured by the L2-norm (similarly for L1-norm). Then:

∆E(i, j; 0→ 1, L2) =
∑

h∈W 0
i

(1 + 2 < wi.,h >)hj

+
∑

h∈W 6⊥i

(2 < wi.,h > −1)hj −
∑

h∈W⊥i

hj
(11)

9



Algorithm 1 1-opt-BMF
Input: Matrices X, W and H; p = 1 or 2
Output: Improved W and H
1: repeat
2: for each row wi in W do
3: j = argmin

1≤j′≤k
∆E(i, j′;Lp)

4: if ∆E(i, j;Lp) < 0 then flip Wij

5: end if
6: end for
7: for each column hi in H do
8: j = argmin

1≤j′≤k
∆E(i, j′;Lp)

9: if ∆E(i, j;Lp) < 0 then flip Hji

10: end if
11: end for
12: until no change in W and H

∆E(i, j; 1→ 0, L2) =
∑

h∈W 0
i

(1− 2 < wi.,h >)hj

+
∑

h∈W 6⊥i
<wi.,h>hj=1

1 +
∑

h∈W 6⊥i
<wi.,h>hj>1

3− 2 < wi.,h >
(12)

Similarly, for the L1-norm we have:

∆E(i, j; 0→ 1, L1) =
∑

h∈W 0
i

hj +
∑

h∈W 6⊥i

hj −
∑

h∈W⊥i

hj (13)

∆E(i, j; 1→ 0, L1) =
∑

h∈W 6⊥i
<wi.,h>hj=1

1−
∑

h∈W 0
i

hj −
∑

h∈W 6⊥i
<wi.,h>hj>1

1 (14)

The proof of this theorem is discussed in the appendix.
Theorem 1 provides a direct way to compute the gain associated to each

possible flip of an element of wi., which can be used in a 1-opt local search
procedure as defined in Algorithm 1. We denote the proposed technique
as 1-opt-BMF. One should note that in Algorithm 1, we use ∆E(i, j;Lp)
which is equal to ∆E(i, j; 0 → 1, Lp) if wij = 0 and to ∆E(i, j; 1 → 0, Lp)
otherwise. The following example illustrates how one can utilize Theorem 1
in practice.
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Example 2 Consider the following configuration where one aims at opti-
mizing the ith row of W (denoted by wi.) having the corresponding row of X
(denoted by xi.) and matrix H:

xi. =
(
1 1 0 0 1 1

)
, wi. =

(
0 1 1

)
and H =

0 1 1 1 1 0
1 1 1 0 0 0
1 0 1 1 0 1


Using Def. 1, we have the following sets:

W 0
i = {h.3,h.4} =

1 1
1 0
1 1

 W⊥i = {h.5} =

1
0
0



W 6⊥i = {h.1,h.2,h.6} =

0 1 0
1 1 0
1 0 1


What we need to do is to compute the error change (gain) for 0 cells and
1 cells in wi. separately. Let G = (g0→1

1 , g1→0
2 , g1→0

3 ) denote the gain for
flipping the bits where the subscripts show the index of the corresponding
cells and in wi. and the superscripts show whether one should use the zero-
to-one formulations in Theorem 1 or the one-to-zero formulations. Once the
vector G is computed, we can decide which bit to flip in order to maximize
the improvement. We consider both the L2 and the L1 cases:

• L2: one obtains g0→1
1 = +8 using Eq. (11). Similarly, using Eq. (12)

for g1→0
2 and g1→0

3 , one obtains −3 and −4 respectively. As a result
the gain vector is G = (+8, −3, −4) which means that the best bit to
flip is the last one as it has the highest negative gain.

• L1: in this case we use Eq. (13) for the first cell and Eq. (14) for
the second and the third one which gives us the following gain vector
G = (+2, −1, −2). In this case, one selects the third bit to flip as it
leads to the best improvement comparing to the other bits.

The procedure expressed in Algorithm 1 can be naturally extended to
p-opt local search, either by adopting a greedy approach, in which case one
applies p times a 1-opt local search, as done in [17], or by finding the p flips
that maximize the gain. In both cases, the gain of flipping several bits is
the sum of the gain of the individual flips. However, in the latter approach,
the complexity for selecting the best bits to flip is O(Kp), which prevents its
application in most practical cases (in contrast, the complexity of the p-opt
greedy approach to select the p bits is O(pK)). In the remainder, and as
done in many studies, when we talk about the p-opt local search, we refer
to the p-opt greedy approach. Lastly, Algorithm 1 (and its p-opt extension)
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can also be adapted to cover the formulation of the BMF problem with the
binary reconstruction constraint by accepting a flip only if the result is a
binary vector (this condition can be efficiently computed when checking the
gains defined in Theorem 1).

Complexity considerations

As mentioned previously, the complexity of updating one row (say row i) of
W through the 1-opt-UBQP isO(KN). A standard procedure, denoted as 1-
opt-Standard hereafter, which computes the gain through the multiplication
of wi. and H would in fact have a complexity of O(K2N) as it needs to
multiply wi., which is of size K, by H to find the gain of flipping one single
cell (O(KN) so far) and this multiplication needs to be done one time for
each cell of wi.. Using the same reasoning, 1-opt-Standard has a complexity
of O(K2M) for updating one column of H. We show, via Theorem 2, that
the 1-opt procedure defined on the basis of Theorem 1, i.e. 1-opt-BMF, is
more efficient. This result directly extends to p-opt local search as this latter
is just a chain of 1-opt procedures. Note that in Theorem 2, since we aim
at finding the minimum gain that we are able to obtain using the proposed
method, we consider updating a row of W in our calculations. The reason
is that for the 1-opt-UBQP technique the complexity is the same for both
cases (updating one row of W and updating one column of H); however,
since the complexity in the standard method is not the same for updating
one row of W and updating one column of H (O(K2N) vs. O(K2M)), we
consider the faster one (K2N) in order to obtain the minimum gain that we
can achieve with the proposed method. Consequently, Theorem 2, the proof
of which is given in the appendix, considers the case of updating one row of
W.

Theorem 2 We assume a row vector wi. of W and a matrix H. Further-
more, let d be the density of xi. (the ith row of X) and let τ denote the
proportion of columns l of H orthogonal to wi. and such that xil = 1 (thus
τ = |W⊥i |/N). Then, the gain in complexity for the 1-opt procedure based on
Theorem 1 compared to both 1-opt-UBQP and 1-opt-Standard is at least:

• min{(1−τ)−1,Kτ−1} for the L2-norm with respect to the 1-opt-UBQP;

• min{K(1−τ)−1,K2τ−1} for the L2-norm with respect to 1-opt-Standard;

• min{K2,K(d− τ)−1} for the L1-norm with respect to 1-opt-Standard.

One important remark here is that in the proposed method for L2 norm,
the condition τN > KN(1 − τ) will almost never occur as it corresponds
to values of τ greater than 0.50 and to matrices where d ≥ τ > 0.50, i.e.
to extremely dense matrices. As a result, in practice, the complexity of the
proposed L2 method is O

(
KN(1 − τ)

)
and, consequently, the gain will be
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(1 − τ)−1 compared to 1-opt-UBQP and K(1 − τ)−1 compared to 1-opt-
Standard.

Another remark is that with the proposed method (Theorem 1), we do
not need to perform all the dot products (the most computationally expen-
sive operations in these formulations) for all cells of wi. as the dot products
are done between wi. and the sets defined in Def. 1; none of these elements
change while we are computing the gain for a given vector. Accordingly, one
does not need to iterate over each cell which is the key point of efficiency of
this method.

According to Theorem 2, one can note that the gain obtained by the
proposed method is independent of K for the solutions of L2-BMF while
there is a dependency between K and the gain obtained by the proposed
method for the solutions of L1-BMF.

5 Experiments

5.1 General settings

We have evaluated the proposed local search heuristic, 1-opt-BMF, on sev-
eral methods used to solve the BMF problem and on several datasets. As
mentioned in Section 2, in the literature, different techniques have been pro-
posed to address the BMF problem. For instance, one can use NMF or SVD
solvers and then project the results into the binary space [19]. The Prox-
imus system, introduced in [9,10], not only provides binary factors, but also
can guarantee a binary reconstructed matrix. All these methods address the
L2-BMF problem.

To tackle the L1-BMF, a clustering-based method, called CBMF, has
been proposed in [6]. This method also provides binary factors as well as
binary reconstruction/approximation of the input data. A variant of CBMF,
called UBMF, is used to solve the BMF problem without binary reconstruc-
tion constraint. Based on the points mentioned above, in our experiments,
we use all these methods in order to observe the performance of 1-opt-BMF
local search with other 1-opt techniques on each of these methods.

As mentioned before, 1-opt-BMF and 1-opt-Standard can be applied on
both L1- and L2-BMF methods while 1-opt-UBQP can only be applied on
L2-BMF methods. Table 1 shows a summary of the methods used in the
experiments as well as the applicable 1-opt strategies for each of them. One
should note that only CBMF and Proximus provide binary reconstruction
as they impose orthogonality on one of the factors(W or H).

For projected NMF and SVD, we use a grid search, as done in [19] and
discussed in the related work section, with a step size of 0.05 in order to
project the matrices into the binary space. To perform NMF and SVD, we
used Matlab built-in functions. We used our own Matlab implementations
for the other methods.
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Table 1: Summary of the methods used in the experiments and the applicable
1-opt techniques for each method.

Problem Applicable methods Applicable 1-opt

L1-BMF CBMF, UBMF 1-opt-BMF
1-opt-Standard

L2-BMF Proj. SVD/NMF, Proximus
1-opt-BMF
1-opt-Standard
1-opt-UBQP

Table 2: Datasets used in the experiments.

Name # Rows # Columns Density (%)
Mushroom 8124 119 19.32
Connect 67557 129 33.33
Accidents 340183 468 7.22
Pumsb 49046 2113 3.50
T10I4D100K 100000 870 1.16
T40I10D100K 100000 942 4.20

As mentioned before, we refer to the method proposed in this study
as 1-opt-BMF, to the standard implementation as 1-opt-Standard and to
the 1-opt local search associated with UBQP as 1-opt-UBQP. One should
note that the 1-opt-Standard approach benefits from highly efficient block
algorithms available in LAPACK (incorporated in Matlab) which are, in
average, significantly faster than a simple, naive multiplication.

In our experiments, we let the rank K vary in the set {1, 20, 40, 60, 80,
100}. All the experiments are done on a Linux machine with an Intel Xeon
CPU E5-2630 with 6 cores @ 2.30Ghz and 32Gb of memory. In order to be
fair, unless it is explicitly mentioned, no multiprocessing or multithreading
is done in our experiments.

5.2 Datasets

We examined both real world datasets as well as synthetic ones from the
frequent itemset mining repository, all available at http://fimi.ua.ac.be/
data/ (last visited 21-Jul-2015). The main reason that we use frequent
itemset mining datasets is that they are necessarily binary which suits our
experimental setting. Table 2 shows the sets we used in addition to some of
their characteristics. The first part of the table shows the real datasets and
the second part shows the synthetic ones. Note that in our experiments, we
have removed all empty rows and empty columns from the data.
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Figure 1: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-
opt-Standard (right) for SVD

5.3 Time comparison

We compare here 1-opt-BMF with 1-opt-Standard and 1-opt-UBQP accord-
ing to the running time. One should note that these three approaches yield
exactly the same solution, namely the one corresponding to the best im-
provement in a neighborhood of size 1 and, thus, their only difference is the
running time. 1-opt-BMF and 1-opt-Standard can be applied to both L1- and
L2-BMF methods, whereas 1-opt-UBQP can only be applied on the L2-BMF
methods (NMF, SVD and Proximus). As a result, for the L2-BMF methods,
we compare 1-opt-BMF with both 1-opt-Standard and 1-opt-UBQP while
for the L1-BMF methods we can only perform one comparison: 1-opt-BMF
with 1-opt-Standard.

To further illustrate the speed of the different methods, we display in
Figure 1-4 the ratios of the execution time of 1-opt-Standard divided by ex-
ecution time of 1-opt-BMF and of the execution time of 1-opt-UBQP divided
by execution time of 1-opt-BMF. An additional line, labeled as "Ratio=1",
is added to make it simpler to compare different methods: 1-opt-BMF is
faster when the curve is above this line, and slower otherwise.

5.3.1 Projected SVD and NMF

Figure 1 illustrates the time comparison between 1-opt-UBQP and 1-opt-
BMF on the left hand side as well as the comparison between 1-opt-Standard
and 1-opt-BMF on the right hand side. The first issue to note is that,
generally speaking, 1-opt-UBQP is faster than 1-opt-Standard as the ratio
of the latter reaches up to 4.7 while for the former it reaches up to 1.8 in
the best case. Another point on this figure is that by increasing the value of
K the ratio increases significantly with respect to the standard method. In
case of UBQP, the curves become almost stable for larger values of K. As
discussed in Theorem 2, the gain of 1-opt-Standard is directly influenced by
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Figure 2: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-
opt-Standard (right) for NMF

K, unlike that of 1-opt-UBQP.
As one can see on the right figure, the curves are under the fixed line

(Ratio=1) for Mushroom and Connect for K < 60. These two sets are the
smallest sets in our experiments; as 1-opt-BMF has an overhead of finding
the sets defined in Def. 1, for small datasets this overhead is more visible with
respect to the update part. However, for K ≥ 60, one can observe that the
1-opt-BMF becomes faster. For sufficiently large datasets (as Accidents or
T40I10D100K) and sufficiently large values of K (e.g. K = 100), 1-opt-BMF
can be nearly 5 times faster than the standard approach.

On the left figure, we only see one dataset (Pumsb) being always below
the fixed line. The main reason here is that this dataset is not only very
sparse (d = 3.5%), but also has a small value of τ (0.02 ≤ τ ≤ 0.03 for
K = 20 for instance) which makes (1 − τ) very close to 1. According to
Theorem 2, a small value of (1 − τ) results in a small gain, and since we
have an overhead for computing the sets defined in Def. 1, the 1-opt-BMF
cannot be more efficient than the 1-opt-UBQP in this case. However, in the
other datasets, we observe the efficiency of the 1-opt-BMF with respect to
1-opt-UBQP.

In Figure 2, one can observe the experiments using NMF. In that figure,
we can see the same points that we saw for the SVD case. We can also see
the same issue for Pumsb when 1-opt-UBQP is used. Additionally, the semi-
constant line for ratios can also be seen in this case after a certain value of K
(the figure on left) while in the 1-opt-standard case (the figure on right) the
ratio grows as the value of K increases. This is in line with the theoretical
analysis provided in Theorem 2.

5.3.2 Proximus

First of all, one should note that in Proximus, one may not necessarily obtain
the number of latent factors s/he had initially in mind. The reason is that,
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Figure 3: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-
opt-Standard (right) for Proximus

according to the way Proximus solves the problem, in each iteration a set
of columns are eliminated (the covered columns are eliminated in order to
ensure the orthogonality which, in turn, ensures the binary reconstruction).
This may result in early termination of the algorithm if it runs out of columns
before reaching the desired value of K. This case has happened for two
datasets in our experiments: Mushroom and Connect. Since they have few
columns and they are very dense, the columns are covered very quickly. As
a result, we only have 53 and 54 latent factors in Mushroom and Connect
respectively. Consequently, in Figure 3, for K ≥ 60, we report the same
results corresponding to the maximum number of factors obtained.

As one can observe in Figure 3, 1-opt-Standard has a similar behavior
to the other L2-BMF methods (SVD and NMF). The situation with respect
to 1-opt-UBQP is also similar to that of SVD or NMF. When applied on
Proximus, 1-opt-BMF is faster on 5 collections out of 6, i.e. all except Pumsb
for the same reason mentioned for the SVD and the NMF case. Here again
one can see that 1-opt-BMF gets significantly faster than the 1-opt-Standard
as the value of K increases.

5.3.3 CBMF and UBMF

For the L1-BMF methods, one can only apply 1-opt-Standard (Figure 4).
Here, as we have seen before, except the smallest sets (Mushroom and Connect),
1-opt-BMF is up to 8 times faster than the standard method where this ef-
ficiency in more considerable with larger values of K. Again, this is in line
with the theoretical analysis provided before.

Summary

1-opt-BMF is in general faster than 1-opt-Standard and 1-opt-UBQP where
the difference is much higher for the former than for the latter. Furthermore,
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Figure 4: Efficiency of 1-opt-BMF compared to 1-opt-Standard for CBMF
(left) and for UBMF (right)

Table 3: Summary of improvement made by 1-opt-BMF over other methods.
The numbers show the average and the best ratio obtained over all datasets
and over all values of K.

Method 1-opt-UBQP 1-opt-Standard
Average Best Average Best

Projected NMF 1.07 1.72 1.73 3.85
Projected SVD 1.15 1.85 2.06 4.76
Proximus 1.13 1.72 1.65 4.70
CBMF NA NA 2.90 8.00
UBMF NA NA 2.86 8.04

unlike 1-opt-UBQP, 1-opt-BMF can be applied to all the BMF methods we
know of. Table 3 summarizes the average and the best improvement made
by 1-opt-BMF wrt both 1-opt-UBQP and 1-opt-Standard.

5.4 Impact of 1-opt local search on L2-BMF

As discussed before, all the previously mentioned methods yield the same so-
lution; in other words, the only difference between different 1-opt strategies
is the time complexity. Here, we would like to examine the significance of the
improvement brought by any 1-opt method. Figure 5 shows the effectiveness
of (any) 1-opt strategy when it is applied on (projected) SVD, (projected)
NMF and Proximus. As one can note, projected NMF performs in generally
better than projected SVD, with a reconstruction error (measured with the
L2-norm) significantly lower. Projected NMF also yields a lower reconstruc-
tion error than Proximus, but Proximus provides a solution that satisfies the
binary reconstruction constraint, which is not the case for NMF.

To assess whether the improvements obtained with 1-opt are significant,
we computed the p-value of the Wilcoxon rank-sum test (which is widely
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Figure 5: Improvement of L2-norm with the 1-opt strategy applied on pro-
jected SVD, projected NMF and Proximus. The horizontal axis represents
the value of K and the vertical axis shows the L2-norm.

used to compare a series of bits) at the 1% significance level. In almost all
L2-norm cases with K = 1 there is no improvement with 1-opt. This can be
explained by the fact that the first dominant factor in the datasets is more
easily approximated by the different methods than the first K factors. This
observation also explains why the gain with Proximus, which solves a series
of rank 1 problems, is not as important as with the other methods. For

19



K > 1 however, in all sets and with all methods, the improvement obtained
with the 1-opt local heuristic is statistically significant. In particular, for
NMF and SVD, the improvement can be up to 61% for real sets, and up to
12 % for synthetic sets.

5.5 Impact of 1-opt local search on L1-BMF

As mentioned before, two methods are discussed in the literature to solve
the L1-BMF problem, namely CBMF and UBMF [6], where the latter is a
variant of the former. As CBMF is a K-means-based technique, one can
apply swap heuristics, like the one explained in [7], in order to improve the
results. We denote this technique as SCBMF (’s’ stands for swapped). We
also apply the 1-opt heuristic over SCBMF and denote it as 1-opt-SCBMF.
The main difference between SCBMF and (any) 1-opt local search procedures
is that the former tries to find better solutions by exploring different parts of
the search space whereas the latter tries to find a better solution in a close
neighborhood of the current solution. The swap procedures, mainly applied
to K-means-like methods, replaces a center with one data point and redoes
the clustering to see if the new solution is better than the previous one.
Since CBMF is based the on K-means approach, one can apply the swap
procedure by randomly replacing a center (a column of W) with a random
column of X and redo the assignments. As mentioned before, one can still
apply a 1-opt heuristic on top SCBMF (1-opt-SCBMF ).

There are different criteria to choose the number of swaps in SCBMF.
For example, one can select a fixed number of swaps or a time limit. To be
fair in our comparison, we have adopted here the following strategy: for each
dataset we first run the proposed 1-opt algorithm, i.e. 1-opt-BMF, (which
is in general faster than the other approaches as discussed in Section 5.3) on
CBMF and measure its running time; then, we let the SCBMF procedure
run the same amount of time to improve the CBMF results. Like that, one
can observe which method performs better under a given time budget.

Lastly, as SCBMF proceeds via random selections, for each dataset, we
run the SCBMF ten times and report the average error of these ten runs. In
this case, a difference is deemed statistically significant if it was significant
on the majority of the 10 runs. As before, we use the Wilcoxon sum-rank
test at the 1% significance level to assess whether differences in the results
are significant or not.

Table 4 illustrates the improvement that 1-opt can make over the L1-
BMF methods, namely CBMF, SCBMF and UBMF. As mentioned before,
SCBMF is provided the same amount of time as 1-opt-BMF. As one can
note, the case of K = 1 is removed from the table since, as mentioned above,
no local improvement can be made for the first factor.

The table shows the normalized errors in percentage. Significant improve-
ments are shown in bold (measured again using the Wilcoxon rank-sum test
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Table 4: Effectiveness of the 1-opt on L1-BMF methods. Numbers are the
normalized error in percentage. Statistically significant improvements are
shown in boldface.

Dataset k CBMF SCBMF 1-opt-SCBMF UBMF
Standard 1-opt Standard 1-opt

Mushroom

20
40
60
80
100

7.5032
4.9601
2.5769
1.4323
0.1917

7.2662
4.4301
2.2591
1.1655
0.1313

7.0481
4.1346
2.4711
1.3449
0.1835

6.7332
3.6278
2.1682
1.1608
0.1500

6.8685
4.4537
2.1958
1.0042
0.1377

6.8685
4.4537
2.1958
1.0042
0.1377

Connect

20
40
60
80
100

7.9585
4.9624
2.6073
1.7881
0.3537

7.8659
4.9077
2.5850
1.6420
0.3537

7.4513
4.5270
2.4071
1.3584
0.3537

7.3004
4.4728
2.3849
1.3551
0.3537

7.3202
4.1145
1.7336
0.8995
0.3537

7.3202
4.1145
1.7336
0.8995
0.3321

Accidents

20
40
60
80
100

3.1373
2.7191
2.1906
1.6426
1.1345

3.1373
2.7191
2.1493
1.6360
1.1014

3.1373
2.7191
2.1900
1.6321
1.1342

3.1373
2.7191
2.1495
1.6255
1.1018

2.9923
2.4352
1.9766
1.4654
0.9504

2.9923
2.4352
1.9766
1.4653
0.9504

Pumsb

20
40
60
80
100

1.3253
0.9608
0.8719
0.8763
0.7560

1.2895
0.9310
0.8647
0.8467
0.7470

1.3214
0.9608
0.8719
0.8740
0.7560

1.2782
0.9311
0.8647
0.8491
0.7470

1.2177
0.8903
0.8201
0.7638
0.7010

1.2176
0.8903
0.8200
0.7637
0.7010

T10I4D100K

20
40
60
80
100

1.1158
1.0745
1.0432
0.9806
0.9441

1.1158
1.0745
1.0432
0.9804
0.9435

1.1148
1.0745
1.0413
0.9803
0.9438

1.1148
1.0745
1.0413
0.9802
0.9432

1.1158
1.0734
1.0403
0.9757
0.9321

1.1097
1.0734
1.0403
0.9757
0.9321

T40I10D100K

20
40
60
80
100

4.0715
3.9340
3.8203
3.6850
3.5602

4.0715
3.9340
3.8203
3.6850
3.5596

4.0715
3.9340
3.8169
3.6850
3.5560

4.0715
3.9340
3.8169
3.6850
3.5555

4.0715
3.9321
3.7926
3.6382
3.5062

4.0563
3.9321
3.7926
3.6382
3.5062

at the 1% significance level). Note that for CBMF (resp. UBMF), the 1-opt
error is shown in bold if it is significantly better than standard CBMF (resp.
UBMF). SCBMF’s error is shown in bold if it is significantly better than
standard CBMF. For 1-opt-SCBMF, the error is in bold if it is significantly
better than SCBMF.

The first point to note is that all proposed heuristics have difficulties
improving the error value over synthetic datasets. In those datasets, which
do not contain any structure, all the methods yield roughly the same results.

Over all real datasets, a 1-opt local search can often bring significant
improvement in the error value. The most spectacular case is the Mushroom
dataset, where for K = 80 the error value is decreased by more than 18%.
This dataset has a large number of patterns spanning few lines [22], making
it more difficult for BMF algorithms to compute a good approximation for
high values of K. These results show that although a 1-opt heuristic ex-
plores a small neighborhood of the current solution, it can help improve the
decomposition on such difficult cases.
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Connect is a dense dataset with a strong structure [22]. This structure
is mostly captured by classical CBMF for small values of K, with only small
improvement by 1-opt (1%). Here the improvement of a local search only
pays off for K = 80 (8%). On the other hand, SCBMF has significantly
better results (from 6% to 24% improvement in error value) than CBMF:
this means that CBMF was stuck in a region that was not optimal. The
swap heuristic of SCBMF is the only one of this comparison that can get out
of this local optima and find a better solution. SCBMF’s solutions can be
further refined by applying a 1-opt heuristic, showing the ability of 1-opt to
improve an already good solution whatever its position in the search space.

Accidents is a different type of dataset: despite its huge size it has rela-
tively short transactions (length 33 in average) and contains many patterns
differing on only a few columns, a structure difficult to capture with low
values of K. CBMF captures well the bulk of this structure (as shown by
the lack of improvement from SCBMF) and its solution is hard to improve
for low K values (no improvement by 1-opt). However for higher values of
K, the potential of the 1-opt local search heuristic appears, as it provides a
significant improvement for K ≥ 60.

Pumsb is the sparsest real dataset of this experiment. This sparsity, com-
bined with the higher number of columns, prevents SCBMF to find a better
solution in the allocated time. However, the dataset (originating from US
Census data) has some structure, and here also the 1-opt method can signif-
icantly improve the solution found by CBMF (at best 3% for K = 40).

In unconstrained case, i.e. UBMF, it becomes much harder to improve
the results. Nevertheless, there are still a few cases where the 1-opt approach
can provide a significantly better approximation.

6 Conclusion

We have addressed in this study the problem of rank K Binary Matrix
Factorization (BMF) which aims at approximating a binary matrix by the
product of two binary matrices of lower rank. Several researchers have ad-
dressed this problem, focusing on either approximations of rank 1 or higher,
using either the L1 or L2-norms (L1- and L2-BMF) for measuring the quality
of the approximation, through variants of the alternating strategy typically
used for non-negative matrix factorization [12].

We have shown here that this alternating strategy for L2-BMF can be
reformulated as an Unconstrained Binary Quadratic Programming (UBQP)
problem. This reformulation allows us to use the heuristics of UBQP in order
to improve the solutions of L2-BMF. Then we introduced a new local search
dedicated to both L1- and L2-BMF, and studied its complexity with respect
to other local search approaches.

Our experiments, conducted with several state-of-the-art methods, on
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several datasets, have confirmed that the 1-opt local search procedure pro-
posed in this study is in general faster than the previously proposed ones.
They have also shown that this procedure significantly improves the solu-
tions found by state-of-the-art L2-BMF methods: projected NMF, projected
SVD and Proximus.

For the L1-BMF methods, the experimental results show that the 1-opt
local search procedure improves the results of the state-of-the-art methods
(CBMF and its "swapped" version) solving the complete L1-BMF problem,
with the binary reconstruction constraint. The situation is more contrasted
with UBMF, which solves the L1-BMF problem without the binary recon-
struction constraint. 1-opt local search heuristic do not seem to be able to
improve this state-of-the-art method.
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Appendix

Theorem 1 Let ∆E(i, j; 0→ 1, L2) (resp. ∆E(i, j; 1→ 0, L2)) be the gain
obtained when flipping the jth bit of wi. from 0 to 1 (resp. from 1 to 0),
measured by the L2-norm (similarly for L1-norm). Then:

∆E(i, j; 0→ 1, L2) =
∑

h∈W 0
i

(1 + 2 < wi.,h >)hj

+
∑

h∈W 6⊥i

(2 < wi.,h > −1)hj −
∑

h∈W⊥i

hj
(11)

∆E(i, j; 1→ 0, L2) =
∑

h∈W 0
i

(1− 2 < wi.,h >)hj

+
∑

h∈W 6⊥i
<wi.,h>hj=1

1 +
∑

h∈W 6⊥i
<wi.,h>hj>1

3− 2 < wi.,h >
(12)

Similarly, for the L1-norm we have:

∆E(i, j; 0→ 1, L1) =
∑

h∈W 0
i

hj +
∑

h∈W 6⊥i

hj −
∑

h∈W⊥i

hj (13)

∆E(i, j; 1→ 0, L1) =
∑

h∈W 6⊥i
<wi.,h>hj=1

1−
∑

h∈W 0
i

hj −
∑

h∈W 6⊥i
<wi.,h>hj>1

1 (14)

Proof. For each of the formulations, we consider the error change with respect
to the sets defined in Def. 1.

∆E(i, j; 0 → 1, L2)

• First consider the W 0
i set: before the flip, the error E1

0 , of wi. wrt W 0
i

is:
E1

0 =
∑

h∈W 0
i

< wi.,h >2

After the flip, this error becomes

E2
0 =

∑
h∈W 0

i

(< wi.,h > +hj)
2

as the elements of W 0
i correspond to the cells in X having zero val-

ues (Def. 1). Accordingly, flipping the jth cell of wi from 0 to 1 will
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potentially increase the error depending on the value of hj ; thus, the
difference in errors amounts to:

E2
0 − E1

0 =
∑

h∈W 0
i

(< wi.,h > +hj)
2 −

∑
h∈W 0

i

< wi.,h >2 (15)

=
∑

h∈W 0
i

(
(< wi.,h > +hj)

2− < wi.,h >2
)

(16)

=
∑

h∈W 0
i

< wi.,h >2 +2 < wi.,h > hj + h2j− < wi.,h >2

(17)

=
∑

h∈W 0
i

2 < wi.,h > hj + h2j (18)

=
∑

h∈W 0
i

(1 + 2 < wi.,h >)hj (19)

Note that in (18) we can replace h2j with hj as matrix H is binary.

• For W 6⊥i case, we denote the error before the flip as E1
6⊥ and the error

after the flip as E2
6⊥: before the flip we have

E1
6⊥ =

∑
h∈W 6⊥i

(< wi.,h > −1)2

as we need to produce 1 in this case (see Def. 1) and thus the initial
error for the columns in W 6⊥i amounts to (< wi.,h > −1)2 since we are
considering the L2-norm. After the flip, we are potentially introducing
more error since flipping a 0 to a 1 will increase the dot product if hj is
also equal to 1 (if it is equal to zero, no additional error is introduced).
Accordingly, the new error becomes

E2
6⊥ =

∑
h∈W 6⊥i

(< wi.,h > −1 + hj)
2

The difference amounts to:

E2
6⊥ − E1

6⊥ =
∑

h∈W 6⊥i

(< wi.,h > −1 + hj)
2 −

∑
h∈W 6⊥i

(< wi.,h > −1)2

(20)

=
∑

h∈W 6⊥i

(
(< wi.,h > −1 + hj)

2 − (< wi.,h > −1)2
)

(21)

=
∑

h∈W 6⊥i

(2 < wi.,h > −1)hj (22)
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• Finally, we considerW⊥i : the error, before the flip, is the cardinality of
the set (since the dot product is 0 whereas it should be 1). As a result,
the flip can only reduce this error and it does so for all the vectors in
W⊥i whose jth element is 1. Accordingly, following our notations, the
difference in error is thus

E2
⊥ − E1

⊥ = −
∑

h∈W 6⊥i

hj (23)

Summing (19), (22) and (23) yields Eq. (11).

∆E(i, j; 1 → 0, L2)

• As before, the error with respect to W 0
i is

E1
0 =

∑
h∈W 0

i

< wi.,h >2

before the flip. After the flip, since we are changing a 1 to a 0, we are
potentially decreasing the error. The reason is that columns inW 0

i need
to produce zeros when multiplied by wi. while the dot product may
produce other values. As a result, when the jth bit of wi. flipped to zero,
it could decrease the error depending on the value of hj ; accordingly,
the new error is simply

E2
0 =

∑
h∈W 0

i

(< wi.,h > −hj)2

and the difference amounts to:

E2
0 − E1

0 =
∑

h∈W 0
i

(< wi.,h > −hj)2 −
∑

h∈W 0
i

< wi.,h >2 (24)

=
∑

h∈W 0
i

(
(< wi.,h > −hj)2− < wi.,h >2

)
(25)

=
∑

h∈W 0
i

< wi.,h >2 −2 < wi.,h > hj + h2j− < wi.,h >2

(26)

=
∑

h∈W 0
i

−2 < wi.,h > hj + h2j (27)

=
∑

h∈W 0
i

(1− 2 < wi.,h >)hj (28)

Here, we can again replace h2j with hj in (27) as matrix H is binary.
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• For a given h ∈W 6⊥i , two situations arise: case (i) is when, for a given
column h ∈ W 6⊥i we have < wi,h > hj = 1, which means the dot
product and the jth cell of h are both 1. In this case, if we flip the
jth cell of wi. to 1, we have added one error per column. So we have
the following quantity as error increase (which is simply the quantity
of the set): ∑

h∈W 6⊥i
<wi.,h>hj=1

1 (29)

Case (ii) is when, for a given column h ∈ W 6⊥i , we have (< wi,h >
)hj > 1, which means that hj = 1 and < wi,h > is greater than 1. In
such case, the initial error we are making is

E1
6⊥ =

∑
h∈W 6⊥i

<wi.,h>hj>1

(< wi.,h > −1)2

and by flipping the jth bit results in adding one extra error:

E2
6⊥ =

∑
h∈W 6⊥i

<wi.,h>hj>1

(< wi.,h > −2)2

Accordingly, we have

E2
6⊥ − E1

6⊥ =
∑

h∈W 6⊥i
<wi.,h>hj>1

(< wi.,h > −2)2 −
∑

h∈W 6⊥i
<wi.,h>hj>1

(< wi.,h > −1)2

(30)

=
∑

h∈W 6⊥i
<wi.,h>hj>1

(< wi.,h > −2)2 − (< wi.,h > −1)2 (31)

=
∑

h∈W 6⊥i
<wi.,h>hj>1

3− 2 < wi.,h > (32)

One should note that if hj = 0 flipping the corresponding bit in wi. from
0 to 1 does not change the error as, in any case, their multiplication
will be zero.

• Lastly, the error on W⊥i is not affected by the flip as wj
i. is already

orthogonal to all the elements of W⊥i and flipping a 1 to 0 will not
change this orthogonality and, as a result, does not change the error
value.
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Summing (28), (29) and (32) yields Eq. (12).

∆E(i, j; 0 → 1, L1)

• For columns inW 0
i , if we flip a 0 to a 1 in wi., in case the corresponding

cell of a given column h ∈W 0
i is zero, no extra error is introduced as the

multiplication would be zero in any case. However if the corresponding
cell is 1, then one new error is introduced. So the error in this case is
simply: ∑

h∈W 0
i

hj (33)

• For columns of W 6⊥i , we need to produce 1. Consequently, the initial
error is

E1
6⊥ =

∑
h∈W 6⊥i

(< wi.,h > −1)

and the new error will be

E2
6⊥ =

∑
h∈W 6⊥i

(< wi.,h > −1 + hj)

as flipping the jth bit from 0 to 1 will introduce one new error if hj is
also equal to 1. As a result:

E2
6⊥ − E1

6⊥ =
∑

h∈W 6⊥i

(< wi.,h > −1 + hj)−
∑

h∈W 6⊥i

(< wi.,h > −1) (34)

=
∑

h∈W 6⊥i

< wi.,h > −1 + hj− < wi.,h > +1 (35)

=
∑

h∈W 6⊥i

hj (36)

• For columns of W⊥i , we may be able to decrease the error by flipping
a bit from 0 to 1 as, initially, wi. is orthogonal to the columns of W⊥i ,
i.e the dot product produces zero while we expect a 1. As a result,
if we flip the jth cell to 1, then we can decrease the error only if the
corresponding cell in h ∈ W⊥i is also equal to one. Consequently the
error change in this case is:

−
∑

h∈W⊥i

hj (37)

Summing (33), (36) and (37) yields Eq. (13).

∆E(i, j; 1 → 0, L1)
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• For W 0
i , as we need to produce a zero for each dot product, flipping a

bit from 1 to 0 can only cause error decrease. This will happen if the
corresponding cell in h ∈W 0

i is 1. Thus, the error change is:

−
∑

h∈W 0
i

hj (38)

• For columns in W 6⊥i , we again have two case: (i) when have < wi,h >
hj = 1 in which, by the same token as before, we are introducing one
error per column, which means ∑

h∈W 6⊥i
<wi.,h>hj=1

1 (39)

Case (ii) is when (< wi,h >)hj > 1, which means that hj = 1 and
< wi,h > is greater than 1. In this case, by flipping 1 to 0, we decrease
the error one unit per column (as the corresponding cell, hj , is equal to
one for all columns in this set). So the difference in the error is given
by

−
∑

h∈W 6⊥i
<wi.,h>hj>1

1 (40)

• For W⊥i , we do not introduce any new error by flipping a bit from 1
to 0 as the dot product is already zero and setting an element to zero
does not change the result of this product.

Summing (38), (39) and (40) yields Eq. (14).�

Theorem 2 We assume a row vector wi. of W and a matrix H. Further-
more, let d be the density of xi. (the ith row of X) and let τ denote the
proportion of columns l of H orthogonal to wi. and such that xil = 1 (thus
τ = |W⊥i |/N). Then, the gain in complexity for the 1-opt procedure based on
Theorem 1 compared to both 1-opt-UBQP and 1-opt-Standard is at least:

• min{(1−τ)−1,Kτ−1} for the L2-norm with respect to the 1-opt-UBQP;

• min{K(1−τ)−1,K2τ−1} for the L2-norm with respect to 1-opt-Standard;

• min{K2,K(d− τ)−1} for the L1-norm with respect to 1-opt-Standard.

Proof. First note that 0 ≤ τ ≤ d ≤ 1 as the proportion of columns in H
corresponding to 1s in xi., i.e. d, is larger than the proportion of columns
in H corresponding to 1s in xi. and orthogonal to wi., i.e. τ . From the
definitions of d and τ , one has: |W 0| = (1 − d)N, |W⊥| = τN, |W 6⊥| =
(d − τ)N . If we look at it in the matrix-wise way, we have the following
matrices:
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Table 5: Complexity analysis of Eq. (11)

Sub-equation Operations needed Complexity∑
h∈W0

i
(1 + 2 < wi.,h >)hj dot prod. between wi. and W0

i O
(
KN(1− d)

)∑
h∈W 6⊥

i
(2 < wi.,h > −1)hj dot prod. between wi. and W 6⊥

i O
(
KN(d− τ)

)∑
h∈W⊥

i
hj summation over a row of W⊥i O(τN)

Table 6: Complexity analysis of Eq. (12)

Sub-equation Operations needed Complexity∑
h∈W0

i
(1− 2 < wi.,h >)hj dot product between wi. and W0

i O
(
KN(1− d)

)∑
h∈W 6⊥

i
<wi.,h>hj=1

1 +∑
h∈W 6⊥

i
<wi.,h>hj>1

3− 2 < wi.,h >
dot prod. between wi. and W 6⊥

i O
(
KN(d− τ)

)

1. W0
i which is of size K × (1− d)N

2. W⊥
i which is of size K × τN

3. W 6⊥
0 which is of size K × (d− τ)N .

In order to study the minimum gain we obtain, we need to find the
complexity of both L1 and L2 cases. Since we have two formulas for each
of these methods (one for flipping from 0 to 1 and the other for flipping
from 1 to 0), we need to compute, for each norm, the complexity of each
formula and take the maximum as the complexity. For Equation (11), we
have three parts in our complexity analysis which have been shown in Table
5. According to this table, if we sum all the complexities, we will have the
following total complexity for Equation (11):

O
(
KN(1− d) +KN(d− τ) + τN

)
= O

(
KN(1− τ)

)
(41)

For Equation (12), we have two main parts to consider in the complexity
analysis. One should note that although the equation contains three parts,
for two of them we need the same operation and, as a result, we can consider
them as one single entity. Table 6 illustrates these entities: according to
Table 6, the total complexity of Equation (12) amount to

O
(
KN(1− d) +KN(d− τ)

)
= O

(
KN(1− τ)

)
(42)

And thus, according to (41) and (42) the proposed method in case of L2

norm has a complexity of O
(
KN(1− τ)

)
. Now if we divide the complexity

of the UBQP-based approach, i.e. O(KN), by this quantity, we have a gain
of (1−τ)−1, and if we divide that by the complexity of the standard method,
i.e. O(K2N), we have a gain of K(1− τ)−1.

For the L1 case, we have two equations: (13) and (14). We can con-
sider Table 7 for Equation (13). Based on that, the total complexity of this
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Table 7: Complexity analysis of Eq. (13)

Sub-equation Operations needed Complexity∑
h∈W0

i
hj summation over one row of W0

i O
(
N(1− d)

)∑
h∈W 6⊥

i
hj summation over one row of W 6⊥

i O
(
N(d− τ)

)∑
h∈W⊥

i
hj summation over one row of W⊥

i O(τN)

Table 8: Complexity analysis of Eq. (14)

Sub-equation Operations needed Complexity
−
∑

h∈W0
i
hj summation over one row of W0

i O
(
N(1− d)

)∑
h∈W 6⊥

i
<wi.,h>hj=1

1−
∑

h∈W 6⊥
i

<wi.,h>hj>1

1 dot prod. between wi. and W 6⊥
i O

(
KN(d− τ)

)

equation is:
O
(
N(1− d) +N(d− τ) + τN

)
= O(N) (43)

For Equation (14), we have basically two parts to study as shown in Table
8. Comparing (43) and complexities in Table 8, one can see that the total
complexity of the proposed method in case of L1 norm is O

(
max{N,KN(d−

τ)}
)
as N ≥ N(1 − d). Now if we divide complexity of the standard

method, O(K2N), by this quantity, the minimum gain er obtain will be
min{K2,K(d− τ)−1} which establishes the theorem.�
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