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Rank K Binary Matrix Factorization (BMF) approximates a binary matrix by the product of two binary matrices of lower rank, K. Several researchers have addressed this problem, focusing on either approximations of rank 1 or higher, using either the L 1 or L 2 -norms for measuring the quality of the approximation. The rank 1 problem (for which the L 1 and L 2 -norms are equivalent) has been shown to be related to the Integer Linear Programming (ILP) problem. We first show here that the alternating strategy with the L 2 -norm, at the core of several methods used to solve BMF, can be reformulated as an Unconstrained Binary Quadratic Programming (UBQP) problem. This reformulation allows us to use local search procedures designed for UBQP in order to improve the solutions of BMF. We then introduce a new local search dedicated to the BMF problem. We show in particular that this solution is in average faster than the previously proposed ones. We then assess its behavior on several collections and methods and show that it significantly improves methods targeting the L 2 -norms on all the datasets considered; for the L 1 -norm, the improvement is also significant for real, structured datasets and for the BMF problem without the binary reconstruction constraint.

Introduction

Many datasets of interest for scientific or industrial applications are high dimensional binary matrices. The high dimensionality negatively impacts the performance of traditional data analysis algorithms such as clustering or association rule mining. Matrix factorization is a way to compress the data while preserving most of the characteristic patterns found inside. When the input matrix and the factors are both binary matrices, the operation is called a Binary Matrix Factorization (BMF). BMF has been successfully applied in the context of gene expression analysis [START_REF] Zhang | Binary matrix factorization for analyzing gene expression data[END_REF][START_REF] Zhang | Binary matrix factorization with applications[END_REF], digit reconstruction [START_REF] Meedsa | Modeling dyadic data with binary latent factors[END_REF], document clustering [START_REF] Li | A general model for clustering binary data[END_REF][START_REF] Zhang | Binary matrix factorization with applications[END_REF] and frequent itemset mining [START_REF] Mirisaee | Itemset approximation using constrained binary matrix factorization[END_REF].

Given X ∈ {0, 1} M ×N and K ∈ N, K << min(M, N ), the general problem of rank K binary matrix factorization takes the following form:

             argmin W,H ||X -W × H|| p (p = 1 or p = 2) subject to W ∈ {0, 1} M ×K , H ∈ {0, 1} K×N (optional) W × H ∈ {0, 1} M ×N (1)
where ||.|| p denotes either the L 1 -norm (p = 1) or the L 2 -norm (p = 2). In this paper, we denote the L 1 and L 2 cases as L 1 -BMF and L 2 -BMF respectively. The optional constraint is here referred to as the binary reconstruction constraint.

Different methods have been proposed to solve (more precisely, to provide an approximation of the solution of) the above problem. For the L 2 -BMF, efficient approaches usually solve a relaxed version of the problem, e.g. through non-negative matrix factorization (NMF) or singular value decomposition (SVD), and then project the solution into the admissible domain. Alternatively, one can iteratively solve simpler problems with K = 1, and then aggregate the solutions to obtain the solution to the original problem. This is typically the approach adopted in the Proximus system [START_REF] Koyuturk | Proximus: A framework for analyzing very high-dimensional discrete-attributed datasets[END_REF][START_REF] Koyuturk | Compression, clustering, and pattern discovery in very-high-dimensional discrete-attribute data sets[END_REF]. In both NMF-based approaches and Proximus, the approximate solution is found by iteratively fixing one matrix, W or H, and solving for the other. For the L 1 -BMF, the most efficient approaches, to our knowledge, consider the problem as a clustering problem and make use of a variant of the Kmeans algorithm to solve it [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF]. These related studies are presented in more detail in Section 2 of this paper.

Previous studies have shown that computing a rank 1 (K = 1) approximation could be reformulated as a 0 -1 integer linear programming problem [START_REF] Shen | Mining discrete patterns via binary matrix factorization[END_REF]. They exploit this reformulation to guarantee the computation of an optimal solution on small matrices, and through relaxations provide approximations with a bounded error rate on larger matrices.

Our first contribution, presented in Section 3, is to show that in the general case (rank K ≥ 1), L 2 -BMF can be reformulated as an Unconstrained Binary Quadratic Programming (UBQP) problem [START_REF] Beasley | Heuristic algorithms for the unconstrained binary quadratic programming problem[END_REF]. The relation to UBQP suggests the use of p-opt local search procedures developed in that context for L 2 -BMF. We explore this direction and, as our second contribution, we propose (in Section 4) a new p-opt local search, which can be applied to both L 1 -and L 2 -BMF, that we prove to be more efficient comparing to other approaches.

With thorough experiments on both synthetic and real data, presented in Section 5, we demonstrate that the heuristic we propose significantly improves the quality of existing methods in a reasonable amount of time. We also show that this local search procedure fares well when compared to other heuristic strategies [START_REF] Kanungo | A local search approximation algorithm for k-means clustering[END_REF].

Related work

The optimization problem (1) can be seen as an NMF [START_REF] Daniel | Learning the parts of objects by non-negative matrix factorization[END_REF][START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] problem with additional binary constraints. Two main approaches have been followed along this line. The first one (used in [START_REF] Miettinen | The discrete basis problem[END_REF]) amounts to first solve a standard NMF problem and then to project the solution into the {0, 1} M ×K × {0, 1} K×N sub-space. The projection step amounts to setting to 1 all values of W (resp. H) above a threshold θ w (resp. θ h ) and to 0 all the other ones. θ w and θ h are either learned from the data (typically using a grid search) or set to a pre-defined value, as 0.5. Learning the thresholds, even though more costly, usually leads to better results [START_REF] Miettinen | The discrete basis problem[END_REF]. The second approach (used in [START_REF] Zhang | Binary matrix factorization for analyzing gene expression data[END_REF] and [START_REF] Zhang | Binary matrix factorization with applications[END_REF] for example) amounts to integrating, through regularization terms, the binary constraints into the objective function being minimized in NMF, leading to:

     argmin W,H ||X -W × H|| 2 +λ 1 ||W (2) -W|| 2 + λ 2 ||H (2) -H|| 2 subject to W ≥ 0, H ≥ 0 (2)
where W

(2) ij = (W ij ) 2 (and similarly for H 2 ). Hence, the second and third terms of the objective function force the factors to be binary, as ||W (2) -W|| F (resp. ||H (2) -H|| F ) is null for binary matrices and strictly positive otherwise. Setting λ 1 and λ 2 to very high values may result in binary factors, but at the expense of having a large reconstruction error. It is nevertheless possible to couple this approach with the preceding one, as the factors obtained prior to thresholding will be closer to binary values than the ones obtained through standard NMF. The same approach can be used for SVD, dropping in this case the positive constraints in the optimization problem (as done in [START_REF] Miettinen | The boolean column and column-row matrix decompositions[END_REF] for example, for a similar problem on boolean, and not binary, matrix decomposition).

A problem similar to (1) is formulated in [START_REF] Li | A general model for clustering binary data[END_REF]. In this latter work, however, a third, non-binary matrix is introduced, making the problem addressed differently from the one we are interested in. This said, the approach developed in [START_REF] Li | A general model for clustering binary data[END_REF] bears strong similarities with the ones used for solving Problem [START_REF] Daniel Aloise | Nphardness of euclidean sum-of-squares clustering[END_REF].

A simple and efficient heuristics to solve Problem [START_REF] Daniel Aloise | Nphardness of euclidean sum-of-squares clustering[END_REF] is the one at the basis of the Proximus system [START_REF] Koyuturk | Proximus: A framework for analyzing very high-dimensional discrete-attributed datasets[END_REF][START_REF] Koyuturk | Compression, clustering, and pattern discovery in very-high-dimensional discrete-attribute data sets[END_REF]. In this approach, one iteratively solves rank 1 decompositions and combines them to form the global solution. The rank 1 problems are solved through an alternate rule that fixes either w or h (we use here a vector notation as W and H reduce to vectors for K = 1) and finds the best w or h; this can be done efficiently by noticing that, given w, the element h l should be 1 if at least half of the non-zero elements of w are covered in X .l (the l th column of X). In between each iteration, the original matrix X is decomposed and a new rank 1 solution is searched on a subpart of it. As the presence vectors (i.e. the different h vectors) are orthogonal to each other, the global solution, obtained by concatenating the different rank 1 solutions, satisfies all the constraints in [START_REF] Daniel Aloise | Nphardness of euclidean sum-of-squares clustering[END_REF].

In a more recent work, Shen et. al. [START_REF] Shen | Mining discrete patterns via binary matrix factorization[END_REF] show that the rank 1 binary matrix factorization problem can be formulated as a 0 -1 integer linear program (ILP) through the maximum weight problem. They then study a continuous relaxation of this problem, as well as a minimum s -t cut approximation that can be solved with maximum flow algorithms. Finally, they use this approach as an initialization step for Proximus.

These two latter studies, with a focus on rank 1 decompositions, are suitable for both L 1 -and L 2 -BMF. The study recently presented in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF] provides an original approach, called Constrained Binary Matrix Factorization (CBMF), for L 1 -BMF. In this work, the complete problem (with the binary reconstruction constraint) is addressed via K-means clustering, by selecting initial cluster representatives from column vectors of X and reassigning each column vector to the class of the closest representative. New representatives are computed at each iteration, and the process is repeated until the clusters do not evolve anymore. A "zero" cluster, the representative of which does not change and is set to the null vector, is used to capture column vectors of X that are best approximated by the null vector in the reconstructed matrix. Using results from [START_REF] Hasewaga | Efficient algorithms for vairance-based k-clustering[END_REF], the authors furthermore show that their approach yields a 4(2 + log K)-approximation of the optimal solution. A variant of this problem, called Unconstrained Binary Matrix factorization (UBMF), has been also presented in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF] for the unconstrained case.

The NMF problem as well as the K-means clustering one are known to be NP-hard [START_REF] Daniel Aloise | Nphardness of euclidean sum-of-squares clustering[END_REF][START_REF] Gillis | Nonnegative factorization and the maximum edge biclique problem[END_REF]. A related problem to the one considered here, namely the weighted rank 1 binary matrix factorization, is also shown to be NPcomplete in [START_REF] Lu | Weighted rank-one binary matrix factorization[END_REF]. This problem, defined for K = 1, however differs from ours in that the errors made in the reconstruction (having a 1 instead of a 0 or a 0 instead of a 1) are weighted differently (they have the same weight, 1, in our formulation). Even though this difference may seem marginal, it suffices to obtain a reduction from the maximum edge weight biclique problem, and the reduction proposed in [START_REF] Lu | Weighted rank-one binary matrix factorization[END_REF] can not be directly applied to our problem. In fact, even though Problem (1) has been claimed in several places to be NP-hard, we know of no formal proof for this fact. Several relations, as the one we display here in Section 3, to NP-hard problems have been established; however, no clear reduction from an NP-hard problem has been shown to our knowledge. This said, no proof that the problem can be solved in polynomial time has been proposed either, and all the methods proposed so far to solve it are heuristics. We conjecture here, as done in several prior studies (e.g. [START_REF] Shen | Mining discrete patterns via binary matrix factorization[END_REF]), that the rank K binary matrix factorization problem is NP-hard.

General considerations

We are interested here in studying a local search heuristic that can improve the solutions provided by standard methods for the rank K binary factorization problem, for both L 1 -and L 2 -BMF. A general way to solve such problems is to relate them to known problems and use the solutions of the latter to solve or improve the solutions the former. For instance, as mention in Section 2, BMF has been reformulated as an ILP problem in [START_REF] Shen | Mining discrete patterns via binary matrix factorization[END_REF] or as a clustering problem in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF]. In the following, we establish another relation between L 2 -BMF and the Unconstrained Binary Quadratic Programming (UBQP) problem in order to open a new direction for this problem. This relation allows us to use the local search procedures designed for UBQP [START_REF] Beasley | Heuristic algorithms for the unconstrained binary quadratic programming problem[END_REF] to improve the solutions of L 2 -BMF.

L 2 -BMF and UBQP

As mentioned above, standard methods for L 2 -BMF fix one matrix, W or H, and solve for the other. The quantity to be minimized in L 2 -BMF can be rewritten as:

||X -WH|| 2 2 = M i=1 N j=1 (x ij - K k=1 w ik h kj ) 2
with:

(x ij - K k=1 w ik h kj ) 2 = x 2 ij + ( K k=1 w ik h kj ) 2 -2x ij K k=1
w ik h kj Fixing e.g. H and solving for W thus amounts to solve the following minimization problem, ∀i, 1 ≤ i ≤ M (i.e. for all rows of W):

argmin w i. N j=1 (x 2 ij + ( K k=1 w ik h kj ) 2 -2x ij K k=1 w ik h kj ) (3) 
where w i. is the i th row vector of W. The above quantity is equal to

argmin w i. N j=1 ( K k=1 w ik h kj ) 2 + K k=1 w ik N j=1 (-2x ij h kj ) (4) 
since x ij is not subject to any change and does not play any role in the minimization problem. The first term in (4), N j=1 ( K k=1 w ik h kj ) 2 , can be rewritten as:

N j=1 ( K k=1 w ik h kj ) 2 = K k=1 w ik N j=1 h kj + K k=1 K k =k+1 w ik w ik 2 N j=1 h kj h k j (5)
Now if we use [START_REF] Hasewaga | Efficient algorithms for vairance-based k-clustering[END_REF] to extend (4), we need to minimize the following quantity with respect to w i. :

K k=1 w ik N j=1 h kj α + K k=1 K k =k+1 w ik w ik 2 N j=1 h kj h k j + K k=1 w ik N j=1 (-2x ij h kj ) β (6)
Now we factorize K k=1 w ik in α and β:

K k=1 w ik ( N j=1 h kj - N j=1 (2x ij h kj )) + K k=1 K k =k+1 w ik w ik 2 N j=1
h kj h k j [START_REF] Kanungo | A local search approximation algorithm for k-means clustering[END_REF] which is equal to

K k=1 w ik ( N j=1 h kj (1 -2x ij )) + K k=1 K k =k+1 w ik w ik 2 N j=1 h kj h k j (8) 
Now, let us consider the symmetric matrix Q of size K × K:

q kk = N j=1 h kj (1 -2x ij ), q kk = N j=1 h kj h k j (k = k )
The quantity minimized in problem (4) can be rewritten with Q as follows:

K k=1 w 2 ik q kk + K k=1 K k =k+1 2w ik w ik q kk = w i. Qw T i.
and thus problem (4) can be reformulated as:

argmin w i. w i. Qw T i. (9) 
which corresponds to a UBQP problem [START_REF] Beasley | Heuristic algorithms for the unconstrained binary quadratic programming problem[END_REF][START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF]. One should note that the placement of the transposed vector is not important in this problem and it could be either before the weighting matrix (Q) or after that. Applying the same development to H (when W is fixed) leads to the following property.

Property 1 Iteratively solving the L 2 -BMF problem by fixing either W or H and solving for the other is equivalent to iteratively solving UBQP problems of the form:

argmin v v T Qv (10) 
with:

q kk = N j=1 h kj (1 -2x ij ) OR M i=1 w ik (1 -2x ij ) q kk = N j=1 h kj h k j (k = k ) OR M i=1 w ik w ik (k = k )
Note that when k = 1, the optimal W or H, when the other one is fixed, is directly obtained by setting the i th element of W (or H) to 1 if more than half of the elements with a 1 in H (or W) have also a 1 in the i th row (or column) of X, and to 0 otherwise. This corresponds to the alternating strategy used in Proximus. When k > 1, this not longer holds and approximate solutions are usually obtained. Using UBQP solvers in this case does not however represent an interesting alternative, as the solutions provided by e.g. NMF in the continuous space are in general faster to obtain (and the projection on the binary domain can be done efficiently as mentioned in Section 2).

p-opt local search for UBQP and relation to L 2 -BMF

Despite the fact mentioned above, it might still be interesting to improve the NMF, SVD or Proximus solutions through local search algorithms designed for UBQP. Local search algorithms are heuristics aimed at improving a current solution by searching in its neighborhood for a better solution (hence the name "local"). In the context of BMF, the neighborhood of size p of a given W (or H) is defined by the set of matrices that can be obtained from W (or H) by flipping at most p cells (here, flipping means changing a 1 to a 0 and vice versa). [START_REF] Beasley | Heuristic algorithms for the unconstrained binary quadratic programming problem[END_REF] and [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF] present such local search heuristics, called p-opt local search, for UBQP. The 1-opt local search algorithm proposed in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF] looks for the solution in the neighborhood of size 1 that maximizes the gain with respect to the current solution and adopts this solution if the gain is positive. The p-opt local search, which parallels the Tabu search of [START_REF] Alidaee | Adaptive memory Tabu search for binary quadratic programs[END_REF] discussed in [START_REF] Beasley | Heuristic algorithms for the unconstrained binary quadratic programming problem[END_REF] and based on [START_REF] Kernighan | An Efficient Heuristic Procedure for Partitioning Graphs[END_REF] and [START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem[END_REF], is similar for the neighborhood of size p, except that, for computational reasons, one does not look for the solution that maximizes the gain but only explores a part of the neighborhood looking for a solution that improves the current one. This exploration corresponds to a recursive application of the 1-opt solution.

Complexity Considerations

p-opt local search algorithms are of course interesting if the gains can be computed efficiently; the complexity of the p-opt local search algorithm pro-posed in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF], when applied to the i th row of W, i.e. Problem (9), is O(K 2 ) once the matrix Q, which depends on i, has been constructed.

In each round of updating W, the matrix Q is constructed for the first row with a cost of O(K 2 N ) as the diagonal of Q can be computed via K dot products with vectors of size N and the upper triangle of Q has K(K-1) 2 elements, each of which requiring a dot product of vectors of size N . Note that Q is symmetric and one only needs to compute the upper (or the lower) triangle part. Once Q is constructed for the first row of W, it can then be reused for other rows with a simple update of the diagonal which could be done in O(KN ), as explained before. Accordingly, computing Q for all rows of W has a time complexity of O(KM N ) as it is one time K 2 N and (M -1) times KN . As updating each row is done in O(K 2 ), for M rows we have O(M K 2 ) for the update phase. As a result, the total complexity for updating W in one round is O(M KN + M K 2 ) and since N ≥ K the complexity will be O(M KN ). By dividing this quantity by the number of rows, M , one will have O(KN ) as the complexity of updating one row of W with the UBQP-based technique, denoted as 1-opt-UBQP hereafter. One can simply see that updating a column of H has exactly the same complexity.

p-opt local search for L 1 -and L 2 -BMF

As discussed in Section 3, L 2 -BMF can be reformulated as UBQP which enables us to apply the UBQP's p-opt local heuristic on L 2 -BMF solutions. As mentioned in that section, the time complexity of updating one row of W is O(KN ). In this section, a more efficient p-opt local search procedure is introduced and its time complexity is studied.

As mentioned before, rows of W (or columns of H) can be optimized independently. We show here how to optimize, in a neighborhood of size 1, a row of W (the reasoning is the same for a column of H). For each row w i. of W, we first compute a partition of columns of H. The main rationale of such partitioning is to compute, for each partition, the gains separately. Furthermore, using this partitioning, one is able to replace many vector multiplications with straightforward summations. In the following, we first show how this partitioning is done. We then provide examples to illustrate how this technique works on real matrices and how it can accelerate the process.

Definition 1 For a given row w i. (1 ≤ i ≤ M ) of W and a given H, we define three sets of column vectors of H:

(i) W 0 i = {h .l | 1 ≤ l ≤ N, x il = 0} (ii) W ⊥ i = {h .l | 1 ≤ l ≤ N, x il = 1, < w i. , h .l >= 0} (iii) W ⊥ i = {h .l | 1 ≤ l ≤ N, x il = 1, < w i. , h .l > = 0}
where h .l is the binary vector corresponding to the l th column of H, x il the cell of X at row i and column l; < ., . > denotes the dot product. We have of course:

|W 0 i | + |W ⊥ i | + |W ⊥ i | = N .
The following example illustrates the three sets defined above.

Example 1

Let x i. = 1 1 0 0 1 1 , w i. = 0 0 1 and H =   0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1  
Then:

W 0 i = {h .3 , h .4 } =   1 1 1 0 1 1   W ⊥ i = {h .2 , h .5 } =   1 1 1 0 0 0   W ⊥ i = {h .1 , h .6 } =   0 0 1 0 1 1  
Given a row of W (resp. a column of H), the idea is to exploit the characteristics of the corresponding row (resp. column) of X and H (resp. W) in order to efficiently compute the gain that we obtain by flipping a bit. What we need now, in order to define an efficient p-opt local search, is a fast way to compute the gain when flipping the j th bit of w i. from 0 to 1 and vice versa. Such a gain (which can be positive or negative) is defined as

∆E(i, j) = E(i, j) new -E(i, j) old = ||x i. -w j i. H|| p -||x i. -w i. × H|| p
where w j i. is obtained from w i. by flipping the j th bit, either from 0 to 1 or from 1 to 0. Theorem 1 provides simple expressions for ∆E(i, j) for improving the solutions of both L 1 -and L 2 -BMF; expressions that can be computed efficiently with respect to other methods, as it will be shown in Theorem 2.

Theorem 1 Let ∆E(i, j; 0 → 1, L 2 ) (resp. ∆E(i, j; 1 → 0, L 2 )
) be the gain obtained when flipping the j th bit of w i. from 0 to 1 (resp. from 1 to 0), measured by the L 2 -norm (similarly for L 1 -norm). Then:

∆E(i, j; 0 → 1, L 2 ) = h∈W 0 i (1 + 2 < w i. , h >)h j + h∈W ⊥ i (2 < w i. , h > -1)h j - h∈W ⊥ i h j (11) Algorithm 1 1-opt-BMF Input: Matrices X, W and H; p = 1 or 2 Output: Improved W and H 1: repeat 2:
for each row w i in W do 3:

j = argmin 1≤j ≤k ∆E(i, j ; L p ) 4: if ∆E(i, j; L p ) < 0 then flip W ij 5:
end if

6:
end for 7:

for each column h i in H do 8:

j = argmin 1≤j ≤k ∆E(i, j ; L p ) 9:
if ∆E(i, j; L p ) < 0 then flip H ji 10:

end if 11:
end for 12: until no change in W and H

∆E(i, j; 1 → 0, L 2 ) = h∈W 0 i (1 -2 < w i. , h >)h j + h∈W ⊥ i <w i. ,h>h j =1 1 + h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > (12) 
Similarly, for the L 1 -norm we have:

∆E(i, j; 0 → 1, L 1 ) = h∈W 0 i h j + h∈W ⊥ i h j - h∈W ⊥ i h j (13) 
∆E(i, j; 1 → 0, L 1 ) = h∈W ⊥ i <w i. ,h>h j =1 1 - h∈W 0 i h j - h∈W ⊥ i <w i. ,h>h j >1 1 (14) 
The proof of this theorem is discussed in the appendix.

Theorem 1 provides a direct way to compute the gain associated to each possible flip of an element of w i. , which can be used in a 1-opt local search procedure as defined in Algorithm 1. We denote the proposed technique as 1-opt-BMF. One should note that in Algorithm 1, we use ∆E(i, j; L p ) which is equal to ∆E(i, j; 0 → 1, L p ) if w ij = 0 and to ∆E(i, j; 1 → 0, L p ) otherwise. The following example illustrates how one can utilize Theorem 1 in practice.

Example 2 Consider the following configuration where one aims at optimizing the i th row of W (denoted by w i. ) having the corresponding row of X (denoted by x i. ) and matrix H:

x i. = 1 1 0 0 1 1 , w i. = 0 1 1 and H =   0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1  
Using Def. 1, we have the following sets:

W 0 i = {h .3 , h .4 } =   1 1 1 0 1 1   W ⊥ i = {h .5 } =   1 0 0   W ⊥ i = {h .1 , h .2 , h .6 } =   0 1 0 1 1 0 1 0 1  
What we need to do is to compute the error change (gain) for 0 cells and 1 cells in

w i. separately. Let G = (g 0→1 1 , g 1→0 2 , g 1→0 3 
) denote the gain for flipping the bits where the subscripts show the index of the corresponding cells and in w i. and the superscripts show whether one should use the zeroto-one formulations in Theorem 1 or the one-to-zero formulations. Once the vector G is computed, we can decide which bit to flip in order to maximize the improvement. We consider both the L 2 and the L 1 cases:

• L 2 : one obtains g 0→1 1 = +8 using Eq. [START_REF] Daniel | Learning the parts of objects by non-negative matrix factorization[END_REF]. Similarly, using Eq. ( 12) for g 1→0 2 and g 1→0 3 , one obtains -3 and -4 respectively. As a result the gain vector is G = (+8, -3, -4) which means that the best bit to flip is the last one as it has the highest negative gain.

• L 1 : in this case we use Eq. ( 13) for the first cell and Eq. ( 14) for the second and the third one which gives us the following gain vector G = (+2, -1, -2). In this case, one selects the third bit to flip as it leads to the best improvement comparing to the other bits.

The procedure expressed in Algorithm 1 can be naturally extended to p-opt local search, either by adopting a greedy approach, in which case one applies p times a 1-opt local search, as done in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF], or by finding the p flips that maximize the gain. In both cases, the gain of flipping several bits is the sum of the gain of the individual flips. However, in the latter approach, the complexity for selecting the best bits to flip is O(K p ), which prevents its application in most practical cases (in contrast, the complexity of the p-opt greedy approach to select the p bits is O(pK)). In the remainder, and as done in many studies, when we talk about the p-opt local search, we refer to the p-opt greedy approach. Lastly, Algorithm 1 (and its p-opt extension) can also be adapted to cover the formulation of the BMF problem with the binary reconstruction constraint by accepting a flip only if the result is a binary vector (this condition can be efficiently computed when checking the gains defined in Theorem 1).

Complexity considerations

As mentioned previously, the complexity of updating one row (say row i) of W through the 1-opt-UBQP is O(KN ). A standard procedure, denoted as 1opt-Standard hereafter, which computes the gain through the multiplication of w i. and H would in fact have a complexity of O(K 2 N ) as it needs to multiply w i. , which is of size K, by H to find the gain of flipping one single cell (O(KN ) so far) and this multiplication needs to be done one time for each cell of w i. . Using the same reasoning, 1-opt-Standard has a complexity of O(K 2 M ) for updating one column of H. We show, via Theorem 2, that the 1-opt procedure defined on the basis of Theorem 1, i.e. 1-opt-BMF, is more efficient. This result directly extends to p-opt local search as this latter is just a chain of 1-opt procedures. Note that in Theorem 2, since we aim at finding the minimum gain that we are able to obtain using the proposed method, we consider updating a row of W in our calculations. The reason is that for the 1-opt-UBQP technique the complexity is the same for both cases (updating one row of W and updating one column of H); however, since the complexity in the standard method is not the same for updating one row of W and updating one column of H (O(K 2 N ) vs. O(K 2 M )), we consider the faster one (K 2 N ) in order to obtain the minimum gain that we can achieve with the proposed method. Consequently, Theorem 2, the proof of which is given in the appendix, considers the case of updating one row of W.

Theorem 2 We assume a row vector w i. of W and a matrix H. Furthermore, let d be the density of x i. (the i th row of X) and let τ denote the proportion of columns l of H orthogonal to w i. and such that x il = 1 (thus τ = |W ⊥ i |/N ). Then, the gain in complexity for the 1-opt procedure based on Theorem 1 compared to both 1-opt-UBQP and 1-opt-Standard is at least:

• min{(1-τ ) -1 , Kτ -1 } for the L 2 -norm with respect to the 1-opt-UBQP; • min{K(1-τ ) -1 , K 2 τ -1 } for the L 2 -norm with respect to 1-opt-Standard; • min{K 2 , K(d -τ ) -1 } for the L 1 -norm with respect to 1-opt-Standard.
One important remark here is that in the proposed method for L 2 norm, the condition τ N > KN (1 -τ ) will almost never occur as it corresponds to values of τ greater than 0.50 and to matrices where d ≥ τ > 0.50, i.e. to extremely dense matrices. As a result, in practice, the complexity of the proposed L 2 method is O KN (1 -τ ) and, consequently, the gain will be

(1 -τ ) -1 compared to 1-opt-UBQP and K(1 -τ ) -1 compared to 1-opt- Standard.
Another remark is that with the proposed method (Theorem 1), we do not need to perform all the dot products (the most computationally expensive operations in these formulations) for all cells of w i. as the dot products are done between w i. and the sets defined in Def. 1; none of these elements change while we are computing the gain for a given vector. Accordingly, one does not need to iterate over each cell which is the key point of efficiency of this method.

According to Theorem 2, one can note that the gain obtained by the proposed method is independent of K for the solutions of L 2 -BMF while there is a dependency between K and the gain obtained by the proposed method for the solutions of L 1 -BMF.

Experiments

General settings

We have evaluated the proposed local search heuristic, 1-opt-BMF, on several methods used to solve the BMF problem and on several datasets. As mentioned in Section 2, in the literature, different techniques have been proposed to address the BMF problem. For instance, one can use NMF or SVD solvers and then project the results into the binary space [START_REF] Miettinen | The discrete basis problem[END_REF]. The Proximus system, introduced in [START_REF] Koyuturk | Proximus: A framework for analyzing very high-dimensional discrete-attributed datasets[END_REF][START_REF] Koyuturk | Compression, clustering, and pattern discovery in very-high-dimensional discrete-attribute data sets[END_REF], not only provides binary factors, but also can guarantee a binary reconstructed matrix. All these methods address the L 2 -BMF problem.

To tackle the L 1 -BMF, a clustering-based method, called CBMF, has been proposed in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF]. This method also provides binary factors as well as binary reconstruction/approximation of the input data. A variant of CBMF, called UBMF, is used to solve the BMF problem without binary reconstruction constraint. Based on the points mentioned above, in our experiments, we use all these methods in order to observe the performance of 1-opt-BMF local search with other 1-opt techniques on each of these methods.

As mentioned before, 1-opt-BMF and 1-opt-Standard can be applied on both L 1 -and L 2 -BMF methods while 1-opt-UBQP can only be applied on L 2 -BMF methods. Table 1 shows a summary of the methods used in the experiments as well as the applicable 1-opt strategies for each of them. One should note that only CBMF and Proximus provide binary reconstruction as they impose orthogonality on one of the factors(W or H).

For projected NMF and SVD, we use a grid search, as done in [START_REF] Miettinen | The discrete basis problem[END_REF] and discussed in the related work section, with a step size of 0.05 in order to project the matrices into the binary space. To perform NMF and SVD, we used Matlab built-in functions. We used our own Matlab implementations for the other methods. As mentioned before, we refer to the method proposed in this study as 1-opt-BMF, to the standard implementation as 1-opt-Standard and to the 1-opt local search associated with UBQP as 1-opt-UBQP. One should note that the 1-opt-Standard approach benefits from highly efficient block algorithms available in LAPACK (incorporated in Matlab) which are, in average, significantly faster than a simple, naive multiplication.

In our experiments, we let the rank K vary in the set {1, 20, 40, 60, 80, 100}. All the experiments are done on a Linux machine with an Intel Xeon CPU E5-2630 with 6 cores @ 2.30Ghz and 32Gb of memory. In order to be fair, unless it is explicitly mentioned, no multiprocessing or multithreading is done in our experiments.

Datasets

We examined both real world datasets as well as synthetic ones from the frequent itemset mining repository, all available at http://fimi.ua.ac.be/ data/ (last visited 21-Jul-2015). The main reason that we use frequent itemset mining datasets is that they are necessarily binary which suits our experimental setting. Table 2 shows the sets we used in addition to some of their characteristics. The first part of the table shows the real datasets and the second part shows the synthetic ones. Note that in our experiments, we have removed all empty rows and empty columns from the data. 

Time comparison

We compare here 1-opt-BMF with 1-opt-Standard and 1-opt-UBQP according to the running time. One should note that these three approaches yield exactly the same solution, namely the one corresponding to the best improvement in a neighborhood of size 1 and, thus, their only difference is the running time. 1-opt-BMF and 1-opt-Standard can be applied to both L 1 -and L 2 -BMF methods, whereas 1-opt-UBQP can only be applied on the L 2 -BMF methods (NMF, SVD and Proximus). As a result, for the L 2 -BMF methods, we compare 1-opt-BMF with both 1-opt-Standard and 1-opt-UBQP while for the L 1 -BMF methods we can only perform one comparison: 1-opt-BMF with 1-opt-Standard.

To further illustrate the speed of the different methods, we display in Figure 1-4 the ratios of the execution time of 1-opt-Standard divided by execution time of 1-opt-BMF and of the execution time of 1-opt-UBQP divided by execution time of 1-opt-BMF. An additional line, labeled as "Ratio=1", is added to make it simpler to compare different methods: 1-opt-BMF is faster when the curve is above this line, and slower otherwise.

Projected SVD and NMF

Figure 1 illustrates the time comparison between 1-opt-UBQP and 1-opt-BMF on the left hand side as well as the comparison between 1-opt-Standard and 1-opt-BMF on the right hand side. The first issue to note is that, generally speaking, 1-opt-UBQP is faster than 1-opt-Standard as the ratio of the latter reaches up to 4.7 while for the former it reaches up to 1.8 in the best case. Another point on this figure is that by increasing the value of K the ratio increases significantly with respect to the standard method. In case of UBQP, the curves become almost stable for larger values of K. As discussed in Theorem 2, the gain of 1-opt-Standard is directly influenced by As one can see on the right figure, the curves are under the fixed line (Ratio=1) for Mushroom and Connect for K < 60. These two sets are the smallest sets in our experiments; as 1-opt-BMF has an overhead of finding the sets defined in Def. 1, for small datasets this overhead is more visible with respect to the update part. However, for K ≥ 60, one can observe that the 1-opt-BMF becomes faster. For sufficiently large datasets (as Accidents or T40I10D100K) and sufficiently large values of K (e.g. K = 100), 1-opt-BMF can be nearly 5 times faster than the standard approach.

On the left figure, we only see one dataset (Pumsb) being always below the fixed line. The main reason here is that this dataset is not only very sparse (d = 3.5%), but also has a small value of τ (0.02 ≤ τ ≤ 0.03 for K = 20 for instance) which makes (1 -τ ) very close to 1. According to Theorem 2, a small value of (1 -τ ) results in a small gain, and since we have an overhead for computing the sets defined in Def. 1, the 1-opt-BMF cannot be more efficient than the 1-opt-UBQP in this case. However, in the other datasets, we observe the efficiency of the 1-opt-BMF with respect to 1-opt-UBQP.

In Figure 2, one can observe the experiments using NMF. In that figure, we can see the same points that we saw for the SVD case. We can also see the same issue for Pumsb when 1-opt-UBQP is used. Additionally, the semiconstant line for ratios can also be seen in this case after a certain value of K (the figure on left) while in the 1-opt-standard case (the figure on right) the ratio grows as the value of K increases. This is in line with the theoretical analysis provided in Theorem 2.

Proximus

First of all, one should note that in Proximus, one may not necessarily obtain the number of latent factors s/he had initially in mind. The reason is that, This may result in early termination of the algorithm if it runs out of columns before reaching the desired value of K. This case has happened for two datasets in our experiments: Mushroom and Connect. Since they have few columns and they are very dense, the columns are covered very quickly. As a result, we only have 53 and 54 latent factors in Mushroom and Connect respectively. Consequently, in Figure 3, for K ≥ 60, we report the same results corresponding to the maximum number of factors obtained.

As one can observe in Figure 3, 1-opt-Standard has a similar behavior to the other L 2 -BMF methods (SVD and NMF). The situation with respect to 1-opt-UBQP is also similar to that of SVD or NMF. When applied on Proximus, 1-opt-BMF is faster on 5 collections out of 6, i.e. all except Pumsb for the same reason mentioned for the SVD and the NMF case. Here again one can see that 1-opt-BMF gets significantly faster than the 1-opt-Standard as the value of K increases.

CBMF and UBMF

For the L 1 -BMF methods, one can only apply 1-opt-Standard (Figure 4). Here, as we have seen before, except the smallest sets (Mushroom and Connect), 1-opt-BMF is up to 8 times faster than the standard method where this efficiency in more considerable with larger values of K. Again, this is in line with the theoretical analysis provided before. Summary 1-opt-BMF is in general faster than 1-opt-Standard and 1-opt-UBQP where the difference is much higher for the former than for the latter. Furthermore, unlike 1-opt-UBQP, 1-opt-BMF can be applied to all the BMF methods we know of. Table 3 summarizes the average and the best improvement made by 1-opt-BMF wrt both 1-opt-UBQP and 1-opt-Standard.

Impact of 1-opt local search on L 2 -BMF

As discussed before, all the previously mentioned methods yield the same solution; in other words, the only difference between different 1-opt strategies is the time complexity. Here, we would like to examine the significance of the improvement brought by any 1-opt method. Figure 5 shows the effectiveness of (any) 1-opt strategy when it is applied on (projected) SVD, (projected) NMF and Proximus. As one can note, projected NMF performs in generally better than projected SVD, with a reconstruction error (measured with the L 2 -norm) significantly lower. Projected NMF also yields a lower reconstruction error than Proximus, but Proximus provides a solution that satisfies the binary reconstruction constraint, which is not the case for NMF.

To assess whether the improvements obtained with 1-opt are significant, we computed the p-value of the Wilcoxon rank-sum test (which is widely used to compare a series of bits) at the 1% significance level. In almost all L 2 -norm cases with K = 1 there is no improvement with 1-opt. This can be explained by the fact that the first dominant factor in the datasets is more easily approximated by the different methods than the first K factors. This observation also explains why the gain with Proximus, which solves a series of rank 1 problems, is not as important as with the other methods. For K > 1 however, in all sets and with all methods, the improvement obtained with the 1-opt local heuristic is statistically significant. In particular, for NMF and SVD, the improvement can be up to 61% for real sets, and up to 12 % for synthetic sets.

Impact of 1-opt local search on L 1 -BMF

As mentioned before, two methods are discussed in the literature to solve the L 1 -BMF problem, namely CBMF and UBMF [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF], where the latter is a variant of the former. As CBMF is a K-means-based technique, one can apply swap heuristics, like the one explained in [START_REF] Kanungo | A local search approximation algorithm for k-means clustering[END_REF], in order to improve the results. We denote this technique as SCBMF ('s' stands for swapped). We also apply the 1-opt heuristic over SCBMF and denote it as 1-opt-SCBMF. The main difference between SCBMF and (any) 1-opt local search procedures is that the former tries to find better solutions by exploring different parts of the search space whereas the latter tries to find a better solution in a close neighborhood of the current solution. The swap procedures, mainly applied to K-means-like methods, replaces a center with one data point and redoes the clustering to see if the new solution is better than the previous one. Since CBMF is based the on K-means approach, one can apply the swap procedure by randomly replacing a center (a column of W) with a random column of X and redo the assignments. As mentioned before, one can still apply a 1-opt heuristic on top SCBMF (1-opt-SCBMF ).

There are different criteria to choose the number of swaps in SCBMF. For example, one can select a fixed number of swaps or a time limit. To be fair in our comparison, we have adopted here the following strategy: for each dataset we first run the proposed 1-opt algorithm, i.e. 1-opt-BMF, (which is in general faster than the other approaches as discussed in Section 5.3) on CBMF and measure its running time; then, we let the SCBMF procedure run the same amount of time to improve the CBMF results. Like that, one can observe which method performs better under a given time budget.

Lastly, as SCBMF proceeds via random selections, for each dataset, we run the SCBMF ten times and report the average error of these ten runs. In this case, a difference is deemed statistically significant if it was significant on the majority of the 10 runs. As before, we use the Wilcoxon sum-rank test at the 1% significance level to assess whether differences in the results are significant or not.

Table 4 illustrates the improvement that 1-opt can make over the L 1 -BMF methods, namely CBMF, SCBMF and UBMF. As mentioned before, SCBMF is provided the same amount of time as 1-opt-BMF. As one can note, the case of K = 1 is removed from the table since, as mentioned above, no local improvement can be made for the first factor.

The table shows the normalized errors in percentage. Significant improvements are shown in bold (measured again using the Wilcoxon rank-sum test at the 1% significance level). Note that for CBMF (resp. UBMF), the 1-opt error is shown in bold if it is significantly better than standard CBMF (resp. UBMF). SCBMF's error is shown in bold if it is significantly better than standard CBMF. For 1-opt-SCBMF, the error is in bold if it is significantly better than SCBMF. The first point to note is that all proposed heuristics have difficulties improving the error value over synthetic datasets. In those datasets, which do not contain any structure, all the methods yield roughly the same results.

Over all real datasets, a 1-opt local search can often bring significant improvement in the error value. The most spectacular case is the Mushroom dataset, where for K = 80 the error value is decreased by more than 18%. This dataset has a large number of patterns spanning few lines [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF], making it more difficult for BMF algorithms to compute a good approximation for high values of K. These results show that although a 1-opt heuristic explores a small neighborhood of the current solution, it can help improve the decomposition on such difficult cases.

Connect is a dense dataset with a strong structure [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF]. This structure is mostly captured by classical CBMF for small values of K, with only small improvement by 1-opt (1%). Here the improvement of a local search only pays off for K = 80 (8%). On the other hand, SCBMF has significantly better results (from 6% to 24% improvement in error value) than CBMF: this means that CBMF was stuck in a region that was not optimal. The swap heuristic of SCBMF is the only one of this comparison that can get out of this local optima and find a better solution. SCBMF's solutions can be further refined by applying a 1-opt heuristic, showing the ability of 1-opt to improve an already good solution whatever its position in the search space.

Accidents is a different type of dataset: despite its huge size it has relatively short transactions (length 33 in average) and contains many patterns differing on only a few columns, a structure difficult to capture with low values of K. CBMF captures well the bulk of this structure (as shown by the lack of improvement from SCBMF) and its solution is hard to improve for low K values (no improvement by 1-opt). However for higher values of K, the potential of the 1-opt local search heuristic appears, as it provides a significant improvement for K ≥ 60.

Pumsb is the sparsest real dataset of this experiment. This sparsity, combined with the higher number of columns, prevents SCBMF to find a better solution in the allocated time. However, the dataset (originating from US Census data) has some structure, and here also the 1-opt method can significantly improve the solution found by CBMF (at best 3% for K = 40).

In unconstrained case, i.e. UBMF, it becomes much harder to improve the results. Nevertheless, there are still a few cases where the 1-opt approach can provide a significantly better approximation.

Conclusion

We have addressed in this study the problem of rank K Binary Matrix Factorization (BMF) which aims at approximating a binary matrix by the product of two binary matrices of lower rank. Several researchers have addressed this problem, focusing on either approximations of rank 1 or higher, using either the L 1 or L 2 -norms (L 1 -and L 2 -BMF) for measuring the quality of the approximation, through variants of the alternating strategy typically used for non-negative matrix factorization [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF].

We have shown here that this alternating strategy for L 2 -BMF can be reformulated as an Unconstrained Binary Quadratic Programming (UBQP) problem. This reformulation allows us to use the heuristics of UBQP in order to improve the solutions of L 2 -BMF. Then we introduced a new local search dedicated to both L 1 -and L 2 -BMF, and studied its complexity with respect to other local search approaches.

Our experiments, conducted with several state-of-the-art methods, on several datasets, have confirmed that the 1-opt local search procedure proposed in this study is in general faster than the previously proposed ones.

They have also shown that this procedure significantly improves the solutions found by state-of-the-art L 2 -BMF methods: projected NMF, projected SVD and Proximus.

For the L 1 -BMF methods, the experimental results show that the 1-opt local search procedure improves the results of the state-of-the-art methods (CBMF and its "swapped" version) solving the complete L 1 -BMF problem, with the binary reconstruction constraint. The situation is more contrasted with UBMF, which solves the L 1 -BMF problem without the binary reconstruction constraint. 1-opt local search heuristic do not seem to be able to improve this state-of-the-art method.

Appendix

Theorem 1 Let ∆E(i, j; 0 → 1, L 2 ) (resp. ∆E(i, j; 1 → 0, L 2 )) be the gain obtained when flipping the j th bit of w i. from 0 to 1 (resp. from 1 to 0), measured by the L 2 -norm (similarly for L 1 -norm). Then:

∆E(i, j; 0 → 1, L 2 ) = h∈W 0 i (1 + 2 < w i. , h >)h j + h∈W ⊥ i (2 < w i. , h > -1)h j - h∈W ⊥ i h j (11) ∆E(i, j; 1 → 0, L 2 ) = h∈W 0 i (1 -2 < w i. , h >)h j + h∈W ⊥ i <w i. ,h>h j =1 1 + h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > (12) 
Similarly, for the L 1 -norm we have:

∆E(i, j; 0 → 1, L 1 ) = h∈W 0 i h j + h∈W ⊥ i h j - h∈W ⊥ i h j (13) 
∆E(i, j; 1 → 0, L 1 ) = h∈W ⊥ i <w i. ,h>h j =1
1 -

h∈W 0 i h j - h∈W ⊥ i <w i. ,h>h j >1 1 (14) 
Proof. For each of the formulations, we consider the error change with respect to the sets defined in Def. 1.

∆E(i, j; 0 → 1, L 2 )
• First consider the W 0 i set: before the flip, the error E 1 0 , of w i. wrt W 0 i is:

E 1 0 = h∈W 0 i < w i. , h > 2
After the flip, this error becomes

E 2 0 = h∈W 0 i (< w i. , h > +h j ) 2
as the elements of W 0 i correspond to the cells in X having zero values (Def. 1). Accordingly, flipping the j th cell of w i from 0 to 1 will potentially increase the error depending on the value of h j ; thus, the difference in errors amounts to:

E 2 0 -E 1 0 = h∈W 0 i (< w i. , h > +h j ) 2 - h∈W 0 i < w i. , h > 2 (15) = h∈W 0 i (< w i. , h > +h j ) 2 -< w i. , h > 2 (16) = h∈W 0 i < w i. , h > 2 +2 < w i. , h > h j + h 2 j -< w i. , h > 2 (17) 
= h∈W 0 i 2 < w i. , h > h j + h 2 j ( 18 
)
= h∈W 0 i (1 + 2 < w i. , h >)h j (19) 
Note that in [START_REF] Miettinen | The boolean column and column-row matrix decompositions[END_REF] we can replace h 2 j with h j as matrix H is binary.

• For W ⊥ i case, we denote the error before the flip as E 1 ⊥ and the error after the flip as E 2 ⊥ : before the flip we have

E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1) 2
as we need to produce 1 in this case (see Def. 1) and thus the initial error for the columns in W ⊥ i amounts to (< w i. , h > -1) 2 since we are considering the L 2 -norm. After the flip, we are potentially introducing more error since flipping a 0 to a 1 will increase the dot product if h j is also equal to 1 (if it is equal to zero, no additional error is introduced). Accordingly, the new error becomes

E 2 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) 2
The difference amounts to:

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) 2 - h∈W ⊥ i (< w i. , h > -1) 2 (20) = h∈W ⊥ i (< w i. , h > -1 + h j ) 2 -(< w i. , h > -1) 2 (21) = h∈W ⊥ i (2 < w i. , h > -1)h j (22) 
• Finally, we consider W ⊥ i : the error, before the flip, is the cardinality of the set (since the dot product is 0 whereas it should be 1). As a result, the flip can only reduce this error and it does so for all the vectors in W ⊥ i whose j th element is 1. Accordingly, following our notations, the difference in error is thus

E 2 ⊥ -E 1 ⊥ = - h∈W ⊥ i h j (23) 
Summing ( 19), ( 22) and ( 23) yields Eq. [START_REF] Daniel | Learning the parts of objects by non-negative matrix factorization[END_REF].

∆E(i, j; 1 → 0, L 2 )
• As before, the error with respect to W 0 i is

E 1 0 = h∈W 0 i < w i. , h > 2
before the flip. After the flip, since we are changing a 1 to a 0, we are potentially decreasing the error. The reason is that columns in W 0 i need to produce zeros when multiplied by w i. while the dot product may produce other values. As a result, when the j th bit of w i. flipped to zero, it could decrease the error depending on the value of h j ; accordingly, the new error is simply

E 2 0 = h∈W 0 i (< w i. , h > -h j ) 2
and the difference amounts to:

E 2 0 -E 1 0 = h∈W 0 i (< w i. , h > -h j ) 2 - h∈W 0 i < w i. , h > 2 (24) = h∈W 0 i (< w i. , h > -h j ) 2 -< w i. , h > 2 (25) = h∈W 0 i < w i. , h > 2 -2 < w i. , h > h j + h 2 j -< w i. , h > 2 (26) = h∈W 0 i -2 < w i. , h > h j + h 2 j (27) = h∈W 0 i (1 -2 < w i. , h >)h j (28) 
Here, we can again replace h 2 j with h j in (27) as matrix H is binary.

• For a given h ∈ W ⊥ i , two situations arise: case (i) is when, for a given column h ∈ W ⊥ i we have < w i , h > h j = 1, which means the dot product and the j th cell of h are both 1. In this case, if we flip the j th cell of w i. to 1, we have added one error per column. So we have the following quantity as error increase (which is simply the quantity of the set):

h∈W ⊥ i <w i. ,h>h j =1 1 (29) 
Case (ii) is when, for a given column h ∈ W ⊥ i , we have (< w i , h > ) h j > 1, which means that h j = 1 and < w i , h > is greater than 1. In such case, the initial error we are making is

E 1 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -1) 2
and by flipping the j th bit results in adding one extra error:

E 2 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2
Accordingly, we have

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2 - h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -1) 2 (30) = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2 -(< w i. , h > -1) 2 (31) = h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > (32) 
One should note that if h j = 0 flipping the corresponding bit in w i. from 0 to 1 does not change the error as, in any case, their multiplication will be zero.

• Lastly, the error on W ⊥ i is not affected by the flip as w j i. is already orthogonal to all the elements of W ⊥ i and flipping a 1 to 0 will not change this orthogonality and, as a result, does not change the error value. Summing (28), ( 29) and (32) yields Eq. [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF].

∆E(i, j; 0 → 1, L 1 )
• For columns in W 0 i , if we flip a 0 to a 1 in w i. , in case the corresponding cell of a given column h ∈ W 0

i is zero, no extra error is introduced as the multiplication would be zero in any case. However if the corresponding cell is 1, then one new error is introduced. So the error in this case is simply:

h∈W 0 i h j (33) 
• For columns of W ⊥ i , we need to produce 1. Consequently, the initial error is

E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1)
and the new error will be

E 2 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j )
as flipping the j th bit from 0 to 1 will introduce one new error if h j is also equal to 1. As a result:

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) - h∈W ⊥ i (< w i. , h > -1) (34) = h∈W ⊥ i < w i. , h > -1 + h j -< w i. , h > +1 (35) = h∈W ⊥ i h j (36) 
• For columns of W ⊥ i , we may be able to decrease the error by flipping a bit from 0 to 1 as, initially, w i. is orthogonal to the columns of W ⊥ i , i.e the dot product produces zero while we expect a 1. As a result, if we flip the j th cell to 1, then we can decrease the error only if the corresponding cell in h ∈ W ⊥ i is also equal to one. Consequently the error change in this case is:

- h∈W ⊥ i h j (37) 
Summing (33), (36) and (37) yields Eq. ( 13).

∆E(i, j; 1 → 0, L 1 )

• For W 0 i , as we need to produce a zero for each dot product, flipping a bit from 1 to 0 can only cause error decrease. This will happen if the corresponding cell in h ∈ W 0 i is 1. Thus, the error change is:

-

h∈W 0 i h j (38) 
• For columns in W ⊥ i , we again have two case: (i) when have < w i , h > h j = 1 in which, by the same token as before, we are introducing one error per column, which means

h∈W ⊥ i <w i. ,h>h j =1 1 (39) 
Case (ii) is when (< w i , h >) h j > 1, which means that h j = 1 and < w i , h > is greater than 1. In this case, by flipping 1 to 0, we decrease the error one unit per column (as the corresponding cell, h j , is equal to one for all columns in this set). So the difference in the error is given by -

h∈W ⊥ i <w i. ,h>h j >1 1 (40) 
• For W ⊥ i , we do not introduce any new error by flipping a bit from 1 to 0 as the dot product is already zero and setting an element to zero does not change the result of this product. Summing (38), (39) and (40) yields Eq. ( 14).

Theorem 2 We assume a row vector w i. of W and a matrix H. Furthermore, let d be the density of x i. (the i th row of X) and let τ denote the proportion of columns l of H orthogonal to w i. and such that x il = 1 (thus τ = |W ⊥ i |/N ). Then, the gain in complexity for the 1-opt procedure based on Theorem 1 compared to both 1-opt-UBQP and 1-opt-Standard is at least:

• min{(1-τ ) -1 , Kτ -1 } for the L 2 -norm with respect to the 1-opt-UBQP;

• min{K(1-τ ) -1 , K 2 τ -1 } for the L 2 -norm with respect to 1-opt-Standard;

• min{K 2 , K(d -τ ) -1 } for the L 1 -norm with respect to 1-opt-Standard.

Proof. First note that 0 ≤ τ ≤ d ≤ 1 as the proportion of columns in H corresponding to 1s in x i. , i.e. d, is larger than the proportion of columns in H corresponding to 1s in x i. and orthogonal to w i. , i.e. τ . 

1. W 0 i which is of size K × (1 -d)N 2. W ⊥ i which is of size K × τ N 3. W ⊥ 0 which is of size K × (d -τ )N .
In order to study the minimum gain we obtain, we need to find the complexity of both L 1 and L 2 cases. Since we have two formulas for each of these methods (one for flipping from 0 to 1 and the other for flipping from 1 to 0), we need to compute, for each norm, the complexity of each formula and take the maximum as the complexity. For Equation [START_REF] Daniel | Learning the parts of objects by non-negative matrix factorization[END_REF], we have three parts in our complexity analysis which have been shown in Table 5. According to this table, if we sum all the complexities, we will have the following total complexity for Equation [START_REF] Daniel | Learning the parts of objects by non-negative matrix factorization[END_REF]:

O KN (1 -d) + KN (d -τ ) + τ N = O KN (1 -τ ) (41) 
For Equation [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF], we have two main parts to consider in the complexity analysis. One should note that although the equation contains three parts, for two of them we need the same operation and, as a result, we can consider them as one single entity. Table 6 illustrates these entities: according to Table 6, the total complexity of Equation ( 12) amount to

O KN (1 -d) + KN (d -τ ) = O KN (1 -τ ) (42) 
And thus, according to (41) and (42) the proposed method in case of L 2 norm has a complexity of O KN (1 -τ ) . Now if we divide the complexity of the UBQP-based approach, i.e. O(KN ), by this quantity, we have a gain of (1-τ ) -1 , and if we divide that by the complexity of the standard method, i.e. O(K 2 N ), we have a gain of K(1 -τ ) -1 .

For the L 1 case, we have two equations: [START_REF] Li | A general model for clustering binary data[END_REF] and [START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem[END_REF]. We can consider Table 7 for Equation [START_REF] Li | A general model for clustering binary data[END_REF]. Based on that, the total complexity of this equation is:

O N (1 -d) + N (d -τ ) + τ N = O(N ) (43) 
For Equation ( 14), we have basically two parts to study as shown in Table 8. Comparing (43) and complexities in Table 8, one can see that the total complexity of the proposed method in case of L 1 norm is O max{N, KN (dτ )} as N ≥ N (1 -d). Now if we divide complexity of the standard method, O(K 2 N ), by this quantity, the minimum gain er obtain will be min{K 2 , K(d -τ ) -1 } which establishes the theorem.
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 1 Figure 1: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1opt-Standard (right) for SVD
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 2 Figure 2: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1opt-Standard (right) for NMF
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 3 Figure 3: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1opt-Standard (right) for Proximus
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 4 Figure 4: Efficiency of 1-opt-BMF compared to 1-opt-Standard for CBMF (left) and for UBMF (right)

Figure 5 :

 5 Figure 5: Improvement of L 2 -norm with the 1-opt strategy applied on projected SVD, projected NMF and Proximus. The horizontal axis represents the value of K and the vertical axis shows the L 2 -norm.

  From the definitions of d and τ , one has:|W 0 | = (1 -d)N, |W ⊥ | = τ N, |W ⊥ | = (d -τ )N .If we look at it in the matrix-wise way, we have the following matrices:

Table 1 :

 1 Summary of the methods used in the experiments and the applicable 1-opt techniques for each method.

	Problem Applicable methods	Applicable 1-opt
	L 1 -BMF	CBMF, UBMF	1-opt-BMF 1-opt-Standard
			1-opt-BMF
	L 2 -BMF	Proj. SVD/NMF, Proximus	1-opt-Standard
			1-opt-UBQP

Table 2 :

 2 Datasets used in the experiments.

	Name	# Rows	# Columns	Density (%)
	Mushroom	8124	119	19.32
	Connect	67557	129	33.33
	Accidents	340183	468	7.22
	Pumsb	49046	2113	3.50
	T10I4D100K	100000	870	1.16
	T40I10D100K	100000	942	4.20

Table 3 :

 3 Summary of improvement made by 1-opt-BMF over other methods. The numbers show the average and the best ratio obtained over all datasets and over all values of K.

	Method	1-opt-UBQP Average Best	1-opt-Standard Average Best
	Projected NMF 1.07	1.72	1.73	3.85
	Projected SVD 1.15	1.85	2.06	4.76
	Proximus	1.13	1.72	1.65	4.70
	CBMF	NA	NA	2.90	8.00
	UBMF	NA	NA	2.86	8.04

Table 4 :

 4 Effectiveness of the 1-opt on L 1 -BMF methods. Numbers are the normalized error in percentage. Statistically significant improvements are shown in boldface.

	Dataset	k	CBMF Standard	1-opt	SCBMF 1-opt-SCBMF	UBMF Standard	1-opt
		20	7.5032	7.2662	7.0481	6.7332	6.8685	6.8685
		40	4.9601	4.4301	4.1346	3.6278	4.4537	4.4537
	Mushroom	60	2.5769	2.2591	2.4711	2.1682	2.1958	2.1958
		80	1.4323	1.1655	1.3449	1.1608	1.0042	1.0042
		100	0.1917	0.1313	0.1835	0.1500	0.1377	0.1377
		20	7.9585	7.8659	7.4513	7.3004	7.3202	7.3202
		40	4.9624	4.9077	4.5270	4.4728	4.1145	4.1145
	Connect	60	2.6073	2.5850	2.4071	2.3849	1.7336	1.7336
		80	1.7881	1.6420	1.3584	1.3551	0.8995	0.8995
		100	0.3537	0.3537	0.3537	0.3537	0.3537	0.3321
		20	3.1373	3.1373	3.1373	3.1373	2.9923	2.9923
		40	2.7191	2.7191	2.7191	2.7191	2.4352	2.4352
	Accidents	60	2.1906	2.1493	2.1900	2.1495	1.9766	1.9766
		80	1.6426	1.6360	1.6321	1.6255	1.4654	1.4653
		100	1.1345	1.1014	1.1342	1.1018	0.9504	0.9504
		20	1.3253	1.2895	1.3214	1.2782	1.2177	1.2176
		40	0.9608	0.9310	0.9608	0.9311	0.8903	0.8903
	Pumsb	60	0.8719	0.8647	0.8719	0.8647	0.8201	0.8200
		80	0.8763	0.8467	0.8740	0.8491	0.7638	0.7637
		100	0.7560	0.7470	0.7560	0.7470	0.7010	0.7010
		20	1.1158	1.1158	1.1148	1.1148	1.1158	1.1097
		40	1.0745	1.0745	1.0745	1.0745	1.0734	1.0734
	T10I4D100K	60	1.0432	1.0432	1.0413	1.0413	1.0403	1.0403
		80	0.9806	0.9804	0.9803	0.9802	0.9757	0.9757
		100	0.9441	0.9435	0.9438	0.9432	0.9321	0.9321
		20	4.0715	4.0715	4.0715	4.0715	4.0715	4.0563
		40	3.9340	3.9340	3.9340	3.9340	3.9321	3.9321
	T40I10D100K	60	3.8203	3.8203	3.8169	3.8169	3.7926	3.7926
		80	3.6850	3.6850	3.6850	3.6850	3.6382	3.6382
		100	3.5602	3.5596	3.5560	3.5555	3.5062	3.5062

Table 5 :

 5 Complexity analysis of Eq. (11) < w i. , h >)h j dot prod. between w i. and W 0 < w i. , h > -1)h j dot prod. between w i. and W ⊥

	Sub-equation	Operations needed	Complexity
	h∈W 0 i	(1 + 2 i	O KN (1 -d)
	h∈W (2 h∈W ⊥ ⊥ i i h j	summation over a row of W ⊥ i	O(τ N )

i O KN (d -τ )

Table 6 :

 6 Complexity analysis of Eq. (12) -2 < w i. , h >)h j dot product between w i. and W 0 <w i. ,h>h j >1 3 -2 < w i. , h > dot prod. between w i. and W ⊥

	Sub-equation	Operations needed	Complexity
	h∈W 0 i	(1 i	O KN (1 -d)
	<w i. ,h>h j =1 i h∈W ⊥	1 +
	h∈W	⊥ i

i O KN (d -τ )

Table 7 :

 7 Complexity analysis of Eq.[START_REF] Li | A general model for clustering binary data[END_REF] 

	Sub-equation	Operations needed	Complexity
	h∈W 0 i h∈W ⊥ i h∈W ⊥ i	h j h j h j	summation over one row of W 0 i summation over one row of W ⊥ i summation over one row of W ⊥ i	O N (1 -d) O N (d -τ ) O(τ N )

Table 8 :

 8 Complexity analysis of Eq.[START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem[END_REF] 

	Sub-equation				Operations needed	Complexity
	-h∈W 0 i h∈W i ⊥ h j <w i. ,h>h j =1	1 -	<w i. ,h>h j >1 i h∈W ⊥	1	summation over one row of W 0 i dot prod. between w i. and W ⊥	O N (1 -d)

i O KN (d -τ )