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a b s t r a c t

Ultrasound-Guided Regional Anesthesia (UGRA) has been gaining importance in the last few years, offering
numerous advantages over alternative methods of nerve localization (neurostimulation or paraesthesia).
However, nerve detection is one of the most difficult tasks that anesthetists can encounter in the UGRA
procedure. The context of the present work is to provide practitioners with a computer-aided system to
facilitate the practice of UGRA. However, automatic detection and segmentation in US images is still a
challenging problem in many medical applications. This paper addresses two main issues, first proposing
an efficient framework for nerve detection and segmentation, and second, reviewing literature methods
and evaluating their performance for this new application. The proposed system consists of four main
stages: (1) despeckling filter, (2) feature extraction, (3) feature selection, (4) classification and segmenta-
tion. A comparative study was performed in each of these stages to measure their influence over the whole
system. Sonographic videos were acquired with the same ultrasound machine in real conditions from 19
volunteer patients. Evaluation was designed to cover two important aspects: measure the effect of training
set size, and evaluate consistency using a cross-validation technique. The results obtained were significant
and indicated which method was better for a nerve detection system. The proposed scheme achieved high
scores (i.e. 80% on average of 1900 tested images), demonstrating its validity.

& 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Regional anesthesia presents an interesting alternative or com-
plementary act to general anesthesia in many surgical procedures. It
reduces pain scores, improves postoperative mobility and facilitates
earlier hospital discharge. Traditionally, this technique is performed
with blind guidance of the needle to the target nerve. This method of
needle guidance increases the risk of block failure, nerve trauma and
local anesthetic toxicity [1]. To reduce these complications, the
current trend is to use the Ultrasound-Guided Regional Anesthesia
(UGRA) technique. The ability of UGRA to perform nerve block via
direct sonographic visualization has an enormous impact on the
practice of regional anesthesia [2–5]. Hence, UGRA has been gaining
importance in recent years, and emerging as a powerful technique in
n open access article under the CC
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pain management [3]. However, the lack of qualified practitioners
and the gap between technology and practice inhibits the general-
ization of UGRA to a large number of medical facilities. Performing
the UGRA routine requires a long learning process, mainly due to the
poor quality of anatomical visualization and the need for experience
in tracking and estimating the needle position regarding morpho-
logical discrepancies between patients [4,6].

The key problems with UGRA practice is the nerve localization
and needle tracking in ultrasound (US) images. Several methods
for needle tracking in ultrasound images have been proposed in
the literature. Some focus on software aspects using image pro-
cessing techniques [7] while others are based on improving the
physical properties of the needle to make it more echogenic, thus
enhancing visualization [8]. Despite fact that the needle detection
is among the major problems in UGRA, the nerve (target) detec-
tion remains unexploited (to the authors’ knowledge) and nerve
detection errors can result in accidental intra neural injection
which can lead to serious complication. There are very few studies
that focus on nerve detection either from a software or a physical
standpoint. Recently, Photoacoustic (PA) imaging method were
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Fig. 1. (a) Marking indicates the 3 levels at which an attempt was made to visualize
median nerves in the forearm, (b) ultrasound images of the median nerve in the
distal forearm.
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proposed to improve the nerve visualization [9,8,10]. In [10,11],
the authors have developed an intergenerational multispectral PA
(IMPA) imaging technique to discriminate nerve tissues. However,
the main limitation of this kind of imaging system is their cost
which will make it difficult to deploy this solution for regional
anesthesia in the near future. In contrast, the present study focu-
ses on software aspects of nerve detection using cross sectional
images from ultrasound machines available in the operating room.
The development of such a technique will enable easy imple-
mentation on ultrasound images at a low cost. Moreover, the
development of a UGRA imaging system with better nerve visua-
lization will facilitate nerve detection and increase the perfor-
mance of the segmentation algorithms.

One of the promising solutions is Computer Aided Detection
(CAD) that has the potential to bridge this gap and support the
practitioner by highlighting regions of interest in US images. In the
last few decades there has been growing interest in CAD systems in
different medical applications [12,13]. Modern approaches to auto-
matic detection in US images involve four basic stages [14,15]:
(1) despeckling filter, (2) feature extraction, (3) feature selection and
(4) classification. Each of these stages has beenwidely investigated in
the literature, because each one presents challenging issues to be
Fig. 2. Phases of the proposed
solved. Despeckling filters are used to increase the contrast of the
Region of Interest (ROI) and reduce background speckle [16–18].
Concerning feature extraction numerous texture descriptors have
been proposed to characterize the ROIs [19–25]. Feature selection is
used to select the most significant feature to increase the accuracy of
detection [26,27]. Classification is the stage in which a candidate ROI
is identified as positive or negative class [15,28]. Several studies have
reported significant improvements in medical practice and efficiency
when using a CAD system [29–32]. Nerve detection is among the
difficult tasks that the anesthetist can encounter in the UGRA pro-
cedure, as illustrated in Fig. 1 which shows the median nerve in a US
image. While the CAD strategy can provide anesthetists with a useful
tool that enables automatic nerve detection in US images, a key issue
is that the US imaging modality is associated with poor visual
properties of the nerve, which makes automatic localization a very
challenging problem. Very few studies can be found in the literature
that address this issue [33–35]. In [34], a method based on the
combination of a monogenic signal and a probabilistic active contour
was proposed to detect the sciatic nerve. The technique proposed in
[35] is based on the combination of median binary pattern MBP [36]
and Gabor filter to characterize and classify pixels belonging to the
median nerve tissues. Recently, a machine learning framework was
also proposed to enable robust detection of the median nerve [37,38].
However, these studies do not provide an overview or extensive
evaluation of the state-of-the-art techniques used in US images.

This raises the following questions: (1) how do state-of-the-art
techniques perform nerve detection in the UGRA application?
(2) which type of method at a given stage can lead to the best
performance of the proposed framework?

A number of authors have reviewed computer vision and
machine learning methods in US images for several medical
applications. In [14], the authors surveyed many approaches of
each step of a CAD system for a breast cancer application. They
conducted an extensive literature review and discussed the
advantages and limitations of each stage. However, the study did
not take into account the performance evaluation which is a cri-
tical step to measure the limitations of a method for a given
application effectively. Many studies have attempted to carry out
comparative studies of detection techniques in US images. In [19] a
comparative study for myocardial infarction detection systems
was conducted. In [20], the authors reported a comparative ana-
lysis of wavelet techniques. In [16], the authors compared des-
peckling techniques. Most of these comparative studies focus on
one stage of the CAD system. The main weakness with this
methodology is that one cannot draw any effective conclusion
about the performance of the whole pipeline. It would be more
relevant if an evaluation study considered all the main stages of a
CAD system. In this work we propose a framework for median
nerve segmentation consolidated by a comparative study of the
performance of each component of the framework. Fig. 2 depicts
nerve localization system.



Table 1
The responses of the despeckling filter methods.

Despeckling filters Filtered images

Original US image

O. Hadjerci et al. / Informatics in Medicine Unlocked 3 (2016) 29–43 31
the approach adopted in the present work. To the best of our
knowledge this is the first paper to propose such an approach with
an extensive evaluation study, for median nerve detection in US
images. In this paper we also tried to establish a valid bench-
marking methodology for UGRA applications. The outline of the
paper is as follows: the method for nerve detection is presented
gradually in this paper from Sections 3-7. In Section 8, validation
and evaluation of the nerve detection are provided, followed by
discussion in Section 9. The paper ends with some conclusions and
future trends.
Lee filter (LF)[42]

Minimum Speckle Index Homogeneous Mask (MSIHM)[49]

Frost filter (FF)[43]

Median filter (MF)[44]
2. Architecture of the framework

In the current section we present the general framework of our
method. Fig. 2 shows the overall segmentation method, which
consists in several image processing and machine learning tech-
niques. First, we applied pre-processing techniques to reduce the
noise effect and enhance tissues visual properties. After the pre-
processing stage, feature extraction was performed to represent
the texture characteristics of tissues. Then feature selection was
also performed to obtain the best subset with high discriminative
properties, from the original feature space. The optimal selected
feature subset was used with SVM for the learning and testing
phases. Three SVM models were used to handle the three types of
median nerve (elbow, proximal and distal, and wrist). Therefore,
three candidate positions were generated corresponding to three
ROIs. A confidence measure was applied over the three candidates
to select the best target that represents the nerve. Finally an active
contour was applied to segment the nerve.
Maximum homogeneity over pixel neighborhood (MHPN)
[48]

Geometric Filtering (GF)[46]

Homomorphic Filtering (HF)[47]

Anisotropic Diffusion Filtering (ADF)[45]

Rayleigh-Maximum-Likelihood filter (RMLF)[51]
3. Preprocessing

The preprocessing phase comprised two stages. In the first
stage, we used morphological reconstruction [39] in order to
extract the hyperechoic and hypoechoic tissues. In the second
stage, we extracted the epidermis region, to reduce the ambiguity
between the nerve and epidermis structures. Morphological
reconstruction is a correctional operation based on a geodesic
metric, which has been proven to have a better shape preservation
than classical morphological filters [40]. A mathematical mor-
phology reconstruction filter uses an image called a marker, to
reconstruct an object within the original, thus obtaining an image
called a mask. In our case the marker image was obtained by
enhancing the grayscale contrast using adaptive histogram
equalization. Morphological reconstruction was then applied to
this marker to generate the mask, which represents the foreground
region (hyperechoic and hypoechoic tissues). After extracting the
hyperechoic tissues, we subtracted from it the epidermis region,
by using the Skeletonization algorithm, and anatomical proprieties
(thickness of epidermis and the mean distance between the
median nerve and the epidermis [41]). This helps increase the
precision of nerve localization.
Wavelet filter (WavF) Biorthogonal[50]
4. Despeckle filtering

Speckle noise corrupts the visual aspect of the nerve region,
making it difficult to detect. Despeckle filtering is an essential
operation to improve the visual quality and enable better analysis
of the nerve region. An extensive literature has emerged recently
on signal denoising using linear filtering, nonlinear filtering, and
wavelet filtering [42–50]. This study provides a comparison and
evaluation of the performance of 11 despeckle filters to determine
which method is better for nerve region detection. Table 1



Table 1 (continued )

Despeckling filters Filtered images

Gabor filter (GaborF)[52]
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summarizes the despeckle filtering techniques used in this study.
The following sections address the theoretical aspect of the filters
investigated in this study.The filters are presented in greater detail
in the following subsections.

4.1. Linear filter

4.1.1. Lee, Kuan and Frost filter
Popular Despeckling techniques use local statistics in pixel

neighborhood, such as the Lee [42], the Frost [43], and the Kuan
[53] filters. Kuan proposes a minimum-mean-square error (MMSE)
criterion to model multiplicative speckle noise. The Lee filter is a
particular case of the Kuan filter; it uses linear approximation
made for the multiplicative noise model. The Frost filter is based
on an adaptive approach using an autoregressive exponential
model. In this study only the Frost and Lee filters were investi-
gated with a 5�5 mask. The filters based on local statistics fil-
tering led to the same result as that of the mean filter in the
uniform area, and kept the intensity value in the edge area.

4.1.2. Minimum speckle index homogeneous mask
In a homogeneous mask area filter [54], two windows are used,

the larger one to define the pixel neighborhood, and a smaller
moving subwindow within the first main window to estimate the
gray level homogeneity in each subwindow. The homogeneity is
measured by C ¼ σ2=M , where σ2 and M are the variance and the
local mean in the subwindow respectively. The center pixel is
replaced by the smallest value of C, within the N � N search area
around the center pixel. The moving window size for this des-
peckling filter in the present study was 5�5 and the number of
iterations was set to 2 for each image.

4.1.3. Maximum homogeneity over pixel neighborhood (MHPN)
This filter [48] also estimates local homogeneity. It considers a

5�5 neighborhood around each pixel, which is replaced by the
most homogeneous values f x;y, and the number of iterations was
two. The filter equation is as follows:

Rx;y ¼
Cx;yPx;yP

x;yPx;y
ð1Þ

with

Cx;y ¼ 1 if ð1�2σnÞPrPx;yr ð1þ2σnÞP
Cx;y ¼ 0 otherwise

(

4.2. Non-linear filter

4.2.1. Median filtering (MF)
The median filter [44] is a simple non linear operator that

replaces each pixel in the image by the median value of its
neighbors. In this study, the size of the neighborhood was 5�5
pixels, applied with two iterations to efficiently reduce the
speckle.
4.2.2. Geometric filtering (GF)
Geometric filters are based on a nonlinear iterative algorithm

which increments or decrements the neighborhood pixel inten-
sities depending on their relative values. In this work we investi-
gated the geometric filter introduced in [46]. This filter compares
the intensity of the center pixel with its eight neighbors. It
increments or decrements the value of the center pixel using a
geometric rule.

4.2.3. Homomorphic filtering (HF)
A Homomorphic filter is used to simultaneously normalize the

brightness across an image and increases the contrast. Homo-
morphic filtering [47] is performed in the frequency domain of the
logarithmic compressed image. The homomorphic function Hð:Þ is
designed by using a high-boost Butterworth filter:

Hðu; vÞ ¼ 1
1þ½Dðu; vÞ=D0�2

ð2Þ

where

Dðu; vÞ ¼ ½ðu�X=2Þ2þðv�Y=2Þ2�1=2 ð3Þ
D0 is the cut-off frequency of the filter, u, v are the variables of the
spatial frequency of the image, and X, Y are the size of the image in
the Fourier space. The inverse FFT of the image is then performed
to form the despeckled image Ri;j. The moving window size for the
despeckle filter HF in this study was 5�5 and the number of
iterations applied to each image was two.

4.2.4. Anisotropic diffusion filtering (ADF)
Diffusion filtering is an efficient nonlinear technique that

reduces the noise effect and keeps the edge information simulta-
neously. The equation of anisotropic diffusion as defined in [45] is:

∂I x; y; tð Þ
∂t

¼ div g J∇I x; y; tð ÞJð Þ∇I x; y; tð Þ½ � ð4Þ

where t is the time parameter, Iðx; y;0Þ is the original image, ∇Iðx
; y; tÞ is the image gradient at time t and gð:Þ is the conductance
function. This function should satisfy two criteria limf-0gðf Þ ¼ 1,
so that the diffusion is maximal within a uniform region, and
limf-1gðf Þ ¼ 0, so that the diffusion is stopped across edges. Two
different diffusion coefficients were proposed in [45]. The diffusion
coefficient suggested in the present study is:

gðf Þ ¼ 1
1þðf =kÞ2

ð5Þ

where k is the gradient magnitude threshold parameter. It is used
to control the rate of diffusion and as a soft threshold to distin-
guish between the image gradients of real edges and those
attributed to noise. In the discrete case the anisotropic diffusion in
(Eq. (4)) is defined as:

∂Iðx; y; tÞ
∂t

¼ λ
jηs j

ðdxþ1;y;t ½Ixþ1;y� Ix;y�þdx�1;y;t ½Ix�1;y� Ix;y�

þdx;yþ1;t ½Ix;yþ1� Ix;y�þdx;y�1;t ½Ix;y�1� Ix;y�Þ ð6Þ

where dxþ1;y;t , dx�1;y;t , dx;yþ1;t and dx;y�1;t are the diffusion coeffi-
cients for the left, right, up, and down pixel directions, respec-
tively. The constant 0oλo1=4 determines the rate of diffusion,
and jηs j denotes the number of neighbors. The filtering response
of the image is given by

Rx;y ¼ Ix;yþ
∂Iðx; y; tÞ

∂t
ð7Þ

This is a linear isotropic diffusion equation. The parameters for the
anisotropic diffusion filter used in this study were λ¼0.20, η¼8
and K¼30.
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4.2.5. Rayleigh maximum likelihood filtering (RMLF)
In [51], the authors first obtained the observed Rayleigh sta-

tistics, and used the robust maximum likelihood approach to
estimate the desired information.

4.3. Wavelet and gabor filtering

4.3.1. Wavelet filter (WavF)
Speckle reduction filtering in the wavelet domain is based on

different wavelet families [50]. Selection of a wavelet family affects
the performances of feature extraction and classification. the
choice of wavelet family depends on the type of application and
the information to be extracted. In this study we investigated four
wavelet families: Biorthogonal, Daubechies, Haar and Symmlet.
The filtering process implemented in this study is based on four
stages (1) compute the variance of the speckle σn2 from the

logarithmic transformed image with the equation: σ2
n ¼

Pp
i ¼ 1

σ2
p

gp

where σp2 and gp are the variance and mean of the image in the
selected windows, respectively, and p is the index of the current
window in the image, (2) compute the discrete wavelet transform
(DWT) for 4 scales, (3) apply the thresholding of the detail coef-
ficient for each sub-band (which is known as wavelet shrinkage),
and (4) invert the DWT decomposition to generate the
despeckled image.

4.3.2. Gabor filter (GaborF)
A Gabor filter is a band-pass filter that can keep a specific

spatial frequency related to texture patterns with specific orien-
tation and scale, by modulating a Gaussian envelope with a sinu-
soidal function. The kernel function for the filter used in this study
is expressed by the following equation,

gðx; yÞ ¼ exp �1
2

x02

σ2
x
þy02

σ2
y

 !" #
cos ð2πfx0Þ ð8Þ

where x0 ¼ x cosϕþy sinϕ, y0 ¼ �x sinϕþy cosϕ, ϕ is the filter
direction, σ is the standard deviation of the Gaussian envelope,
and f is the frequency of the cosine wave. In this study we used the
magnitude of the Gabor filter response as the despeckled filter,
that is f ðx; yÞ ¼ j Iðx; yÞ � gðx; yÞj . σ¼13, ϕ¼ π=2 and f¼1 were used
to achieve optimal results.

4.4. Other filters

In the last few years, many other methods based on the above-
mentioned despeckle filtering techniques have been proposed for
US images. Among these other methods is speckle reduction. In
[55], a novel method to reduce the speckle in US images was
proposed, based on the assumption of a Rayleigh distribution of
speckle. A Rayleigh-trimmed filter is first applied to suppress the
primary noise. Then anisotropic diffusion is applied to further
reduce noise while improving the visual aspect of structures in the
original image. In [56], a homogeneity map was generated
according to the local statistics of the window formed for each
Table 2
Feature extraction methods.

Method Extracted feature

First order statistics (FOS) Mean(m), median variance(μ2) ske
Gray Level Difference Statistics (GLDS)[58] Energy, entropy, contrast, mean an
Neighborhood Gray Tone Difference Matrix
(NGTD)[59]

Coarseness, contrast, busyness, com

Spatial Gray level Dependence Matrices (SGLDM)
[60]

Angular second moment, contrast,
sum variance, sum entropy, entrop

Statistical Feature Matrix (SFM)[61] Coarseness, contrast, periodicity an
Laws' Texture Energy Measures (TEM)[62] Average gray level (L), edges (E), s
image pixel to reduce noise in a US image. The homogeneity map
method uses the advantageous properties of a filter with a better
smoothing capability than the edge-sensitive filter to increase the
image quality. In [57], the authors proposed a bank of wide-band
2D directive filters, based on a modified Gabor function. By com-
pounding the filter responses, noise was reduced and from the
desired information such as edges and structures information was
enhanced.
5. Feature extraction

Feature extraction is one of the essential steps in nerve image
analysis. It consists in extracting significant information from
image regions. This section describes the six statistical techniques
that were investigated, followed by Local Binary Pattern (LBP)
families, and lastly the fractal method.

5.1. Statistical methods

Statistical methods analyze the spatial distribution of local
features in ROIs and extract a set of statistics from these dis-
tributions. Table 2 shows for each method the features extracted to
describe texture properties.

5.1.1. First order statistics (FOS)
Let I be a random variable representing the intensities or gray

values of the image region. Based on the first-order histogram P(I),
the mean m and central moments μk of I are given by

m¼ E½I�1� ¼
X

I¼ 0Ng �1I�1PðIÞ; ð9Þ

and

μk ¼ E½ðI�E½I�� ¼
X

I ¼ 0Ng �1ðI�mÞkPðIÞ; ð10Þ

where Ng is the number of possible gray values.

5.1.2. Gray level difference statistics (GLDS)
Let Iðx; yÞ denote the image gray level at the pixel (x,y), for any

given displacement δ¼ ðΔx;ΔyÞ, let dissimilarity be defined as

Dδ ¼ j Iðx; yÞ� IðxþΔx; yþΔyÞj ; ð11Þ

and pδ be the probability density of Dδðx; yÞ. GLDS is based on the
estimation of the joint probability density of pixel pairs at a dis-
tance ðΔx;ΔyÞ with a given absolute gray level difference value.
The above features were calculated for displacements
δ¼ ð0;1Þ; ð1;1Þ; ð1;0Þ; ð1;1Þ.

5.1.3. Neighborhood gray tone difference matrix (NGTDM)
A NGTD matrix is based on the difference between the gray

level of a current pixel and the average of its neighborhood gray
levels. Let Iðx; yÞ be the image intensity value at position (x,y). The
wness(μ3), kurtosis(μ4) and speckle index(μ/m).
d homogeneity.
plexity and strength

correlation, sum of squares, variance, inverse difference moment, sum average,
y, difference variance, difference entropy and information measures of correlation
d roughness
pots (S), waves (W) and ripples (R).
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average intensity in a window centered at (x,y) is given by

f i ¼ f ðx; yÞ ¼ 1=ðW�1Þ
XK

m ¼ �K

XK
n ¼ �K

Iðxþm; yþnÞ; ð12Þ

where K is the window size and W ¼ ð2Kþ1Þ2. In this study K¼4.
The ith element of the gray tone difference matrix for all pixels
having the value i is:

sðiÞ ¼
XM�1

x ¼ 0

XN�1

y ¼ 0

j i� f i j ; ð13Þ

Otherwise, sðiÞ ¼ 0.

5.1.4. Spatial gray level dependence matrices (SGLDM)
SLGDM is based on the second-order conditional probability

density gðx; y; d;θÞ. Each element of this matrix represents the
probability that two different pixel locations at distance d from
each other, with the orientation θ will have intensity values x and
y, respectively. In this study d was set to 4 and θ¼0°, 45°, 90° and
135°.

5.1.5. Statistical feature matrix (SFM)
The statistical feature matrix measures the statistical properties

of pixel pairs at several distances within an image. In this work we
chose the distances of 1 and 3.

5.1.6. Laws' texture energy measures (TEM)
This approach consists in measuring the amount of variation in

pixel neighborhood. A set of 5�5 convolution masks is used to
compute texture energy. The masks are computed from the fol-
lowing vectors:

L5¼
E5¼
S5¼
W5¼
R5¼

1 4 6 1
�1 �2 0 1
�1 0 2 �1
�1 2 0 �2
1 �4 6 �4

2
6666664

3
7777775

Each vector of this matrix detects a specific characteristic. L5
provides a weighted local average, E5 enhances edges, S5 detects
spots, W5 detects waves and R5 detects ripples.

5.2. LBP family methods

To investigate the performance of the LBP descriptor family,
four LBP-based methods were studied here: (1) LBP, (2) Shift LBP
(SLBP), (3) Median binary pattern (MBP) and (4) Adaptive MBP
(AMBP).

5.2.1. LBP
LBP is very popular operator and descriptor for texture analysis

due to its simplicity and high performance [63]. It uses a circular
neighborhood around each pixel location with a radius R and N
points around a center pixel gc. LBP uses bilinear interpolation to
compute the sample values gp in the circular scheme. It is defined
as:

LN;Rðx; yÞ ¼
XN�1

p ¼ 0

sðgp�τÞ2P ð14Þ

where

sðxÞ ¼ 1 xZ0
0 otherwise

�

where τ¼ gc . In this work, R¼2 and N¼16 achieved the best score.
5.2.2. MBP [36]
MBP uses the same strategy as LBP but with the median gray

value of the neighborhood instead of τ¼ gmed, where gmed ¼
medianðg0;‥; gN�1; gcÞ and the function s is defined as in LBP. The
optimal parameters were found to be R¼1 and N¼8.

5.2.3. AMBP [64]
AMBP uses the principle of adaptive median filtering to pre-

serve image detail even in the presence of high levels of noise by
varying the size of the local median window. AMBP adaptively
changes the analysis window size to obtain a better threshold
depending on the local context. AMBP produces either the central
pixel or the median value as threshold. The first case yields LBP
whereas the second one yields MBP. In fact, the AMBP histogram
can combine both LBP and MBP depending on the local structures
and noise.

5.2.4. SLBP [65]
SLBP is similar to LBP in two aspects, it incorporates a para-

meter k in the thresholding equation (i.e. ðgp�τ�kÞ), where k
varies within an interval defined by an intensity limit l. Unlike LBP,
SLBP can generate different binary patterns depending on the
value of k. Each pattern code is added to the binary pattern his-
togram. The number of generated patterns, K, for one pixel posi-
tion equals the number of different values K ¼ 2lþ1, where k¼3
was used in this study).

5.3. Fractal

In [66], the authors proposed the fractional Brownian motion
model to describe the texture roughness of natural surfaces. The
fractal dimension Df was estimated from the following equation:

EðδI2Þ ¼ cðδrÞ6�2Df ð15Þ
where Eð:Þ denotes the expectation operator, δI ¼ Iðx2; y2Þ� Iðx1; y1Þ
is the intensity variations, c is some constant, and δr¼ J ðx2; y2Þ�
ðx1; y1ÞJ is the spatial distance. In [67], the authors proposed a
method to estimate the parameter H and the fractal dimension can
be easily computed from the equation

Df ¼ 3�H ð16Þ
The fractal dimension Df indicates the roughness of the surface; for
smooth surfaces Df has small values.
6. Feature selection

This section briefly introduces some popular methods for fea-
ture selection. These methods extract essential information from
the data, which helps to improve classification performance and
reduce computational time. In this study, feature selection tech-
niques were categorized into two groups: filter based and
wrapper based.

Filter methods are better in terms of computation time and
suitable for high dimensional data sets, but, generally, they per-
form less well than Wrapper methods for the classification pro-
blem. Wrapper methods provide better results, because the fea-
ture selection process is optimized for a specific classifier [68]. The
major drawback of wrapper methods is their computation cost,
particularly for large feature spaces because each feature set must
be evaluated, which ultimately slows down the feature selection
process.

Hybrid methods use the advantages of both filter and wrapper
methods. The authors of [69] proposed a hybrid approach in the
context of time series prediction: they defined an iterative neural
filter for feature evaluation, which was then embedded in a series
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of wrappers for feature construction and transformation. In [70]
the authors proposed a two-stage method: in the first stage the
BW ratio [71] was used as a filter method for individual feature
ranking; in the second stage Fisher's Linear Discriminant Analysis
(LDA) and Genetic Algorithm (GA) were used as wrapper method.
Finally, [72] presented a hybrid wrapper and filter feature selection
algorithm that, similarly to the previous work, includes a filter
method in a classical genetic algorithm to improve classification
performance.

6.1. Filter based methods

Filter methods act as preprocessing to rank the features
wherein the highly ranked features are selected and applied to a
classifier model. Filter methods are computationally simple and
fast, but the disadvantage is that they do not take into account the
classifier feedback. Feature selection based filter methods can be
further categorized into two groups: (1) feature weighting algo-
rithms and (2) subset search algorithms.

6.1.1. Feature weighting methods
Feature weighting methods weight each feature and rank them

based on their relevance [73]. The most widely used feature
weighting algorithms are presented in Table 3.

Fisher Score: This index provides a measure of features' ability
to distinguish between different classes. Given C classes, the Gini
index of a feature f can be formulated as:

fsðf iÞ ¼
Pc

j ¼ 1 njðμi;j�μiÞ2Pc
j ¼ 1 njσ2

i;j

ð17Þ

where μi is the mean of the sample values of the feature fi, nj is the
number of samples in the jth class, and μi;j and σi;j are the mean
and the variance of fi.

Gini Index: The Gini index is a measure for quantifying a fea-
ture's ability to distinguish between classes. Given C classes, the
Gini index of a feature f can be calculated as:

GIðf Þ ¼ 1�
X
i ¼ 1

Cpði=f Þ2 ð18Þ

The top features with the smallest Gini index are selected.
Information Gain: Information gain evaluates the dependence

between the feature and the class label. Given the feature X and
the class label Y, information gain is expressed as:

IGðX;YÞ ¼HðXÞ�HðX=YÞ; ð19Þ
where

HðXÞ ¼ �
X
i

PðxiÞlog 2ðPðxiÞÞ; ð20Þ

HðX=YÞ ¼ �
X
j

PðyjÞ
X
i

Pðxi=yjÞlog 2ðPðxi=yjÞÞ ð21Þ

H(X) and HðX=YÞ are respectively the entropy of X, and the entropy
Table 3
Feature selection based filter methods.

Feature weight algorithm Feature set search algorithm

Fisher score[74] Correlation feature selection[75]

Gini index[76]
Information gain[77] Minimum redundancy maximum relevance[78]

Kruskal-Wallis[79]
ReliefF[80] Fast correlation based filter[73]

T-test score[81]

Chi-square score[82]
of X after observing Y. A high information gain expresses the
relevance of a given feature.

Kruskal-Wallis: The Kruskal-Wallis algorithm is based on ranks
for comparing the popularity medians of features among groups. It
returns a ρ value for the null hypothesis that all samples belong to
the same population. If ρC0 the feature index is selected.

ReliefF: Assuming that p is the number of samples, the eva-
luation criterion of ReliefF is defined as:

rf ðf iÞ ¼
1
2

Xp
t ¼ 1

dðf iðxtÞ� f NMi ðxtÞÞ�dðf iðxtÞ� f NHi ðxtÞÞ; ð22Þ

where f iðxtÞ represents the value of instance xt on feature fi, f
NH
i ðxtÞ

and f NMi ðxtÞ denote the values on the ith feature of the nearest point
to xt with the same and different class labels, respectively. dð�Þ is a
distance measure.

T-test: The t-test approach measures the statistical significance
between the means of two classes. T-test calculates a ratio
between the difference of two class means and the variability of
two classes.

Chi-square score: Chi-square is used as an independence test to
measure the independence between a particular feature and the
class label. Let r be the number of features, and C the number of
classes. The Chi-square score can be formulated as:

X2 ¼
Xr
i ¼ 1

XC
j ¼ 1

ðnij�μijÞ2
μij

;μij ¼
n�jni�
n

ð23Þ

where ni� is the number of samples with the ith value for the
particular feature, n�j is the number of samples in class j and n is
the number of samples.

6.1.2. Feature subset search methods
Subset search algorithms [73] try to extract the best feature

subsets that have high discriminative properties. It uses an eva-
luation measure to capture the goodness of each subset. The most
widely used feature subset search algorithms are the following.

Correlation feature selection (CFS):
CFS is a filter algorithm that ranks a feature subset using the

correlation function based on heuristic evaluation:

H¼ krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþkðk�1Þr ff

q ; ð24Þ

where H is the heuristic of a feature subset S containing k features,
rcf denotes the mean feature class correlation, and r ff denotes the
average feature inter-correlation. The rcf is an indication of how
easily a class can be predicted based on features. The correlation
r ff between the features measures the level of redundancy
between them. CFS explores the search space and estimates the
relevance of a feature by considering its predictive ability and the
degree of correlation.

Fast correlation based filter (FCBF): FCBF is used to find a suitable
measure of correlations between features and a procedure to
select features based on the correlation between two random
variables. There are two approaches to measure the correlation.
One is based on classical linear correlation and the other is based
on information theory. In our work we adopted the correlation
measure based on information theory. The FCBF finds a set of
predominant features fbest. It consists of two main stages. The first
one computes the symmetrical uncertainty(SU) as a goodness
measure of each feature defined as follows:

SUðX;YÞ ¼ 2
IGðX=YÞ

HðXÞþHðYÞ

� �
; ð25Þ

where IGðX=YÞ, H(X) and HðX=YÞ are defined in Eqs. (20) and (21).
Then it selects relevant features using a predefined threshold δ,
and ranks them by their SU values. In the second stage, it keeps



O. Hadjerci et al. / Informatics in Medicine Unlocked 3 (2016) 29–4336
predominant (i.e. a feature fi is called predominant for the class c if
SUi;c4 ¼ δ) ones among all the selected relevant features. How-
ever, if there exists a feature fj such that SUj;i4 ¼ SUi;c , then fj will
be considered as a redundant feature to fi. Then, this set of
redundant features will be noted as Spi

, which will be further split
into Sþ

pi
and Spi

containing redundant features to fi with SUj;c4
SUi;c and SUj;co ¼ SUi;c respectively. Finally, FCBF applies three
heuristics on Spi , Spi

, and Sþ
pi

to remove the redundant features and
keep the most relevant ones for a given class.

Minimum redundancy maximum relevance (MRMR): MRMR
selects features that present a large mutual difference. The mutual
information between two variables x and y is defined as:

Iðx; yÞ ¼
Z Z

pðx; yÞlog pðx; yÞ
pðxÞpðyÞdxdy; ð26Þ

where p(x) and p(y) are the marginal probability density functions
of variables x and y, respectively, and pðx; yÞ is their joint prob-
ability distribution. Iðx; yÞ ¼ 0, means that x and y are statistically
independent. The multivariate MRMR method aims to optimize
two criteria simultaneously:

1. The maximal relevance criterion D, which maximizes average
mutual information Iðxi; yÞ between each feature xi and the
target vector y.

2. The minimum redundancy criterion R, which minimizes the
average mutual information Iðxi; xjÞ between two features.

The algorithm finds optimal features using forward selection.
Given a chosen set of features Sk of k, a feature is selected by
maximizing the criteria D�R:

max
xi AX� Sk

Iðxi; yÞ�
1
k

X
xj ASk

Iðxi; xjÞ
2
4

3
5 ð27Þ

6.2. Wrapper methods

Wrapper methods take into account the performance of a
predictor, i.e. the predictor feedback is incorporated in a search
algorithm which will obtain the optimal subset of a feature set.
This subset is the one that produces the highest predictor per-
formance. Although wrapper approaches include the intersection
between feature subset search, model selection, and feature
dependencies, they have a higher risk of overfitting compared to
filter techniques and they are very computationally intensive. In
this study we investigated the most widely used wrapper-based
algorithms (see Table 4 for references).

The sparse multinomial logistic regression (SMLR): The SMLR
algorithm learns a multiclass classifier based on multinomial
logistic regression. Let a regression model be defined as:

M¼ EDþλEα; ð28Þ

where α is the parameter of the logistic regression model, d is the
dimensionality of the dataset, Eα ¼

Pk
i ¼ 1

Pd
j ¼ 1 jαi;j j , and

ED ¼ Pl
i ¼ 1 log 1þexpð�yiþ f ðxiÞÞ, f ðxiÞ is the linear regression

given by
Pd

j ¼ 1 αjxijþα0. SMLR minimizes Equation (28) with
Table 4
Feature selection based Wrapper methods.

Wrapper-based Algorithms

Sparse multinomial logistic regression[83]
Sequential forward selection[84]
Sequential backward elimination[85]
respect to the model parameter α as follows:

∂ED
∂αi;j

¼ λ if jαj i;j40
∂ED
∂αi;j

����
����oλ if jαi;j j ¼ 0

����
���� ð29Þ

αi;joλ, means that the corresponding feature will be excluded,
since the parameter is equal to zero. Note that we simply need the
first and the second partial derivatives of ED with respect to αi;j:

∂ED
∂αi;j

¼
Xl
n ¼ 1

yni x
n
j �

Xl
n ¼ 1

tni x
n
j ;

�����
����� ð30Þ

∂2ED
∂αi;j

¼
Xl
n ¼ 1

yni ð1�yni Þ½xnj �2:
�����

����� ð31Þ

where yi
n is the probability of wnAti. SMLR adopts a simplified

component wise training algorithm [83], which avoids the use of
the Hessian matrix for the training phase.

Sequential forward selection (SFS): SFS is the simplest greedy
search algorithm. SFS performs best when the optimal subset has a
small number of features. The main disadvantage of SFS is that it is
unable to remove features that become obsolete after the addition
of other features.

Sequential backward elimination (SBE): Unlike SFS, SBE works
best when the optimal feature subset has a large number of fea-
tures. Similarly to SFS, the main disadvantage of SBE is that it
cannot reevaluate the relevance of feature after it has been dis-
carded from the optimal subset.
7. Localization and segmentation

The visual properties of nerve tissues in ultrasound images may
vary from one patient to another. Furthermore, the position of the
probe can affect those properties. To handle such a situation, we
used several learning models. As shown in Fig. 3, several training
sets of ultrasound images were used as templates (fN1;‥Nmg),
representing different median nerves.

To detect a nerve, SVM models were applied to compare the
sliding window at the position (i, j) in the input image (test) and
the m templates. We compute the distance between a sample xi
and the SVM hyperplane for each learned SVM model. The sample
with the largest distance from the learned hyperplane should be
assigned a higher degree of confidence. The classification proce-
dure yields m candidate positions for each nerve. From these
positions we keep only those regions with the highest confidence
degree as shown in Fig. 3.

Nerve segmentation needs another step to obtain nerve
boundaries. For that purpose, we used the phase based probabil-
istic active contour (PGVF) to segment the nerve [34], since it
provides better results for nerve segmentation compared to clas-
sical methods. The bounding box of the localization is used as an
initial contour. This method uses the parametric active contour
with a modified energy function of the Gradient Vector Flow (GVF)
[86]. The parametric active contours consist of internal and
external forces that govern a dynamic curve xðcÞ ¼ ½xðcÞ; yðcÞ�, cA ½
0;1� with the well known snake equation [87].

EAC ¼
1
2

Z 1

0
αjx0ðcÞj2þβjx″ðcÞj2dsþ

Z 1

0
εðxðcÞÞds ð32Þ

where α and β are positive weighting parameters. The first term is
referred to as the internal energy, which controls the smoothness
of the curve x, while the second term is referred to as the external
energy, which attracts the curve x toward the object boundary. The
GVF uses the diffusion process to obtain the external forces. It is
defined as a vector field V ½vðx; yÞ;uðx; yÞ� that minimizes the
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following energy function,

ε¼∬ μ∣∇V ∣2þ ∣∇g∣2∣V�∇g∣2 ð33Þ

The performance of the GVF algorithm is based on edge
detection reliability. However, in the presence of noise, standard
edge detection techniques have several limitations. To keep the
strong edges only in the nerve regions, texture information with a
probabilistic process is used. It is more advantageous to combine
the texture features with the local phase information using the
probabilistic approach. The PGVF function is based on the combi-
nation of the probabilistic learning approach, with the local phase
information. It modifies the external energy equation of the ori-
ginal GVF (Gradient Vector Flow), that is,

ε¼∬ μ∣∇V ∣2þ ∣∇pf FA∣
2∣V�∇pf FA∣

2 ð34Þ

The derived solution of Eq. (34) is obtained using the Euler
Lagrange equation,

Vt ¼ μ∇V2�ðV�∇pf FAÞ∣∇pf FA∣2 ð35Þ
where pðx; yÞ is a weight function of the gradient vector field. It
guides the active contour to the boundaries that have a high
probability of belonging to the region of interest. fFA is a function of
feature asymmetry measures based on the Monogenic signal. pðx;
yÞ is obtained from the learning data using the Gaussian Mixture
Model (GMM). Let us consider χðx; yÞ as a feature vector repre-
senting the Gabor filter response at the location (x,y) and pðx; yÞ is
the likelihood function at this location given as pðx; yÞ ¼ Pðχ=ΘÞ To
generate the probability map pðx; yÞ, GMM is used to select the
statistical model and to estimate its parameters. The GMM is
defined as pðχ=ΘÞ ¼ PK

K�1 wkpðx=θkÞ, where wk is the weight of
each Gaussian component and θk is the parameter vector of the
kth Gaussian (the means and covariance matrix).
8. Experimentation and results

Sonographic videos of the median nerve were obtained from 19
patients, in real conditions at the Medipôle Garonne hospital in
Toulouse (France), using a Philips machine with a 5–12 MHz
transducer frequency. The data were acquired in two different
time periods and separated into two databases (DB1, DB2). DB1
contains data of 8 patients and DB2, acquired one year after DB1,
contains data of 11 patients. Around 100 frames were extracted
automatically from each video by an algorithm based on the
motion estimation [88]. This step enables key frames, in which
significant changes take place, to be selected; it helps to avoid
redundancy that can bias results. The images used for experiments
have a size of 600�350 pixels, a pixel dimension being
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0.2734 mm�0.2734 mm. A total of 1900 ultrasound images of the
median nerve were used in the experiments. Two of Regional
anesthesia experts have provided the ground truth, we took only
the annotations on which the experts agreed.

Experiments were conducted in three main steps. First, eva-
luation was performed on DB1 with random selection of the
training and the test sets. Many research studies use 5-fold or 10-
fold cross-validation, which repeatedly trains on 80–90% of the
dataset. We focused first on learning from small training sets, in
order to measure performance in challenging situations. Therefore,
one third of the DB1 dataset was used for training (3 patients) and
the remaining part (5 patients) for the test. Second, 10-fold cross-
validation was applied, as a standard evaluation procedure, with
methods that had provided the best results in previous experi-
ments. The third experiments aimed to study the robustness of the
framework on data acquired after a certain period of time, without
changing the methods, the parameters, or the learning models.
DB1 was considered as the training set and DB2 (acquired one year
after DB1) was considered as a testing set, making it possible to
evaluate the reliability of a given method independently from the
learning conditions.

The experiments were conducted with a computer equipped
with 32 GB RAM and an Intel Xeon 3.70 GHz�8 CPU processor.
The results were analyzed from several aspects: recall, precision
Fig. 4. Example of nerve block detection. (a) Three images annotated by an anesthesia
detection of nerve.
and f-score were used to evaluate localization and Dice and
Hausdorff measures were used to evaluate segmentation.

8.1. Evaluation of framework components

The aim is to evaluate each stage of the proposed framework in
order to study the role and the impact of each step on nerve
localization and segmentation (samples of results can also be
visualized in these videos: video1, video2). The proposed frame-
work operates in two phases, localization then segmentation as
described in Section 7. Fig. 4 shows an example of localization and
segmentation of the nerve using three US images obtained from
three different patients. Nerve localization is an essential step to
enable accurate and fast active contour convergence to the region
of interest. The performance of each stage of nerve localization
was evaluated using precision and recall indexes to calculate the f-
score index [89]. A detected region was considered as a true
positive if the intersection area of the two boxes (ground truth and
detected region) divided by their union was greater than 50%.
Otherwise, the detected region was considered as a false positive.
The false negative was incremented when it failed to give a posi-
tive response, although the ground truth annotation stated that
there was a nerve region. Five key steps were evaluated for nerve
localization, namely despeckling, feature extraction, feature
selection, classifier algorithm. Note that the SVM classifier was
expert. (b) Nerve localization, green square represents the nerve zone. (c) Contour

http://video1
http://video1


Table 5
Classification results for different techniques implemented in the proposed
approach (Despeckling filters and feature extraction).

Desc DF GF MHPN LF MSIHM

FOS 0.2670.22 0.5570.32 0.6770.03 0.4670.09 0.5970.24
SGLDM 0.2870.06 0.1570.08 0.2470.53 0.3670.08 0.6170.54
GLDS 0.4370.34 0.6270.32 0.6170.12 0.5470.23 0.6370.21
NGTDM 0.4070.21 0.6570.05 0.4470.23 0.4370.21 0.6370.26
SFM 0.5670.08 0.5170.13 0.5470.54 0.5270.28 0.5770.43
TEM 0.4270.29 0.4970.43 0.3370.21 0.3970.27 0.5870.05
Fractal 0.2270.17 0.2870.36 0.4370.05 0.5170.23 0.6170.14
Desc FF HF MF RMLF

FOS 0.3770.12 0.4170.05 0.4370.08 0.4270.23
SGLDM 0.3270.17 0.2770.23 0.3470.31 0.3170.34
GLDS 0.5670.12 0.3770.06 0.6070.12 0.4270.13
NGTDM 0.7370.13 0.2370.18 0.6470.13 0.4370.22
SFM 0.4970.29 0.5170.43 0.5170.06 0.4570.26
TEM 0.4670.30 0.4370.13 0.4770.08 0.4870.15
Fractal 0.4170.24 0.1770.18 0.3970.21 0.3270.19

Table 7
Classification results for the different LBP-based techniques implemented in the
proposed approach.

Desc Recall Precision F-score

LBP 0.7870.01 0.4270.03 0.6170.03
CLBP 0.2970.12 0.3570.22 0.32710
LPQ 0.1170.15 0.1970.14 0.1570.14
LCP 0.1270.43 0.2470.14 0.2470.18
MBP 0.8070.07 0.4570.10 0.6370.09
AMBP 0.8270.03 0.6470.41 0.7270.10
SLBP 0.3970.06 0.4670.13 0.4470.12
HFLBP 0.2370.09 0.3770.03 0.3070.21
GMBP 0.4670.43 0.8870.11 0.6570.09

Table 8
Classification results for the different techniques implemented in the proposed
approach (feature selection methods).

Algo Number of features Recall Precision F-score
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adopted in the following experiments, except when compared to
other classifiers.

8.1.1. Filtering and feature extraction
In the current trial, we investigated the influence of the dif-

ferent despeckling methods described in Section 4. Each des-
peckling method is associated with several statistical features to
represent the region of interest (see Section 5). Tables 5 and 6
present localization accuracy in terms of average and standard
deviation (i.e. μ7σ) over all the f-scores obtained. It can be
observed that the performance of a given despeckling filter
depends on the chosen features. For instance, the MHPN filter
works better with FOS features, while the FF, GaborF and WavF
Bior filters give the best results with NGTDM, SGLDM and GLDS,
respectively. However, the MSIHM filtering method provides the
best trade-off, since the results are consistent in most features.
Furthermore, an evaluation of different LBP-based methods is
required to find the appropriate method to describe the texture of
the nerve region. In Table 7, we can observe that AMBP achieves
the best score compared to the other LBP-based methods.

8.1.2. Feature selection
As mentioned in the previous section, MSIHM provides a good

trade-off between despeckling and feature extraction methods. To
increase the performance, the fusion of different features can be
tested. 37 features were therefore concatenated as one feature
vector using all the features described in Table 2. The obtained
results show a decrease in performance as depicted in Table 5.
Hence, only a subset of features works better, which leads to a
feature selection problem (see Section 6). To evaluate the feature
selection stage, we compared the widely used filter-based
approaches: t-test, ReliefF, Kruskal-Wallis, information gain, gain
Table 6
Classification results for different techniques implemented in the proposed
approach (Despeckling frequency-based filters and feature extraction).

Desc WavF Bior WavF
Daubechies

WavF Haar WavF Symlets GaborF

FOS 0.4670.02 0.1870.20 0.3070.02 0.4370.13 0.2570.35
SGLDM 0.6070.25 0.4670.32 0.1870.12 0.4270.07 0.7370.16
GLDS 0.5070.03 0.6370.32 0.4570.18 0.7370.16 0.4770.02
NGTDM 0.6370.02 0.4670.03 0.1870.01 0.4370.08 0.5870.43
SFM 0.4670.18 0.2070.03 0.2870.31 0.3170.22 0.1970.25
TEM 0.5170.09 0.3770.42 0.3070.27 0.6070.18 0.4070.32
Fractal 0.4770.23 0.5070.14 0.3270.09 0.1270.06 0.3770.02
index, Fisher score, Correlation Feature Selection (CFS), Chi-square,
Fast Correlation Based Filter (FCBF), Wilcoxon test, Principal
Component Analysis (PCA) and Minimum Redundancy Maximum
Relevance (MRMR). We also compared the wrapper-based
approaches: sparse multinomial logistic regression (SMLR),
Sequential forward selection (SFS) and Sequential backward
elimination (SBE).

Table 8 shows that wrapper based methods generally perform
better than filter based methods in terms of accuracy, but they
require much more computing time than filter methods. This is
mainly due to the dependence on the closed loop for feature
selection according to classifier output. Regarding the number of
features selected, T-test and Fisher score have 23 and 25 features,
which is the largest number among all methods. The MRMR
method outputs the smallest number of features with the best
performance in terms of accuracy and computational time. The
features extracted from the MRMR algorithm are: homogeneity,
entropy, and energy derived from GLDM, strength and busyness
derived from GTDM and finally coarseness and periodicity
extracted from the SFM.

8.1.3. Classifiers comparison
In this section we compare the performance of several well-

known machine learning algorithms, i.e. Support Vector Machine
(SVM), Decision Tree (DCT), K- Nearest Neighbors (KNN), multi-
layer perception (MLP) and naive Bayesian (NB), commonly used
for classification in US images. The aim is to determine which
learning model produces the best performance in a small learning
dataset. For that purpose, we used a MSIHM despeckling filter and
the MRMR feature selection method, since it is independent from
the classifier. Parameter tuning for machine learning algorithms
was used to reach the maximum rate of classification; in this
CF 10 0.7070.55 0.8370.15 0.7770.32
Chi-square 11 0.7170.02 0.7770.29 0.7470.09
FCBF 3 0.6070.20 0.6870.21 0.6570.22
Fisher score 23 0.5170.01 0.6070.46 0.5670.13
Gain index 12 0.6570.54 0.7770.23 0.7270.52
Information gain 8 0.7070.01 0.7970.42 0.7570.11
Kruskal-Wallis 13 0.7670.17 0.7270.15 0.7470.18
MRMR 7 0.8070.08 0.8370.10 0.8270.09
PCA 12 0.7470.03 0.7270.11 0.7470.13
ReliefF 11 0.6570.21 0.7370.24 0.7170.14
SMLR 21 0.5970.32 0.4570.36 0.5270.23
T-test 25 0.4670.50 0.5370.44 0.5070.36
Wilcoxon test 10 0.7770.04 0.6970.08 0.7370.06
SFS 7 0.8570.28 0.7670.22 0.8170.37
SBE 13 0.7470.17 0.7970.25 0.7870.04



Table 9
Classification results for the different machine-learning techniques implemented in
the proposed framework.

Classifier DTree Knn MLP SVM NBayes

f-score 0.7170.19 0.6770.23 0.4570.31 0.8270.08 0.3670.28

Table 11
Average scores of the quantitative evaluation of the localization and segmentation
for the study of the robustness.

F-score Recall Precision Dice metric Hausdorff metric

0.7070.37 0.6970.54 0.7370.19 0.7870.43 12.5175.79
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experiment we kept the best parameters of each machine learning
algorithm.

The SVM uses an RBF kernel with σ¼0.25 and C¼0.7, where
the parameter C controls the trade-off between errors of the SVM
on training data and margin maximization. MLP, KNN and NB
require one parameter to be tuned for each one. A single hidden
layer of 5 neurons was used for MLP, for KNN the number of
neighbors was set to 3, and the experiments showed that the
normal distribution is more appropriate for NB. The prediction for
each machine learning algorithm is indicated by the likelihood
that a label comes from a particular class. Table 9 shows that SVM
achieves a better result than the other classifiers.

8.2. Cross validation

Cross-validation is a popular strategy to evaluate classification
performance, because of its simplicity and universality. It presents
the advantage of reducing overfitting because the training samples
are independent from validation samples. In addition to the ran-
dom selection of training and testing sets, the cross-validation
technique was used to verify the consistency of previously
obtained results. This was performed using an exhaustive search of
10-fold and 5-fold cross-validation with a leave-one-out approach.
Note that experiments were performed with the methods that
provided the best results (MSIHM, MRMR, SVM).

Table 10 summarizes nerve localization performance. It can be
seen that performance increases by 4% compared to the results in
Table 8, which is an expected result since training/testing samples
present 90%/10% of data for cross-validation compared to 35%/65%
for random selection.

8.3. Segmentation evaluation

This section reports the experiments carried out to evaluate the
final step of segmentation using the same dataset. We showed that
the adopted methodology can successfully detect ROI in noisy
data, which is important to achieve a successful delimitation of
nerve contours. The detected ROI constitutes the initial contour to
be evolved toward the nerve as described in Section 7. Error
analysis was performed using well-known metrics, namely the
Dice (Eq. (36)) and Hausdorff (Eq. (37)) measures.

DDiceðRGT ;RSegÞ ¼
2RGT⋂RSeg

RGT þRSeg
ð36Þ

where RSeg and RGT represent the segmentation and ground truth
regions, respectively.

DHðX;YÞ ¼maxfmaxiðdðxi;YÞÞ;maxjðdðyj;XÞÞg ð37Þ
where X ¼ fx1‥xmg and Y ¼ fy1‥ymg can be seen as a set of points
of two contours, where xi and yi represent the coordinates of the
Table 10
Cross validation results.

Performance 5-fold 10-fold

recall 0.9170.13 0.9370.28
precision 0.8470.35 0.8170.19
fscore 0.8770.67 0.8870.52
curve points. The distance d of the xi to the closest point on the Y is
defined as dðxi;YÞ ¼minj Jxi; yi J .

These two metrics are essential to evaluate the segmentation
result, because they measure both overlap and distance between
the segmented region and the ground truth. Qualitative results are
shown in Fig. 4, where it can be seen that the nerve was suc-
cessfully detected compared to the ground truth. For the quanti-
tative result, the average segmentation score of 800 images was
82% and 10.4 in terms of Dice and Hausdorff metrics.

8.4. Evaluation of robustness

In previous experiments, we used data acquired in the same
period of time. An interesting question arises, however, concern-
ing the reliability of the proposed framework over time. In other
words, can we detect nerve structure, using different data acquired
after a long period with the same US machine and different
patients? For this end, we used the first database DB1 to compute
learning models and the second one DB2 acquired one year later,
as testing data. Here we used the methods that achieved the best
results and were validated in the first experiments, namely,
MSIHM filter, MRMR feature selection algorithm, and SVM classi-
fier for the nerve localization. Then an active contour was adopted
for the final segmentation.

Table 11 depicts the results of the localization and the seg-
mentation, showing that the localization f-score achieved 70% and
the segmentation precision reached 78% and 12.51 for Dice and
Hausdorff metrics, respectively. We evaluated the segmentation
process with and without localization using the method dedicated
to the nerve region. In Table 12, we compared our method with
the algorithm PGVF [34]. Results show that our localization
method systematically improved the segmentation of active con-
tour based methods. Localization combined with PGVF gave the
best results with 82% and 10,40 for Dice and Hausdorff, respec-
tively, showing that the adopted methodology can successfully
detect ROI in noisy data, which is important to achieve a successful
delimitation of nerve contours.
9. Discussion

This study set out with the aim of investigating automatic
nerve segmentation in ultrasound images for regional anesthesia
applications. We have introduced an approach involving an
extensive comparative study to handle different issues related to
nerve identification. To our knowledge, this is the first study to
deal with the behavior of different techniques of image processing
and machine learning for a UGRA application. It is important to
propose solutions and conduct a comparative study in this
research area, to delineate the appropriate approach for ROI
Table 12
Comparison of our framework with different methods.

Method Dice metric Hausdorff metric

PGVF 0.7170.43 12,5175.75
LocalizationþPGVF 0.8270.18 10,4073.41
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localization and segmentation. The proposed methodology com-
bines machine learning and an active contour algorithm to detect
nerve regions. The performance of machine learning approaches
for US images, generally, depends on five main phases: filtering,
feature extraction, feature selection and dimensionality reduction,
and classification. Each of these phases has received considerable
attention in recent decades, and it has been shown that each
method performs differently depending on the type of ultrasound
application [14,15]. Therefore, it is necessary to evaluate the state-
of-the-art under the proposed approach, to show which specific
method or algorithm can lead to better results. This methodology
is highly suitable for a new application as in our case.

In the previous section, we evaluated each phase of the pro-
cessing chain to measure their influence on nerve localization.
However, localization depends on discriminative properties of
features. In the ultrasound imaging modality these properties are
often degraded. A filtering phase is necessary to enhance the
quality of features and reduce noise. The comparison of the state-
of-the-art despeckling filters and feature extraction methods
provided an overview of which filter works better with given
features (see Tables 5 and 7). Among the filters considered here,
MSIHM yielded the best results in most cases, which makes it a
good method for nerve characterization. These results are in line
with a study conducted on ultrasound images of the carotid artery
[16], where MSIHM, GF and HF provided the best scores using a k-
NN classifier. Nevertheless, wavelets and some filters such as
MHPN and FF yielded interesting scores but only for certain fea-
tures, making them a less than ideal choice in our case. However,
further development of such filtering methods may improve per-
formance, particularly the wavelet methods as demonstrated by a
comparative study to characterize atheromatous tissues by
wavelet-based texture analysis [20].

Feature selection is often underestimated in ultrasound medi-
cal imaging, despite the fact that it is a crucial step to improve
performance, since redundancy in feature space increases classi-
fication error. As can be seen in Table 8, feature selection algo-
rithms, generally, significantly increase performance. However, as
for the filtering and feature extraction steps, we need to know
which methods work well for UGRA. This comparative study
identified MRMR as the best feature selection technique. MRMR
does not require a learning stage, which makes it computationally
interesting and less sensitive to the classifier used.

Texture features based on LBP that have demonstrated high
performances in other medical imaging modalities [90,91] do not
provide good results, mainly due to their sensitivity to noise.
Nevertheless, descriptors such as MBP and AMBP take into account
the effect of local noise, which is why performances are better
than the other LBP based methods as shown in Table 7. However
as MBP and AMBP are based on median filtering, they cannot
completely deal with speckle noise.

The third major component is the classifiers. SVM showed the
best results compared to k-NN, MLP, decision tree and Naive Bayes
classifiers. The RBF kernel provided the best results for SVM. These
results are consistent with the comparative study on myocardial
diagnosis based on ultrasound imaging [21]. Many studies in US
imagery applications have indicated that SVM performs better
than other classifiers. According to [27], SVM performed better
than neural network methods: MLP, PCA network, RBF network
and SOFM network. The high performance of SVM can be
explained by its robustness to the so called “curse of dimension-
ality”, i.e. the correct separation of classes in feature dimensions,
etc. While SVM is time consuming in the learning phase to con-
struct the classifier model, it is fast in the classification phase. This
presents an advantage for real-time applications, since the learn-
ing phase can be done offline.
The experiments were designed to cover three different
aspects: a low percentage of training samples, cross-validation to
verify the coherence of results, and finally consistency of results
with data acquired at different periods of time. It is common to use
a cross-validation estimator for classification performance,
because it yields low variance and reduces bias. This estimator
uses a high percentage of the training samples compared to the
testing one, which can lead to overestimating performance. It is
also important to test the effect of a low percentage of training
samples, as this corresponds to the case in real hospital conditions.
In clinical practice, the nerve detection system is trained offline
with a small number of patients. This training set represents a
small percentage of the large number of new arrivals, for whom
nerve detection has to be done in real time in the operating
theater. The observed results (Table 11) showed a certain decrease
in performance when a small training set was used, but they still
had a high performance and consistency. It is also worth pointing
out that the inter variability between patients’ anatomy impacts
the visual aspect of the median nerve in US images. This variability
should be taken into account when forming the training set.
Moreover, the tuning parameters of the US machines changed
after a period of one year between the two acquisitions (DB1 and
DB2). As the training was performed only on the first data (DB1),
this may explain the lower scores of localization and segmentation
obtained from the second dataset (DB2) (see Table 11).

As stated previously, the localization of the ROI is very impor-
tant to achieve a good segmentation of the nerve, since a relevant
initial contour enables fast and accurate convergence of the active
contour to the desired region. Many studies in ultrasound images
[92] used segmentation algorithms such as active contour, graph
cut, etc. Often such methods are assisted by a human operator,
who manually selects the ROI [93,94]. Recent trends, however,
combine machine learning with these segmentation techniques
showing nice performances [27,95]. In previous work [34], we
demonstrated the effectiveness of such an approach to segment
the sciatic nerve. However, this method yielded lower scores for
the median nerve. But, applied to the detected ROI, it shows good
performance in terms of Dice and Hausdorff measures (as can be
seen in Table 12). This is due to the reduced search space and
appropriate initial contour. Note that it is not necessary for the ROI
to cover the whole nerve region, the proposed approach also
works with ROIs that partially cover the nerve. The active contour
algorithm used can evolve to the desired region and compensate
the lack of information.

The clinical impact of the proposed method will be very
interesting for anesthetists. The development of an assistive sys-
tem will facilitate the UGRA procedure and enrich it with relevant
information. One can envisage an ultrasound machine with an
interactive computer interface that provides anesthetists with a
useful tool able to detect nerves in real-time. So far, in this work
we have not focused on the real-time processing. The aim was to
first study various aspects of performance. In summary, the pro-
posed framework is efficient compared to existing methods for
nerve segmentation. However, some weaknesses still remain.
Texture alone is not completely sufficient to detect the nerve in
any situation; the shape and temporal information will complete
the lack of information and generate better discriminative prop-
erties. In the proposed approach, the learning process is the most
time consuming, but as this procedure is done offline it should not
be a problem for real-time applications. Most detection methods,
such as despeckling, feature extraction, etc., can be optimized for
real-time. The active contour algorithm is also fast, since it oper-
ates near the desired region. Moreover, it is possible to parallelize
the proposed method using, for instance, a GPU processor.
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10. Conclusion

In this paper we have proposed a framework based on machine
learning and active contour, for nerve segmentation in ultrasound
images. We target the application of ultrasound guided regional
anesthesia, which constitutes a new research area in terms of
automatic detection of nerves and other tissues. We provide the
reader with an in depth performance analysis of different com-
ponents of the framework. The comparative study was carried out
from different perspectives: reliability, effectiveness, consistency
and coherence of each component of the framework. The results
obtained indicate the validity of the proposed approach and which
specific method in the framework provides the best performance.
The current study shows that nerve detection depends on several
phases. First, the despeckling phase is one of the important step. In
this work, we demonstrated that HMA is the best filter, but in
some images this filter also removes the speckle that characterizes
the nerve region. In the second step, the statistical feature
extraction is the best choice to represent the information of nerve
structure, except that reducing the features ambiguities is needed
to keep only the useful information. In the classification step, the
multi ROI classification based on nonlinear SVM is the key to
separate nerve tissue from the other tissues. Finally, the segmen-
tation step based on PGVF is the appropriate method to segment
such noisy data. In terms of medical application, the purpose of
this work is to improve UGRA practice, make it safer and gen-
eralize it to a large number of medical facilities. Despite these
promising results, questions remain, for instance the gen-
eralisability of the study to other types of nerve. Future work
investigating other types of nerves would be very interesting.
Continued efforts are also needed to make the method run in real-
time.
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