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LS-PLS using logistic regression: application to
clinical and multiple genomic data
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Abstract

Background: To address high-dimensional genomic data, most of the proposed prediction methods make use of
genomic data alone without considering clinical data, which are often available and known to have predictive value.
Recent studies suggest that combining clinical and genomic information may improve predictions. We consider here
methods for classification purposes that simultaneously use both types of variables but apply dimensionality
reduction only to the high-dimensional genomic ones.

Results: Using partial least squares (PLS), we propose some one-step approaches based on three extensions of the
least squares (LS)-PLS method for logistic regression. A comparison of their prediction performances via a simulation
and on real data sets from cancer studies is conducted.

Conclusion: In general, those methods using only clinical data or only genomic data perform poorly. The advantage
of using LS-PLS methods for classification and their performances are shown and then used to analyze clinical and
genomic data. The corresponding prediction results are encouraging and stable regardless of the data set and/or
number of selected features. These extensions have been implemented in the R package lsplsGlm to enhance
their use.
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Background
Over the past 15 years, progress in the generation of high-
dimensional genomic data has raised high expectations in
biomedical research. Large-scale technologies have pro-
duced a wide variety of genomic features, such as mRNA-
gene expression, DNA methylation, microRNA, and copy
number alterations (CNAs), among others.Many genomic
data of these types have been generated and analyzed
in numerous studies with the aim of predicting a spe-
cific outcome [1, 2]. In this article, we focus on binary
class prediction where the outcome can be for instance
alive/dead, or therapeutic success/failure. Most of these
studies [3–7] include clinical data in addition to genomic
data, using most of the proposed prediction methods with
only genomic data, which involves some statistical issues.
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In genomic studies, the number of samples n is often rel-
atively small compared to the number of covariates p,
and collinearity between measurements occurs. Unless a
preliminary step of variable selection is performed, the
standard classification methods are not appropriate. To
address this “large p small n” problem, variable selection
or dimensionality reduction methods or a combination of
both can be used. We focus here only on those dimen-
sionality reduction methods that aim at summarizing the
numerous predictors in the form of a small number of new
components (often linear combinations of the original
predictors). The traditional approach is principal compo-
nent regression (PCR)[8], an application of principal com-
ponent analysis (PCA) to the regression model. PCA is
applied without considering the link between the outcome
and the independent variables. An alternative method is
the partial least square (PLS) method [9], which takes this
link into account.
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In recent studies [10–12], most complex diseases have
been shown to be caused by the combined effects of many
diverse factors, including genomic and clinical variables.
This has led to an emerging research area of integrative
studies of clinical and genomic data, which we will refer
to as clinico-genomic models. Some strategies to com-
bine these two kinds of data have been reviewed in a
paper written by [13] to adress predictive clinico-genomic
models. More extensive overviews are available in [14],
where advantages and disadvantages are given for each
strategy. Regarding the dimensionality reduction strategy,
one possible way to handle the high dimensionality of
genomic data is to first apply dimensionality reduction
techniques to only the genomic data set. In the sec-
ond step, the selected genomic variables are merged with
the clinical variables to build a classification model on
the combined data set. We refer to this as a two-step
approach. Most previous techniques select the topmost
discriminative genomic features and then combine those
features into a combined score for future model develop-
ment. In the same way, [15] suggest an approach com-
bining PLS dimensionality reduction with a prevalidation
technique and random forests, applied with both the new
components and the clinical variables as predictors. These
papers mainly describe methods using PLS dimensional-
ity reduction to treat high-dimensional data. Even if any
type of dimensionality reduction method can be incor-
porated, these two-step approaches cannot account for
the relationship existing between two data sets. Indeed,
this reduction is achieved without considering into
account the link between the response variable and the
clinical data.
An alternative approach could be to use an iterative

procedure well suited to extracting relevant information
from the genomic data in combination with clinical vari-
ables. One idea is to use the principle of backfitting
procedures developed in the context of multidimensional
regression problems and derived for generalized additive
models [16], estimating additive components successively
in a nonparametric manner. Specifically, this involves
repeatedly fitting nonparametric regression of some par-
tial residuals on each covariate. For each regression, a
new additive component is estimated, which in turn yields
new partial residuals; this process is iterated until conver-
gence. Then, updates based on relevant information from
both data types takes place within the iterations. This
one step approach was developed by [17] in the regres-
sion Gaussian context for chemometrics. Nonparametric
regression is replaced with PLS regression for the data to
be compressed and ordinary least squares (OLS) regres-
sion for other data, so-called LS-PLS. The PLS scores are
thus incorporated into the OLS equations in an itera-
tive fashion to obtain a model for both the clinical vari-
ables and the genomic ones. The authors conclude that

the method seems to involve more information from the
experiment and return lower variance in the parameter
estimates.
The purpose of this paper is thus to adapt this one-

step LS-PLS procedure to logistic regression models. To
carry this out, we first need to extend PLS in this con-
text. Some studies proposing an adaptation of PLS for
classification problems have been published [18–20]. In
this paper, we focus on adapting these extensions to LS-
PLS to address the logistic regression model. The method
section gives the details of the original LS-PLS approach
corresponding to Gaussian linear regression, that cor-
responding to linear logistic regression and three novel
extensions of LS-PLS for logistic regression models. The
simulation study conducted to evaluate these approaches,
and a demonstration on two real data sets containing
both clinical information andmultiple genomic data types
(gene expression and CNA) are presented in the results
section.

Results
Simulation study
The aim of the simulation study is to compare the dif-
ferent prediction methods developed based on clinical
and/or gene expression variables. We simulated data sets
with a range of predictor collinearity and with different
functional relationships between the response, Yi, and the
predictors Xi· and Di· to mimic gene expression and clin-
ical variable data. For an individual i = 1, ..., n, with n =
100, we simulated Yi ∼ B(πi) with πi = [

1 DT
i· XT

i·
]
γ ,

where γ , the vector of regression parameters, defined as
γ = [

γ1 γ T
D γ T

X
]T . We fixed γ1 = −2.5, γD = {{0.5}4}

and γX = {{0}475, {0}475, {0.1}25, {0.1}25}. The matrix X
of size n × p (with p = 1000) has been simulated as
X = (

X1,X2,X3,X4), where Xk ∼ N
(
0bs(k) ,�k

X

)
with

{
�k

X

}

ij
= ckρ|i−j|, k = 1, ..., 4, i, j = 1, ..., bs(k), where

c1 = 8, c2 = 4, c3 = 2, and c4 = 1, bs(1) = bs(2) = 475,
bs(3) = bs(4) = 25, and ρ = 0.9. Regarding the matrix
D of size n x q (with q = 4), we used N

(
0q,�D

)
with

{�D}ij = ρ|i−j|, with i, j = 1, ..., q and ρ = 0.5. Accord-
ing to this model, we generated 100 training sets of size
n = 100 and 100 test sets of size 450. Note that the context
of this simulation is unfavorable for LS-PCR. Indeed, since
the variable blocks that are not active in the model pos-
sess the strongest variability, they stand out from among
the first κ components of the PCA.
Our proposed extensions, i.e., LS-PLS-IRLS, IR-LS-

PLS, and R-LS-PLS, are then applied to the simulated
data sets. To compare the accuracy and efficiency of the
latter, the GLM is applied to clinical data alone, and R-
PLS is applied to gene expression data alone. The usual
method based on PCR is also considered. In our con-
text, gene expression data are replaced with the first κ
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principal components ofX (obtained by PCA), which con-
stitute the directions of maximal variability in the data
of X, without considering the response variable Y. Let T
be the matrix of columns, that correspond to the first κ

PCA scores associated with X. The parameters are then
estimated by running IRLS(Y, [D T] ). This approach is
called least squares principal component regression (LS-
PCR). For all approaches, the optimal number of PLS or
PCR components is selected by choosing κ values in the
range of 1, ..., κmax, with κmax =1, 4 and 8, by a fivefold
cross-validation on each of the 100 training sets. That is,
each training set is split fivefold into a test set, containing
one-fifth of the data, and a learning set, containing the
remaining four-fifths of the data. We retain the value of κ ,
which minimizes the misclassification rate over this five-
fold cross-validation. This is also employed for R-LS-PLS,
where the κ value and λ for 6 log10−linearly spaced points
in the range [ 10−3; 100] are simultaneously determined by
this cross-validation method.
As referenced in [15], although variable selection is not

always necessary as a preliminary step to PLS-based clas-
sification, some authors argue that accuracy is improved
in the high-dimensional setting, especially when indeed
few relevant variables exist. Many variable selection pro-
cedures are available in the literature. In the present arti-
cle, sure independence screening (SIS) [21] is performed
to select relevant gene expression variables pred = 500
such that pred is strictly smaller than p. The SIS pro-
cedure involves ranking features according to marginal
utility, namely, each feature is used independently as a
predictor to determine its usefulness for predicting the
response. Specifically, the SIS procedure ranks the impor-
tance of features according to their magnitude of marginal
regression coefficients.
To evaluate prediction performance, mean misclassi-

fication rates and the area under the curve (AUC) are
computed on the 100 test sets for each method. The rates
of convergence are also assessed for LS-PCR and those
methods based on the PLS algorithm. Simulations and
analyses are performed using the R software, version 3.1.2.
The simulation results are summarized in Fig. 1 and

Table 1, which were produced based on the 100 simulated
data sets. They depict the distributions of misclassifica-
tion rates, AUCs and convergence rates in percent. For
this simulation study, the two classes are much less distin-
guishable by the clinical data than by the gene expression
data, which is confirmed in Fig. 1. Analyses of the clinical
features alone by the GLM and genomic data alone using
R-PLS are less informative in predicting the outcome than
those of the approaches combining both types of vari-
ables. All approaches integrating clinical and genomic
data, except LS-PCR, show comparable discrimination
rates. The method using PCR increases the misclassifi-
cation rates and decreases the AUC as κmax decreases.

Quite surprisingly, even with κmax = 4 or 8, LS-PCR does
not achieve the performance of the LS-PLS approaches.
According to the model structure, we would expect LS-
PCR to identify the two active components and thus to
yield similar results. For each case of κmax, R-LS-PLS
seems to be better than the two other extensions of PLS
(LS-PLS-IRLS and IR-LS-PLS), even though the median
misclassification rates of R-LS-PLS and IR-LS-PLS are
very similar to each other. The analysis of the variance
of misclassification error rates follows the same trend as
previously described, i.e., the misclassification error rate.
R-LS-PLS leads to less variability than the other meth-
ods. The same behavior is also observed in the resulting
convergence rates reported in Table 1. R-LS-PLS does not
show convergence problems (all rates equal 100%). The
convergence rate of LS-PLS-IRLS is much lower than that
of R-LS-PLS, probably due to numerical instability of the
methods when n is smaller than the number of variables.
Notably, the interpretation of the convergence rate of IR-
LS-PLS is seriously limited by the lack of an optimum
criterion in the approach. One explanation could be that
when solving the weighted LS problem in each IRLS itera-
tion with LS-PLS, the global problem cannot be rewritten
as the optimization of a loss function.
Note that the noninfluential variables having the high-

est variances may seem unrealistic since the influen-
tial gene expression variables can have higher variances
than the noninfluential ones in practice. To make the
simulation results more robust with respect to a poten-
tial bias towards an overoptimistic performance of our
approaches, we have chosen to attribute a stronger vari-
ability to the noninfluential variables.We have thus recon-
sidered the same simulation example but inverted the
variances levels. Surprisingly, we obtain similar results;
the LS-PCR method leads to poorer performance even if
κmax is equal to 8 (see Additional file 1).

Application to real data sets
We apply the extensions presented previously to two pub-
licly available real data sets for which both clinical and
genomic variables are available. Similar to the simulation
study, to validate procedures of the clinico-genomic mod-
els, we compare the combined clinico-genomic model
accuracy and AUC with those of the models built either
with genomic data or clinical data alone. We apply
and compare all the methods considered in the simu-
lation study. On both real data sets, we perform a re-
randomization study on 100 random subdivisions of the
data set into a learning set and a test set. For the first one,
we choose a test set size equal to one-third the data (2:1
scheme of [22]); considering the size of the second data
set, a ratio of 30 (learning set) to 70 (test set) has been
used. The SIS procedure is applied to genomic data, as
in the simulation study, considering different numbers of
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(A1) (A2)

(B1) (B2)

(C1) (C2)

Fig. 1 Boxplot of the misclassification rates (left part) and AUCs (right part) from the 100 simulated data sets. The results were obtained using the six
methods and according to different κmax : (A1, A2): κmax = 1; (B1, B2): κmax = 4; (C1, C2): κmax = 8. GLM and R-PLS denote the misclassification rates
and AUCs obtained from applying the GLM to the clinical data alone and PLS to gene expression data alone, respectively. LS-PCR denotes the
approach derived from PCR, where gene expression data are analyzed using PCA and IRLS can thus be applied to the merged data set of PCA scores
and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote the misclassification rates and AUCs obtained from the newly proposed LS-PLS
approaches combining expression and clinical data. For clarity, we use a color code to indicate the predictions: pink when from clinical data alone,
purple when from expression gene data alone and blue for the results of methods combining both types of variables. The number of gene
expression variables to pre-select pred is set to 500 in the SIS procedure

selected genes pred: 50, 100, 500 and 750. For the real data,
the κ range is {1, 2, ..., 5} and the λ range is given by 6
log10-linearly spaced points in the range

[
10−3; 100

]
.

Gene expression : central nervous system data
The first data set was obtained from [23], which has
been used to predict the response of childhood malignant

embryonal tumors of the central nervous system (CNS)
to therapy. The data set is composed of 60 patient sam-
ples, with 21 patients having died and 39 having survived
within a period of 24 months; gene expression data and
clinical data are available for each patient. There are
7129 genes, and the clinical features are sex (binary), age
(ordinal), chemo CX (binary) and chemo VP (binary).
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Table 1 Rates of convergence (%) from the 100 simulated data sets for the five methods, according to different κmax : 1, 4 and 8

κmax R-PLS LS-PCR LS-PLS-IRLS R-LS-PLS IR-LS-PLS

1 100 100 71 100 22

4 100 100 41 100 76

8 100 99 44 100 78

R-PLS denotes the results from the analysis of gene expression alone. LS-PCR denotes the approach derived from PCR, where gene expression data are analyzed using PCA
and IRLS can thus be applied to the merged data set of PCA scores and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote the rates of convergence from the newly
proposed approaches combining expression and clinical data. The number of gene expression variables to preselect pred is set to 500 in the SIS procedure

The original data set contains the clinical variable change
stage, which has been omitted due to its large number of
categories.
Figure 2 depicts themeanmisclassification rates accord-

ing to the number of selected genes pred obtained for
the analysis of the CNS data. This data set presents a
situation in which, gene expression data alone (R-PLS)
performed better than clinical data alone (GLM), with the
lowest misclassification rates regardless of the value of
pred (0.35 for GLM and approximatively 0.17 for R-PLS).
Except for LS-PCR, the proposed procedures integrat-
ing clinical and genetic features perform well with cor-
responding misclassification rates ranging from 0.16 to
0.20. These findings are not influenced by the number of

significant gene expression variables. However, the mis-
classification rate from LS-PCR increases as pred grows.
We consider that the information necessary to correctly
predict the response could be concentrated in only a set
of 50 genes. As provided, overall, the prediction perfor-
mances of R-PLS are close to those achieved using the
newly proposed LS-PLS approaches. The accuracy of the
prediction approaches for the CNS using only 500 selected
genes is detailed in Fig. 3. As already noted, the perfor-
mance in relation to the clinical data when predicting the
response is poor. The R-LS-PLS method attains the high-
est median accuracy, close to the median misclassification
rate achieved when analyzing only gene expression data
via PLS (R-PLS). The prediction results of LS-PLS-IRLS

Fig. 2Mean misclassification rates from the central nervous system (CNS) data set using the six methods considering different numbers of selected
genes pred : 50, 100, 500 and 750. GLM and R-PLS denote the misclassification rates and AUCs obtained from applying the GLM to the clinical data
alone and PLS to the gene expression data alone, respectively. LS-PCR denotes the approach derived from PCR, where gene expression data are
analyzed using PCA and IRLS can thus be applied to the merged data set of PCA scores and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote
the misclassification rates obtained from the newly proposed LS-PLS approaches combining expression and clinical data. For each method, a line is
drawn to connect symbols to improve readability
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Fig. 3 Distribution of misclassification rates and AUCs for central nervous system data, estimated from 100 samples using the six methods. GLM and
R-PLS denote the misclassification rates and AUCs obtained from applying the GLM to the clinical data alone and PLS to the gene expression data
alone, respectively. LS-PCR denotes the approach derived from PCR, where gene expression data are analyzed using PCA and IRLS can thus be
applied to the merged data set of PCA scores and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote the misclassification rates and AUCs
obtained from the newly proposed LS-PLS approaches combining expression and clinical data from the central nervous system data set. The
number of gene expression variables to pre-select pred is set to 500 in the SIS procedure. The color code for the methods is similar to that in Fig. 1

and IR-LS-PLS are very similar and better than those of
R-LS-PLS. We note the large variability of the misclassi-
fication rates for all proposed LS-PLS methods. For this
study, the worst predictions are obtained using the LS-
PCR method, indicating the poor performance of PCR
in treating information stored in high-dimensional data.
Plots similar to those in Fig. 3, corresponding to the three
other values of pred are given in Additional file 2.

Copy number alterations: breast cancer data
The second original data set [10, 24] contains information
on 2173 primary breast tumors, integrating somatic CNAs
and long-term clinical follow-up data. Different types of
data are merged based on the sample IDs. The data of a
total of 1349 primary breast tumors (684 from patients
with ER-positive (ER+) status and 221 with ER-negative
(ER-) status) are given, including the clinical variables
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(grade (nominal), tumor stage (ordinal), human epidermal
growth factor receptor 2 (HER2) status (binary), tumor
size (numeric), progesterone receptor status (binary)) and
CNA measurements. The goal here is to predict the ER
stratification of a novel breast tumor to select the appro-
priate treatment for breast cancer. Concerning somatic
CNAs, the data set used in this paper is prepared as
described in the original manuscript [24], yielding 22544
somatic mutations. The data were downloaded from the
TCGA data portal (https://tcga-data.nci.nih.gov/).
We report in Fig. 4, the mean misclassification rates

obtained for the most pertinent covariates from the SIS
procedure pred for all methods. Here, we have the case
where the use of clinical data alone or genomic data alone
does not offer good predictors of ER stratification. Indeed,
we observe a major gain in misclassification rates when
the response variable is predicted using either the LS-
PLS or LS-PCR approaches regardless of the value of pred.
More specifically, the rates decrease to values between
pred =50 and pred =500 and no longer change. The opti-
mal misclassification rate is close to 0.13 with pred =500.
Figure 5 shows a boxplot of the misclassification rates
and the AUCs for pred = 500. The analysis of the CNA
data improves only the prediction accuracy yielded by the
clinical variables alone. The median misclassification rate

obtained using R-PLS is smaller than that obtained via the
GLM. The four methods combining clinical and genomic
data provide similar and significantly better misclassifica-
tion rates and AUCs compared to those of both the GLM
and R-PLS. These findings suggest that CNA data perform
slightly better than clinical data, though the integration of
both features is more effective in predicting the response.
Plots similar to those in Fig. 5, corresponding to the three
other values of pred, are given in Additional file 3.

Discussion
The three extensions of the LS-PLS and PCR-type
approaches have been implemented in the R package
lsplsGlm. A clinico-genomic model that can predict a
binary outcome using dimensionality reduction methods
would be a useful computing tool for integrating clinical
and gene expression data. In general, the methods using
only clinical data or only genomic data perform less well.
We show that it is not always advisable to use the PCR-

type method, which can lead to suboptimal results that
depend on the data type and the number of selected fea-
tures and therefore the relation between the response
variable and the covariate structure. Indeed, in PCR, the
principal components that are dropped correspond to the
near-collinearities among the genetic data. PCR does not

Fig. 4Mean misclassification rates from the somatic CNA data set using the six methods considering different numbers of selected genes pred : 50,
100, 500 and 750. GLM and R-PLS denote the misclassification rates obtained from applying the GLM to the clinical data alone and PLS to the CNA
data alone, respectively. LS-PCR denotes the approach derived from PCR, where CNA data are analyzed using PCA and IRLS can thus be applied to
the merged data set of PCA scores and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote the misclassification rates obtained from the newly
proposed LS-PLS approaches combining CNA and clinical data. For each method, a line is drawn to connect symbols to improve readability

https://tcga-data.nci.nih.gov/
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Fig. 5 Distribution of misclassification rates and AUCs for the somatic CNA data estimated based on 100 samples using the six methods. GLM and
R-PLS denote the misclassification rates and AUCs obtained from applying the GLM to the clinical data alone and PLS to the CNA data alone,
respectively. LS-PCR denotes the approach derived from PCR, where CNA data are analyzed using PCA and IRLS can thus be applied to the merged
data set of PCA scores and clinical data. LS-PLS-IRLS, R-LS-PLS, and IR-LS-PLS denote the misclassification rates and AUCs obtained from the newly
proposed LS-PLS approaches combining CNA and clinical data from the brest cancer data set. The number of gene expression variables to
pre-select pred is set to 500 in the SIS procedure. The color code for the methods is similar to that used in Fig. 1

consider the response variable when determining which
principal components to drop. Although cross-validation
has been used to select the optimal number of compo-
nents, this decision is based mainly on the magnitude of
the variance of the components since in PCA, the depen-
dence on the response variable is weak when compared to
PLS. The LS-PLS extensions have been shown to be capa-
ble of simultaneously analyzing both clinical and genetic

data. We also demonstrated that the LS-PLS methods
have several advantages over other approaches. The corre-
sponding prediction results are quite accurate and stable
regardless of the data set and/or the number of selected
features, which is not the case for LS-PCR. Concern-
ing the comparison among the three LS-PLS extensions,
we first mention the convergence problems for the LS-
PLS-IRLS and IR-LS-PLS methods. We note that for the
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LS-PLS-IRLS method, the convergence problem can be
linked to the GLM algorithm, whereas for the R-LS-PLS
method, it is related to the algorithm itself.
In practice, dependencies frequently occur between

clinical and gene expression data, which is why the ques-
tion of the additional predictive value of gene expres-
sion data to clinical data plays an important role in
the literature [12, 25]. When clinical or gene expression
covariates are considered separately, well-performing pre-
diction rules can be achieved, but additional value can
be obtained by considering the gene expression when the
clinical covariates are still present in the model. There-
fore, it seems interesting to consider settings in which
correlations exist between the clinical data and the gene
expression data. From a conceptual point of view, the
three methods have the same approach regarding the
issue of collinearity present among clinical and genomic
data. Indeed, for the three approaches, the matrix of gene
expressions is orthogonalized on that of the clinical data,
which is not the case in the PCR approach. In Additional
file 4, we consider examples with D and X to be gen-
erated such that some of the variables among these two
data sets are correlated. We have varied these correla-
tions and studied the behaviors of the different methods.
We observe that R-LS-PLS always does better regardless
of the collinearity level. The other two extensions of LS-
PLS are much more variable and are less satisfactory on
average, although they tend to improve as the collinearity
level increases. We believe that this outcome is due to the
convergence problem of these two LS-PLS extensions.
Regarding the comparisonwith the two-step approaches,

the results obtained from the LS-PLS approaches pre-
sented here are different from the findings of [15], where
data are analyzed using a two-step approach based on ran-
dom forests (RF) and PLS reduction. Our approaches were
applied to the breast cancer gene expression data (results
not shown here) considered in [15]. In this study, the best
rate of misclassification was 0.2269 on average, while the
worst was 0.2981. In the study in [15], regarding methods
based on PLS, the best rate of misclassification was 0.30
on average, while the worst was 0.43. Hence, the one-step
approach using the two data sets simultaneously seems
better than the two-step approach using the two data sets
separately.
A study by [26] on an extension of Integrative mixture

of experts (ME) models for combining clinical and gene
markers to improve cancer prognosis has been published.
They illustrate the performance of the methodology on
three cancer studies and, particularly, on CNS data sets.
Even if the study using integrative ME cannot be consid-
ered as a dimensionality reduction approach, the authors
first assess the classification performance on each sep-
arate data set, as in our study. Then, they compare the
integrative ME with the logistic regression and PLS-RF of

[15] on the combined data sets. Using three different pre-
selection variable steps, an evaluation in which was varied
pred between 5 and 30 was performed. They show the
important role of the gene selection step in the predic-
tive ability of these models. Compared with our findings,
regardless of the variable selection step, the average error
rates obtained using the integrative ME approach are
higher than those obtained using the extensions of LP-PLS
for logistic regression with pred = 50. When the data sets
are combined and with 30 genes preselected, the average
classification error rates obtained via the integrative ME
approaches are greater than 30%, while they are less than
20% for LP-PLS extensions.
Determining the appropriate number of genomic fea-

tures in the first step is difficult. The number of features
may impact the comparison between the additive per-
formances corresponding to clinical and genomic vari-
ables. For example, if too many features are selected from
genomic data, the clinico-genomic model may be overfit
in the second phase. On the other hand, if too few genomic
factors are retained, then the predictive capability of the
genomic factor can be underestimated. We may conclude
that the model’s performance was not improved by the
addition of large numbers of genes but was improved by
the interplay of significant clinical features and genomic
profiles.
This work constitutes a first step towards the extension

of LS-PLS. In the present study, we consider only the case
of LS-PLS for classification problems. Due to the large
number of studies modeling survival using gene expres-
sion [27, 28], another natural extension of this work is
to use LS-PLS approach to generate survival prediction
models. The outcome would be a right-censored time-to-
event such as the time to death or the time to next relapse,
and Cox regression models must be considered.
Recently, some sparse versions of PLS have been pro-

posed for high-dimensional classification problems in
genome biology [29–31]. They aim to achieve variable
selection and dimensionality reduction simultaneously for
one type of data and they show that the combination of
both increases the prediction performance and selection
accuracy. This suggests that a subsequent extension of
PLS could be carried out to achieve a “sparse” version of
LS-PLS in the challenging task of combining both clinical
and genomic factors.

Conclusion
Despite the great potential of clinico-genomic integra-
tion, the topic is still in its elaboration phase. In general,
integrating heterogeneous data sets such as clinical and
genomic data is an important issue. We have proposed
three extensions of LS-PLS approaches for logistic regres-
sion models to analyze both clinical and genomic data.
The advantage of using those methods for classification
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and their performances are shown and then used to ana-
lyze clinical and genomic data. The corresponding predic-
tion results are encouraging and stable regardless of the
data set and/or number of selected features. These exten-
sions have been implemented in the R package lsplsGlm
to enhance their use.

Methods
Original LS-PLS approach
In the following, we consider situations where we
have both partly collinear measurements, such as high-
dimensional genomic data, and orthogonal (or near-
orthogonal) design variables on one side that we want to
relate to a response value on the other side. We denote the
design matrix associated with the collinear measurements
as X. For instances, in genomic samples, expression levels
of the p genes for the n genomic samples are collected in
this n × p data matrix X. The clinical variables are stored
in matrix D of size n × q.
The combination of least squares (LS) and PLS (called

LS-PLS) was first introduced in the Gaussian context
by [17]. LS-PLS involves an iterative procedure: the first
step is to use OLS on D̃ to predict Y and compute the
residuals. The matrix D̃ is defined as D̃ = [1n D], with
1n=(1, · · · , 1)T . Then, PLS is performed between X and
the residuals to obtain the matrix of PLS scores T (of size
n × κ). T is combined with D̃ in a new OLS regression
to predict Y. New estimates for the residuals of Y on D̃
are obtained, keeping only the residuals associated with
D̃ in the OLS of Y on [ D̃,T]. This algorithm is repeated
until convergence. The authors suggest orthogonalizing
X on D̃. The orthogonalized variant is better suited for
situations where the focus is on identifying the unique
information in each matrix. The matrix X is thus pro-
jected into an orthogonal space spanned by the design
variables of D̃:

XOrth =
(
In − D̃

(
D̃T D̃

)−1
D̃T

)
X.

The standard PLS regression is then used on XOrth
instead of X. This avoids iterations in the algorithm since
the residuals associated with D̃ in the OLS of Y on

[
D̃,T

]

are the same as the residuals of Y on D̃ (the column space
of D̃ and the column space of T are orthogonal). Thus, the
residuals do not change during the iterations avoiding the
iterative process. This procedure is denoted by

(
V, γ̂ D̃, γ̂X

)
←− LS-PLS(Y,D,X, κ)

where V is the projection matrix, also called the loading
matrix (of size p× κ), which allows us to compute T from
X based on the relationship T = XV. The vector γ̂

D̃ is
the estimate of the vector, in which a coefficient exists for
each column of D̃. In the usual regression context, the

loading matrix V allows us to compute the coefficients of
γ̂
X using the coefficients in the dimension-reduced space

γ̂
T with γ̂

X = Vγ̂
T. In the LS-PLS context, when X is

orthogonalized on D̃, we can similarly compute the coef-
ficient γ̂

X, in which a coefficient exists for each column of
XOrth that is not of X. Note that for a new individual sam-
ple

(
d0T , x0T

)T
, the linear predictor associated with the

LS-PLS methods is given by :

ŷ0 = d̃T0 γ̂
D̃ +

(
xT0 − d̃T0

(
D̃T D̃

)−1
D̃TX

)
γ̂
X.

Linear logistic regression - ridge penalty and RIRLS
For a typical designed experiment logistics model, let us
consider a general design matrix U of size n × m and
the response variable collected in a {0, 1}n-valued vec-
tor Y. We denote Ui·, the i-th row of U, and Yi as the
i-th element of Y. The conditional class probability, i.e.,
the conditional expectation of Yi given Ui·, defined by
πi = P(Yi = 1|Ui· = ui), is related to the linear predic-
tor ηi = [

1 uTi
]
γ , with γ ∈ R

m+1 through the nonlinear
relation πi = h(ηi), where h(ηi) = 1/(1 + exp(−ηi)). The
parameter γ is unknown and must be estimated from the
data. Vectors π and η depend on γ and should be writ-
ten as πγ and ηγ , respectively. For the sake of clarity, we
use only the notations π and η in this paper. In logistic
discrimination, the estimation is usually carried out using
γ̂
ML, i.e., the maximum likelihood (ML) estimator. The

log-likelihood of the observations for the value γ of the
parameter, simply denoted by �(γ ), is given by

�(γ ) =
n∑

i=1

{
yiηi − ln (1 + exp(ηi))

}
.

Let W(γ ) be the diagonal n × n matrix with entries
{W(γ )}ii = πi(1 − πi). For a vector u0, the predicted
class Ŷ0 of the sample is given by Ŷ0 = 1(π̂0>1−π̂0), where
π̂0 = h

([
1 uT0

]T
γ̂
ML

)
and 1(·) is the indicator function.

When this estimate exists, it is computed as the limit of
a Newton-Raphson sequence; this algorithm is known as
the iteratively reweighted LS algorithm [32], denoted by
IRLS(Y,U). From step t to t + 1, we have:

z(t) = Ũγ (t) +
[
W(t)

]−1 (
Y − π (t)

)
, (1)

γ (t+1) =
(
ŨTW(t)Ũ

)−1
ŨTW(t)z(t), (2)

where Ũ=[ 1n U] and W(t) is shorthand notation for
W

(
γ (t)). The quantity π (t) is shorthand notation for the

vector of size nwhose n-th element is given by h
(
ŨT
i· γ (t)

)
.

The IRLS algorithm can thus be considered as an iter-
atively W

(
γ (t))-weighted LS regression of a R

n-valued
pseudovariable z(t) onto the columns of Ũ. Note that in
some cases, including the practical case where n <<
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m, the existence and unicity of γ̂
ML for logit models

are not guaranteed. Thus, regularization methods such
as the ridge penalty are required. The ridge estimator
[33], denoted by γ̂

R, is defined as the (unique) maxi-
mizer of the penalized likelihood �∗(γ )=�(γ ) − 0.5λγ Tγ ,
where λ > 0 is the shrinkage parameter. We call this
the Ridge-IRLS algorithm (RIRLS). It consists of replacing
the weighted regression (2) in IRLS with a weighted ridge
regression γ (t+1) =

(
ŨTW(t)Ũ + λĨm+1

)−1
ŨTW(t)z(t),

where z(t) is built as in (1) and Ĩm+1 is a diagonal matrix
of size (m + 1) × (m + 1), the diagonal of which is
equal to (0, 1, . . . , 1). We then define

(
γ̂
U, z∞,W∞

)
←−

RIRLS(Y,U, λ), where γ̂
U is the resulting estimator of γ ,

and z∞ is the pseudoresponse variable (resp. the weight
matrix W∞) at convergence of the algorithm. Note that
when themodel does not contain the intercept term (i.e., it
uses U instead of Ũ), the matrix Ĩm+1 is replaced with the
identity matrix Im. The parameter λ controls the amount
of shrinkage in the data and can be chosen from the data
for instance, by a cross-validation procedure.

Extensions of LS-PLS for logistic regression
Extending the LS-PLS approach to the framework of the
logistic model is not straightforward. For instance, there
are several ways to use PLS in the classification context. In
the following section, we propose extending three of them
[18–20] to LS-PLS for logistic regression.

Nguyen and Rocke’s approach.
To extend PLS to logistic regression, [18] first compute
the score n × κ matrix T associated with the PLS regres-
sion of Y on X. Then, they estimate the parameter in
the ML sense by running IRLS(Y,T). If we want to adapt
this approach to LS-PLS, we have to replace the call
to PLS step with LS-PLS(Y,D,X, κ) and then perform
IRLS(Y, [D T]). The detailed procedure of this LS-PLS-
IRLS method is as follows:

Step1.
(
V, γ̂ D̃

aux, γ̂
X
aux

)
←− LS-PLS(Y,D,X, κ),

Step2.

∣
∣
∣∣
∣
∣
∣
∣
∣
∣

T = XV,
((

γ̂ D̃
LS-PLS-IRLS, γ̂

T
aux

)
, z∞aux,W∞

aux
)
←−RIRLS(Y, [D;T] , λ),

γ̂X
LS-PLS-IRLS ←− Vγ̂T

aux.

Even if this method yields relatively good results in prac-
tice, note that applying PLS (in Step 1) with a binary input
Y is unappealing. In addition, the PLS-regression step
does not consider the heteroscedasticity of the response
vectorY. The value of κ can be chosen by cross-validation.

Marx’s approach.
In [19], the authors introduce an algorithm that extends
PLS to generalized linear models, so-called IRPLS. Specif-
ically, IRPLS can be understood as an IRLS algorithm in
which the weighted LS regression (2) is replaced with the
PLS regression, PLS

([
W(t)]1/2 z(t),

[
W(t)]1/2 X, κ

)
. Note

that PLS applied with the maximal number of PLS com-
ponents is the same as LS. Note that [19] chooses κ =
rank(X); hence, when X is full row rank (which is often
the case when n << p), this algorithm never converges.
Some authors (see, for instance, [34, 35]) use similar algo-
rithms but with κ < rank(X). In this case, nothing ensures
that this algorithm converges. As previously mentioned, if
we want to adapt this approach for LS-PLS, we can simply
replace the call to PLS with LS-PLS. This iterative process,
called IR-LS-PLS, is detailed in the following algorithm.
Iterate until convergence,

∣
∣
∣
∣
∣
∣
∣
∣
∣

(
V(t+1), γ̂ D̃,(t+1), γ̂X,(t+1)

)
←−

LS-PLS
([
W(t)]1/2 z(t),

[
W(t)]1/2D,

[
W(t)]1/2 X, κ

)
,

update z(t)according to Eq. (1) withŨ =
[
D̃,XV(t)

]
.

γ̂
D̃
IR-PLS-IRLS = γ̂

D̃
∞,

γ̂
X
IR-PLS-IRLS = γ̂

X
∞,

where [W(t)]1/2 is a square root matrix ofW(t) that satis-
fies

[
W(t)]T/2 [

W(t)]1/2 = In, γ̂ D̃
∞ and γ̂

X
∞ are coefficient

estimates obtained at convergence. The drawback of this
method is that convergence problems often occur. The
parameter κ can also be selected by cross-validation.

Ridge partial least squares approach.
To extend PLS to the logistic regression model, [20] sug-
gest replacing the binary data with a pseudoresponse vari-
able whose expected value has a linear relationship with
the covariates. The pseudoresponse variable z∞ at con-
vergence of the RIRLS algorithm verifies this condition: it
can be written as z∞ = Xγ̂

R + ε, where, γ̂
R subject to

being the true value of the parameter, ε is a centered vec-
tor of covariancematrix (W∞)−1. This procedure is called
R-PLS. As a consequence, in the same spirit, to extend
LS-PLS to logistic regression, we can propose a procedure
that combines the ridge penalty and LS-PLS, called R-LS-
PLS. Let λ be some positive real constant and κ be some
positive integer. R-LS-PLS is divided into two steps:

Step1.
((

γ̂
D̃
aux, γ̂

X
aux

)
, z∞,W∞

)
←− RIRLS(Y, [D X] , λ),

Step2.

(
V, γ̂ D̃

R-LS-PLS, γ̂
X
R-LS-PLS

)
←−LS-PLS

(
[W∞]1/2 z∞,

[W∞]1/2D, [W∞]1/2 X, κ
)
.
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The first step builds a continuous response variable z∞
for the input of LS-PLS, the “dispersion matrix” of which
is [W∞]−1. This explains the weight [W∞]1/2 present in
the second step. Note that in Step 1, we do not choose to
regularizeD with the ridge penalty. When the dimensions
of matrix X are low, we may decide to not regularize it by
putting λ = 0 in Step 1. The R-LS-PLS method depends
on two parameters, λ and κ , that can be selected by cross-
validation.
These three approaches have been implemented in

R software version 3.1.2, and an R package called
lsplsGlm has been proposed to enhance their use.
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