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Abstract

Prediction from high-dimensional genomic data is an active field in today’s med-
ical research. Most of the proposed prediction methods make use of genomic data
alone without considering established clinical data that often are available and known
to have predictive value. Recent studies suggest that combining clinical and genomic
information may improve predictions. We consider in this paper methods for classifica-
tion purposeS that simultaneously use both types of variables, but applying dimension
reduction only to the high-dimensional genomic ones. A usual way to deal with that
is the use of a two-step approach. In step one, dimensionality reduction technique is
just performed on the genomic dataset. In step two, the selected genomic variables
are merged with the clinical variables to build a classification model on the combined
dataset. Nevertheless, the reduction dimension is built without taking into account the
link between the response variable and the clinical data. To address this issue, using
Partial Least Squares (PLS) as reduction technique, we propose here a one step ap-
proach based on three extensions of LS-PLS (LS for Least Squares) method for logistic
regression context. We perform a simulation study to evaluate these approaches com-
pared to methods using only the clinical data or only genetic data. Then, we illustrate
their performances to classify two real data sets containing both clinical information
and gene expression.

Keywords : LS-PLS; clinico-genomic model; logistic regression; reduction dimension

1 Introduction

In the last 15 years, progress in the generation of high-dimensional genomic data has
raised high expectations in biomedical research. In particular, large-scale gene expression
data have been generated and analysed in numerous studies with the aim of predicting
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a specific outcome [16]. In this article, we focus on binary class prediction where the
outcome can be for instance alive versus dead. Most of these studies [26, 24, 19, 23]
include clinical data in addition to genomic data using most of the proposed prediction
methods with only genomic data, which involves some statistical issues. In genomic studies,
the number n of samples is often relatively small compared to the number p of covariates
and collinearity between measurements occurs. Unless a preliminary step of selection of
variables is performed, standard classification methods are not appropriate. To address
such a large p small n problem, reduction dimension methods can be used. The traditional
approach is the Principal Component Regression (PCR) [15], an application of Principal
Component Analysis (PCA) to regression model. PCA is applied without considering of
the link between the outcome and the independent variables. An alternative method is the
Partial Least Square (PLS) [11], that takes this link into account.

In recent studies [1, 22], it has been shown that most complex diseases are caused by
the combined effects of many diverse factors, including genomic and clinical variables. This
has led to an emerging research area of integrative studies of clinical and genomic data,
which we will refer to as clinico-genomic models. Some strategies to combine these two
kinds of data have been reviewed in a paper written by Boulesteix and Sauerbrei [3] to
deal with predictive clinico-genomic models. More extensive overviews are available in Dey
et al.[5] where advantages and disadvantages are given for each strategy. Regarding the
dimension reduction strategy, one possible way to handle the high dimension of genomic
data is to first perform dimensionality reduction techniques solely on the genomic dataset.
In the second step, the selected genomic variables are merged with the clinical variables
to build a classification model on the combined dataset. We will thus refer to it as the
two-step approach. Beforehand most of the techniques select topmost discriminative ge-
nomic features and then combine those features into a combined score for future model
development. In the same way, Boulesteix et al. [2] suggest an approach combining PLS
dimension reduction with a pre-validation technique and Random Forests, applied with
both the new components and the clinical variables as predictors. These papers mainly de-
scribe methods using PLS dimension reduction to treat high-dimensional data. Even if any
type of dimensionality reduction methods can be incorporated, these two-step approaches
cannot account for the relationship existing between two datasets. Indeed, this reduction
is built without taking into account the link between the response variable and the clinical
data.

An alternative could be to use an iterative procedure well suited to extract relevant
information from the genomic data in combination with clinical variables. One idea is to
use the principle of backfitting procedures developed in the context of multidimensional
regression problems and derived for generalized additive models [10], estimating additive
components successively in a non parametric manner. Precisely, this involves repeatedly
fitting non parametric regression of some partial residuals on each covariate ; for each
regression, a new additive component is estimated, which in turn gives new partial residuals,
and the process is iterated until convergence. Then, relevant information from both types
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of data updates takes place within the iterations. This approach has been developed by
Jorgensen et al. [12] in the regression Gaussian context in chemometrics. In this context,
non parametric regression is replaced by PLS regression for data to be compressed and
Ordinary Least Squares regression (OLS) for other data, so-called LS-PLS. The PLS scores
are thus incorporated into the OLS equations in an iterative fashion in order to obtain a
model for both the clinical variables and the genomic ones. The authors conclude that the
method seems to involve more information from the experiment and return lower variance
in the parameter estimates.

The purpose of this paper is to adapt this one step procedure to logistic regression
models. Some studies have been published proposing an adaptation of PLS for classification
problems [17, 14, 8]. The focus will be on adapting these extensions to LS-PLS for logistic
regression model. Section 2 describes the details of the linear logistic regression and the
three proposed adaptations of LS-PLS for logistic regression models. The simulation study
to evaluate these approaches is presented in Section 3 and the illustration on two real data
sets containing both clinical information and gene expression data in Section 4.

2 LS-PLS for logistic regression

2.1 Linear logistic regression - ridge penalty and RIRLS

We consider situations where we have both collinear measurements such as high-dimensional
genomic data and orthogonal (or near- orthogonal) design variables on one side that we
want to relate to a response value on the other side. We denote by X the design matrix
associated with collinear measurements. For instance in genetics, expression levels of the
p genes for the n genomic samples are collected in a n × p data matrix X. The clinical
variables are stocked in matrix D of size n× q. We denote Di. the ith row of matrix D. In
logistic regression, the response variables are collected in a {0, 1}n-valued vector Y.

In a typical designed experiment logistic model, the conditional class probability, i.e.
the conditional expectation of Yi given Di·, given by πi = P(Yi = 1|Di· = di) is related to
the linear predictor ηi = [1 dTi ]γ, with γ ∈ Rq+1 through the non-linear relation πi = h(ηi)
where h(ηi) = 1/(1 + exp(−ηi)). The parameter γ is unknown and has to be estimated
from the data. Let us notice that here we do not index vector π and η by γ for sake of
clarity. In logistic discrimination, it is usually estimated by γ̂ML, the ML estimator. The
log-likelihood of the observations for the value γ of the parameter, simply denoted by `(γ),
is given by

`(γ) =
n∑
i=1

{yiηi − ln (1 + exp(ηi)} . (1)

Let W(γ) be the diagonal n×n matrix with entries {W(γ)}ii = πi(1−πi). For a vector d0,
the predicted class Ŷ0 of the sample is given by Ŷ0 = 1(π̂0>1−π̂0), where π̂0 = h([1 dT0 ]T γ̂ML)
and 1(·) is the indicator function. When this estimate exists, it is computed as the limit of
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a Newton-Raphson sequence; this algorithm is known as the Iteratively Reweighted Least
Squares (IRLS(Y, D̃)) algorithm (see [9]). From step t to t+ 1, we have :

z(t) = D̃γ(t) +
[
W(t)

]−1 (
Y − π(t)

)
, (2)

γ(t+1) =
(
D̃TW(t)D̃

)−1
D̃TW(t)z(t), (3)

where D̃ = [1In D], 1In = (1, · · · , 1)T , and W(t) is shorthand notation for W(γ(t)).
IRLS can thus be considered as iterative W(γ(t))-weighted least square regression of a
Rn-valued pseudo-variable z(t) onto the columns of D̃. Let us note that in some cases,
including in practice the case n << p, existence and unicity of γ̂ML for logit models
is not guaranteed. That calls for regularization methods such as ridge penalty. The
ridge estimator [13], denoted by γ̂R, is defined as the (unique) maximizer of the penal-
ized likelihood `∗(γ) = `(γ) − 0.5λγTγ, where λ > 0 is the shrinkage parameter. We
denote by RIRLS(Y, D̃, λ) (shorthand notation for Ridge-IRLS) this algorithm. It con-
sists in replacing in IRLS, the weighted regression (3) by a weighted Ridge regression
γ(t+1) = (D̃TW(t)D̃ + λĨq+1)

−1D̃TW(t)z(t), where z(t) is built as in (2) and Ĩq+1 is diag-
onal matrix of size (q + 1) × (q + 1) whose diagonal is equal to (0, 1, . . . , 1). Let us note
that when the model does not contain the intercept term (use of D instead of D̃), the
matrix Ĩq+1 is replaced by the identity matrix Iq. The parameter λ controls the amount
of shrinkage in the data and can be chosen from the data for instance by cross-validation
procedure.

2.2 LS-PLS for logistic regression

Combination of least squares (LS) and PLS (called LS-PLS) has been introduced first in
the Gaussian context by Jorgensen et al. [12]. This is an iterative procedure: the first
step is to use OLS on D̃ to predict Y and compute the residuals. Then PLS is performed
between X and the residuals. The matrix of PLS scores T, of size n × κ, combined with
D̃ in a new OLS to predict Y. New estimates for the residuals of Y on D̃ are calculated
from this regression and the algorithm is repeated until convergence. The authors suggest
orthogonalising D̃ on X. The orthogonalised variant is better suited for situations where
the focus is on identifying the unique information in each matrix. We propose here to
project the matrix X into a space orthogonal to the space spanned by the design variables
of D̃:

XOrth = (In − D̃(D̃T D̃)−1D̃T )X. (4)

The standard PLS regression is then used on XOrth instead of X. This avoids iterations
in the algorithm since the residuals of Y on D̃ of the OLS of Y on [D̃ T] are the same as
in the first step. This procedure is denoted by LS-PLS(Y,D,X, κ).

Extending this approach to the framework of the logistic model is not straightforward.
For instance, there are several ways to use PLS in classification context. In the following
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section, we propose to consider three different approaches[17, 14, 8] to adapt LS-PLS to
logistic regression.

2.2.1 Nguyen and Rocke’s approach.

To extend PLS to logistic regression, Nguyen and Rocke [17] substitute the data matrix
X by a n × κ matrix T, the columns of which are the first κ PLS-scores given by PLS
regression of Y on X. Then they estimate the parameter in the maximum likelihood sense
by running IRLS(Y,T). If we want to adopt this approach for LS-PLS, one can to replace
the call to PLS step by LS-PLS(Y,D,X, κ) and then perform IRLS(Y, [D T]). Let us note
that applying PLS with a binary input Y is unappealing; in addition, the PLS-regression
step does not take into account the heteroscedasticity of the response vector Y. However
this leads to relatively good results in practice. We call this method LS-PLS-IRLS. The
choice of κ can be made by cross-validation.

2.2.2 Marx’s approach.

Marx [14] introduces an algorithm that extends PLS to generalized linear models, so-called
IRPLS. More precisely, IRPLS can be understood as an IRLS algorithm in which the
weighted least square regression (3) is replaced with the PLS regression, PLS([W(t)]1/2z(t), [W(t)]1/2X, κ).
The matrix T contains the first κ components “at convergence” of IRPLS. Let us notice
that PLS applied with the maximal number of PLS components is nothing else than Least
Square (note that Marx [14] chooses κ = rank(X) while in theory). Hence when X is full
row-rank (which is most often the case when n << p), this algorithm never converges.
Some authors (see for instance [20, 18]) use similar algorithms but with κ < rank(X). In
this case nothing ensures that this algorithm converges. As previously, if we want to adopt
this approach for LS-PLS, we can simply replace the call to PLS by LS-PLS. The draw-
back of this method is that there are often problems of convergence. We call this method
IR-LS-PLS. The parameter κ can also be selected by cross-validation.

2.2.3 Ridge Partial Least Squares approach.

In order to extend PLS to logistic regression model, Fort et al. [8] suggest replacing the bi-
nary data by a pseudo-response variable whose expected value has a linear relationship with
the covariates called R-PLS. The pseudo-response variable z∞ at convergence of RIRLS
algorithm verifies this condition: it can be written z∞ = Xγ̂R + ε, where, conditionally
to γ̂R being the true value of the parameter, ε is a centred vector of covariance matrix
(W∞)−1. As a consequence, in the same spirit, to extend LS-PLS to logistic regression,
we can propose a procedure which combines Ridge penalty and LS-PLS, called R-LS-PLS.
Let λ be some positive real constant and κ be some positive integer. R-LS-PLS is divided
in two steps:
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1. (z∞,W∞)←− RIRLS(Y, [D X], λ)

2. (γ̂D̃, γ̂X,κ)←− LS-PLS([W∞]1/2z∞, [W∞]1/2D, [W∞]1/2X, κ),

where [W∞]1/2 is a square root matrix of W∞ that satisfies [W∞]T/2[W∞]1/2 = In. The
first step builds a continuous response variable z∞ for the input of LS-PLS, the “dispersion
matrix” of which is [W∞]−1. This explains, in the second step, the weight [W∞]1/2. Let
us remark that in the Step 1, we do not chose to regularize D. For the matrix X, when
its dimension is low, we may decide to not regularize it by putting λ = 0 in the Step 1.
R-LS-PLS depends on two parameters, λ and κ that can be selected by cross-validation.

These three approaches have been implemented in R software version 3.1.2.

3 Simulation study

The aim of the simulated study is to compare the different prediction methods devel-
oped previously based on clinical and/or gene expression variables. We simulate data sets
with a range of predictor collinearity and with different functional relationships between
the response, Yi and the predictors Xi· and Di· to mimic gene expression and clinical
variable data. For an individual i = 1, ..., n with n = 100, we simulated Yi ∼ B(πi)
with πi = [1 Di· Xi·]γ and γ = [γ1 γ

T
D γTX]T . We fixed γ1 = −2.5, γD = {0.5}4 and

γX = {{0}475, {0}475, {0.1}25, {0.1}25}. The matrix X of size n×p with p = 1000 has been
simulated such as X = (X1,X2,X3,X4) where Xk ∼ N(0bsk ,Σ

k
X) with {Σk

X}ij = ckρ|i−j|,
k = 1, ...4, i, j = 1, ..., bsk where c1 = 8, c2 = 4, c3 = 2, c4 = 1, bs1 = bs2 = 475,
bs3 = bs4 = 25, and ρ = 0.9. Regarding the matrix D of size n x q with q = 4, we used
N(0q,ΣD) with {ΣD}ij = ρ|i−j| with i, j = 1, ..., q and ρ = 0.5. According to this model,
we generate 100 training sets of size n = 50, 100 and 100 training sets of size 450. Let
us note that the context of this simulation is unfavourable for LS-PCR. Indeed since the
variable blocks that are not active in the model are the ones that possess the strongest
variability, they are going to stand out in the first κ components of the PCA.

Our proposed extensions, LS-PLS-IRLS, IR-LS-PLS, R-LS-PLS, are then applied on
simulated data sets. For the sake of comparing accuracy and efficiency of the latter, GLM is
implemented to clinical data alone and R-PLS to gene expression data alone. Usual method
based on Principal Component Regression (PCR) is also considered. In our context, gene
expression data is replaced by the first κ principal components of X (obtained by PCA);
that constituted the directions of maximal variability in the data X, without considering
the response variable Y. Let T be the matrix of columns which are the first κ PCA-
scores associated with X. The parameters are then estimated by running IRLS(Y, [D T]).
This approach is called LS-PCR. For all approaches, the optimal number of PLS or PCR
components is selected by choosing the value of κ in the range 1, . . . , κmax, with
κmax=1, 4 and 8, by a 5-fold cross validation on each of the 100 training sets. That is,
each training set is split five fold into a test set with size equal to one fifth of the data
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and a learning set size equal to four fifths of the remaining data. We retain the value of κ
which minimizes the misclassification rate over these 5-fold cross validation. This is also
employed for R-LS-PLS, where the κ value and λ for 6 log10−linearly spaced points in the
range [10−3; 100] are simultaneously determined by this cross-validation method.

As referenced in [2], although variable selection is not always necessary as a preliminary
step to PLS-based classification, some authors argue that accuracy is improved in the
high dimensional setting especially when there are indeed few relevant variables. Many
variable selection procedures are available in the literature. In the present article, Sure
Independence Screening (SIS) [7] has been performed to select relevant gene expression
variables pred = 500 such as pred < p. SIS refers to ranking features according to marginal
utility, namely, each feature is used independently as a predictor to decide its usefulness
for predicting the response. Precisely SIS ranks the importance of features according to
their magnitude of marginal regression coefficients.

To evaluate prediction performance, mean misclassification rates and the area under
the receiver operating characteristic (ROC) curve, known as the AUC have been computed
for each method. Rates of convergence are also assessed for LS-PCR and methods based
on PLS algorithm. Simulations and analyses are performed using R software version 3.1.2.

The simulation results are summarized in Figure 1 and Table 1, which was produced on
the basis of the 100 simulated data sets. They depict the distributions of both misclassifi-
cation rate and AUC and the convergence rate in percent, respectively. For this simulation
study, the two classes are much less discriminate by clinical data than gene expression data
which is confirmed in Figure 1. Analysis of clinical features alone by GLM and genetic
data alone with R-PLS are less informative to predict outcome than the approaches com-
bining both type of variables. All approaches integrating clinical and genomic data, except
LS-PCR, show comparable discrimination rates. The method using PCR increases the
misclassification rate and decreases the AUC as κmax decreases. Quite surprisingly, even
with κmax = 4 or 8, LS-PCR does not achieve the performance of the LS-PLS approaches.
According to the model structure, we can thus expect LS-PCR to identify the two active
components and so to lead to similar results. For each case of κmax, R-LS-PLS seems to
be better than the two other extensions of PLS (LS-PLS-IRLS and IR-LS-PLS) even if the
median misclassification rates are very close. The analysis of the rate dispersion is also
intuitive and follows the same trend as already described, i.e. R-LS-PLS leads to more
precise results. These findings are supported by the convergence rate reported in Table
1. R-LS-PLS does not show convergence problems (all rates equal 100%). The results for
LS-PLS-IRLS are roughly less good than R-LS-PLS, probably due to numerical instability
of the methods when n is smaller than the number of variables. It must be noted that
the interpretation of the convergence rate of IR-LS-PLS is seriously limited by the lack
of optimum criterion in the approach. One explanation could be that when solving the
weighted least square problem at each IRLS iteration with LS-PLS, the global problem
cannot be rewritten as the optimization of a loss function.
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Figure 1: Boxplot of the misclassification rate (left part) and AUC (right part) from the
100 simulated data sets using the six methods, according to different κmax : (A) κmax = 1;
(B) κmax = 4; (C) κmax = 8. GLM and R-PLS denote the misclassification rate and
AUC obtained from GLM applied on clinical data alone and PLS to gene expression alone,
respectively. LS-PCR denotes the approach derived to PCR where gene expression data
are analysed using PCA and IRLS can thus applied on the merge data set of PCA-scores
and clinical data. LS-PLS-IRLS, R-LS-PLS-IR-LS-PLS denote the misclassification rate
and AUC obtained from the new proposed LS-PLS approaches combining expression and
clinical data . For clarity of the figure, we use a code color to indicate the predictions :
from clinical data alone in pink, from expression gene data alone in purple and the results
from methods combining both type of variables in blue. From SIS procedure, the relevant
gene expression variables pred is set to 500.
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Table 1: Rate of convergence (%) from the 100 simulated data sets, respectively, for the
five methods, according to different κmax : 1, 4 and 8. R-PLS denotes the results from the
analysis of gene expression alone. LS-PCR denotes the approach derived to PCR where
gene expression data are analysed using PCA and IRLS can thus applied on the merge
data set of PCA-scores and clinical data. LS-PLS-IRLS, R-LS-PLS-IR-LS-PLS denote the
rate of convergence from the new proposed approaches combining expression and clinical
data. From SIS procedure, the relevant gene expression variables pred is set to 500.

κmax R-PLS LS-PCR LS-PLS-IRLS R-LS-PLS IR-LS-PLS

1 100 100 71 100 22
4 100 100 41 100 76
8 100 99 44 100 78

4 Application to real data sets

We apply the extensions presented previously on two publicly available real data sets for
which both clinical and gene expression variables are available. Similarly to the simulation
study, to validate procedures of the clinico-genomic models, we compare the combined
clinico-genomic model’s accuracy and AUC with the ones from models built either with
genomic data or clinical data alone. We apply and compare all the methods considered in
the simulation study. On both real data sets, we perform a re-randomization study on 100
random subdivisions of the data set into a learning set and a test set. We choose a test
set size equal to one third of the data (2:1 scheme of [6]). Pre-filtering method has been
applied on gene expression data, as in the simulation study, considering different numbers
of relevant genes : pred =50, 100, 500 and 750. For the real data the κ range is {1, 2, ..., 5}
and λ range is given by 6 log10- linearly spaced points in the range [10−3; 100].

4.1 Breast Cancer data

The first original data set [24], already used in [2], contains information on 78 primary
breast cancers (34 from patients who developed metastases within 5 years and 44 from
patients who continue to be disease-free after a period of at least 5 years) which have
been selected from patients who were lymph node negative and under 55 years of age
at diagnosis. The data set gives expression of 25000 human genes and clinical variables
: age (nominal), tumor grade (ordinal), oestrogen receptor status (binary), tumor size
(numeric), progesterone receptor status (binary) and angioinvasion (binary). The goal
here is to predict the presence of subclinical metastases in order to provide a strategy to
select patients who would benefit from adjuvant therapy. concerning gene expression, the
data set used in this paper has been prepared as described in the original manuscript,
yielding 4348 genes.

Figure 2 shows the boxplot of the misclassification rate and the AUC for pred = 100
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Figure 2: Distribution of misclassification rate and AUC for the Breast Cancer data esti-
mated by 100 sampling using the six methods. GLM and R-PLS denote the misclassifi-
cation rate and AUC obtained from GLM applied on clinical data alone and PLS to gene
expression alone, respectively. LS-PCR denotes the approach derived to PCR where gene
expression data are analysed using PCA and IRLS can thus applied on the merge data set
of PCA-scores and clinical data. LS-PLS-IRLS, R-LS-PLS-IR-LS-PLS denote the misclas-
sification rate and AUC obtained from the new proposed LS-PLS approaches combining
expression and clinical data from Brest Cancer data set. From SIS procedure, the relevant
gene expression variables pred is set to 100. The code color for the methods is similar to
Figure 1 according to the different methods.
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GLM and R-PLS denote the misclassification rate and AUC obtained from GLM applied
on clinical data alone and PLS to gene expression alone, respectively. LS-PCR denotes the
approach derived to PCR where gene expression data are analysed using PCA and IRLS
can thus applied on the merge data set of PCA-scores and clinical data. LS-PLS-IRLS,
R-LS-PLS-IR-LS-PLS denote the misclassification rate and AUC obtained from the new
proposed LS-PLS approaches combining expression and clinical data. For each method, a
line is drawn to connect symbols to improve readability.
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obtained from this data set. The analysis of gene expression data only slighlty improves the
prediction accuracy yielded by clinical variables alone. The misclassification rate median
obtained with R-PLS is smaller than that of GLM. The four methods combining clinical
and genomic data provide significantly better misclassification rates as well as AUC than
GLM, which are less pronounced for R-PLS using gene expression only. Note that LS-PCR
and R-LS-PLS yield better prediction accuracy even if we notice the large variability in the
result of LS-PCR as in the simulation study. These findings suggest that gene expression
data performs slightly better than clinical data but the integration of both features seems be
more interesting to predict the response. We report in Figure 3, the evolution of the mean
misclassification rate according to the pred most pertinent covariates from SIS procedure
for all the methods. Taken together the misclassification rates increase when pred grows.
This can be explained by the fact that for pred > 100 too many features are selected from
genomic data, overfitting may occurs for the clinico-genomic model, giving back poorer
mean misclassification. R-LS-PLS and LS-PCR stand out from all methods. They may
have an equivalent behaviour except for pred = 100 where LS-PCR shows more accurate
predictions. Note that proposed combining approaches provide better results than GLM
or R-PLS, except for LS-PLS-IRLS when the number of selected genes is too high.

4.2 Central Nervous System data

The second data set was obtained from [21] which has been used to predict the response
of childhood malignant embryonal tumors of Central Nervous System (CNS) to therapy.
The data set is composed of 60 patient samples, 21 patients died and 39 survived within 24
months described by gene and clinical data. There are 7129 genes and clinical features are
sex(binary), age(nominal), chemo CX (binary) and chemo VP (binary). The original data
set contains clinical variable Chang stage which has been omitted due to the high number
of categories.

Figure 4 illustrates the accuracy of prediction approaches for CNS using only 500 se-
lected genes. This data set presents a different situation from the previous one, where
clinical data performed better than genomic data. R-LS-PLS attains the highest accu-
racy, close from the misclassification rate analysing only gene expression data with PLS
(R-PLS). The accuracy from LS-PLS-IRLS and IR-LS-PLS are very similar and somewhat
higher than the one from R-LS-PLS. LS-PCR is the least proficient to predict the response
underlying the poor performance of PCR to treat information in high-dimensional data.
Unsurprisingly, as can be seen from the mean misclassification rate according to the num-
ber of selected genes in Figure 5, the proposed procedures integrating clinical and genetic
features show overall good performance which convince us that information to predict cor-
rectly the response could be concentrated in only a set of 50 genes. As provided, the
performance of R-PLS increases with the size of pred contrary to LS-PLS-IRLS as seen
above.
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Figure 4: Distribution of misclassification rate and AUC for Central Nervous System data
estimated by 100 sampling using the six methods. GLM and R-PLS denote the misclassi-
fication rate and AUC obtained from GLM applied on clinical data alone and PLS to gene
expression alone, respectively. LS-PCR denotes the approach derived to PCR where gene
expression data are analysed using PCA and IRLS can thus applied on the merge data set
of PCA-scores and clinical data. LS-PLS-IRLS, R-LS-PLS-IR-LS-PLS denote the misclas-
sification rate and AUC obtained from the new proposed LS-PLS approaches combining
expression and clinical data from Central Nervous System data set. From SIS procedure,
the relevant gene expression variables pred is set to 500. The code color for the methods is
similar to Figure 1 according to the different methods.
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Figure 5: Evolution of mean misclassification rate from Central Nervous System data set
using the six methods considering different number of relevant genes : pred =50, 100, 500
and 750. GLM and R-PLS denote the misclassification rate and AUC obtained from GLM
applied on clinical data alone and PLS to gene expression alone, respectively. LS-PCR
denotes the approach derived to PCR where gene expression data are analysed using PCA
and IRLS can thus applied on the merge data set of PCA-scores and clinical data. LS-
PLS-IRLS, R-LS-PLS-IR-LS-PLS denote the misclassification rate and AUC obtained from
the new proposed LS-PLS approaches combining expression and clinical data. For each
method, a line is drawn to connect symbols to improve readability.
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5 Conclusion

In spite of the great potential of clinico-genomic integration, the topic is still in its elabora-
tion phase. In general integrating heterogeneous datasets like clinical and genomic data is
an important issue. We have proposed three extensions of LS-PLS approaches for logistic
regression models to analyse both clinical and genomic data. A comparison of the perfor-
mance of prediction by simulation and on real data have been performed. In general the
methods using only the clinical data or only genetic data perform less well. We observed
that it is not always advisable to use the PCR-type method which can lead to wrong re-
sults depending on the data type. We believe this is because the variable response is not
used in the construction of the compression of genetic data. Regarding the three proposed
extension of LS-PLS, the improved performance of the extension R-LS-PLS is noted.

As you recall, that the results obtained from LS-PLS approaches presented here are
different to the findings of Boulesteix et al. [2] where data are analysed using a two-step
approach based on Random Forests and PLS reduction. Even if the sampling protocol
for Breast Cancer data is not quite the same as this article, we can still compare the
classification error rate. From this study, regarding methods based on PLS, the best rate
of misclassification is 0.30 on average while the worst is 0.43. In our study, (3), the best
one is 0.2269 on average while the worst is 0.2981. As a result, it would appear that the
one-step approach using the two data sets simultaneously seems better than the two-step
approach using the two data sets separately.

Determining the appropriate number of genomic features in the first step is hard. The
number of features may impact the comparison between the additive performances of clin-
ical and genomic variables. For example, if too many features are selected from genomic
data, it may overfit the clinico-genomic model in the second phase. On the other hand, if
too few genomic factors are retained, then the predictive capability of the genomic factor
can be underestimated. We may conclude that model’s performance was not improved by
the addition of large numbers of genes but was improved by the addition of significant
clinical features and genomic profiles.

This work constitutes a first step towards the extension of LS-PLS. In the present study,
we consider only the case of LS-PLS for classification problems. Due to the large number
of studies modelling survival using gene expression [4, 25], another natural extension of
this work is to explore LS-PLS approach to survival prediction model. The outcome would
be a right-censored time-to-event such as the time to death or the time to next relapse and
Cox regression models have to be considered.

Lastly, the comparison of misclassification rates predicted by approaches combining
both clinical and gene expression data to misclassification rates computed with only clinical
or genetic data as well as to misclassification rates obtained from the simulation study,
supports the appropriateness of the extensions of LS-PLS for classification using the logistic
regression model. Its implementation in an R package could be a useful computing tool
for integrating clinical and gene expression data to get a clinico-genomic model to predict
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binary outcome.
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