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Abstract The debonding of Pressure Sensitive Adhesives
(PSA) is a classical example of the difficult and unsolved
issue of fracture in soft viscoelastic confined materials. The
presence of a complex debonding region where the adhesive
undergoes cavitation and the very large strain of a sponta-
neously formed fibrillar network has defied many modeling
attempts over the past 70 years. We present here a novel
technique to provide an accurate measurement of the local
large strain response of the fibrillar debonding region dur-
ing the steady-state peeling of a well known commercial
adhesive over a wide range of peeling velocity and angle.
The technique is based on high resolution imaging of the
debonding region during peeling and is coupled to a cohe-
sive zone modeling of the adhesive interaction between the
flexible tape backing and the rigid substrate. The resulting
database provides a strong ground for validating and further
developing models (Villey et al. 2015) aiming to capture the
effects of both geometry and non-linear adhesive rheology
on the exceptional adherence energy of PSAs.
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1 Introduction

Peeling is a widespread testing method to characterize the
adherence properties of all sorts of thin bonded films, cer-
tainly due to its easiness of implementation and quantitative
evaluation (Kendall 1975; ISO 8510-1; ISO 8510-2; Cre-
ton and Ciccotti 2016). However, the weak transposability
of peeling test results to predict the adherence performance
of a given adhesive joint under different loading geometries
such as shear lap, mode I cleavage between rigid beams or
probe tack is an important concern for applications. The dif-
ficulties of providing a clear and robust mechanical model
and interpretation of the peeling strength of a given mate-
rial layer or joint have focused many efforts since the 50’s
and no clear picture is available to cover all applications in
a comprehensive way (Kaelble 1959; Kaelble 1960; Kaelble
1965; Yarusso 1999; Barquins and Ciccotti 1997; Amouroux
et al. 2001; Villey et al. 2015; Derail et al. 1997; Derail et
al. 1998; Gent and Hamed 1977; Gent and Petrich 1969).

Despite the apparent simplicity of the peeling geometry
at the macroscopic scale and the unambiguous measurement
of the injected external work during the test, the structure,
applied deformation and stress fields of the debonding re-
gion are quite complex and dramatically change when con-
sidering different materials. Moreover, when considering the
peeling of soft films such as most adhesive tapes - which
are the object of the present investigation - these are invari-
ably backed by a thin layer made of a stiffer material in or-
der to limit stretch at a macroscopical scale. The adhesive
material in the debonding region is thus subject to a pro-
gressive loss of confinement and consequently to a variable
degree of stress triaxiality as it is debonded. These position
dependent stress and strain fields are coupled to the local
bending profile of the backing and are related in a very sen-
sitive way to the macroscopic angle of application of the
peeling force, leading to variable damage scenarios. For ex-
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Fig. 1 Model geometry of a peeling experiment. The extremity of the
peeled tape is pulled at a velocity V−→eθ tilted of an angle θ with respect
to the substrate (along −→ex ), which is itself translated at velocity V−→ex .
−→
F is the peeling force at the pulling extremity of the tape. During peel-
ing, the adhesive layer is stretched over a region called the “debonding
region”, of curvilinear length ls along the tape backing. The adhesive
material, of initial thickness a0, is strained and forms fibrils up to a
maximum length a f at the debonding front. We note ly the elevation of
the tape backing at the end of the debonding region and lx the projec-
tion of ls on the substrate.

emple, the adhesive debonding region during the peeling of
common office tapes undergoes a complex process of cav-
itation and fibrillation at the microscopic scale such as il-
lustrated in Fig. 1, which leads to a still poorly understood
transition between the very stiff oedometric response pre-
ceding cavitation and the almost uniaxial response in the
unconfined fibrillar region (Villey et al. 2015). The forma-
tion of the complex fibrillar structure is very similar to that
observed in probe tack experiments, which present stress-
elongation curves characterized to the first order by a strain-
rate dependent stress plateau up to a limited elongation be-
fore debonding (Creton and Ciccotti 2016). While compar-
ative studies between the uniaxial elongational behavior and
probe tack experiments have been carried out for several
types of PSA (Lindner et al. 2006; Deplace et al. 2009; Chi-
che et al. 2005), the development of such a fibrillar pattern
during the propagation of a peeling front is more complex
since it is strongly coupled with the local bending of the
backing, implying variable degree of confinement and level
of local stress (Villey et al. 2015).

The aim of the present work is to develop new tools to
finely characterize the damage mechanisms at the scale of
the debonding region during steady-state peeling of PSA,
combining real-time microscopic imaging of the debonding
region and a sound modeling of the mechanical interaction
between the bending of the elastic backing and the defor-
mation of the fibrillar network, which will be treated as an
effective non-linear cohesive zone. A careful compromise
between the image resolution on such a small region and the
relevant mechanical information coming from the present
knowledge on the structure and behavior of the fibril net-
work will be the guide to the identification of a minimal yet

rich set of local parameters of the debonding region, namely
the local radius of curvature of the backing, the effective
average stress applied by the fibrils on the backing, the av-
erage strain rate of the fibrils, their maximum extension and
tilt angle before debonding.

In this work we investigate the variations of these local
parameters via a series of tests on a well known commer-
cial tape over a large range of peeling angle and velocity,
in order to discuss the soundness of the estimated parame-
ters in light of the known rheological behavior of such an
adhesive and of visual comparisons with the imaging of the
fibrils. The robustness and reproducibility of the estimated
parameters represent a real experimental breakthrough and
become a key to the sound modeling of the adherence prop-
erties of peeled tapes as a function of the large strain rhe-
ology of the adhesive material and of the surface properties
of the adherends (Villey et al. 2015). These enriched param-
eters can also be used to understand the relationships be-
tween the peeling and the tack properties of each adhesive
(Creton and Ciccotti 2016).

2 Microscope filmed peeling experiments

Peeling experiments are performed at room temperature
(23±2 oC) on a commercial PSA (3M Scotch® 600)1 fre-
quently studied in the literature (Barquins and Ciccotti 1997;
Amouroux et al. 2001; Cortet et al. 2007; Cortet et al. 2013;
Dalbe et al. 2014a; Dalbe et al. 2014b; Dalbe et al. 2015; Vil-
ley et al. 2015). The adhesive tape is peeled from a flat bar
by an Instron testing machine (model 3343), which records
the peeling force F while imposing a constant pull-out ve-
locity V ∈ [3 : 3000] µm s−1. The bar, tilted of an angle
θ ∈ [30o : 150o] with respect to the pull axis of the testing
machine, is mounted on a translation stage: it is translated at
the same velocity V , resulting in a steady peeling at constant
angle θ (see Fig. 1).

These experiments give access to the peeling force
F(θ ,V ) from which we compute the energy release rate G
associated to the peeling of a unit surface

G =
F
b
(1− cosθ) , (1)

where b = 19 mm is the tape width (see Fig. 1). This ex-
pression of G accounts for the work of the operator, but dis-
cards the contribution associated to the elastic energy stored
in the peeled tape backing elongation (Kendall 1975), which
is never larger than 1% of G in the reported experiments.

Experiments are performed in a range of velocity V whe-
re peeling is steady, i.e. where no stick-slip dynamical insta-
bility is observed (stick-slip appears at larger velocities for

1 This PSA is made of an acrylic adhesive layer of thickness a0 ≃
20 µm coated on a UPVC backing of comparable thickness, Young’s
modulus E ≃ 2.9 GPa and width b = 19 mm.
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this PSA (Dalbe et al. 2014b)). In these conditions the en-
ergy release rate G defines an adherence energy Γ (θ ,V ) that
can also be considered as an effective fracture energy for the
peeling of the whole adhesive joint (backing, adhesive and
substrate) at velocity V and angle θ

G = Γ (θ ,V ). (2)

The substrate of the adhesive tape to be peeled is made
of a first layer of the same PSA tape, which has been ap-
plied on the peeling bar following the protocol described in
(Villey et al. 2015). The substrate tape layer is changed after
each peeling experiment in order to preserve the integrity of
its release coating. This procedure enables comparison with
previous measurements made by peeling directly from the
commercial roller (Barquins and Ciccotti 1997; Amouroux
et al. 2001; Cortet et al. 2007; Cortet et al. 2013; Dalbe
et al. 2014a). It also ensures a moderate level of adhesion
(F ∈ [0.3 : 4] N, Γ ∈ [20 : 80] J/m2), which results in interfa-
cial adhesive failure only, with no residuals on the substrate,
even at peeling velocities V as low as few µm s −1.

The shape of the tape backing profile close to the debond-
ing region (where the adhesive is deformed before debond-
ing) is monitored during the peeling experiments using a
1624 × 1228 pixels2 camera equipped with a microscope
objective (frame rate between 5 and 30 fps, resolution be-
tween 0.55 and 2.2 px/µm). For each frame of the movies
(such as those represented in Figs. 2 and 3), the outer profile
of the tape backing is measured using a binarization algo-
rithm that detects the interface between the dark background
and the illuminated tape. The tape backing profile does not
significantly change with time during steady peeling (see
the movie in Online Resource 1). We can thus average this
profile over the entire movie (several hundreds of frames),
which removes detection imperfections (related e.g. to the
presence of micrometric dusts) and eventually results in a
significant increase of the signal-to-noise ratio. This average
profile is reported in yellow in Figs. 2 and 3.

In these two figures, we also report the local angle α
made by the averaged profile with the substrate as a function
of the curvilinear abscissa s along the tape backing in the
reference frame of the laboratory (see Fig. 4), related by

ds−→t = dscos(α)−→ex +dssin(α)−→ey = dx−→ex +dy−→ey . (3)

3 Simple elastica model

We first compare the experimental profiles to the theoreti-
cal expression of an inextensible elastica beam (Love 1944)
with a simple clamping boundary condition at s = s0

α(s) = θ −4arctan
[

tan
(

θ
4

)
exp

(
− s− s0

r

)]
, (4)

with

r =

√
EI
F

(5)

the buckling length of the tape backing of bending modu-
lus EI submitted to a force F , which is the typical value of
the curvature radius of the backing close to the debonding
region. We actually fit the α(s) experimental profiles out-
side of the debonding region (sufficiently far from the last
visible fibrils) using s0 and r as fitting parameters. The re-
sult is reported in green in Figs. 2 and 3 where the elastica
profiles are extrapolated down to the substrate. The match-
ing between experimental and elastica profiles outside of the
debonding region is excellent (see Fig. 2 (f)) and, since we
measure the peeling force F independently, the fit of the
buckling length r provides a measurement of the bending
modulus EI of the tape backing for the portion of the tape
being peeled2.

As it can be observed in Figs. 2 and 3, the theoretical
profiles of the simple elastica model of Eq. 4 clearly do
not match the experimental ones in the debonding region. In
particular, the profile of the simple elastica model presents
a curvature discontinuity at the junction with the substrate
where s = s0, with a maximum curvature at s = s+0 . On the
contrary, the experimental profiles present no curvature dis-
continuity and the maximum curvature is remote from the
beginning of the debonding region (yet still inside it). It is
important to note that, in Figs. 2(f) and 3(h), the origin of the
curvilinear abscissa s of the experimental profiles has been
set by fitting the profile of the backing by an elastica model
with a cohesive zone, as described in section 4, and not by
simple visual observation of the fibrillated region from the
side.

The reason for the observed discrepancy with the sim-
ple elastica model is obviously related to the existence of
forces applied on the tape backing by the stretched adhesive
material in the debonding region, which have not been taken
into account. Note that the elastic extension of the tape back-
ing (neglected in the simple elastica model) cannot account
for the above-mentioned discrepancies, since the tape exten-
sion is very small in our experiments. This can be verified
by comparing the tape extension εdx = dL of a portion dx

2 We find that this modulus changes significantly between different
rollers, and even between distant portions of the same roller, with an
average value EI = (3.7±1.7) 10−8 N m2. This value agrees with the
estimate that can be made from the expression EI = Ebh3/12, where
E is the Young’s modulus and h the thickness of the tape backing,
using an independent tensile test giving Ebh = 1100±200 N and mi-
croscopic observations of the thickness providing h = 20± 5 µm. An
attentive study reveals that the variations in bending modulus EI can
actually be attributed to small variations of the tape backing thickness
of amplitude ±3 µm, since EI ∝ h3. In any case, in the present study the
bending modulus EI will enter the problem only through the parame-
ter r =

√
EI/F , which will be directly measured for each experiment

through elastica fits of the peeled tape outside of the debonding region.
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Fig. 2 (a)-(e): Pictures of the debonding region during peeling experiments at V = 100 µm s−1 and different peeling angles θ . The profile of the
tape backing (reported in yellow) is obtained from an average over several hundreds of detected profiles (one for each frame of the movie). This
profile is compared to the classical elastica model of Eq. 4, represented in green. We also report the best fit of the profile using the model of elastica
with a cohesive zone presented in Sec. 4 (red dashed lines). This model has two fit parameters, namely the limits of the cohesive zone (CZ), which
are highlighted by red circles. In (f), we represent the same data as in (a)-(e) in curvilinear coordinates (see Eq. 3), showing the slope α of the tape
backing as a function of curvilinear abscissa s. s = 0 is set at the beginning of the fitted cohesive zones.
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Fig. 3 (a)-(g): Pictures of the debonding region during peeling experiments at θ = 90o and different peeling velocities. The color and symbol code
is the same as in Fig. 2. In (h), we show the profiles from (a)-(g) in curvilinear coordinates (see Eq. 3), with s = 0 taken at the beginning of the
fitted cohesive zones.

of the tape to its vertical deflection dy due to bending: with
F ≤ 4 N and Ebh ≃ 1100 N, the tape relative extension ε
is always smaller than 0.4% (in the worst case), which can
be safely neglected compared to the tape deflection due to
bending tanα = dy/dx as soon as α is larger than 1o.

4 A model of elastica with a cohesive zone

In this section we account for the stress distribution σ(s) ap-
plied to the tape backing in the debonding region in terms of
a cohesive zone coupled to the inextensible elastica model.

As a first approximation we consider a uniform effective
stress σ̄ in the debonding region, which corresponds to a
traction-separation curve that is constant up to a maximum
elongation at debonding, where it drops to zero. The rele-
vance of such an approximation relies on the fact the ad-
hesive material experiences a relative stretching of several
hundred percents in the majority of the debonding region
(see Figs. 2 and 3), which for confined soft incompressible
materials is always associated with fibrillation. This load-
ing condition is very similar to the probe-tack test, which
for typical PSA provides stress-strain curves dominated by
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Fig. 4 Cohesive zone model of the debonding region expressed in the
reference frame of the laboratory, where the peeling profile is steady.
s = x = 0 is set at the beginning of the cohesive zone. The tape is unde-
formed at x ≤ 0 and submitted to a force

−→
F far from this undeformed

zone. The adhesive response is modelled by a uniform stress σ̄ for
0 ≤ s ≤ ls. We assume this stress to follow the fibrils orientation, given
by the angle φ .

a large plateau for the stress (Lakrout et al. 1999; Creton and
Ciccotti 2016). One should note that, because of cavitation
and fibrillation, σ̄ does not represent a true local stress, but
the average force per unit area acting on the boundaries of
the adhesive material (both for peeling and probe-tack ex-
periments).

Since the adhesive presents a fibrillar structure in the ma-
jority of the debonding region, it is reasonable to represent
the stress applied to the tape backing as a vector that is lo-
cally oriented along the fibrils (and with constant modulus
σ̄ ). Moreover, since the fibrils do not appear to slide on the
tape backing nor on the substrate (before debonding), a fibril
attached on the tape backing at curvilinear abscissa s should
also be attached to the substrate at position x = s.3 This en-
ables to compute the fibrils length
a(s) =

√
(s− x(s))2 +(a0 + y(s))2 and the angle

φ(s) = arctan
(

a0+y(s)
s−x(s)

)
that the fibrils form with the sub-

strate (see Fig. 4). Note that x(s) =
∫ s

0 cos(α(t))dt and
y(s) =

∫ s
0 sin(α(t))dt are the horizontal and vertical coor-

dinates of the point along the tape at curvilinear abscissa s.
In the initial part of the debonding region (before fibrilla-
tion) the forces applied by the adhesive are essentially verti-
cal and φ remains a valid estimate of the stress orientation,
even if fibrils are not present, since the tape backing is only
slightly bent so that s ≃ x and φ ≃ 90o.

3 The validity of this assumption is limited to the inextensible tape
approximation of our model, that follows the arguments provided in
section 3.

Our model can then be described by the following sys-
tem

EIα ′′−→ez +
−→t ∧−→

R =
−→
0 ,

−→
R ′(0 < s < ls) = σ̄b [−cos(φ)−→ex + sin(φ)−→ey ] ,
−→
R (s ≥ ls) =

−→
F ,

α(s < 0) = 0,

(6)

where ′ is the derivative with respect to s and
−→
R (s) is the in-

ternal force, applied by the half-part s̃ > s of the tape on the
other half-part s̃ < s. The first line of this system is the clas-
sical beam flexure equation (Love 1944). The second line
accounts for the presence of the uniform external stress σ̄ in
the cohesive zone between s = 0 and s = ls (in curvilinear
abscissa). The two remaining lines represent the boundary
conditions. A combination of the first three equations of (6)
gives the master equation of our model

EIα ′′+F sin(θ −α)− σ̄b
∫ ls

s
sin [α(s)+φ(t)]dt = 0. (7)

Eq. 7 is valid in the cohesive zone s ∈ [0; ls] and should
be associated with the description of the rest of the tape
backing by

α = 0, for s ≤ 0,

EIα ′′+F sin(θ −α) = 0, for s ≥ ls,
(8)

where the first line represents the absence of flexure in the
bonded part of the backing out of the debonding region,
while the last line is the simple elastica equation in the free-
standing part of the backing.

Integration of the second line of (8) gives

α(s ≥ ls) = θ −4arctan
[

X exp
(
− s− ls

r

)]
, (9)

where the constant X has to be determined from the conti-
nuity relations at the end of the cohesive zone s = ls

α(l−s ) = α(l+s ) = θ −4arctan(X),

α ′(l−s ) = α ′(l+s ) =
4X

r (1+X2)
.

(10)

The continuity of the curvature α ′ is equivalent to the
absence of point torque at s = ls. Its derivative α ′′ is actually
also continuous at the end of the cohesive zone, because no
point force is applied there. The latest continuity relation is
however already imposed by the continuity of α associated
to Eq. 7 in which the term multiplying σ̄ disappears at s= ls.

Similarly, continuity relations at s = 0 are

α(0−) = α(0+) = 0,

α ′(0−) = α ′(0+) = 0.
(11)
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Using Eq. 7 and the boundary conditions (10) and (11)
one can compute4 the value taken by the energy release rate
G=(1− cosθ)F/b during steady-state propagation accord-
ing to this model

G = σ̄
(
a f −a0

)
. (12)

G is actually equal to the work (per unit peeled surface)
of the cohesive forces during the stretching of the adhesive
from its initial thickness a0 up to the maximum fibril length
a f = a(s = ls) at debonding. This relation, which tells that
the work of the peeling force

−→
F is fully used to stretch the

adhesive material, actually simply accounts for the energy
conservation in the bending deformation of the tape back-
ing during steady-state peeling. Note that, in contrast, in the
simple elastica model of Eq. 4 with no cohesive zone, bend-
ing energy conservation can only be enforced thanks to the
introduction of a curvature discontinuity at s = 0 that acts as
an energy sink

G =
EI
2b

[
α ′(0+)2 −α ′(0−)2] .

We can finally rewrite the whole system describing the
tape profile in the cohesive zone (0≤ s≤ ls), with the bound-
ary conditions

α(0) = 0,

α(ls) = θ −4arctan(X),

α ′(ls) =
4X

r (1+X2)
,

(13)

4 Multiplying Eq. 7 by α ′ and integrating from 0 to ls yields

8FX2

(1+X2)2 +F [cos(4arctanX)− cosθ ]

− σ̄b
∫ ls

0

[
cos(α(s))

∫ ls

s
sin(φ(t))dt

]
α ′(s)ds

− σ̄b
∫ ls

0

[
sin(α(s))

∫ ls

s
cos(φ(t))dt

]
α ′(s)ds = 0.

After trigonometric simplifications of cos(4arctan(X)) and integration
by parts of the two integrals, we get

F
b
(1− cosθ) =

σ̄
∫ ls

0
{sin(α(s))sin(φ(s))+ [1− cos(α(s))]cos(φ(s))}ds.

The integrand can be rewritten as

sinφ sinα +(1− cosα)cosφ =
(y+a0)

dy
ds +(s− x) ds−dx

ds√
(y+a0)2 +(s− x)2

=
da(s)

ds

where a(s) =
√

(y+a0)2 +(s− x)2 is the length of the fibril attached
to the tape backing at curvilinear position s. This finally leads to Eq. 12.
One can also demonstrate Eq. 12 by computing the work associated to
a small advance of the peeling front (see Online Resource 2).

associated to the master equation

r2α ′′+ sin(θ −α)− 1− cosθ
a f −a0

∫ ls

s
sin [α(s)+φ(t)]dt = 0,

(14)

where the maximum fibril length a f is given by

a f =

√(∫ ls

0
(1− cosα(s))ds

)2

+

(
a0 +

∫ ls

0
sinα(s)ds

)2

.

(15)

Note that, since Eq. 12 was used in Eq. 14 to replace
σ̄ , one of the initial boundary conditions has become redun-
dant: we have therefore removed the α ′(0) = 0 boundary
condition from the system.

This system contains an integro-differential equation
with derivatives up to the second order, plus one unknown,
X , requiring therefore three boundary conditions, which are
provided by Eq. 13. We can solve this problem for different
sets of values for θ , r, a0 and ls, the only parameters it de-
pends on. Note that this problem does not depend explicitly
on σ̄ anymore. However, σ̄ can be retrieved via Eq. 12, us-
ing a f (ls) determined from the tape profile and the fact G is
determined by F and θ (see Eq. 1), which can be easily and
precisely measured.

To solve the set of Eqs. 13 and 14, we normalize all
lengths by r and we sample the interval s/r ∈ [0 : ls/r] over N
points (typically several hundreds to thousands). We replace
α ′′ by its midpoint method estimate, and α(1),α(N − 1)
and α(N) by their expressions according to (13). We then
use the Matlab fsolve routine to find the values of X and
α(2) ... α(N − 2) that minimize the set of N − 2 equations
obtained from Eq. 14. All lines in this system contain the
term sin(θ −α), which is of order of magnitude 0.1 to 1,
enabling an objective criterion for the minimization proce-
dure: the system is considered to be solved when all lines
are very small compared to 0.1 (in practice when the max-
imum term is smaller than 10−6). We use as initial guesses
for X and α(i) the analytical solutions of the approximation
of Eq. 14 for small angles α (see Online Resource 2).

Fig. 5 reports numerical solutions of the system of equa-
tions 13-14 for peeling angles θ and cohesive zone size ra-
tios ls/r typical of our experiments. As expected, the solu-
tion converges towards the simple elastica profile Eq. 4 at
small ls/r values. We can also observe that the curvature
(slope of α(s)) goes from 0 at s = 0 up to a maximum in-
cluded in the cohesive zone, before decreasing back towards
0 at s = ∞.

Computing the dimensional profile α(s) (and thus the
y(x) profile by integration) eventually requires to know r
and ls, as well as the curvilinear abscissa s0 along the tape
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Fig. 5 Theoretical profiles of elasticas with cohesive zones of different
sizes ls (the ends of which are shown by red disks) and for different
peeling angles θ . We normalize the curvilinear abscissa s by the typical
radius of curvature r =

√
EI/F . The considered values for the ratio

ls/r are typical of our experiments (Figs. 1 and 2).

at which the debonding region begins (i.e. the starting point
of the local reference frame to compute the curvilinear ab-
scissa, taken as 0 for the sake of simplicity in Eqs. 6 to
14). For each experimental profile of the tape backing, r =√

EI/F is first obtained from the fit of α(s) outside of the
debonding region by the simple elastica prediction (9) (leav-
ing the constant X as an unused parameter at this step). The
whole experimental profile α(s) (including the debonding
region) can finally be fitted by the system of equations (13-
14) using ls and s0 as the only fitting parameters5.

5 Once we know α(s), ls and s0, a f can be determined by Eq. 15.
Curvilinear abscissa is eventually redefined as s → s− s0 after the fit,
in order to set the beginning of the cohesive zone to s = 0.

5 Results and discussion

5.1 Comparison between model and experimental profiles

The fitting procedure described in Sec. 4 has been first sys-
tematically applied to all the individual frames of the exper-
imental movies, for all couples of control parameters (θ ,V ).

Both the radius of curvature r and the size of the cohe-
sive zone ls, which are the two valuable raw products of the
fitting procedure, are found to be very stable during each
movie (see the Online Resource 1), corresponding to the
peeling of typically several hundreds of µm to several cm,
depending on V . More precisely, we observe typical slow
variations of 5 to 15% for these two lengths during a peeling
experiment. Besides, when large portions of fibrils debond
at once, the tape backing profile and thus the fitted value of
ls do not change significantly (2% for the strongest event at
time t = 4.6s in the movie in the Online Resource 1, with a
cumulated variation in ls of 13% along the entire movie). On
the other hand, the extent of the region where the fibrils are
observed on the visible side presents a scatter of ±20%. This
last observation is related to the fact the only visible fibrils in
the movie are the ones on the side of the tape observed by the
camera, while the tape backing profile is the result of the in-
fluence of the debonding region over the whole tape width b.
This eventually makes our fitting procedure a more accurate
and representative tracer of the geometry of the debonding
region over the whole tape width than the optical observa-
tions of the fibrils on the side view, which represent a limited
set of fibrils that are close to the side of the tape. A detailed
analysis reveals that the average size of the debonding region
observed on the tape side presents a bias going from −20%
to +20% with respect to the cohesive zone length extracted
from the fitting of the backing profile for θ ranging from
30o to 120o.6 The extent of the debonding region on the tape
side tends to be shorter than at the center of the tape when
the peeling angle is less than 90◦ and longer for peeling an-
gles larger than 90◦. This bias reveals an interesting edge
effect that is not at the core of the present investigation. In
the rest of the manuscript we will focus on the estimations
derived from the bending profile, which are not affected by
this edge effect.

Because of the small fluctuations of the detected tape
backing profiles (due in particular to dusts on the tape or
tape imperfections) and of the lengths r and ls extracted from
them, we have applied as a second step the fitting procedure
to profiles averaged over all images in a movie, which en-
ables to considerably increase the signal-to-noise ratio. The
results of this fitting procedure is in excellent agreement
with the experimental profiles, as can be seen in Figs. 2 and
3, including in the debonding region. This agreement con-

6 The bias gets larger for the largest angle θ = 150◦, which will be
discussed later.
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firms the relevance of the model of elastica combined with
a constant stress cohesive zone, which catches the main fea-
tures of the tape profile using only few mechanical ingredi-
ents : a mean stress σ̄ oriented along the fibrils over a region
of length ls.

5.2 Cohesive stress and maximum fibril extension

In the model developed in Sec. 4, energy dissipation during
peeling occurs because of the loss of the work expended to
stretch the adhesive material up to debonding, which brings
the following expression for the effective fracture energy of
peeling

Γ = σ̄
(
a f −a0

)
. (16)

This work done against the cohesive stress σ̄ is partially dis-
sipated by viscosity during the stretching of the adhesive,
the rest being stored in the adhesive elastic energy and even-
tually lost at debonding by “elastic hysteresis” (Villey et al.
2015).We remark that the transient kinetic energy developed
by the fibrils after debonding is also dissipated by viscosity
during the fibrils collapse, but in any case this evolution is
not coupled to the peeling mechanics since the broken fibrils
are not bridging the backing to the substrate anymore.

In this section we use the results of the fitting of the ex-
perimental tape profiles to access the two parameters con-
trolling energy dissipation during peeling (according to the
cohesive zone model): (i) the average stress σ̄ in the cohe-
sive zone and (ii) the fibrils extension a f −a0 at the onset of
debonding, which are reported in Fig. 6.

Fig. 6(a) reports the evolution of the adherence energy
Γ (θ ,V ) = σ̄(a f − a0) as a function of the peeling angle θ
for peeling velocity V = 0.1 mm s−1. As reported in previ-
ous experiments on the same adhesive-substrate joint (Vil-
ley et al. 2015),the adherence energy is found to be a regu-
larly increasing function of the peeling angle θ . Assuming
the cohesive zone model developed in Sec. 4 and consider-
ing Figs. 6 (b) and (c), this angular dependency seems to be
mainly due to the fibril elongation a f − a0 that is found to
be clearly increasing with θ , while the average stress in the
cohesive zone σ̄ is displaying weaker trends. If all angles
are considered, the average stress decreases by a factor 1.7
while the fibril elongation increases by a factor 3.7.

We should remark that when limiting to the angles up to
120o, σ̄ is almost constant and all the increase in Γ is due to
the increase in a f −a0. In fact, the case of θ = 150o presents
some peculiarities compared to all other experimental con-
ditions studied in this paper: at this large angle (see Fig. 2e),
the detected sizes ls of the cohesive zone seem systemat-
ically larger (by typically 30-60%) than the visible fibrils
region (keeping in mind that those may not be representa-
tive of all fibrils along the tape width). Moreover, a careful

examination of the α(s) profiles at this large angle reveals a
systematic overshoot of 1o to 2o in the local angle (α > θ
locally, a feature too small to be visible in Fig. 2). Such an
overshoot can be attributed to the occurrence of some plastic
deformation in the tape backing, which should add a residual
curvature to the tape profile. If plasticity happens, it should
indeed be at large peeling angles (Gent and Hamed 1977;
Derail et al. 1997; Derail et al. 1998), where the tape curva-
ture is large. This is consistent with a simple everyday life
test: an office tape remains twisted after being peeled when
peeling proceeds at a large angle. However, the values for
a f −a0 and σ̄ obtained at θ = 150o remain of the same or-
der as the ones obtained at smaller angles, and the fitted pro-
files remain in good agreement with the experimental ones
even at this large angle: this indicates that the results our
model produces at very large peeling angles may be con-
served, while considered with precaution.

Figs. 6 (d-f) report the same three quantities, Γ , σ̄ and
a f − a0, as a function of the peeling velocity V for θ =
90o. Γ and σ̄ follow power laws of V with close exponents
(0.20 and 0.27 respectively): contrary to the angular depen-
dency, we observe that most of the increase of the adher-
ence energy Γ = σ̄

(
a f −a0

)
with the peeling velocity is

due to the increase of the cohesive zone stress σ̄ and that
it is only slightly affected by a weak decrease of the fibril
extension a f −a0 with V . Moreover, the values reported for
σ̄ in Figs. 6 (b) and (e) are consistent with what is expected
for the plateau stress of such acrylic-based PSA (Lindner et
al. 2004; Lindner et al. 2006).

In the present work, we have studied only two line cuts
(V = 0.1 mm s −1 and θ = 90o) in the experimental parame-
ters plane (θ ,V ). Reference (Villey et al. 2015) reports mea-
surements of the peeling adherence energy Γ for the same
PSA over a wider range of parameters (θ ,V ). The data re-
ported in (Villey et al. 2015) actually revealed that the de-
pendencies of Γ with V and θ were almost separable, i.e.
that Γ (θ ,V ) ≃ f (θ)g(V ). In light of our present experi-
ments, this separability can be justified by the fact that for
this adhesive the dependence of σ̄ on the angle θ is barely
detectable, and in any case is weak compared to the one of
a f (θ), and conversely that the decreasing trend of a f (V ) is
weak compared to the increasing trend of σ̄(V ), so that we
can write

Γ (θ ,V ) = σ̄(θ ,V )×
[
a f (θ ,V )−a0

]
,

≈ σ̄(V )×
[
a f (θ)−a0

]
.

(17)

In addition to the average stress and the maximum elon-
gation, another key rheological parameter can be extracted
from our treatment of peeling tests: the average strain rate

¯̇ε =
1
ls

∫ ls

0
ε̇(s)ds =

V
ls

ln
(

a f

a0

)
. (18)
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Fig. 6 Adherence energy Γ , average stress σ̄ in the cohesive zone and fibril elongation at debonding a f − a0 for peeling experiments at V =
0.1 mm s−1 and different peeling angles θ (a-c) and at θ = 90o and different peeling velocities V (d-f). Γ is measured through the peeling force
F , using Eqs. 1-2. a f is obtained from the fit of the tape backing profiles by Eq. 15. σ̄ is further obtained using Eq. 16.

at which the adhesive material is strained in the debonding
region (ε̇(s) is the local logarithmic strain).7 Fig. 7(a) shows
that ¯̇ε is increasing by a factor less than 1.8 for θ ranging
from 30o to 150o for V = 0.1 mm s −1, a factor comparable
to the variations of the local strain rate ε̇(s) over the cohe-
sive zone. In parallel, we see in Fig. 7(b) that ¯̇ε increases by
more than three orders of magnitude with V increasing from
3 ·10−6 to 3 ·10−3 m s−1 for θ = 90o. This last dependency

7 The evaluation of the average strain rate requires the calculation of
the temporal dependence of the length a(t) of a typical fibril during the
peeling. We should thus operate a change of reference frame from the
one of the laboratory (where the bending profile is steady and identified
by our measurements of α(s)) to the local reference frame of the sub-
strate. The evolution of the bending profile in time in the local reference
frame should be described by another slope function β (u, t) expressed
in terms of the material curvilinear abscissa u. Since the substrate is
moving at the same velocity as the peeling velocity V , the two bend-
ing functions are related by α(u+Vt) = β (u, t). From the logarithmic

strain ε(s) = ln(a(s)/a0) = ln
(√

(s− x)2 +(y+a0)2
)
− ln(a0) of the

fibril attached at position s in the laboratory reference frame, we can
then compute the local strain rate as ε̇(s) = 1

a(s)
da
ds

∂ s
∂ t =

V
a(s)

da
ds , which

after integration results in Eq. 18.

is well accounted for by a nearly linear power law ¯̇ε ∼V 1.06.
The fact the relationship between ¯̇ε and V is almost linear
means that the factor ln(a f /a0)/ls in Eq. 18 is almost inde-
pendent of the peeling velocity. This result is related to the
fact the lengths ls and a f follow very small exponent power
law of V (ls ∝ V−0.08 and a f ≈ a f −a0 ∝ V−0.07). In fact, lx
and ly also follow power laws of V with very close small ex-
ponents (−0.08 and −0.075 respectively): the cohesive zone
is self-similar to the first order, with just a weak downscaling
when V increases.

Since one can expect a direct influence of the strain rate
of the adhesive material on the level of stress, we also report
in Fig. 8 σ̄ as function of ¯̇ε for all studied couples of control
parameters (θ ,V ). These data reveal that σ̄ nearly follows
a power law ¯̇ε1/4 when V is varied, except for the data ac-
quired at θ = 150o and V = 0.1 mm s −1, which depart from
all other data presented in this paper, probably due to incipi-
ent plastification of the backing as discussed before. For the
other angles studied at this same velocity, the influence of
changing θ does not dramatically move away the data from
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Fig. 7 Average strain rate ¯̇ε in the cohesive zone, obtained from the
fitted tape backing profiles (using the model of Sec. 4) and from Eq. 18.
¯̇ε is represented (a) as a function of θ for V = 0.1 mm s −1 and (b) as
a function of V for θ = 90o. The error bar is the standard deviation of
ε̇(s) in the cohesive zone.

Fig. 8 Average stress σ̄ (from Figs. 6(b) and (e)) as a function of the
average strain rate ¯̇ε (from Fig. 7) in the debonding region, for all the
tested couples (θ ,V ) of control parameters.

the main power law, in agreement with the limited influence
of θ on σ̄ and on ¯̇ε (compared to the one of V ). Therefore,
one can say that the typical stress in the debonding region σ̄
is to the first order controlled by the value of the mean strain
rate ¯̇ε(θ ,V ) to the power ∼ 1/4, at least for peeling angles
up to 120o. At these angles, the role of θ in the relation be-
tween σ̄ and ¯̇ε remains unresolved, but it is undoubtedly of
second order.

A last parameter interesting to look at is the angle φ f =

arctan
(

a0+ly
ls−lx

)
between the last fibril of length a f and the

substrate, as reported in Fig. 9. We should highlight here that
the values we report for φ f result from the fit of the tape pro-
file by the cohesive zone model and are not obtained from
direct observations of the fibrils inclination (which would

Fig. 9 “Angle at debonding” φ f between the substrate and the longest
fibril (about to debond), (a) for V = 0.1 mm s −1 and different peeling
angles θ and (b) for θ = 90o and different peeling velocities V . φ f =

arctan
(

a0+ly
ls−lx

)
is obtained through the fit of experimental profiles by

the model of Sec. 4.

nevertheless be closely matching for θ ≤ 120o). We find
that φ f is remarkably constant with V (at least at θ = 90o),
which is consistent with the self-similar downscaling of the
cohesive zone with increasing V . In parallel, φ f decreases
from about 80o at θ = 30o down to approximatively 50o for
the highest peeling angle θ = 150o (where the angle of the
visible side fibrils with the substrate is around 65− 75o, a
value sensibly higher than the one obtained with our model
fit, which displays some limitations at very large peeling an-
gles, as abovementioned). These features suggest a corre-
lation between the maximum fibril elongation a f − a0 and
their inclination φ f , which we call the “angle at debonding”
of the fibrils.

Understanding the debonding criterion for a highly
stretched soft fibril from a substrate is clearly a key to mod-
eling the adherence energy Γ (V,θ) of PSAs. While this re-
mains a very subtle unsolved problem problem (Yarusso
1999; Villey et al. 2015; Creton and Ciccotti 2016) and is
out of the scope of the present work, the availability of our
measurements of a f , ¯̇ε and φ f is very promising for future
investigations on custom PSA with controlled rheology and
surface conditions.

5.3 Beyond the cohesive zone model

The good agreement between the imaged tape profiles and
the fits suggests that extracting more information from these
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profiles than an average stress in the debonding region may
not be an easy task. Obtaining more refinements in the stress
distribution indeed implies to look at the minute differences
between the fitted profiles and the experimental ones. No-
tice that the exact stress distribution can theoretically be ac-
cessed by computing the fourth derivative dy(4)/dx4 of the
tape profile (Love 1944; Niesiolowski and Aubrey 1981).
However, since the typical size of the debonding region is in
the hundreds of µm range, even getting a spatial stress dis-
tribution with a few resolved values is difficult: getting the
changes in dy(4)/dx4 with a resolution as low as several tens
of µm would require a defectless tape (no dusts or scratches)
at the µm scale, which is hardly reachable in practice. The
same issue led Niesiolowski and Aubrey to upscale the size
of their adhesive tape in order to apply this method (using
derivatives of the tape profile up to the fourth order to com-
pute the forces acting on the tape backing, see appendix 3 in
(Niesiolowski and Aubrey 1981)). Eventually, it seems that
only a few average stress values can be inferred at best from
the whole tape profile.

A thorough examination of the minute differences be-
tween the experimental profiles and their fit by our model
does nevertheless reveal one systematic feature that can be
used for further refinements, enabling to obtain more infor-
mation about the actual stress distribution. A zoom at the
very beginning of the debonding region (see Fig. 10) indeed
reveals a small zone where the tape displacement normal to
the substrate y(s) is negative, corresponding to a local verti-
cal compression of the adhesive layer.

This can be explained by considering that, before reach-
ing a plateau value σ̄ , the stress in the adhesive has to build
up from zero. The simplest model for this increase con-
sists in considering the linear elastic behaviour of the adhe-
sive at small strain, as proposed by Kaelble (Kaelble 1959;
Kaelble 1960), which results in such a compression zone be-
fore the adhesive is significantly stretched. Kaelble actually
modeled the adhesive layer by a linear rate-dependent elas-
tic foundation which, in our case, can be relevant to describe
the initial part of the debonding region (before cavitation and
fibrillation) where the adhesive is not too much strained. In
this zone, Kaelble predicts the following tape profile:

y = y0e
x

λβ

[
cos

(
x

λβ

)
+K sin

(
x

λβ

)]
,

with λβ =
4

√
4EIa0

Y b
,

and K = 1−
λβ sinθ

r
√

2−2cosθ −0.5hcosθ +λβ sinθ
.

(19)

In this equation, h is the backing thickness and Y is the ad-
hesive effective tensile modulus (larger than the adhesive
Young’s modulus because of incompressibility and confine-
ment, see discussion in (Villey et al. 2015)).

Fig. 10 The inset represents the zoom of the basal region (blue rectan-
gular box) of an experimental profile (θ = 90o, V = 100 µm s−1) after
averaging over 540 frames. The entire profile was fitted using the cohe-
sive zone (CZ) model of Eqs. 13 and 14 (red profile, with the CZ begin-
ning at s = 0); the zone where the backing displacement y corresponds
to an adhesive deformation smaller than 25% (i.e. |y| < a0/4 = 5 µm)
was fitted using the linear elastic foundation model of Eq. 19, provid-
ing an estimate of λβ (and thus of Y ) as a fitting parameter.

We should remark that in Kaelble’s model the position
x = 0 corresponds to the location where the normal stress
σ(x) =Y y/a0 in the adhesive reaches a maximum value σ0,
which is also the location of adhesive debonding when σ0
reaches a critical value (we do not discuss the shear stress
distribution here because it is not relevant for the peeling
angles discussed in this paper, see (Villey et al. 2015)). The
same equation 19 remains however valid and can be com-
bined with our cohesive zone model if we assume that the
position x = 0 corresponds to the transition between the lin-
ear elastic zone (where the normal stress builds up in the
confined adhesive) and the cohesive zone (where the stress
reaches saturation in the fibrillated adhesive), i.e. that
Y y0/a0 = σ̄ .

A first refinement of our model could thus simply consist
in combining an elastic foundation with a cohesive zone,
where in the foundation (−∞ < s ≤ 0) the adhesive response
is linear elastic (σ(x) = σ(s) = Y y/a0) and where in the
cohesive zone (0 ≤ s ≤ ls) it is plastic-like (σ(s) = σ̄ ). In
such a model, the adherence energy is given by

Γ = a0
σ̄2

2Y
+ σ̄

(
a f −a0 − y0

)
, (20)

which is simply the sum of the work to first stretch the adhe-
sive in the elastic foundation and then in the cohesive zone
up to debonding.

Such a model combining the elastic foundation and the
cohesive zone certainly offers a better description of the
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stress distribution within the adhesive, but its relevance to
explain energy dissipation during peeling should be further
examined. To do so, we estimate the importance of the elas-
tic foundation contribution to the adherence energy in Eq. 20
compared to the contribution of the cohesive zone. We thus
need estimates of σ̄ and Y , the former being given by fit-
ting the whole profile with the model of Sec. 4 and the lat-
ter by fitting the detected profile in the small strain zone by
Eq. 19: in this zone, the characteristic length λβ of the spa-
tially damped oscillation of the tape profile can be fitted,
giving access to Y = bλ 4

β/4EIa0. Practically, the tape pro-
file was fitted using Eq. 19 with K, y0 and λβ as independent
fitting parameters, as it is done for example in Fig. 10.

The systematic fitting of the averaged experimental pro-
files provides measurements of λβ , which reveal Y values
in the hundreds of kPa to several MPa range: this is larger
than the several tens of kPa expected for the unconfined ad-
hesive (Amouroux et al. 2001), but it can be explained by
the confinement effect: an incompressible material uniaxi-
ally stretched from an initial confined geometry has a stiffer
response than in an unconfined stretching test.

The contribution of the elastic foundation in the over-
all energy budget is slightly decreasing with θ and glob-
ally increasing with V . More precisely, a0σ̄2/(2YΓ ) < 5%
in all our experiments, except at V = 0.3 mm s−1 where it is
around 8% and at V = 3 mm s−1 where it is around 30%.

This means that the experiments presented in this pa-
per correspond to the case where the stress plateau domi-
nates the dissipation in the stretched adhesive, and that the
elastic foundation zone can safely be neglected both in the
energy budget and when estimating the level of the stress
plateau, except maybe at the highest tested peeling velocity
V = 3 mm s−1. The model of Sec. 4 is however expected to
become less relevant at higher velocities, where the maxi-
mum fibrils extension may become small enough so that the
contribution of the elastic foundation zone becomes impor-
tant in the overall work used to stretch the adhesive. The
more refined model briefly described in this section could
therefore be very useful to extract relevant local rheological
parameters and to explain energy dissipation at larger peel-
ing velocities than in the present investigation, in order to
give an overall complete picture of the peeling mechanics of
soft confined layers.

6 Conclusion

In this work, we measure experimentally the shape of the ad-
hesive tape backing during steady peeling of a typical com-
mercial PSA at controlled peeling angle θ and velocity V
with sufficient resolution to describe the debonding region.
We model the tape backing by an elastica submitted to a
constant force F at the peeling end and to a uniform cohe-

sive stress σ̄ in the debonding region, where the adhesive
material is stretched and forms fibrils. We make the reason-
able assumption that this cohesive stress is oriented in the
fibrils direction. Fitting the experimental profiles with such
a model allows to extract the typical stress σ̄ in the debond-
ing region as well as the extension a f − a0 of the adhesive
material at debonding, which are the effective rheological
ingredients that determine the energy dissipated per peeled
surface area Γ = σ̄

(
a f −a0

)
in this model. This fitting pro-

cedure also allows to compute the strain rate ε̇ imposed to
the adhesive fibrils and its average ¯̇ε in the debonding re-
gion. This model thus enables to use peeling as a sort of
local rheological test giving access to the average stress, the
average strain rate and the maximum extensibility of the ad-
hesive in its complex fibrillar debonding region for a given
set of control parameters (θ ,V ).

The model profiles fit properly the experimental ones
down to the micrometric scale. We explain this agreement
by the fact the model average stress σ̄ is not too far from
the actual stress distribution in the debonding region, since
the stress-extension behavior of typical PSA is known from
probe tack tests (which has a quite similar local loading con-
figuration) to exhibit a large stress plateau, with similar typ-
ical stress values at corresponding strain rates (Lindner et al.
2004; Lindner et al. 2006). Moreover, except for very large
peeling angles, the size of the cohesive zone and thus the
fibrils extension is close to what can be observed by directly
looking at the visible fibrils on the side of the tape. This
is the first time to our knowledge that a curve displaying the
typical stress and maximum strain in the adhesive debonding
region during peeling versus the peeling angle and velocity
(or versus the typical strain rate) is obtained and interpreted
in terms of large strain rheology of the fibrillated adhesive
material.

This use of peeling as a local rheological test of the
complex debonding region should provide a useful tool to
link the adhesive formulation to the desired user properties
(i.e. adherence energy curves Γ (V,θ)) through the interme-
diate parameters that are the material large strain rheolog-
ical behaviour and fibril debonding conditions. While fur-
ther studies on different formulations with well controlled
large strain rheologies and interface properties should be
conducted to completely examine this chain of influences,
the parametric study in this paper already examines the in-
fluence of material’s large-strain rheology on energy dissi-
pation and thus resistance to peeling. Our study suggests
that energy dissipation is linked to the peeling velocity V
mainly through the strain-rate dependency of the average
stress within the adhesive, which seems to be insensitive
to the peeling angle θ , except maybe at the highest peel-
ing angle, where other features such as plasticity in the tape
backing are likely to occur. Conversely, the fibril elongation
at debonding a f − a0 increases with θ , but only slowly de-
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creases with V in the explored velocity range. Finally and
more speculatively, the angular dependency of a f (and thus
the main angular dependency of Γ ) could come from a
change in the stress configuration at the fibrils extremities
due to the changing direction φ f in which the fibrils are
pulled, shifting the critical elongation at which the relevant
debonding criterion (stress or energy density, see discussion
in (Yarusso 1999)) is reached. In other words, our results
suggest that longer fibril extensions can be reached before
debonding and thus more energy can be dissipated when
these fibrils are pulled with an angle φ f smaller than 90o

with respect to the substrate on which they are attached, pro-
vided the fibril attachment does not slide on the substrate
(sliding being not observed in the experiments presented in
this paper).

Finally and more generally, a consistent model to ex-
plain energy dissipation during peeling needs three ingre-
dients: the equations of stress and displacement transmis-
sion between the operator and the zone where energy is dis-
sipated; the effective rheological behavior of the adhesive
in this zone; and a local debonding criterion. The modeling
strategy presented in this paper accounts for the first point.
We use a simplified version of the local adhesive rheology
(a constant effective stress depending on the strain rate) to
account for the second point, a simplification allowed by the
large stress plateau exhibited by adhesives during probe tack
tests. As for the third ingredient, our model gives access
to observables that can shed some light on it, namely the
elongation a f − a0 and orientation φ f of the fibril about to
debond and the typical strain rate experienced by the fibrils.

Acknowledgements We thank B. Bresson and L. Olanier for their
help in the conception of the experiments. We thank E. Barthel, M.-
J. Dalbe, S. Santucci, L. Vanel, and D. Yarusso for fruitful discussions.
This work has been supported by the French ANR through Grant #12-
BS09-014.

References

Amouroux et al. 2001. Amouroux N, Petit J, Léger L
(2001) Role of interfacial resistance to shear stress on
adhesive peel strength. Langmuir 17:6510–6517

Barquins and Ciccotti 1997. Barquins M, Ciccotti M
(1997) On the kinetics of peeling of an adhesive tape
under a constant imposed load. Int J Adhes Adhes
17:65–68

Chiche et al. 2005. Chiche A, Dollhofer J, Creton C (2005)
Cavity growth in soft adhesives. Eur Phys J E 17:389–
401

Cortet et al. 2007. Cortet PP, Ciccotti M, Vanel L (2007)
Imaging the stick-slip peeling of an adhesive tape under
a constant load. J Stat Mech Theor Exp 2007:P03005

Cortet et al. 2013. Cortet PP, Dalbe MJ, Guerra C, Cohen
C, Ciccotti M, Santucci S, Vanel L (2013) Intermittent
stick-slip dynamics during the peeling of an adhesive
tape from a roller. Phys Rev E 87:022601

Creton and Ciccotti 2016. Creton C, Ciccotti M (2016)
Fracture and adhesion of soft materials : a review. Rep
Prog Phys 79:046601

Creton et al. 2009. Creton C, Hu G, Deplace F, Morgret
L, Shull KR (2009) Large-strain mechanical behavior
of model block copolymer adhesives. Macromolecules
42:7605–7615

Dalbe et al. 2014a. Dalbe MJ, Santucci S, Cortet PP, Vanel
L (2014a) Strong dynamical effects during stick-slip ad-
hesive peeling. Soft Matter 10:132–138

Dalbe et al. 2014b. Dalbe MJ, Santucci S, Vanel L, Cortet
PP (2014b) Peeling-angle dependence of the stick-slip
instability during adhesive tape peeling. Soft Matter
10:9637–9643

Dalbe et al. 2015. Dalbe MJ, Cortet PP, Ciccotti M, Vanel
L, Santucci S (2015) Multiscale stick-slip dynamics of
adhesive tape peeling. Phys Rev Lett 115:128301

Deplace et al. 2009. Deplace, Creton C (2009) Fine tuning
the adhesive properties of a soft nanostructured adhe-
sive with rheological measurements. J Adhes 85:18–54

Derail et al. 1997. Derail C, Allal A, Marin G, Tordjeman
P (1997) Relationship between viscoelastic and peeling
properties of model adhesives. Part 1: Cohesive frac-
ture. J Adhes 61:123–157

Derail et al. 1998. Derail C, Allal A, Marin G, Tordjeman
PH (1998) Relationship between viscoelastic and peel-
ing properties of model adhesives. Part 2: The interfa-
cial fracture domains. J Adhes 68:203–228

Gent and Hamed 1977. Gent AN, Hamed GR (1977) Peel
mechanics for an elastic-plastic adherend. J Appl Polym
Sci 21:2817–2831

Gent and Petrich 1969. Gent AN, Petrich RP (1969) Adhe-
sion of viscoelastic materials to rigid substrates. Proc
Roy Soc A 310:433–448

ISO 8510-1. ISO 8510-1, Adhesives - Peel test for a
flexible-bonded-to-rigid test specimen assembly - Part
1: 90◦ degree peel (1990)

ISO 8510-2. ISO 8510-2, Adhesives - Peel test for a
flexible-bonded-to-rigid test specimen assembly - Part
2: 180◦ degree peel (2006)

Kaelble 1959. Kaelble DH (1959) Theory and analysis of
peel adhesion: Mechanisms and mechanics. Trans Soc
Rheol 3:161–180

Kaelble 1960. Kaelble DH (1960) Theory and analysis of
peel adhesion: Bond stresses and distributions. Trans
Soc Rheol 4:45–73

Kaelble 1965. Kaelble DH (1965) Peel adhesion: Micro-
fracture mechanics of interfacial unbonding of poly-
mers. Trans Soc Rheol 9:135–163



Meas. of the large strain adhesive response during peeling of PSA 15

Kendall 1975. Kendall K (1975) Thin-film peeling-the elas-
tic term. J Phys D Appl Phys 8:1449–1452

Lakrout et al. 1999. Lakrout H, Sergot P, Creton C (1999)
Direct observation of cavitation and fibrillation in a
probe tack experiment on model acrylic Pressure-
Sensitive-Adhesives. J Adhes 69:307–359

Lindner et al. 2004. Lindner A, Maevis T, Brummer R,
Lühmann B, Creton C (2004) Subcritical failure of
soft acrylic adhesives under tensile stress. Langmuir
20:9156–9169

Lindner et al. 2006. Lindner A, Lestriez B, Mariot S, Cre-
ton C, Meavis T, Lühmann B, Brummer R (2006) Ad-
hesive and rheological properties of lightly crosslinked
model acrylic networks. J Adhes 82:267–310

Love 1944. Love AEH (1944) A treatise on the mathemati-
cal theory of elasticity. Dover Publications, New York

Niesiolowski and Aubrey 1981. Niesiolowski F, Aubrey
DW (1981) Stress distribution during peeling of adhe-
sive tapes. J Adhes 13:87–98

Villey et al. 2015. Villey R, Creton C, Cortet PP, Dalbe MJ,
Jet T, Saintyves B, Santucci S, Vanel L, Yarusso DJ, Ci-
ccotti M (2015) Rate-dependent elastic hysteresis dur-
ing the peeling of pressure sensitive adhesives. Soft
Matter 11:3480–3491

Yarusso 1999. Yarusso DJ (1999) Quantifying the relation-
ship between peel and rheology for Pressure Sensitive
Adhesives. J Adhes 70:299–320


