
HAL Id: hal-01405058
https://hal.science/hal-01405058v1

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subsampled online matrix factorization with
convergence guarantees

Arthur Mensch, Julien Mairal, Gaël Varoquaux, Bertrand Thirion

To cite this version:
Arthur Mensch, Julien Mairal, Gaël Varoquaux, Bertrand Thirion. Subsampled online matrix factor-
ization with convergence guarantees. NIPS Workshop on Optimization for Machine Learning, Dec
2016, Barcelone, Spain. �hal-01405058�

https://hal.science/hal-01405058v1
https://hal.archives-ouvertes.fr


Subsampled online matrix factorization
with convergence guarantees

Arthur Mensch
Inria Parietal

Saclay, France

Julien Mairal
Inria Thoth

Grenoble, France

Gaël Varoquaux
Inria Parietal

Saclay, France

Bertrand Thirion
Inria Parietal

Saclay, France
firstname.lastname@inria.fr

Abstract

We present a matrix factorization algorithm that scales to input matrices that are
large in both dimensions (i.e., that contains more than 1TB of data). The algorithm
streams the matrix columns while subsampling them, resulting in low complexity
per iteration and reasonable memory footprint. In contrast to previous online matrix
factorization methods, our approach relies on low-dimensional statistics from past
iterates to control the extra variance introduced by subsampling. We present a
convergence analysis that guarantees us to reach a stationary point of the problem.
Large speed-ups can be obtained compared to previous online algorithms that do
not perform subsampling, thanks to the feature redundancy that often exists in
high-dimensional settings.

Setup. The goal of matrix factorization is to decompose a matrix X ∈ Rp×n – typically n signals
of dimension p – as a product of two smaller matrices:

X ≈ DA with D ∈ Rp×k, A ∈ Rk×n, (1)

with potential sparsity or structure requirements on D and A. We consider a sample stream (xt)t≥0
that cycles into the columns {x(i)}i of X. Matrix factorization can be formulated as a non-convex
optimization problem, where the factor D (the dictionary) minimizes the following empirical risk:

D = argmin
D∈C

f̄
def
=

1

n

n∑
i=1

f (i)(D), where f (i)(D) = min
α∈Rk

1

2

∥∥x(i) −Dα
∥∥2
2

+ λΩ(α). (2)

C is a column-wise separable convex set of Rp×k, and Ω : Rp → R is a penalty over the code. The
problem of dictionary learning [8, 1] sets C = Bk2 and Ω = ‖ · ‖1. Due to the sparsifying effect of `1
penalty [11], the dictionary forms a basis in which the data admit a sparse representation. Setting
C = Bk1 and Ω = ‖ · ‖22 yields a data-adapted sparse basis, akin to sparse PCA[12]. The algorithm
presented here accommodates elastic-net penalties Ω(α) , (1− ν)‖α‖22 + ν‖α‖1, and elastic-net
ball-constraints C , {D ∈ Rp×k/ ‖d(j)‖ , µ‖d(j)‖1 + (1− µ)‖d(j)‖22 ≤ 1}.

Problem. For many applications of matrix factorization, datasets are growing in both sample
number and sample dimension. The online matrix factorization algorithm [6] can handle large
numbers of samples but was designed to work in relatively small dimension. Recent work [7]
has adapted this algorithm to handle very high dimensional dataset. Though it demonstrates good
empirical performance, the proposed algorithm yields sequences of iterates with non vanishing
variance and is not asymptotically convergent.

Contribution. We address this issue and correct some aspects of the algorithm in [7] to establish
convergence and correctness. We thus introduce a new method to efficient solve (2) for numerous
high-dimensional data — large p, large n — with theoretical guarantees.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



As in [7], we perform subsampling at each iteration of the online matrix factorization algorithm. The
sample stream is downsampled in a stochastic manner —we observe different subsets of successive
colunms. We thus each step of the online algorithm in a space of reduced dimension q < p. Unlike
[7], we control the variance introduced by the subsampling to obtain convergence. For this, we rely
on low-dimensional statistics kept from the past, as many recent stochastic algorithms [10, 3, 2].

1 Algorithm

Original online algorithm. The problem (2) can be solved online, following [6]. At each iteration
t, a sample xt is drawn from one of the columns {x(i)}1≤i≤n of X. Its code αt is computed from the
previous dictionary Dt−1: αt , argminα∈Rp

1
2

∥∥xt −Dt−1α
∥∥2
2

+ λΩ(α). Then, Dt is updated as

Dt ∈ argmin
D∈C

ḡt(D) ,
(1

t

t∑
s=1

1

2

∥∥xs −Dαs

∥∥2
2

+ λΩ(αs)
)
, (3)

In other words, Dt is chosen to be the best dictionary that relates past codes (αs)s≤t to past samples
(xt)s≤t. Codes are not recomputed from the current iterate D, which would be necessary to compute
the true past loss fonction f̄t(D), of which ḡt is a strongly-convex upper-bound:

f̄t(D) ,
1

t

t∑
s=1

min
α∈Rp

1

2

∥∥xs −Dα
∥∥2
2
+ λΩ(α) ≤ ḡt(D) (4)

It can be shown [see 5, for theoretical grounding] that minimizing (ḡt)t yields a sequence of iterates
that is asymptotically a critical point of f̄ defined in (2). ḡt can be minimized efficiently by projected
block coordinate descent, which makes it useful in practice. Indeed, minimizing ḡt is equivalent to
minimizing the quadratic function

D→ 1

2
Tr (D>DC̄t)− Tr (D>Bt), where B̄t =

1

t

t∑
s=1

xsα
>
s , C̄t =

1

t

t∑
s=1

αsα
>
s . (5)

Its gradient∇ḡt : D→ DC̄t − B̄t can be tracked online by updating C̄t and B̄t at each iteration:

C̄t = (1− 1

t
)C̄t−1 +

1

t
αtα

>
t B̄t = (1− 1

t
)B̄t−1 +

1

t
xtα

>
t . (6)

Those two statistics are thus sufficient to yield the sequence (Dt)t. The weight 1
t used above can be

replaced by a more general wt. In addition, the online algorithm has a minibatch extension.

Subsampled algorithm. We adapt the algorithm from [6] to handle large sample dimension p. The
complexity of this algorithm linearly depends on the dimension p in three aspects:

• xt ∈ Rp is used to compute the code αt,
• it is used to update the surrogate parameters C̄t ∈ Rp×k,
• Dt ∈ Rp×k is fully updated at each iteration.

Our new subsampling online matrix factorization algorithm (SOMF) reduces the dimensionality of
each of these steps, so that the single-iteration complexity in p depends on q = p

r rather than p. r > 1
is a reduction factor that is close to the computational speed-up per iteration in the large dimensional
regime p� k. Formally, we randomly draw, at iteration t, a mask Mt that “selects” a random subset
of xt. Mt is a Rp×p random diagonal matrix, such that each coefficient is a Bernouilli variable with
parameter 1

r , normalized to be 1 in expectation. With this definition at hand, Mtxt constitutes a
non-biased, low-dimensional estimator of xt: E[‖Mtxt‖0] = p

r = q, and E[Mtxt] = xt, with ‖ · ‖0
counting the number of non-zero coefficients. Thus, r is the average proportion of observed features
at each iteration. We further define the pair of orthogonal projectors Pt ∈ Rq×p and P⊥t ∈ R(p−q)×p

that projects Rp onto Im(Mt) and Ker(Mt), which we will use for the dictionary update step.
In brief, SOMF, defined in Alg. 1, follows the outer loop of online matrix factorization, with the
following major modifications at iteration t:

• it uses Mtxt and low-size statistics instead of xt to estimate the code αt and the surrogate gt,
• it updates a subset of the dictionary PtDt−1 to reduce the surrogate value ḡt(D). Relevant

parameters of ḡt are computed using Ptxt and αt only.
We describe in detail the new code computation and dictionary update steps. We then state conver-
gence guarantees for SOMF. Those are non trivial to obtain as SOMF is not an exact (stochastic)
majorization-minimization algorithm.

2



Algorithm 1 Subsampled online matrix factorization (SOMF)

Input: Initial iterate D0, weight sequences (wt)t>0, (γc)c>0, sample set {x(i)}i>0, # iterations T .
for t from 1 to T do

Draw xt = x(i) at random and Mt (see text)
Update the regression parameters for sample i: c(i) ← c(i) + 1, γ ← γc(i)

(β
(i)
t ,G

(i)
t )← (1−γ)(β

(i)
t−1,G

(i)
t−1)+γ(D>t−1Mtx

(i),D>t−1MtDt−1), (βt,Gt)← (β̄
(i)
t , Ḡ

(i)
t )

Compute the approximate code for xt: αt ← argminα∈Rk
1
2α
>Gtα−α>βt + λΩ(α).

Update the parameters of the aggregated surrogate ḡt:

C̄t ← (1− wt)C̄t + wtαtα
>
t . PtB̄t ← (1− wt)PtB̄t + wtPtxtα

>
t . (7)

Compute simultaneously (using (using [7, Alg 2]) for 1st expression):

PtDt ← argmin
Dr∈Cr

1

2
Tr (Dr>(DrC̄t − B̄t)), P

⊥
t B̄t ← (1− wt)P

⊥
t B̄t−1 + wtP

⊥
t xtα

>
t . (8)

Output: Final iterate DT .

Code computation. In the online algorithm, αt is obtained solving the linear regression problem

αt = argmin
α∈Rk

1

2
α>G?

tα−α>β?
t + λΩ(α), where G?

t = D>t−1Dt−1 and β?
t = D>t−1xt (9)

For large p, computing G?
t and β?

t dominates the complexity of the code computation step. To
reduce this complexity, we introduce estimators for Gt and βt, computable at a cost proportional
to q, whose use does not break convergence. Recall that the sample xt is drawn from a finite set
of samples {x(i)}i. We estimate G?

t and β?
t from Mtxt and data from previous iterations s < t

for which x(i) was drawn. Namely, we keep in memory 2n estimators, written (G
(i)
t ,β

(i)
t )1≤i≤n,

observe the sample i = it at iteration t and use it to update the i-th estimators Ḡ(i)
t , β̄(i)

t following

β
(i)
t = (1− γ)G

(i)
t−1 + γD>t−1Mtx

(i), G
(i)
t = (1− γ)G

(i)
t−1 + γD>t−1MtD

(i)
t , (10)

where γ is a weight factor determined by the number of time sample i has been previously observed
at time t. Precisely, given (γc)c a decreasing sequence of weights, γ , γ

c
(i)
t

, where c(i)t = |{s ≤

t,xs = x(i)}| All others estimators {G(j)
t ,β

(j)
t }j 6=i are left unchanged from iteration t− 1. The set

{G(i)
t ,β

(i)
t }1≤i≤n is used to define the averaged estimators at iteration t, related to sample i:

Gt , G
(i)
t =

∑
s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1MsDs−1, βt , β

(i)
t =

∑
s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1Msx

(i), (11)

where γ(i)s,t = γ
c
(i)
t

∏
s<t,xs=x(i)(1 − γc(i)s

). Replacing (G?
t ,β

?
t ) by (Gt,βt) in (9), αt minimizes

the masked loss averaged over the previous iterations where sample i appeared:

min
α∈Rk

∑
s≤txs=x(i)

γ
(i)
s,t

2
‖Ms(x

(i) −D>s−1α)‖22 + λΩ(α). (12)

The sequences (Gt)t and (βt)t are consistent estimations of (G?
t )t and (β?

t )t — consistency arises
from the fact that a single sample x(i) is observed with different masks along iterations. This was
not the case in the algorithm proposed in [7], which use estimators that does involve averaging
from past data. Solving (12) is made closer and closer to solving (9), in a manner that ensures the
correctness of the algorithm. Yet, computing the estimators (11) is r times as costly as computing G?

t
and β?

t from (9) and permits to speed up the code computation steop close to r times. The weight
sequences (wt)t and (γc)c are selected appropriately to ensure convergence. For instance, we can set
wt = 1

tv , γc = 1
c2.5−2v , with v ∈ ( 3

4 , 1).

3



Dictionary update. In the original online algorithm, the whole dictionnary Dt−1 is updated at
iteration t. To reduce the time complexity of this step, we add a “freezing” constraint to the
minimization of the quadratic function (5). Every row r of D that corresponds to an unseen row r at
iteration r (such that Mt[r, r] = 0) remains unchanged. Dt is thus obtained solving

Dt ∈ argmin
D∈C

P⊥t D=P⊥t Dt−1

1

2
Tr (D>DC̄t)− Tr (D>B̄t), with Pt orth. projector on Im(Mt) (13)

With elastic-net ball constraints, solving (13) reduces to performing the partial dictionary update (8)
(Alg. 1), with Cr = {Dr ∈ Rk×q, ‖(dr)

(j)‖ ≤ 1− ‖d(j)
t−1‖+ ‖Ptd

(j)
t−1‖}. We perform this update

using a single pass of projected block coordinate descent with blocks in the reduced space Rq. The
dictionary update step is thus performed r times faster than the original algorithm.

Surrogate computation The gradient we use to solve (8) requires to know only C̄t and PtB̄t. We
thus parallelize the partial update of the dictionary and the update of P⊥t B̄t, using a second thread.
The update of PtB̄t is performed in the main thread at a cost proportional to q. As the parallel
computation is dominated by dictionary update, this is enough to effectively reduce the computation
time of B̄t computation.

Convergence guarantees All in all, the three steps whose complexity depends on p in the original
algorithm now depends on q, which speeds-up a single iteration by a factor close to r. Yet SOMF retain
convergence guarantees. We assume that there exists ν such that for all t > 0, D>t Dt � νI (met
in practice or by adding a small ridge regularization to (2)), and make a technical data-independent
hypothesis on (wt)t and (γc)c decay. Then SOMF iterates converge in the same sense as in the original
algorithm [6]: Dt → D∞ ∈ Rp×k and ∇f̄(D∞,D −D∞) ≥ 0 for any D ∈ C, where f̄ is the
empirical risk defined in (2).

Proof sketch. We use the aggregated nature of ḡt and the fact that we can obtain a geometric rate of
convergence for a single pass of projected block coordinate descent [e.g see 9] to control the terms
Dt −Dt−1 and ḡt(Dt) − ḡt(D∗t ), where D∗t = argminD∈C ḡt. We obtain ḡt(Dt) − ḡt(Dt−1) =
O(wt), a crucial result on estimate stability. Simultaneously, we show that the partial minimization
yields the same result as the full minimization for t→∞, as θt − θ?t → 0. Using this result, with
appropriate selection of (wt)t and (γt)t, the noise induced by the use of estimators in (9) can be
bounded in the derivations of [6]. We then write the difference (12) - (9) as the sum of a lag term
and an empirical mean over {Ms}xs=xt

. Both can be bounded with appropriate selection of weights.
Formally, (ḡt)t are no longer upper-bounds of (f̄t)t, but become so for t→∞, at a sufficient rate to
guarantee convergence.

2 Experiments
Hyperspectral images. We benchmark our algorithm by performing dictionary learning on a
large hyperspectral image. Dictionary learning is indeed used on patches of hyperspectral images,
as in [4]. Extracting 16×16 patches from an 1GB hyperspectral image from the AVIRIS project
with 224 channels yields samples of dimension p = 57, 000. Figure 1 demonstrates that the
newly proposed algorithm is faster than the original, non-subsampled algorithm from [6] by a
factor close to r = 4. This speed-up is helped by the redundancy in the different channels of
the hyperspectral patches. In the first epochs, the proposed method also outperforms the recent
subsampled algorithm from [7], thanks to the introduction of consistent estimators in the code
computation step. All algorithms are implemented in Cython and benched on two cores. They cycle
over 100,000 normalized samples with minibatches of size 50. The code for reproduction is available
at github.com/arthurmensch/modl..

Figure 1 Performing dictio-
nary learning on hyperspectral
data (224 channels, 16 × 16
patches) is faster with stochas-
tic subsampling, and even
faster with the newly proposed
variance control.

1 s 10 s 100 s 500 s
Time0.2%

1%

10%

100%

T
ra

in
lo

ss
(r

el
at

iv
e

to
lo

w
es

t
va

lu
e)

Mairal ’10

Proposed (r = 4)

Mensch ’16 (r = 4)

Conclusion The new SOMF algorithm can efficiently factorize large and tall matrices. It preserves
the speed gains of [7] but has convergence guarantees that are beneficial in practice.

4

github.com/arthurmensch/modl


Acknowledgments
The research leading to these results was supported by the ANR (MACARON project, ANR-14-
CE23-0003-01 – NiConnect project, ANR-11-BINF-0004NiConnect) and has received funding from
the MetaMRI Inria Associate Team.

References
[1] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used

overcomplete dictionaries. In Conference on Learning Theory, 2014.
[2] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with

support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, 2014.

[3] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems. 2013.

[4] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi. Nonlocal transform-domain filter
for volumetric data denoising and reconstruction. IEEE Transactions on Image Processing,
22(1):119–133, 2013.

[5] J. Mairal. Stochastic majorization-minimization algorithms for large-scale optimization. In
Advances in Neural Information Processing Systems, 2013.

[6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse
coding. The Journal of Machine Learning Research, 11:19–60, 2010.

[7] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Dictionary learning for massive matrix
factorization. In International Conference on Machine Learning, 2016.

[8] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311–3325, 1997.

[9] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1–38, 2014.

[10] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. arXiv preprint arXiv:1309.2388, 2013.

[11] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

[12] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of computa-
tional and graphical statistics, 15(2):265–286, 2006.

5


	Algorithm
	Experiments

