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Subsampled online matrix factorization with convergence guarantees

We present a matrix factorization algorithm that scales to input matrices that are large in both dimensions (i.e., that contains more than 1TB of data). The algorithm streams the matrix columns while subsampling them, resulting in low complexity per iteration and reasonable memory footprint. In contrast to previous online matrix factorization methods, our approach relies on low-dimensional statistics from past iterates to control the extra variance introduced by subsampling. We present a convergence analysis that guarantees us to reach a stationary point of the problem. Large speed-ups can be obtained compared to previous online algorithms that do not perform subsampling, thanks to the feature redundancy that often exists in high-dimensional settings.

Setup. The goal of matrix factorization is to decompose a matrix X ∈ R p×n -typically n signals of dimension p -as a product of two smaller matrices:

X ≈ DA with D ∈ R p×k , A ∈ R k×n , (1) 
with potential sparsity or structure requirements on D and A. We consider a sample stream (x t ) t≥0 that cycles into the columns {x (i) } i of X. Matrix factorization can be formulated as a non-convex optimization problem, where the factor D (the dictionary) minimizes the following empirical risk:

D = argmin D∈C f def = 1 n n i=1 f (i) (D), where f (i) (D) = min α∈R k 1 2 x (i) -Dα 2 2 + λ Ω(α). (2) 
C is a column-wise separable convex set of R p×k , and Ω : R p → R is a penalty over the code. The problem of dictionary learning [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF][START_REF] Agarwal | Learning sparsely used overcomplete dictionaries[END_REF] sets C = B k 2 and Ω = • 1 . Due to the sparsifying effect of 1 penalty [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], the dictionary forms a basis in which the data admit a sparse representation. Setting C = B k 1 and Ω = • 2 2 yields a data-adapted sparse basis, akin to sparse PCA [START_REF] Zou | Sparse principal component analysis[END_REF]. The algorithm presented here accommodates elastic-net penalties Ω(α) (1 -ν) α 2 2 + ν α 1 , and elastic-net ball-constraints C {D ∈ R p×k / d (j) µ d

(j) 1 + (1 -µ) d (j) 2 2 ≤ 1}.
Problem. For many applications of matrix factorization, datasets are growing in both sample number and sample dimension. The online matrix factorization algorithm [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] can handle large numbers of samples but was designed to work in relatively small dimension. Recent work [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF] has adapted this algorithm to handle very high dimensional dataset. Though it demonstrates good empirical performance, the proposed algorithm yields sequences of iterates with non vanishing variance and is not asymptotically convergent.

Contribution. We address this issue and correct some aspects of the algorithm in [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF] to establish convergence and correctness. We thus introduce a new method to efficient solve (2) for numerous high-dimensional data -large p, large n -with theoretical guarantees.

As in [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF], we perform subsampling at each iteration of the online matrix factorization algorithm. The sample stream is downsampled in a stochastic manner -we observe different subsets of successive colunms. We thus each step of the online algorithm in a space of reduced dimension q < p. Unlike [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF], we control the variance introduced by the subsampling to obtain convergence. For this, we rely on low-dimensional statistics kept from the past, as many recent stochastic algorithms [START_REF] Schmidt | Minimizing finite sums with the stochastic average gradient[END_REF][START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF][START_REF] Defazio | Saga: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF].

Algorithm

Original online algorithm. The problem (2) can be solved online, following [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. At each iteration t, a sample x t is drawn from one of the columns {x (i) } 1≤i≤n of X. Its code α t is computed from the previous dictionary D t-1 : α t argmin α∈R p 1 2 x t -D t-1 α 2 2 + λ Ω(α). Then, D t is updated as

D t ∈ argmin D∈C ḡt (D) 1 t t s=1 1 2 x s -Dα s 2 2 + λΩ(α s ) , (3) 
In other words, D t is chosen to be the best dictionary that relates past codes (α s ) s≤t to past samples (x t ) s≤t . Codes are not recomputed from the current iterate D, which would be necessary to compute the true past loss fonction ft (D), of which ḡt is a strongly-convex upper-bound:

ft (D) 1 t t s=1 min α∈R p 1 2 x s -Dα 2 2 + λΩ(α) ≤ ḡt (D) (4) 
It can be shown [see 5, for theoretical grounding] that minimizing (ḡ t ) t yields a sequence of iterates that is asymptotically a critical point of f defined in [START_REF] Defazio | Saga: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF]. ḡt can be minimized efficiently by projected block coordinate descent, which makes it useful in practice. Indeed, minimizing ḡt is equivalent to minimizing the quadratic function

D → 1 2 Tr (D D Ct ) -Tr (D B t ), where Bt = 1 t t s=1 x s α s , Ct = 1 t t s=1 α s α s . (5) 
Its gradient ∇ḡ t : D → D Ct -Bt can be tracked online by updating Ct and Bt at each iteration:

Ct = (1 - 1 t ) Ct-1 + 1 t α t α t Bt = (1 - 1 t ) Bt-1 + 1 t x t α t . (6) 
Those two statistics are thus sufficient to yield the sequence (D t ) t . The weight 1 t used above can be replaced by a more general w t . In addition, the online algorithm has a minibatch extension.

Subsampled algorithm. We adapt the algorithm from [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] to handle large sample dimension p. The complexity of this algorithm linearly depends on the dimension p in three aspects:

• x t ∈ R p is used to compute the code α t ,
• it is used to update the surrogate parameters Ct ∈ R p×k , • D t ∈ R p×k is fully updated at each iteration. Our new subsampling online matrix factorization algorithm (SOMF) reduces the dimensionality of each of these steps, so that the single-iteration complexity in p depends on q = p r rather than p. r > 1 is a reduction factor that is close to the computational speed-up per iteration in the large dimensional regime p k. Formally, we randomly draw, at iteration t, a mask M t that "selects" a random subset of x t . M t is a R p×p random diagonal matrix, such that each coefficient is a Bernouilli variable with parameter 1 r , normalized to be 1 in expectation. With this definition at hand, M t x t constitutes a non-biased, low-dimensional estimator of x t : E[ M t x t 0 ] = p r = q, and E[M t x t ] = x t , with • 0 counting the number of non-zero coefficients. Thus, r is the average proportion of observed features at each iteration. We further define the pair of orthogonal projectors P t ∈ R q×p and P ⊥ t ∈ R (p-q)×p that projects R p onto Im(M t ) and Ker(M t ), which we will use for the dictionary update step. In brief, SOMF, defined in Alg. 1, follows the outer loop of online matrix factorization, with the following major modifications at iteration t:

• it uses M t x t and low-size statistics instead of x t to estimate the code α t and the surrogate g t ,

• it updates a subset of the dictionary P t D t-1 to reduce the surrogate value ḡt (D). Relevant parameters of ḡt are computed using P t x t and α t only. We describe in detail the new code computation and dictionary update steps. We then state convergence guarantees for SOMF. Those are non trivial to obtain as SOMF is not an exact (stochastic) majorization-minimization algorithm.

Algorithm 1 Subsampled online matrix factorization (SOMF)

Input: Initial iterate D 0 , weight sequences (w t ) t>0 , (γ c ) c>0 , sample set {x (i) } i>0 , # iterations T . for t from 1 to T do Draw x t = x (i) at random and M t (see text) Update the regression parameters for sample i:

c (i) ← c (i) + 1, γ ← γ c (i) (β (i) t , G (i) t ) ← (1-γ)(β (i) t-1 , G (i) t-1 )+γ(D t-1 M t x (i) , D t-1 M t D t-1 ), (β t , G t ) ← ( β(i) t , Ḡ(i) t )
Compute the approximate code for x t : α t ← argmin α∈R k 1 2 α G t αα β t + λ Ω(α). Update the parameters of the aggregated surrogate ḡt :

Ct ← (1 -w t ) Ct + w t α t α t . P t Bt ← (1 -w t )P t Bt + w t P t x t α t . (7) 
Compute simultaneously (using (using [7, Alg 2]) for 1st expression):

P t D t ← argmin D r ∈C r 1 2 Tr (D r (D r Ct -Bt )), P ⊥ t Bt ← (1 -w t )P ⊥ t Bt-1 + w t P ⊥ t x t α t . (8) 
Output: Final iterate D T .

Code computation. In the online algorithm, α t is obtained solving the linear regression problem

α t = argmin α∈R k 1 2 α G t α -α β t + λΩ(α), where G t = D t-1 D t-1 and β t = D t-1 x t (9)
For large p, computing G t and β t dominates the complexity of the code computation step. To reduce this complexity, we introduce estimators for G t and β t , computable at a cost proportional to q, whose use does not break convergence. Recall that the sample x t is drawn from a finite set of samples {x (i) } i . We estimate G t and β t from M t x t and data from previous iterations s < t for which x (i) was drawn. Namely, we keep in memory 2n estimators, written (G

(i) t , β (i) 
t ) 1≤i≤n , observe the sample i = i t at iteration t and use it to update the i-th estimators

Ḡ(i) t , β(i) t following β (i) t = (1 -γ)G (i) t-1 + γD t-1 M t x (i) , G (i) t = (1 -γ)G (i) t-1 + γD t-1 M t D (i) t , (10) 
where γ is a weight factor determined by the number of time sample i has been previously observed at time t. Precisely, given (γ c ) c a decreasing sequence of weights, γ γ c (i)

t

, where c

(i) t = |{s ≤ t, x s = x (i) }| All others estimators {G (j) t , β (j) t } j =i are left unchanged from iteration t -1. The set {G (i) t , β (i)
t } 1≤i≤n is used to define the averaged estimators at iteration t, related to sample i: [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] where γ 9), α t minimizes the masked loss averaged over the previous iterations where sample i appeared:

G t G (i) t = s≤t,xs=x (i) γ (i) s,t D s-1 M s D s-1 , β t β (i) t = s≤t,xs=x (i) γ (i) s,t D s-1 M s x (i) ,
(i) s,t = γ c (i) t s<t,xs=x (i) (1 -γ c (i) s ). Replacing (G t , β t ) by (G t , β t ) in (
min α∈R k s≤txs=x (i) γ (i) s,t 2 M s (x (i) -D s-1 α) 2 2 + λΩ(α). ( 12 
)
The sequences (G t ) t and (β t ) t are consistent estimations of (G t ) t and (β t ) t -consistency arises from the fact that a single sample x (i) is observed with different masks along iterations. This was not the case in the algorithm proposed in [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF], which use estimators that does involve averaging from past data. Solving ( 12) is made closer and closer to solving [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF], in a manner that ensures the correctness of the algorithm. Yet, computing the estimators ( 11) is r times as costly as computing G t and β t from ( 9) and permits to speed up the code computation steop close to r times. The weight sequences (w t ) t and (γ c ) c are selected appropriately to ensure convergence. For instance, we can set

w t = 1 t v , γ c = 1 c 2.5-2v , with v ∈ ( 3 4 , 1). 
Dictionary update. In the original online algorithm, the whole dictionnary D t-1 is updated at iteration t. To reduce the time complexity of this step, we add a "freezing" constraint to the minimization of the quadratic function [START_REF]Stochastic majorization-minimization algorithms for large-scale optimization[END_REF]. Every row r of D that corresponds to an unseen row r at iteration r (such that M t [r, r] = 0) remains unchanged. D t is thus obtained solving

D t ∈ argmin D∈C P ⊥ t D=P ⊥ t Dt-1 1 2
Tr (D D Ct ) -Tr (D Bt ), with P t orth. projector on Im(M t ) (

With elastic-net ball constraints, solving (13) reduces to performing the partial dictionary update (8) (Alg. 1), with

C r = {D r ∈ R k×q , (d r ) (j) ≤ 1 -d (j) t-1 + P t d (j) 
t-1 }. We perform this update using a single pass of projected block coordinate descent with blocks in the reduced space R q . The dictionary update step is thus performed r times faster than the original algorithm.

Surrogate computation

The gradient we use to solve [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF] requires to know only Ct and P t Bt . We thus parallelize the partial update of the dictionary and the update of P ⊥ t Bt , using a second thread. The update of P t Bt is performed in the main thread at a cost proportional to q. As the parallel computation is dominated by dictionary update, this is enough to effectively reduce the computation time of Bt computation.

Convergence guarantees All in all, the three steps whose complexity depends on p in the original algorithm now depends on q, which speeds-up a single iteration by a factor close to r. Yet SOMF retain convergence guarantees. We assume that there exists ν such that for all t > 0, D t D t νI (met in practice or by adding a small ridge regularization to (2)), and make a technical data-independent hypothesis on (w t ) t and (γ c ) c decay. Then SOMF iterates converge in the same sense as in the original algorithm [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]:

D t → D ∞ ∈ R p×k and ∇ f (D ∞ , D -D ∞ ) ≥ 0 for any D ∈ C
, where f is the empirical risk defined in [START_REF] Defazio | Saga: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF].

Proof sketch. We use the aggregated nature of ḡt and the fact that we can obtain a geometric rate of convergence for a single pass of projected block coordinate descent [e.g see 9] to control the terms D t -D t-1 and ḡt (D t ) -ḡt (D * t ), where D * t = argmin D∈C ḡt . We obtain ḡt (D t ) -ḡt (D t-1 ) = O(w t ), a crucial result on estimate stability. Simultaneously, we show that the partial minimization yields the same result as the full minimization for t → ∞, as θ t -θ t → 0. Using this result, with appropriate selection of (w t ) t and (γ t ) t , the noise induced by the use of estimators in (9) can be bounded in the derivations of [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. We then write the difference ( 12) -( 9) as the sum of a lag term and an empirical mean over {M s } xs=xt . Both can be bounded with appropriate selection of weights. Formally, (ḡ t ) t are no longer upper-bounds of ( ft ) t , but become so for t → ∞, at a sufficient rate to guarantee convergence.

Experiments

Hyperspectral images. We benchmark our algorithm by performing dictionary learning on a large hyperspectral image. Dictionary learning is indeed used on patches of hyperspectral images, as in [START_REF] Maggioni | Nonlocal transform-domain filter for volumetric data denoising and reconstruction[END_REF]. Extracting 16×16 patches from an 1GB hyperspectral image from the AVIRIS project with 224 channels yields samples of dimension p = 57, 000. Figure 1 demonstrates that the newly proposed algorithm is faster than the original, non-subsampled algorithm from [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] by a factor close to r = 4. This speed-up is helped by the redundancy in the different channels of the hyperspectral patches. In the first epochs, the proposed method also outperforms the recent subsampled algorithm from [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF], thanks to the introduction of consistent estimators in the code computation step. All algorithms are implemented in Cython and benched on two cores. They cycle over 100,000 normalized samples with minibatches of size 50. The code for reproduction is available at github.com/arthurmensch/modl.. 

Conclusion

The new SOMF algorithm can efficiently factorize large and tall matrices. It preserves the speed gains of [START_REF] Mensch | Dictionary learning for massive matrix factorization[END_REF] but has convergence guarantees that are beneficial in practice.

Figure 1

 1 Figure 1 Performing dictionary learning on hyperspectral data (224 channels, 16 × 16 patches) is faster with stochastic subsampling, and even faster with the newly proposed variance control.
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