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We perform a systematic analysis of heat transfer in a counter-current three dimensional convective
exchanger, when the inlet/outlet influence is fully taken into account. The analysis, carried out for con-
stant fluid properties, considers the various influences of the fluid/solid conductivity, the imposed con-
vection, inlet/outlet far-field conditions, and lateral boundary conditions. Using a generalized Graetz
mode decomposition which permits to consider, both transverse and longitudinal diffusion influence
in the exchanger as well as in the inlets/outlets, we put forward several salient generic features of con-
vection/conduction heat transfer.
In all cases we found an optimal Péclet number for the cold or hot effectiveness. Even if, as expected,

the larger the Péclet the larger the Nusselt number, high transfer performances are found to be poorly
efficient and/or to necessitate non-compact elongated exchangers. Performance degradation arising at
high Péclet number are found to be related to ‘‘convective leaks” taking place within outlets. A fully
developed regime occurs at large Péclet and/or for long exchangers, which is fully determined by the first
eigenvalue of the generalized Graetz mode decomposition, which is an extension of classical Graetz anal-
ysis. Numerical results are found consistent with a generalized linear relation between effectiveness and
the number of heat transfer units asymptotically established in the convection dominated regime. This
study opens new perspectives for micro-heat exchangers where moderate convection provides the best
effectiveness and compactness. This contribution is also useful for giving reference solutions to counter-
flow exchangers with realistic inlet/outlet boundary conditions.
1. Introduction

Conjugate counter-flow heat-exchangers are widely used in
thermal and building energy, chemistry, and many other industrial
applications [30]. Albeit such exchangers are of low technological
content, they support important energetic functions so that
proposing new tools to address their optimal use is an important
technological issue. In those applied contexts, most of the exchang-
ers are designed with the help of lumped methods, such as the tra-
ditional Log Mean Temperature Difference (LMTD) method,
compartmental or transverse average approximations, in order to
predict and elaborate dedicated look-up tables and graphs for each
precise configuration [30,1].

At a more fundamental level, much progress have also been
made in the understanding of simple geometry exchangers, e.g.
parallel or axi-symmetrical configurations (e.g. [23,18,19,21,22,38,
40,39,41,35,36,28] to cite only a few) during the last four decades
from studying conjugated Graetz problems. In this specific context,
for constant fluids properties, the convection–diffusion problem is
linear and amenable to a close solution based on eigenfunction
expansions. In counter-flow configurations, these solutions involve
sets of real, positive and negative, eigenvalues associated with
exponential longitudinal decay, upstream and downstream. Many
features of those solutions can be generalized to complex fluids
(e.g [29,9]).

More recently, new mathematical analysis have shown that
the concept of generalized Graetz modes can be resolved when
simultaneously fully taking into account longitudinal conduction
and for any general tubular exchanger configuration [26,7,25].
This new framework shows that, indeed, all temperature profiles
(except for the very special case of balanced, adiabatic counter-
current exchanger) are varying exponentially in the longitudinal
direction, in tubular exchangers. This mathematical result is
indeed consistent with the LMTD method. In fact, generalized

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.09.019&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.019
mailto:jules.dichamp@imft.fr
mailto:frederic.de-gournay@      insa-toulouse.fr
mailto:frederic.de-gournay@      insa-toulouse.fr
mailto:franck.plouraboue@imft.fr
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.019
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

Bi � hR
kS

Biot number
CEC cold base circle in exchanger

CEH hot base circle in exchanger

CE external exchanger cylindrical frontier
CE
C cold cylinder in exchanger

CE
H hot cylinder in exchanger

CC
TI input cold tube

CH
TI input hot tube

CC
T0 output cold tube

CH
T0 output hot tube

DC
0 cold tube disk at z ¼ 0

DH
0 hot tube disk at z ¼ 0

DC cold tube disk
DH hot tube disk
DC
L cold tube disk at z ¼ L

DH
L hot tube disk at z ¼ L

�C � T�1C �Tþ1C
T�1H �Tþ1C

cold effectiveness

�H � T�1H �Tþ1H
T�1H �Tþ1C

hot effectiveness

Gr Graetz number Gr � Pe=LH

h convective heat transfer coefficient (Robin/Fourier
parameter)

kF fluid thermal conductivity
kS solid thermal conductivity
L exchanger length
LH ¼ L=R dimensionless exchanger length
NuH;C Nusselt number in hot/cold tube

Nuloc
H;C local Nusselt number in hot/cold tube

NtuH � NuH=Gr � NuH L
H=Pe number of heat transfer units

Pe � qcVð2RÞ
kF

Péclet number (balanced configuration)

PeC Péclet number in cold tube
PeH Péclet number in hot tube
Peo optimal Péclet number
QH;C flux in hot or cold tubes

QH
H;C dimensionless flux in hot or cold tubes

QH total dimensionless flux
R tube radius
RE exchanger radius
T temperature field
Ta reference temperature in the air

T�1C temperature at exchanger input in cold tube

Tþ1C temperature at exchanger output in cold tube

T�1H temperature at exchanger input in hot tube

Tþ1H temperature at exchanger output in hot tube

Tw constant wall temperature
Graetz modes analysis provides a solid theoretical foundation, as
well as a clear framework for this known empirical method to be
sound. It turns out that the generalized Graetz eigenfunction
expansions is also useful to compute complex exchangers proper-
ties [25,24] since they permit to map a 3D problem into a 2D one
(in the transverse direction). Furthermore, it is important to take
into account longitudinal conduction in regions where convective
effects are not dominant. Indeed, longitudinal diffusion effects
were found significant for Péclet numbers as large as 100 in tubes
[33,17]. But this is even more crucial inside the solid domain of
an exchanger, since, in the solid part longitudinal and transverse
conduction are of similar magnitude. This is especially true in
configurations where solid walls are not thin, as opposed to fin
exchangers, where a simple thermal resistance model to couple
inlet and outlet fluid compartments with solid diffusion is not
precise enough.

In the recent years, growing efforts have been dedicated to elab-
orate micro-heat exchangers for the design of micro-cooling sys-
tems associated with high power density micro-chips [3,13,5,6].
Compactness, effectiveness, and performance are indeed all-
together crucial in many contexts and different strategies have
been proposed to search for optimal designs (e.g. [34,2,43,11,8]).

Furthermore, in the context of bio-heat transfer modeling of tis-
sue convection within parallel vessels has been considered in many
contributions, e.g. [42,44,16,32].

Since, generically, the local transfer rate from the fluid into the
solid is found to abruptly decay from the inlet along the longitudi-
nal direction [6,37], a strong emphasis has to be made upon the
influence of the inlet and outlet conditions. To be more specific,
in many cases a fully developed thermal boundary outlet condition
is chosen [39,41,35,36,28,37] to model downstream convection.
This is consistent with convective dominated situations with very
large Péclet numbers. For more moderate Péclet numbers, a more
elaborate coupling of the exchanger with the inlet/outlet is needed
to properly take into account the influence of the convection leak
inside the outlet, as well as the possible upstream back-
conduction in the inlet.

The aim of this contribution is to further explore the influence
of inlet/outlet coupling and longitudinal diffusion onto a counter-
current exchanger both in the balanced and unbalanced configura-
tion. Whilst it is now easy to perform specific full-3D direct numer-
ical computation with finite volume/finite element/finite
differences methods (e.g [6,37]) for a given set of parameters and
geometry, it is not yet simple to fully explore the parameter space
influence as well as the coupling with inlets/outlets. The latter is
especially true since highly convective situations are associated
with downstream stretched-out longitudinal temperature gradi-
ents inside the outlets, scaling linearly with the Péclet number,
so that a full discretization of this compartment is just not worth
considering. In this contribution, since we use a generalized
Graetz-mode decomposition, all the longitudinal variations are
analytically known and do not necessitate any numerical dis-
cretization. Solving a two-dimensional numerical problem only
and mapping it to a three dimensional one, offers a powerful tool
to explore parameter space. Most of the numerical method used
in this paper has been detailed in a previous contribution [24].
Hence we will not repeat the method’s technical details here in
order to lighten the reading of the manuscript. We will rather con-
centrate on discussing the significance and interest of the obtained
results from a physical viewpoint. Most technical aspects related to
the mathematical formulation are given in Appendix A.1. The
mathematical justification of the method in the context of
Robin–Fourier (convective) lateral boundary condition on the
exchanger will be worth considering in the future. In this contribu-
tion we provide a complete and accurate parameter exploration of
counter-current exchangers coupled with their inlet/outlets at very
moderate numerical cost, in order to extract the most salient fea-
tures of the transfer.



In Section 2 the set of governing equations and their dimension-
less formulation are provided. Some insights about the Graetz
mode decomposition, and the boundary condition issue are dis-
cussed. In Section 3 the effectiveness and transfer estimate are dis-
cussed as well as a detailed description of the exchanger geometry
under study. Section 4 describes the analysis of the exchanger per-
formance from considering dimensionless Nusselt number and
effectiveness ratio on balanced counter-current configuration
when varying the Biot number, a dimensionless Péclet number,
conductivity ratio, and exchanger length. Some unbalanced cases
are also analyzed at the end of this section. In Section 5 we discuss
the obtained results in the light of fully developed Graetz mode
analysis, and provide simple generic behavior of convective domi-
nated exchangers.
Fig. 3. Schematic layout of the transverse section of the heat exchanger. We have
set RE ¼ 4R and R ¼ d.
2. Governing problem and dimensionless formulation

2.1. Exchanger geometry

We consider laminar convection–diffusion arising in a fluid
having constant properties. In the following we assume that the
hot and cold tubes are filled with the same fluid, although this sim-
plifying assumption is not a restriction of the proposed approach.
Fully developed solutions of Navier–Stokes momentum equations
in cylindrical tubes oriented along direction z are given by the Poi-

seuille longitudinal velocity vH ¼ vHðrÞez ¼ 2VH 1� ðr=RÞ2
� �

ezand

vC ¼ vCðrÞez ¼ �2VC 1� ðr=RÞ2
� �

ezwhere VH — respectively VC —

stands for the average velocity in the hot — respectively cold —
tube, where R is the tube radius and ez is the unit vector along z
direction. The hot tube refers to the tube with homogeneous inlet
temperature at minus infinity T�1H and the cold tube refers to the
tube with homogeneous inlet temperature at plus infinity Tþ1C as
represented on Fig. 2.

In most of the following we will consider the special case of a
balanced counter-current configuration where longitudinal veloci-
ties are identical VH ¼ VC ¼ V whilst using the same fluid in the hot
and cold tubes. But, we also explore the case of an unbalanced
exchanger where the fluxes and velocities are different, as detailed
in forthcoming sections. For any aspect of the proposed approach
one could have chosen any tube shape as explained in [24]. Here,
Fig. 1. Perspective view using real size of (a) full exchanger (b) opened h

Fig. 2. Schematic layout of the exchanger geometry defining the various notations assoc
various components.
we study the special case of cylindrical sections of the inlet/outlets
but we will qualitatively comment in Section 5 about the general-
ization of the obtained results to other shapes.

Studying the influence of exchanger geometry on transfer per-
formance has been the object of intense research especially in
the context of compact micro-exchangers or bio-heat transfer in
tissues where counter-flow configurations are also relevant to
many bio-heat problems. Quoting [31], ’since a considerable frac-
tion of blood vessels are found in pairs vessel-vessel heat transfer
has generally been postulated as one of the most important heat
transfer mechanisms involved in determining the tissue tempera-
ture distributions’ [20,14,45].

Since this study focused on into the analysis of the influence of
physical, thermal and hydraulic parameters, which already repre-
sent six independent dimensionless parameters, we shall not study
the influence of the geometry on transfer. We arbitrarily set-up a
simple tubular shape geometry as described in Figs. 1–3. Two
counter flow tubes separated by a distance d ¼ R. The radius of
the exchanger is RE ¼ 4R where R is also the radius of the flow
tubes. This configuration is very similar with the ones considered
in [4,44,31,16,10] where parallel tubes in counter-current vessels
within tissue are considered.

It is interesting to mention that the surface to volume ratio of
our exchanger is 2ð2pRÞ=pð4RÞ2 ¼ 1=4R whilst the surface ratio

between fluid and solid is 2pR2=pð4RÞ2 ¼ 1=8. Hence even-
though the solid surface represents eight times the fluid one, the
alf-exchanger where the fluid tubes inside the exchanger are visible.

iated with the interface between tubes and exchangers, as well as the edges of the



compactness (surface to volume ratio) can reach high values as
tube diameters are decreased. For millimeter radius inlet tubes this
ratio reaches value close to 250 m�1, and for one tens millimeter
radius 2500 m�1, which are to be compared with what is usually
considered as ’compact’ exchangers for where the ratio is
700 m�1 [30].

Changing the radius not only increases the compactness but it
also decreases the Péclet number. We will see in the following that
this turns-out to be very interesting for effectiveness.

2.2. Governing problem

Wewrite the stationary thermal energy balance in three dimen-
sions as

qcv � rT � kFDT ¼ 0 in Fluid

kSDT ¼ 0 in Solid
ð1Þ

with kF & kS being the Fluid and Solid thermal conductivity, q the
fluid density and c the heat capacity; the above problem reads more
explicitly for longitudinally invariant velocity convection
v ¼ vðx; yÞez as

qcvðx; yÞ@zT � kF @2
x þ @2

y þ @2
z

� �
T ¼ 0; in Fluid

kS @2
x þ @2

y þ @2
z

� �
T ¼ 0; in Solid

ð2Þ

We denote CE, the lateral surface of the exchanger, and CE
H & CE

C

the hot & cold tube surface inside the exchanger. CE; CE
H and CE

C are
all cylinders localized in the longitudinal direction between 0 and
L. We consider a Robin-Fourier convective lateral boundary condi-
tion, on cylinder CE whose base is circle CE, CE ¼ CE � ½0; L�,
�kS@nTjCE ¼ hðTjCE � TaÞ; ð3Þ
where Ta is the reference temperature in the air and h the heat
transfer coefficient. We define the continuity condition inside the
exchanger between the solid and the fluids interfaces CE

H and CE
C .

Let us define @XF ¼ CE
H [ CE

C and @XS ¼ @X=CE where @X is the full

frontier of the solid domain and CE is the exchanger cylinder (lateral
frontier between the ambient air and the solid). Then continuity of
temperature and fluxes read as

Tj@XF
¼ Tj@XS

kF@nTj@XF
¼ kS@nTj@XS

ð4Þ

where, at inlet and outlet tubes external boundaries CC
TI; CH

TI; CC
TO

and CH
TO we consider homogeneous adiabatic Neumann boundary

conditions for lateral edges,

@nTjCC
TI ;C

H
TI ;C

C
TO ;C

H
TO
¼ 0: ð5Þ

At infinity, in the inlets the cold and hot sources temperatures
are imposed

TjDH ðx; y; z! �1Þ ¼ T�1H
TjDC ðx; y; z! þ1Þ ¼ Tþ1C ;

ð6Þ

where DH and DC denote the disk on hot and cold tubes.

2.3. Dimensionless formulation

Following previous studies (e.g. [28]), let us now use dimen-
sionless variables with H index defined as x ¼ RxH; y ¼ RyH;
z ¼ RzH; L ¼ LHR; vH ¼ 2VHvH

H ; vC ¼ 2VCvH
C , and

TH ¼ T � T�1H
T�1H � Tþ1C

þ T � Tþ1C
T�1H � Tþ1C

: ð7Þ
Now, using the dimensionless position nH ¼ ðxH; yHÞ in the ðx; yÞ
plane (2) reads

PeH;CvHðnHÞ@zHT
H � @2

xH þ @2
yH þ @2

zH

� �
TH ¼ 0; in Fluid

@2
xH þ @2

yH þ @2
zH

� �
TH ¼ 0; in Solid

ð8Þ

At the lateral exchanger external interface with air, one has the
following boundary condition

�@nHT
H ¼ BiðTH � TH

a Þ; ð9Þ
where we have now introduced an effective external dimensionless
reference temperature

TH
a ¼

Ta � T�1H � Tþ1C
T�1H � Tþ1C

; ð10Þ

introducing the usual Biot number Bi ¼ hR=kS. Let us precise that all
domains will be denoted with a star due to the nondimensionaliza-
tion of space variables xH; yH; zH. At the interface CEH

H & CEH
C

between the hot and cold fluid tubes and the solid inside the
exchanger, one has continuity of temperature and fluxes

THj@XH
F
¼ THj@XH

S

kF@nT
Hj@XH

F
¼ kS@nT

Hj@XH
S
:

ð11Þ

Due to the choice of dimensionless temperature the imposed
cold and hot sources verify

THj
DHH ðnH; zH ! �1Þ ¼ TH�1

H ¼ 1; in Hot inlet

THj
DCH ðnH; zH ! þ1Þ ¼ THþ1

C ¼ �1; in Cold inlet;
ð12Þ

Dimensionless formulation thus brings six different dimension-
less parameters: two hot and cold Péclet numbers
PeH;C ¼ 2qcVH;CR=kF , the Biot number Bi, the conductivity ratio

between the solid and the fluid kS=kF , the effective external dimen-
sionless reference temperature TH

a defined in (10), and the exchan-
ger aspect ratio LH ¼ L=R. In the following we will mainly focus on
the situation of balanced counter-flow exchanger for which
PeH ¼ PeC ¼ Pe and systematically study the influence of the Biot
parameter Bi, the exchanger aspect ratio LH and conductivity ratio

kS=kF .

2.4. General comments on the formulation and numerical method

It is important to mention that the outlet temperature in hot or
cold tubes are not known a priori because convection–diffusion
exchanger problems do not prescribe the outlet conditions. This
is a very important point since, in the general case of arbitrary
(and possibly moderately convective situations) Péclet number
regime, outlet conditions at the exchanger frontier, DH

L & DC
O, are

needed for the problem to present a closed form, and thus to get
a proper numerical solution. In most of the previous literature on
the subject, since most investigators were interested in the convec-
tive limit for which convection dominates over diffusion, the outlet
boundary conditions where not necessary for the problem to be
solved. Since most exchangers designed for practical applications
where considered in the Pe� 1 regime, for which the Nusselt
number is the largest, this approximation was consistent.

Here, we wish to analyze the general problem associated with
any Péclet number, and thus some outlet conditions are necessary
to get a solution.

It was shown and discussed in detail in [25,24] that the exchan-
ger outlet conditions can not be decoupled from the tube outlet
temperature field, and that all inlet–outlet-exchanger compart-
ments are to be solved together in order to find a proper solution.



Even though considering a coupled problem which includes inlet
and outlet drastically simplifies the question concerning the outlet
condition, since at infinity the outlet temperature field is uniform
within DC & DH , so that only two constants TH�1

C & THþ1
H are to

be found, (for balanced counter-flow exchangers only one constant
is enough), these constants are still missing! Hence, these con-
stants need to be settled as unknowns of the problem and solved
together with it. This is what is done here following [24], so that
we do not develop further the detailed numerical formulation.
Since this paper does not focus on the method, but rather on the
obtained results, the interested reader should get a more precise
description of the numerical method used in [24]. Nevertheless,
Appendix B presents a brief description of the numerical imple-
mentation of the method. Following [24] the numerical solution
is based upon a generalized Graetz mode decomposition of the
problem in each compartment

THðnH; zHÞ ¼
X
N�

xþn T
þ
n ðnHÞek

þ
n z

H þ x�n T
�
n ðnHÞek

�
n ðzH�LHÞ

exchanger zH 2 ½0; LH�

THðnH; zHÞ ¼ xH0 þ
X
N�

xntþn ðnHÞel
þ
n ðzH�LHÞ

hot outlet tube zH P LH

THðnH; zHÞ ¼ xC0 þ
X
N�

xnt�n ðnHÞel
�
n z

H

cold outlet tube zH 6 0

THðnH; zHÞ ¼ TH�1
H þ

X
N�

xnt�n ðnHÞel
�
n z

H

hot inlet tube zH 6 0

THðnH; zHÞ ¼ THþ1
C þ

X
N�

xntþn ðnHÞel
þ
n ðzH�LHÞ

cold inlet tube zH P LH

ð13Þ

where x	n are the amplitudes of the generalized Graetz modes, T	n
are the upstream and downstream exchanger Graetz modes,
kþn < 0 are the upstream Graetz eigenvalues and k�n > 0 are the
downstream eigenvalues. t	n are the upstream and downstream
Graetz modes in the inlet and outlet tubes, lþn < 0 are downstream
Graetz eigenvalues in outlet tubes l�n > 0 are upstream Graetz
eigenvalues in inlet tubes.

From knowing in each compartment, the inlet, outlet and the
exchanger, that the solutions can be decomposed into a family of
orthogonal modes, we are able to set the coupling conditions for
these compartments to provide the proper matching of tempera-
ture and fluxes at their interfaces DH

0 ; DC
0 ; DH

L ; DC
L . Using flux and

temperature differences at interfaces DH
0 ; DC

0 ; DH
L ; DC

L to be mini-
mized as a cost functional, we are able to set a linear system for
the generalized Graetz mode amplitude to be solved. This linear
system includes the outlet modes amplitude which are, in fact,
the two constants TH�1

C & THþ1
H .

These constants are important since they define the effective-
ness of the exchanger that we now recall.
3. Exchangers performances

3.1. Effectiveness

First we study the heat effectiveness of the transfer from
considering
�H ¼ TH�1
H � THþ1

H

TH�1
H � THþ1

C

�C ¼ TH�1
C � THþ1

C

TH�1
H � THþ1

C

;

ð14Þ

the usual hot and cold heat extraction dimensionless estimate. In
the case of a balanced counter-flow configuration, those two quan-
tities are exactly equal. This necessitates balancing Péclet numbers
(when the fluids properties are identical in the hot and the cold
tubes, the Péclet numbers are identical) inside both inlet and outlet
tubes in the case of a lateral Robin-Fourier boundary condition as is
considered here. It is interesting to note that when constant tem-
perature Tw is applied at the lateral boundary which is equivalent
to the limiting case of infinite Biot number Bi!1 one can use a
simple linear transformation of the temperature field relative to
the imposed Tw at the boundary (i.e T � Tw=ðT1H � Tþ1C Þ) to obtain
a balanced exchanger, for which the hot and cold efficiencies are
identical, as previously considered in [24]. In the following we will
only consider transformation (7) which permits to map any inlet
thermal condition onto a balanced one.

3.2. Transfer

We mainly evaluate the transfer performance of the exchanger
through the total hot –resp. cold– Nusselt number which is based
upon the dimensionless total heat transfer from the hot –resp.
cold– tube into the solid inside the exchanger integrated along
the tube surface, and the dimensionless inlet’s temperature
difference

Nuloc
H;C ¼

2RhH;C

kF
with hH;C ¼

�kFrTjCEH;C � n
T�1H � T1C

ð15Þ

which leads to the dimensionless formulation of the Nusselt
number

Nuloc
H;C ¼ �2@nHT

H
�� �� ð16Þ

One can then define the global Nusselt number by integrating
over the hot –resp cold– tube,

NuH;C ¼ 2
Z LH

0
dzH

Z
CEH;C

@nHT
HdCEH;C : ð17Þ

Obviously, in the zero Biot number limit, since the problem is
anti-symmetric, NuH ¼ NuC . From using the generalized Graetz
mode decomposition for the temperature field in the exchanger
given in (13) one is able to analytically integrate along the longitu-
dinal direction to obtain the Nusselt number versus some average
quantities from using governing Eq. (8) and divergence theorem, so
as to obtain

NuH;C ¼ 2Pe
Z
DH;C

vHðnHÞ THðnH; LHÞ � THðnH;0Þ� �
dnH

�
Z
DH;C

@zHT
HðnH; LHÞ � @zHT

Hðn;0Þ� �
dn ð18Þ

We will use later on this expression in order to get a simplified
expression of the Nusselt number in the fully developed limit in
Section 4.3.

4. Results

We mainly consider cases where the ambient temperature is
much smaller than the hot source so we set TH

a ¼ 0. We should
stress that this limit should rather be considered in the light of
dimensionless convective boundary condition (9) where one can



Fig. 4. In the three figures Bi
 1; kS

kF
¼ 1. (a) �H against Péclet for LH ¼ 10; 20; 100.

Inset figures represent the computed longitudinal temperature fields at the
maximum hot effectiveness as well as when the convective leak is starting to rise.
It is important to stress that the aspect ratio of the figure is not the actual one for
obvious caliber constraints. We have re-scaled the horizontal zH axis in order the
inset figures to reach a 1:1 aspect ratio, (b) �H against LH for Pe ¼ 10; 20; 50; 100,
(c) �H against Péclet re-scaled by LH for LH ¼ 10; 20; 50; 100.
realize that the approximation is relevant when TH
a 
 1. Neverthe-

less, this limit is not a limitation of the presented approach but is
useful to shorten the parameter space and some example of order
one TH

a configurations are studied in Section 4.2.

4.1. Effectiveness of balanced counter-flow exchanger

We first consider the situation where PeH ¼ PeC ¼ Pe so that the
exchanger experiences a balanced counter-flow regime. We recall
that due to the dimensionless temperature chosen, the dimension-
less hot and cold sources temperatures are anti-symmetric and

verify TH�1H
TH1C
¼ �1. We will discuss at the end of the next section that

the deviations from balanced prediction for the effectiveness
resulting from non-symmetrical inlet conditions, at finite Biot
number are of order OðBiÞ. Such corrections to the adiabatic limit
Bi ¼ 0 are not trivial since non-linear higher order corrections are
in fact expected. This comes from the fact that, for balanced config-
urations, a regular asymptotic expansion of the temperature solu-
tion of the form

TH ¼ Tð0ÞH þ
ffiffiffiffiffi
Bi
p

Tð1ÞH þ BiTð2ÞH þ Bi3=2Tð3ÞH þ � � � ð19Þ

is indeed expected, where T ð0ÞH is the temperature solution associ-
ated with the adiabatic limit, for which the associated effectiveness
is �0. This expansion is more precisely justified in Appendix A.2,
where it is also shown that, for balanced configurations, each gen-
eralized Graetz mode and eigenvalue also reads

Tn ¼ T ð0Þn þ
ffiffiffiffiffi
Bi
p

Tð1Þn þ BiTð2Þn þ Bi3=2Tð3Þn þ � � �
kn ¼ kð0Þn þ

ffiffiffiffiffi
Bi
p

kð1Þn þ Bikð2Þn þ Bi3=2kð3Þn þ � � �
ð20Þ

Following this regular asymptotic expansion of the tempera-
ture, the effectiveness also admits a similar non trivial regular
expansion, such that,

� ¼ �0 þ
ffiffiffiffiffi
Bi
p

�1 þ Bi�2 þ Bi3=2�3 þ � � �
It turns out that the leading order correction to �0 is indeed �2,

for �1 to be zero. Furthermore, the above mentioned OðBiÞ correc-
tion to the effectiveness is only the leading order, so that, if needed,
one could also evaluate each consecutive term of the sequence to
find the resulting polynomial corrections to the effectiveness. In
the following we will compute numerically the effectiveness, but
consistently verify it fits within this asymptotic framework. Since
deviations from balanced prediction are small when Bi
 1, we
mainly focus our interest to the symmetrical inlet conditions in
this section. Incidentally, as a side technical remark, it is interest-
ing to mention that anti-symmetry of upstream and downstream
generalized Graetz eigenvalues is only determined by the convec-
tive ratio condition PeH ¼ PeC ¼ Pe and not by the imposed inlet
thermal conditions defined by TH

a which can be set arbitrarily with-
out indeed changing the symmetry of the eigenmodes.

Hence, we first concentrate here on the influence of the Péclet

number Pe, the conductivity parameter kS=kF , the Biot number Bi
and the exchanger dimensionless length LH.

Let us consider the adiabatic limit for a very small Biot number.
It is first interesting to emphasize that the reason for considering a
very small Biot number (e.g as small as Bi ¼ 10�6) rather than the
limit Bi ¼ 0 is to properly approach the adiabatic limit numerically.
Indeed the limit Bi! 0 is problematic since the two n ¼ 0 	 eigen-
modes goes to zero, i.e k	0 ! 0, at this point so that the linear sys-
tem (B.6) becomes singular. One possible way to circumvent this
issue should be to remove those modes from the analysis, as done
in singular value decomposition inversion methods. Nevertheless
these two n ¼ 0 modes do matter, since the transfer properties
are controlled by them! Hence, the adiabatic limit is safely
approached numerically from considering a small Biot number.

Fig. 4a shows the exchanger effectiveness when the Péclet num-
ber is varied for various dimensionless length LH. All effectiveness
curves display a similar behavior, with three distinct regimes: (i) a
small increase at low Péclet numbers followed by (ii) an optimal
effectiveness arising at moderate Péclet, and (iii) a monotonous
decrease arising at large Péclet. It is worth mentioning that, as
expected, the effectiveness improves as dimensionless length LH

increases, as shown in Fig. 4b, since the longer the exchanger,
the better the transfer. Nevertheless, it is obvious that reaching
LH values larger than one hundred does not present good practical
perspectives, for obvious cost and caliber limitations. Considering
the moderately elongated exchanger where LH ¼ 10, it is striking
to observe how poorly efficient such an exchanger can be for Péclet
numbers not larger than one hundred, whilst in most practical sit-
uations the Péclet reaches much larger values (as large as several
thousand at least). This statement has to be tempered with the fact
that the hereby chosen exchanger geometry is obviously very far
from the most efficient one. Obviously the larger the Péclet the lar-
ger the exchanges as later-on examined from the analysis of the



Nusselt number. Fig. 4c also provides some interesting insets rep-
resenting the temperature field in the ðyH; zHÞ plane (rescaled along
the zH direction to keep with a 1:1 aspect ratio of the insets) illus-
trating the origin of the effectiveness collapse. As the Péclet is
increased, a larger fraction of the initial hot inlet temperature is
progressively converted toward the outlet, without having the
chance to be transferred into the cold one through conduction
within the solid. This convective heat-leakage across outlets is
the mechanism by which the exchanger effectiveness is inevitably
degraded as one increases convection for raising total heat transfer.
Furthermore, for the range under study, the effectiveness curves of
various exchanger designs having different aspect ratios LH are
found to collapse at large Péclet as illustrated in Fig. 4a from using
the classical Graetz re-scaling Gr ¼ Pe=LH. We will further discuss
this collapse in Section 4.3 from reaching the fully developed limit.

Fig. 5a–d illustrate the influence of the conductivity ratio when
the solid has either comparable or larger diffusivity compared to
the convected liquid. In most applications (e.g. using solid metals),
the solid is indeed a better heat conductor than fluid. The observed
transverse heat profile at the exchanger longitudinal middle plane
(zH ¼ LH=2) shows distinct regimes. For identical conductive prop-

erties in the fluid and the solid, i.e kS=kF ¼ 1, the observed trans-
verse gradients are spread all around the fluids tube inside the
Fig. 5. Transverse temperature fields in exchanger at zH ¼ LH

2 for LH ¼ 20; Bi ¼ 10�6

and (a) kS=kF ¼ 1, (b) kS=kF ¼ 10, (c) kS=kF ¼ 103, (d) kS=kF ¼ 104. (e) �H against
Péclet for kS=kF ¼ 1; 10; 100; 1000 and LH ¼ 20; Bi ¼ 10�6. Longitudinal temper-
ature fields have been computed at the maximum hot effectiveness. zH axis has
been re-scaled in order for the inset figures to reach a 1:1 aspect ratio
solid (with anti-symmetric shape in the (xH; yH) plane in this bal-
anced configuration). This illustrates that transverse diffusion in
the solid arises, in this case, with transverse variation along dis-
tances of the order of the tube diameters. On the contrary, in

Fig. 5b–d as kS=kF increases, the transverse conduction gradients
in the solid shortens its typical length-scale variations to become
more and more localized in the vicinity of the tubes frontiers
CEH;C , leaving an almost iso-thermal temperature field within all
the solid. Fig. 5e then shows that the optimal effectiveness is

reached in the limit of large kS=kF . The small difference which is
observed for the effectiveness curve between the case

kS=kF ¼ 102 and kS=kF ¼ 103 indicates that there is an asymptotic

maximum effectiveness associated with the limit kS=kF !1. Both
the iso-thermal behavior in the solid and the increasing effective-

ness with increasing kS=kF ratio where to be expected. The more
conductive the solid, the better the heat exchange between the flu-
ids. It is worth mentioning that Maranzana et al. [12], found a con-
ductivity ratio with optimal efficiency in a parallel plane
convective exchanger. However, their study only investigates the
single Péclet Pe ¼ 33 value and also neglects longitudinal diffusion
in the fluid which might explain their results. Furthermore, the
configuration under study in [12] was different from ours since
the solid domain was larger than the fluid one. In our configura-

tion, even for extremely large kS=kF ratios, the three regimes (i,ii,
iii) are also recovered in Fig. 5e. This indicated that even though
the solid is an extremely good conductor, the convective conditions
(associated with Pe number) and the exchanger aspect ratio LH are
Fig. 6. Longitudinal temperature fields at Pe ¼ 25; LH ¼ 20; k
S

kF
¼ 1 for (a) Bi ¼ 10�3,

(b) Bi ¼ 1, (c) Bi ¼ 10, (d) Bi ¼ 103. (e) �H against Péclet for LH ¼ 20 and
Bi ¼ 10�3; 10�2; 10�1; 1; 101; 102; 103. Inset figure is Péclet at maximum hot
effectiveness against logðBiÞ.



driving the effectiveness. Furthermore it is very interesting to
observe that the optimal effectiveness arising at moderate Pe num-
ber is almost insensitive to the conductivity ratio parameter.

Turning to the analysis of larger Biot number, we found a very
weak influence of convective boundary on the previous heat-
transfer regimes (i,ii,iii). In this paragraph, we first consider the
case TH

a ¼ 0. Fig. 6a–d illustrate the influence of the convective
parameter Bi for an elongated exchanger LH ¼ 20, with moderate
convection Pe ¼ 25 where one can observe that, in the vicinity of
the external exchanger boundary CE the temperature profile dis-
plays distinct regimes (here again the temperatures profiles have
been re-scaled along the zH direction to keep with a 1:1 aspect
ratio of the figure).

At low Biot number Bi
 1, in Fig. 6a displays an adiabatic
(homogeneous Neumann) behavior where the temperature iso-
values are perpendicular to the CE boundary associated with trans-
versely homogeneous variations. On the contrary, at large Biot
numbers Bi� 1, in Fig. 6d, the longitudinal variations of tempera-
ture are very weak all along CE which is similar to an imposed tem-
perature at the boundary (Dirichlet like). Fig. 6e provides the
effectiveness for a large range of Péclet numbers, where the three
distinct regimes (i,ii,iii) are clearly visible. In the wide range of
explored Biot numbers, i.e. between 10�3 and 103 the optimal
effectiveness is surprisingly robust and poorly sensitive to the Bi
value. The peak of effectiveness observed as the Péclet number var-
ies, moderately broadens and gets very slightly translated. The
Fig. 6 inset provides the optimal Péclet number versus Bi, and
one can observe that it always arises for moderate values of Péclet
in a very narrow interval between 6 and 12.

A similar optimum for effectiveness versus the Graetz numbers
was previously reported in a parallel configuration in [15]. Never-
theless, [15]’s optimum is not peaked in such a narrow range of
Péclet number as found here. Furthermore the optimum Graetz
number found in [15] (from their Fig. 4) for conductivity ratio
equal to 100, resp 1000 is 0.4 resp. 0.9. In our case, using the results
of Fig. 5, for both 100 and 1000 conductivity ratio we found almost
identical optimal Graetz numbers equal to 0.3. Even if the specific
value at which some optimal transfer occurs differs from [15], such
a difference is not surprising considering the fact that the exchan-
ger geometry is different. Nevertheless, as noticed earlier in the
comments of Fig. 5, for high conductivity ratio, i.e. larger than 10,

kS=kF was found to have a limited effect. We believe this observa-
tion to be new and the consequence of properly taking care off lon-
gitudinal diffusion arising in the fluid. Furthermore since the
optimal Péclet value lies in a narrow range where convection is
moderate, its precise estimation should also necessitate axial diffu-
sion in the fluid to matter.
Fig. 7. Hot effectiveness (red) and cold (blue) effectiveness versus Péclet num
Bi ¼ 10�4; 10�3; 10�2; 10�1, (b) Bi ¼ 10�5; 10�6 For sufficiently small Biot number an o
of the references to color in this figure legend, the reader is referred to the web version
The relevance of this observation has practical implications that
we will discuss in Section 5.

4.2. Effectiveness of unbalanced counter-flow exchanger

Now considering the case where TH
a – 0, we chose a possibly

relevant set of working temperatures (for water) by choosing
T�1H ¼ 353:15 K; Tþ1C ¼ 283:15 K and Ta ¼ 293:15 K. From using
(10) with the hereby given values of inlets and ambient tempera-
tures we found TH

a ¼ �4:90. Fig. 7 displays the behavior of hot (in
red) and cold (in blue) effectiveness against Péclet variations for
various small Biot numbers in the range 10�1—10�6. The values
obtained for the effectiveness then indicate that in some cases it
can be larger or smaller than one when the Biot number is not
too small. This might be surprising at first, since one might think
that effectiveness should always lie within ½�1;1�. Nevertheless,
if one more closely evaluates the impact of the extra dimensionless
ambient parameter TH

a in boundary condition (9), it provides an
extra heat-flux term which unbalances the exchanges between
the inlet and the outlet. Hence, this extra-flux can lead to effective-
ness out of the specific range ½�1;1� for the heat in the hot fluid to
be pumped further by the extra-flux term at the lateral boundary.
As depicted in Fig. 7, depending on the Biot number, such an
exchanger can either experience a systematic decreasing efficiency
for increasing Pe, or a behavior showing maximal effectiveness at a
moderate optimal Péclet number as found previously in the case
TH
a ¼ 0. Let us now turn to the case of unbalanced counter-flow

configurations where PeH – PeC . Fig. 8 displays the hot and cold
effectiveness curves when the hot and cold Péclet ratio varies. In
the case of unbalanced configurations it is obviously expected that
hot and cold effectiveness differ. Obviously, increasing convection
in the hot tube will clearly increase the cooling from the hot tube
but, reciprocally will level-down the heating of the cold fluid. This
behavior of the exchanger is more systematically emphasized in
Fig. 8 where the hot effectiveness (with crosses) is improved as
PeH increases. Furthermore, at the same time the cold effectiveness
of the exchanger drops down as PeH increases for a given PeH=PeC
ratio. Depending on the application, it might be more interesting
to favor either one or the other functions of the exchanger.

4.3. Transfer and fully-developed regime

As mentioned earlier, the larger the convection the larger the
transfer, at the cost of low effectiveness. Fig. 9a displays the
obtained Nusselt for a large range of Péclet numbers and exchanger
aspect ratios LH. In these results one can clearly observe the influ-
ence of convective leakage inefficiency: e.g. for LH ¼ 5 or LH ¼ 10,
ber Pe for a non-zero TH
a ¼ �4:90 and various small Biot numbers (a)

ptimal effectiveness is recovered at a moderate Péclet number. (For interpretation
of this article.)



Fig. 8. �H in crosses and �C in full dots against Péclet ratio for
PeH ¼ 3:7; 15; 37:5; 75 and LH ¼ 20; Bi ¼ 10�6; kS

kF
¼ 1.
the Nusselt number saturates to a plateau when the Péclet number
gets larger than 50 or 100. Obviously the more elongated the
exchanger the longer it takes to reach this plateau. However, there
is an upper limit to LH for which practical issues become a concern
for caliber constraints. Hence convective leakage becomes a limita-
tion to transfer, as convection is increased. Fig. 9b also displays the
transfer variations as the conductivity ratio is varied. As discussed
in Section 4.1, where we found that the effectiveness reaches an
optimal value as the conductivity ratio between the solid and the
fluid gets larger and larger, the transfer also reaches a maximal

asymptotic curve as kS=kF !1. But even in the most favorable

case where kS=kF � 1, we still observe the inflection of the transfer
increase, which saturates at very large Péclet due to the convective
leakage.

As the best transfer comes at high Péclet, Pe� 1 and for very
elongated LH � 1 configurations it is interesting to investigate
specifically this limit. The collapse of the effectiveness curve pre-
sented in Fig. 4a in a previous section suggests that a special trans-
fer regime is reached when convection dominates. Indeed, this
Fig. 9. (a) Nusselt against Péclet for LH ¼ 1; 5; 10; 20; 30; 40; 50; 60; 70; 8
kS=kF ¼ 1; 10; 102; 103; 104 and Bi ¼ 10�6; LH ¼ 20 , (c) Nusselt rescaled by 2LH again
by 2LH xþ0 /

þ
0 supporting asymptotic result (27) against Péclet for LH ¼ 5; 10; 20; 50; 1
limit produces a very nice simplification which generalizes the
standard Graetz fully developed limit, for which effectiveness only
depends on the Graetz number Gr ¼ Pe=LH. In this limit only the
first non-zero mode of the Graetz development matters inside
the exchanger. Neglecting the second term of the numerator of
expression (18), for being Oð1=PeÞ smaller than the first one, whilst
using Graetz decomposition (13) leads to

NuH;C ¼ 2Pe
X
n

xþn ðek
þ
n L � 1ÞhTþn ic �

X
n

x�n ðe�k
�
n L � 1ÞhT�n ic

 !
; ð21Þ

with hTic ¼
R
DH;C

vHðnHÞTHðnHÞdnH the mixing cup temperature.

From the anti-symmetry of the Graetz modes and Graetz eigen-
values (see Appendix C), kþn ¼ �k�n , it follows

NuH;C ¼ 2Pe
X
n

ðekþn L � 1Þ xþn hTþn ic � x�n hT�n ic
� 	 !

ð22Þ

Now considering the main contribution of the two 	 modes
associated with n ¼ 0, it can be checked numerically that for all
nP 1; ðekþn L � 1Þ xþn hTþn ic � x�n hT�n ic

� 	
 ðekþ0 L � 1Þ xþ0 hTþ0 ic � x�0 hT�0 ic
� 	

and that x�0 hT�0 ic ¼ �xþ0 hTþ0 ic which, in limit Pe� 1, leads to

NuH;C � 4Pekþ0 L
H xþ0 hTþ0 ic ð23Þ

Using the divergence theorem on the Eq. (A.6) associated with
the mode Tþ0 , in the large Péclet number limit Pe� 1 one gets

hTþ0 ic ¼
/þ0
Pekþ0

with /þ0 ¼
Z
CEH;C

@nHT
þ
0 dCEH;C : ð24Þ

This equation is supported by the numerical results depicted in
Fig. 10. Indeed, Fig. 10a first illustrates the simple asymptotic
behavior of the zeroth eigenvalue kþ0 at high Péclet, also supported
by theoretical derivations in Appendix (A.2), i.e.

kþ0 �
ffiffiffiffiffi
Bi
p

Pe
; ð25Þ
0; 90; 100; 200 and Bi ¼ 10�6; kS=kF ¼ 1, (b) Nusselt against Péclet for
st Péclet for LH ¼ 5; 10; 20; 50; 100 and Bi ¼ 10�6; kS=kF ¼ 1, (d) Nusselt rescaled
00, and Bi ¼ 10�6; kS=kF ¼ 1.



Fig. 10. (a) Bi-logarithmic plot of kþ0 � Pe=
ffiffiffiffiffi
Bi
p

against Péclet for Bi ¼ 10�8; 10�6; 10�4; 10�2; 1; LH ¼ 10 and kS=kF ¼ 1, For Bi
 1, and Pe� 1 a master curve illustrates the
asymptotic scaling kþ0 �

ffiffiffiffiffi
Bi
p

=Pe. (b) Bi-logarithmic plot of hTþ0 ic �
ffiffiffiffiffi
Bi
p

=/þ0 against Péclet for Bi ¼ 10�8; 10�6; 10�4; 10�2; LH ¼ 10 and kS=kF ¼ 1. In the limit of Bi
 1, and
Pe� 1 a master curve is obtained supporting scaling (26).
as similarly found for the n ¼ 1 modes in the adiabatic case in [27].
Furthermore, Fig. 10b shows that numerical results give the follow-
ing simple scaling for the leading order mode mixing-cup
temperature,

hTþ0 ic ¼
/þ0ffiffiffiffiffi
Bi
p ð26Þ

Using (25) in (26) leads to (24). Hence, the numerical results
displayed in Fig. 10b provide a confirmation for the theoretical
asymptotic behavior of the leading order mode. Finally the asymp-
totic global Nusselt number, in the limit Pe� 1 fulfills the follow-
ing simple relation

NuH;C � 4LH xþ0 /
þ
0 ð27Þ

Fig. 9d shows that this fully developed limit (27) arises when
the Péclet number reaches values larger than 40, and is weakly
dependent on the exchanger aspect ratio. This result is important
for practical application since it shows that, for a convective dom-
inated regime (which is not the more efficient one) a simple com-
putation can provide a precise answer to the transfer rate, from
using only the leading order mode. This a posteriory confirms the
interest of considering optimal transfer configurations from ana-
lyzing the leading order mode only [8].

4.4. Effectiveness in the fully-developed regime

We now consider the exchanger effectiveness in the
fully-developed regime. Considering the (hot) effectiveness

�H ¼ TH�1H �THþ1H
TH�1H �THþ1C

in the dimensionless formulation, one gets

�H ¼ TH�1
H � 1

2
: ð28Þ
Fig. 11. Hot effectiveness �H versus Ntu for conductivity ratios kS=kF ¼ 1; 10; 100; 100
theoretical asymptotic prediction (31). Points are associated with full numerical compu
Starting from Eq. (18) whilst considering the fully developed
limit Pe� 1, for which, as in previous section, we neglect the sec-
ond rhs term, one gets

Pe
hTHð0Þic � hTHðLHÞic

QH
H

 !
¼ NuH

2QH
H

ð29Þ

with QH
H;C ¼

R
DH;C

vH ¼ p
2. Consistently considering the fully devel-

oped limit, applying the divergence theorem in both the upstream
and downstream hot pipe when using adiabatic lateral boundary
conditions, one finds the following relations

hTHð0Þic
QH

H

¼ TH�1
H ¼ 1

hTHðLHÞic
QH

H

¼ THþ1
H

ð30Þ

Combining (28), (29), (30) gives the asymptotic relation
between the effectiveness and the number of heat transfer units
NtuH;C ¼ NuH;CL

H=Pe to read as

�H ¼ NtuH

4QH
H LH

ð31Þ

It is important to mention that the derivation of (31) propound-
ing a linear relation between effectiveness �H and the number of
heat transfer units NtuH has only been obtained from using asymp-
totic considerations and the divergence theorem. It thus applies to
any parallel exchanger configuration, having any tube sections
shape, any number of tubes, as well as for any exchanger section
shape. This result indeed generalizes the result given in [15] for a
parallel plate configuration. Fig. 11 displays the asymptotic behav-
ior (31) for two exchanger lengths LH ¼ 10 in (a) and LH ¼ 20 in (b)
0 for (a) LH ¼ 10 , (b) LH ¼ 20 exchangers. In both cases the solid line display the
tations.



compared with full numerical computations for various conductiv-

ity ratios kS=kF ¼ 1; 10; 100; 1000. The comparison between the
asymptotic results and the numerical computation is surprisingly
good. In principle, only the limit of small to moderate Ntu (associ-
ated with Pe� 1) should be ruled by relation (31), whilst, for large
Ntu (when Pe becomes of order one) prediction (31) is irrelevant.
Indeed, one can observe in Fig. 11 that the larger LH, the better
the linear trend as well as the collapsed points in the small Ntu
limit. On the contrary, for larger values of Ntu, and obviously for
largest effectiveness, a deviation to the linear trend is observed.
The deviation is indeed modest, so that, (31) offers a surprisingly
robust prediction. It must be pointed out that Mori et al. found
in [15]’s Fig. 2 a local optimum depending on the number of heat
transfer units, which we do not recover here. This might be
explained by the fact that [15] indeed neglect the longitudinal dif-
fusion in the fluid but not in the solid. Also, in the configuration
studied in [15], the aspect ratio solid over fluid is much higher than
in our case which might explain the existence of such an optimum.
5. Discussion and conclusion

A Dimensionless formulation of a counter-flow exchanger pro-
vides six different parameters: associated with the thermal, phys-
ical and mechanical parameters of the exchanger operating
conditions. Focusing on the most relevant ones (i.e the Péclet num-
ber, the diffusivity ratio, the aspect ratio, the Biot number) we have
found various generic properties which should generalize to many
exchanger geometries, when inlet/outlet conditions are properly
taken into account.

 Depending on the Péclet number, three regimes of exchanges
have been found: (i) at low Péclet numbers, when increasing
convection, the performances are also increasing, so that, (ii)
at moderate Péclet numbers, an optimal effectiveness is
reached, whilst (iii) at large Péclet number, strong performance
degradation associated with convective leak have been found.
The existence of convective leaks associated with performance
degradation is expected for any inlet/outlet geometries when
convection dominates.
 Optimal exchanges at moderate Péclet numbers are found very
robust to changes in other parameters such as boundary condi-
tions (Biot number) and diffusivity ratio. We believe that this
result has important implications for applications in many other
exchanger geometry. It is worth noting that the assumption of
Poiseuille flow profile is not expected to qualitatively change
most of the obtained numerical computations nor the asymp-
totic results in fully developed regime. It is related to a proper
consideration of longitudinal and transverse diffusion in the
fluid as well as in the solid. This supports the view that compact
exchangers associated with moderate Péclet numbers provide
the best effectiveness and are thus interesting for transfer per-
formance at moderate cost for fluid pumping. This might also be
the reason why, most biological exchangers associated with
mass transfer from the vascular system into tissue, are operat-
ing at moderate Péclet numbers.
 At large Péclet numbers and for long exchangers, a ’fully devel-
oped’ regime can be defined which generalizes the one known
for the simple Graetz problem. In this regime, the Nusselt num-
ber is mainly determined by the first generalized Graetz mode
having a simple linear dependence with the flux and amplitude
of this mode. In this regime, we also generalize the asymptotic
linear relation between the effectiveness and the number of
heat transfer units NtuH for any parallel exchanger configura-
tion and found it surprisingly robust when compared to numer-
ical computation.
 Finally, for small Biot numbers, some generic behavior has also
been studied. Even if, in parallel exchangers, the temperature as
well as the generalized Graetz modes, and by consequence, the
effectiveness are found to be non-linear functions of the Biot
number, the Bi
 1 regimes display a k0 �

ffiffiffiffiffi
Bi
p

=Pe behavior of
the first generalized Graetz eigenvalue. Furthermore, the lead-
ing order deviation of the effectiveness and exchanges from
the pure adiabatic limit are OðBiÞ.
It is worth mentioning that the Generalized Graetz approach

that we have used can handle any tube shape and/or boundary
conditions, as well as an arbitrary number of inlet/outlets. The
numerical results have shown that the leading order mode mostly
dominates the overall transfer when Pe > 50 so that a single 2D
computation is mostly enough for providing a very good estimate
of the transfer in many cases. Nevertheless, optimal performances
are found at more moderate Péclet numbers where supplementary
modes contribute.
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Appendix A. Theoretical properties of generalized Graetz modes

A.1. Formulation of generalized Graetz modes

In this section we recall the formulation of generalized Graetz
modes, that have already been treated in [25,26,7]. The theoretical
full proof with a lateral Robin boundary condition will be given in a
future contribution. In this section, we will just recall how one can
write the main problem as an ordinary differential equation. From
Eq. (8), defining global velocity ~vH as a function that equals
~vH ¼ PeH;CvH in the fluid domains, and 0 in the solid domain. Then
(8) may write as

~vH@zHT
H � DnHT

H � @2
zHT

H ¼ 0; ðA:1Þ

where we have denoted DnH � @2
xH þ @2

yH . This equation produces the
following system

d
dz

/ðzÞ ¼ A/ðzÞ ðA:2Þ

with A defined as

A ¼ ~vH �DnH

1 0


 �
; with / ¼ @zHTH

TH

 !
ðA:3Þ

Then it is possible to show that this operator A associated with
various lateral boundary conditions is self-adjoin and compact
which ensures the existence of a unique spectral decomposition.
It was also shown in previous papers [25,26,7] assuming either
infinite, semi-infinite or finite dimension exchangers, that the
dimensionless temperature field can be written in a general classi-
cal form

TH ¼
X
n2ZH

xnTneknz ðA:4Þ

with xn the modes amplitudes, Tn the modes and kn the eigenvalues
of operator A, so that they are the solutions of the following gener-
alized eigenmode problem:

A/n ¼ kn/n; ðA:5Þ

with /n ¼ knTn

Tn


 �
or equivalently Tn will be solution of the follow-

ing non-linear eigen-problem



kn~vHTn � DnHTn � k2nTn ¼ 0 ðA:6Þ

where, again, we have denoted DnH � @2
xH þ @2

yH and with an associ-
ated boundary condition at the lateral exchanger external interface
with air

@nTn ¼ BiðTn � TH
a Þ ðA:7Þ

It is interesting to mention that this boundary condition pro-
vides a constraint on the spectrum, generally called a ‘compatibil-
ity condition’, which can be simply obtained from applying the
divergence theorem to (A.6), so that, the following equality has
to be fulfilled

knhTnic � Bi
Z
CE
TndCE � 2pRET

H
a


 �
� k2n

Z
CE
Tndn

H ¼ 0; ðA:8Þ

where again hTnic denotes the mixing-cup average. Hence, one can
see from (A.8) which is a second order equation in kn that kn is a
non-linear function of Bi.
A.2. Asymptotic behavior at Bi
 1

Since, (A.8) for each mode is indeed quadratic in kn, one should
seek for a regular asymptotic expansion in

ffiffiffiffiffi
Bi
p

in the small Bi limit,

Tn ¼ T ð0Þn þ
ffiffiffiffiffi
Bi
p

Tð1Þn þ BiTð2Þn þ Bi3=2Tð3Þn þ � � �
kn ¼ kð0Þn þ

ffiffiffiffiffi
Bi
p

kð1Þn þ Bikð2Þn þ Bi3=2kð3Þn þ � � �
ðA:9Þ

Using (A.9) in (A.6), it is possible to find that the sequence is
closed and provides a hierarchy of well-defined coupled iterative
problems. Let us now analyze some properties of the first correc-
tions. The leading order term in the sequence fulfills

kð0Þn ~vHTð0Þn � DnHT
ð0Þ
n � kð0Þ2n Tð0Þn ¼ 0

@nT
ð0Þ
n jCE ¼ 0

ðA:10Þ

Then, again, using the divergence theorem, one finds the compati-
bility condition for the leading order eigenvalue estimate kð0Þn ,

kð0Þn hT ð0Þn ic þ kð0Þn

Z
CE

Tð0Þn dnH

 �

¼ 0; ðA:11Þ

where, again, hTð0Þn ic refers to the mixing-cup temperature. In the

special case, n ¼ 0, the solution of (A.10) is a constant T ð0Þ0 ¼ C0
0,

leading to the simple mixing-cup hTð0Þ0 ic ¼ C0
0Q

HPe which, in the

case of a balanced configuration where QH ¼ 0, and since C0
0 – 0,

leads to kð0Þ0 ¼ 0. Now considering the next term in the sequence,
for a balanced configuration, one finds

DnHT
ð1Þ
n ¼ kð1Þn

~vH þ 2kð0Þn

� �
Tð0Þn

@nT
ð1Þ
n jCE ¼ 0

ðA:12Þ

The compatibility condition again obtained with the divergence
theorem, provides

kð1Þn hT ð0Þn ic þ 2kð0Þn

Z
CE

Tð0Þn dnH

 �

¼ 0; ðA:13Þ

In the special case n ¼ 0, for a balanced configuration, one
immediately realizes that (A.13) is always true, since,

hTð0Þ0 ic ¼ PeC0
0Q

H ¼ 0 and kð0Þ0 ¼ 0. Hence, (A.13) does not provide

any constraint on kð1Þ0 correction which is thus non-zero. Hence,

kð1Þ0 is the leading order term of sequence (A.9), thus justifying
the numerical result provided in (25).
Appendix B. Numerical implementation

The details of the numerical implementation of the generalized
Graetz problem can be found in [24]. This paper treats a very gen-
eral case with multiple boundary conditions, we will only consider
the case of continuous boundary conditions between inlet/outlet
tubes and the exchanger. The conditions are referred to as coupling
conditions.

TH
left ¼ TH

right on DH;C
0;L

@zHT
H
left ¼ @zHT

H
right on DH;C

0;L

ðB:1Þ

The main idea is to separate the whole problem into three sep-
arate Graetz problems: in inlet tubes, one in outlet tubes and one
in the exchanger. Each Graetz problem follows a different expres-
sion of the dimensionless temperature field since there is a differ-
ent spectral decomposition. It has been proven in [8], that there
exists a general solution of the whole problem which satisfies
the continuity conditions between the inlet/outlet tubes and the
exchanger.

In order to provide those coupling conditions between inlet/
outlet tubes and the exchanger, one defines a cost function as in
[24]

JL2 ðTHÞ ¼
Z
DH;C
0;L

TH
left � TH

right

��� ���2 dsþ 2DH;C
0;L

@zT
H
left � @zT

H
right

��� ���2 ds ðB:2Þ

TH is defined on a infinite dimension space of the general Graetz
decomposition on the whole problem V. We define the different
Graetz decompositions which correspond to different spaces on
the inlet/outlet tubes and the exchanger as follow

V0 ¼ THðnH; zHÞ ¼
X
N�

xþn T
þ
n ðnHÞek

þ
n z

H þ x�n T
�
n ðnHÞek

�
n ðzH�LHÞ

( )

exchanger zH 2 ½0; LH�

V1 ¼ fTHðnH; zHÞ ¼ xH0 þ
X
N�

xntþn ðnHÞel
þ
n ðzH�LHÞg

hot outlet tube zH P LH

V2 ¼ TTHðnH; zHÞ ¼ xC0 þ
X
N�

xnt�n ðnHÞel
�
n z

H

( )

cold outlet tube zH 6 0

V3 ¼ THðnH; zHÞ ¼ TH�1
H þ

X
N�

xnt�n ðnHÞel
�
n z

H

( )

hot inlet tube zH 6 0

V4 ¼ THðnH; zHÞ ¼ THþ1
C þ

X
N�

xntþn ðnHÞel
þ
n ðzH�LHÞ

( )

cold inlet tube zH P LH

ðB:3Þ
where x	n are the generalized Graetz modes amplitudes, T	n are the
upstream and downstream exchanger Graetz modes, t	n are the
upstream and downstream Graetz modes in the inlet and outlet
tubes, k	n are the upstream and downstream Graetz eigenvalues
inside the exchanger and lþn are downstream Graetz eigenvalues
in the hot outlet tube and cold inlet tube, l�n are upstream Graetz
eigenvalues in the cold outlet tube and hot inlet tube.

Let us note that the eigenvalues k	n verify by definition
kþn ¼ kn; k�n ¼ k�n and



�1  �
n!þ1

kn 6 � � � 6 k1 < 0 < k�1 < � � � 6 k�n !
n!þ1

þ1 ðB:4Þ

V is then defined as V ¼ V0 [ V0 [ V1 [ V2 [ V3 [ V4. The numer-
ical approximation consists of a projection of the space V on a
space VN of finite dimension N, which means that one only consid-
ers a finite number N of Graetz modes to compute the dimension-
less temperature field TH.

Let ðekÞk¼1...N be a basis of the space VN and let us write

JL2 ¼ mðTH; THÞ þ bðTHÞ þ c ðB:5Þ
where m is bi-linear symmetric, b linear and c a constant. Let
ML2 2 RN�N and b 2 RN defined as ML2 i;j ¼ mðei; ejÞ and bi ¼ bðeiÞ.
Then, the minimization problem writes as: find x 2 RN solution of,

ML2x ¼ b ðB:6Þ
which is a simple linear system to inverse to get the amplitudes of
the Graetz modes. The practical construction of the matrix ML2 can
be found on [24]. It is important to stress that this matrix can be
small, since the number of modes needed to construct a proper field
TH doesn’t need to be large. Let us also emphasize the fact that this
numerical method solves a 2D problem to compute the eigenvalues
and eigenvectors and inverse a small matrix to guarantee coupling
Table C.2
Values of eigenvalues k0þ; k1þ; k2þ; k3þ for various values of Pe; l; Bi and kS .

Pe L Bi kS k0þ

15.0 10.0 0.001 1.0 8.170724e�03
10.0 1.253764e�02

1000.0 1.0 1.549455e�01
10.0 3.911171e�01

20.0 0.001 1.0 8.170724e�03
10.0 1.253764e�02

1000.0 1.0 1.549455e�01
10.0 3.911171e�01

100.0 10.0 0.001 1.0 1.314427e�03
10.0 2.259361e�03

1000.0 1.0 2.407891e�02
10.0 6.087998e�02

20.0 0.001 1.0 1.314427e�03
10.0 2.259361e�03

1000.0 1.0 2.407891e�02
10.0 6.087998e�02

Table C.1
Relative errors of efficiencies �C � �H , first eigenvalue k0þ þ k0� and second eigenvalue k1þ þ

Pe L Bi kS j�C � �H
15.0 10.0 0.001 1.0 1.39376

10.0 7.38078

1000.0 1.0 6.53360
10.0 2.46981

20.0 0.001 1.0 9.45520
10.0 4.33867

1000.0 1.0 9.59470
10.0 2.41837

100.0 10.0 0.001 1.0 9.06154
10.0 1.57694

1000.0 1.0 5.30200
10.0 8.54440

20.0 0.001 1.0 8.85274
10.0 1.25165

1000.0 1.0 4.20333
10.0 4.64151
conditions. The 3D-reconstruction is done using the analytically
decomposition (B.3) so the method is computationally efficient.

Appendix C. Numerical validation

We present in this section a numerical validation (see Tables C.1
and C.2) based on the anti-symmetry of eigenvalues in the exchan-
ger in a counter-flow configuration, which means that k�i ¼ �ki i.e.
kþi ¼ �k�i for all i 2 I, where I is the set that indexes the spectrum of
the operator of the main problem. Indeed, the scalar values ki do
not depend on the orientation of axes of coordinates xH; yH and zH.

Let us also show an anti-symmetry of the Graetz modes
TiðxH; yHÞ ¼ �T�ið�xH; yHÞ. Using previous notations, one has

A/i ¼ ki~vH/i

A/�i ¼ k�i~vH/�i
ðC:1Þ

By applying an anti-symmetry operator S such as SðTiðx; yÞÞ ¼
Tið�x; yÞ on the second equation, one gets

AS/�i ¼ k�iS~vHS/�i ¼ �kið�~vHðxH; yHÞÞS/�i
¼ ki~vHðxH; yHÞS/�i

ðC:2Þ
k1þ k2þ k3þ

4.398618e�01 4.566489e�01 5.910715e�01
7.244966e�01 1.016178e+00 1.085381e+00

7.018758e�01 7.319594e�01 9.940608e�01
1.152600e+00 1.155169e+00 1.902514e+00

4.398618e�01 4.566489e�01 5.910715e�01
7.244966e�01 1.016178e+00 1.085381e+00

7.018758e�01 7.319594e�01 9.940608e�01
1.152600e+00 1.155169e+00 1.902514e+00

1.182446e�01 1.226305e�01 2.606066e�01
1.873122e�01 1.886942e�01 2.946533e�01
1.284228e�01 1.309758e�01 2.927729e�01
1.944533e�01 1.945562e�01 3.946634e�01
1.182446e�01 1.226305e�01 2.606066e�01
1.873122e�01 1.886942e�01 2.946533e�01
1.284228e�01 1.309758e�01 2.927729e�01
1.944533e�01 1.945562e�01 3.946634e�01

k1� for various values of Pe; l; Bi and kS .

j jk0þ þ k0�j jk1þ þ k1�j
0e�07 2.027600e�10 2.021400e�08
0e�07 2.987000e�10 1.367290e�07
0e�08 4.921000e�08 9.932100e�07
9e�06 2.445040e�07 2.560937e�03
0e�08 2.027600e�10 2.021400e�08
0e�07 2.987000e�10 1.367290e�07
0e�08 4.921000e�08 9.932100e�07
1e�06 2.445040e�07 2.560937e�03
0e�07 4.070000e�11 2.957130e�07
4e�06 9.161000e�11 1.457733e�06
0e�07 8.492800e�09 4.174500e�07
0e�07 3.983690e�08 1.012964e�04
0e�07 4.070000e�11 2.957130e�07
9e�06 9.161000e�11 1.457733e�06
0e�07 8.492800e�09 4.174500e�07
0e�07 3.983690e�08 1.012964e�04



because of the anti-symmetry of v on x and ki ¼ �k�i. Then, by using
both equations

Að/i � S/�iÞ ¼ ki~vHð/i � S/�iÞ ðC:3Þ
so that /i � S/�i is a solution of the eigenvalue problem. Thus, one
has

/�i � S/�i ¼ a/�i with a 2 R ðC:4Þ
So that ð1� aÞ/i ¼ S/�i Since modes are normalized, k/ik ¼
k/�ik ¼ kS/�ik, which gives a ¼ 2. Using (C.4), one has the stated
result:

TiðxH; yHÞ ¼ �T�ið�xH; yHÞ ðC:5Þ
Under the condition T�1H ¼ �T1C , this leads to the fact that the

dimensionless temperature field of the full exchanger problem ver-
ifies Tðx; y; zÞ ¼ �Tð�x; y;�zÞ.

References

[1] J.C. Bradley, Counterflow, crossflow and cocurrent flow heat transfer in heat
exchangers: analytical solution based on transfer units, Heat Mass Transfer 46
(4) (2010) 381–394.

[2] Y.P. Cheng, Z.G. Qu, W.Q. Tao, Y.L. He, Numerical design of efficient slotted fin
surface based on the field synergy principle, Numer. Heat Transfer, Part A 45
(6) (2004) 517–538.

[3] R.C. Chu, R.E. Simons, M.J. Ellsworth, R.R. Schmidt, V. Cozzolino, Review of
cooling technologies for computer products, IEEE Trans. Device Mater. Rel. 4
(4) (2004) 568–585.

[4] O.I. Craciunescu, T.V. Samulski, J.R. MacFall, S.T. Clegg, Perturbations in
hyperthermia temperature distributions associated with counter-current
flow: numerical simulations and empirical verification, IEEE Trans. Biomed.
Eng. 47 (4) (2000) 435–443.

[5] W. Escher, B. Michel, D. Poulikakos, Efficiency of optimized bifurcating tree-
like and parallel microchannel networks in the cooling of electronics, Int. J.
Heat Mass Transfer 52 (5-6) (2009) 1421–1430.

[6] W. Escher, B. Michel, D. Poulikakos, A novel high performance, ultra thin heat
sink for electronics, Int. J. Heat Fluid Flow 31 (4) (2010) 586–598.

[7] J. Fehrenbach, F. De Gournay, C. Pierre, F. Plouraboué, The generalized Graetz
problem in finite domains, SIAM J. Appl. Math. 72 (2012) 99–123.

[8] J. Fehrenbach, F. De Gournay, F. Plouraboué, Shape optimization for the
generalized Graetz problem, Struct. Multidiscip. Optim. 49 (2014) 993–1008.

[9] A. Filali, L. Khezzar, Numerical simulation of the Graetz problem in ducts with
viscoelastic FENE-P fluids, Comput. Fluids 84 (2013) 1–15.

[10] H.W. Huang, W.L. Lin, E.G. Moros, A robust power deposition scheme for
tumors with large counter-current blood vessels during hyperthermia
treatment, Appl. Therm. Eng. 89 (2015) 897–907.

[11] H. Kobayashi, S. Lorente, R. Anderson, A. Bejan, Serpentine thermal coupling
between a stream and a conducting body, J. Appl. Phys. 111 (19–20) (2012)
044911.

[12] G. Maranzana, I. Perry, D. Maillet, Mini- and micro-channels: influence of axial
conduction in the walls, Int. J. Heat Mass Transfer 47 (17–18) (2004) 3993–
4004.

[13] I.C. Mihai, Heat transfer in minichannels and microchannels CPU cooling
systems, in: P. Schiopu, C. Panait, G. Caruntu, et al. (Eds.), Advanced Topics in
Optoelectronics Microelectronics, and Nanotechnologies IV, Proceedings of
SPIE-The International Society for Optical Engineering, vol. 7297, SPIE-The
International Society for Optical Engineering, 2009.

[14] J.W. Mitchell, G.E. Myers, An analytical model of the counter-current heat
exchange phenomena, Biophys. J. 8 (1968) 897–911.

[15] S. Mori, M. Kataya, A. Tanimoto, Performance of counterflow, parallel plate
heat exchangers under laminar flow conditions, Heat Transfer Eng. 2 (1)
(1980) 28–38.

[16] A. Nakayama, F. Kuwahara, A general bioheat transfer model based on the
theory of porous media, Int. J. Heat Mass Transfer 51 (11–12) (2008) 3190–
3199.

[17] R. Nunge, E.W. Porta, W.N. Gill, Axial conduction in the fluid streams of
multistream heat exchangers, Chem. Eng. Progr. Symp. 63 (1967) 80–91.

[18] R.J. Nunge, W.N. Gill, Analysis of heat or mass transfer in some countercurrent
flows, Int. J. Heat Mass Transfer 8 (1965) 873–886.
[19] R.J. Nunge, W.N. Gill, An analytical study of laminar counter flow double-pipe
heat exchangers, AIChE J. 12 (1966) 279–289.

[20] D.A. Pabst, S.A. Rommel, W.A. McLellan, T.M. Williams, T.K. Rowles,
Thermoregulation of the intra-abdominal testes of the bottlenose dolphin
(Tursiops truncatus) during exercise, J. Exp. Biol. 198 (1995) 221–226.

[21] E. Papoutsakis, D. Ramkrishna, H-C. Lim, The extended Graetz problem with
Dirichlet wall boundary conditions, Appl. Sci. Res. 36 (1980) 13–34.

[22] E. Papoutsakis, D. Ramkrishna, H-C. Lim, Conjugated Graetz problems. Pt. 1:
General formalism and a class of solid–fluid problems, Chem. Eng. Sci. 36 (8)
(1981) 1381–1391.

[23] T.L. Perelman, On conjugated problems of heat transfer, Int. J. Heat Mass
Transfer 3 (4) (1961) 293–303.

[24] C. Pierre, J. Bouyssier, F. de Gournay, F. Plouraboué, Numerical computation of
3D heat transfer in complex parallel heat exchangers using generalized Graetz
modes, J. Comp. Phys 268 (2014) 84–105.

[25] C. Pierre, J. Bouyssier, F. Plouraboué, Mathematical analysis of parallel
convective exchangers with general lateral boundary conditions using
generalized Graetz modes, Math. Models Methods Appl. Sci. 24 (4) (2013)
627–667.

[26] C. Pierre, F. Plouraboué, Numerical analysis of a new mixed-formulation for
eigenvalue convection–diffusion problems, SIAM J. Appl. Math. 70 (2009) 658–
676.

[27] F. Plouraboué, C. Pierre, Stationary convection–diffusion between two co-axial
cylinders, Int. J. Heat Mass Transfer 50 (2007) 4901–4907.

[28] A.E. Quintero, M. Vera, B. Rivero-de Aguilar, Wall conduction effects in laminar
counterflow parallel-plate heat exchangers, Int. J. Heat Mass Transfer 70 (1-3)
(2014) 939–953.

[29] Ilya I. Ryzhkov, The extended Graetz problem with specified heat flux for
multicomponent fluids with Soret and Dufour effects, Int. J. Heat Mass Transfer
66 (2013) 461–471.
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