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Analytical examples of diffusive waves generated by a traveling wave

Harold Moundoyi∗† Ayman Moussa† Benôıt Perthame†‡ Benôıt Sarels∗†

November 16, 2016

Abstract

We construct analytical solutions for a system composed of a reaction-diffusion equation coupled
with a purely diffusive equation. The question is to know if the traveling wave solutions of the
reaction-diffusion equation can generate a traveling wave for the diffusion equation. Our motivation
comes from the calcic wave, generated after fertilization within the egg cell endoplasmic reticulum,
and propagating within the egg cell.

We consider both the monostable (Fisher-KPP type) and bistable cases. We use a piecewise
linear reaction term so as to build explicit solutions, which leads us to compute exponential tails
which exponents are roots of second, third or fourth order polynomials. These rise conditions on
the coefficients for existence of a traveling wave of the diffusion equation. The question of positivity
and monotonicity is only partially answered.

2010 Mathematics Subject Classification. 35C07, 35K57, 35Q92.
Keywords and phrases. Traveling wave; Reaction diffusion; Parabolic systems; Mathematical biology;

1 Motivations and equations

Traveling waves are typically generated by the interaction between two physical phenomena: diffusion,
or random movement, and reaction, or limited growth. They occur for instance in chemical reactions,
ecological invasions, epidemic progressions. In many situations, a traveling wave can interact with
purely diffusive species which do not react. A simple question is therefore to know if the wave will
generate or not a similar wave in the neutral species. The present work is motivated by one such exam-
ple arising in developmental biology and related to membrane calcium waves which are observed, after
fertilization, through many eukaryotic cells [12, 13]. The question which arises, is to know whether
the calcic wave which is generated within the egg cell endoplasmic reticulum, can propagate as a
wave within the cytoplasm? The counter-intuitive phenomena is that diffusion equations do not have
traveling wave solutions and thus it is unclear which phenomena between diffusion induced dispersion
or reaction induced wave formation will win, and if a threshold on the coupling strength is necessary.
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Several studies have been conducted recently about this type of questions when a one dimensional
wave is coupled to a two dimension diffusion phenomena, which is the case of calcic waves mentioned
above. It also occurs that growth occurs in a two dimensional space with diffusion in a one dimensional
(in ecology for instance) [4, 5, 6, 7, 8, 10].

The coupling membrane/volume is also remarkable in the alternative case when traveling waves
do not exist and Turing patterns occur [14]. Also remarquable is how non-local diffusion coupled to
reaction-diffusion might generate accelerating fronts [1, 2, 15, 16, 17]. Also, notice that the coupling
of two reaction-diffusion equation is also of present interest, see [11] and the references therein.

A simpler question is to know how, in a simple one dimensional space, exchanges between a reaction-
diffusion equation and a diffusion equation can generate a traveling wave solution thus leading to the
formalism 

−cu′ − u′′ = f(u) + av, u(−∞) = 1, u(∞) = 0,

−cv′ − νv′′ = bu− (a+ d)v, v(−∞) = b
a+d , v(∞) = 0,

(1)

and, here, the reaction term f(u) represents either a bistable nonlinearity, or a monostable function of
Fisher/KPP type [3, 18]. The present study proposes a setting where analytical solutions are available
therefore leading to explicit calculations. This approach shows very directly, that the existence and
uniqueness of a wave speed (or a minimal wave speed in the Fisher/KPP case) faces a much complex
algebraic setting that the case of a single equation, which explains the numerous literature on the
subject. Depending on the parameters, one can directly understand why different types of solutions
may occur.

Notice that the formalism at hand can be seen as a simplified geometric setting of the 2D-1D coupling
in case of a band Ω = R× (0, 1) coupled to the axis {y = 0}. Indeed, we may depart from the system

−cu′ − u′′ = f(u), u(−∞) = 1, u(∞) = 0,

−cw′ − ν∆w = −dw, in Ω,

−w′y(x, y = 0) = bu(x), w′y(x, y = 1) = 0.

(2)

Then, we define

v(x) =

∫ 1

0
w(x, y)dy

and find after y integration (and because the solution w is in fact independent of y here)

−cv′ − νv′′ = bu− dv, x ∈ R.

This reduces the problem (2) to the system (1) with a = 0.

Our results are organized as follows: we first consider the simple case a = 0 which explains with
very elementary methods how traveling wave solutions arise in the diffusion equation, this is section 2.
We show the surprising result that there are exceptional values of the parameters where the traveling
wave cannot be general in the diffusive component. Then, we consider the fully coupled systems in the
monostable (section 3) and bistable cases (section 4). The final section presents numerical simulations
for the case of interest where the wave propagation is initiated on a circle and the bulk diffusion occurs
in the ball.
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2 The decoupled case

Setting the problem. As we have motivated above, the simplest example of coupling occurs when,
for parameters b > 0, d > 0, ν > 0 and θ ∈ (0, 1), we consider{

−cu′ − u′′ = f(u), u(−∞) = 1, u(∞) = 0,

−cv′ − νv′′ = bu− dv, v(−∞) = b
d , v(∞) = 0.

(3)

Here we consider the specific Fisher/KPP type nonlinearity for which analytical calculations are
possible, it is given by

f(u) =

{
p+u 0 ≤ u ≤ θ,
p−(1− u) θ ≤ u ≤ 1,

(4)

with p± > 0 and the KPP condition at u = θ which is that u is below its cord at origin and reads

θp+ ≥ (1− θ)p−, (5)

this condition is necessary to enforce α > 0 in the calculation below.

Obviously the second equation, if uncoupled to u, does not have a solution because the heat equation
does not admit traveling wave. We will show that, for all values of the parameters b, d and ν the
traveling wave solution u can induce a traveling wave solution v.

We recall that for all c > c∗ := 2
√
p+ there is a traveling wave u and it is given by (λ1 > 0, µ± > 0)

For x ≤ 0, u = 1− (1− θ)eλ1x, with cλ1 + λ2
1 = p−,

For x ≥ 0, u = αθe−µ−x + (1− α)θe−µ+x, with cµ± − µ2
± = p+.

The parameter α > 0 is uniquely determined by the continuity of derivatives at 0

(1− θ)λ1 = αθµ− + (1− α)θµ+.

We are going to establish the

Theorem 2.1 (Fisher-KPP case, weakly coupled) For all c > c∗ := 2
√
p+ there exists a unique

traveling wave solution of (3) except for three possible values c1, c± of c (depending on b, d, ν and
p±, these values may be less than c∗ or even not exist).

For c large, the solution v is not always positive.

The case c = c∗ requires specific calculations that we do not perform here, but the method can be
applied.

The values c1 and c± can be written explicitly. For instance c1 is given, under the condition
(1− ν)(νd− p−) > 0 by the relation

(1− ν)c1 =
√
c2 + 4d−

√
c2 + 4p−.

Therefore when p+ and p− are small enough, we have c1 > c∗ = 2
√
p+.

Finally, the positivity of the wave is not easy to analyze away from c ≈ +∞. We do not know if an
additional condition occurs then. We also leave open the question monotonicity.

Proof. We decompose the proof of Theorem 2.1 in several steps.
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Solution for v. Now consider the construction of v. We are going to introduce five free parameters
β1, β2, γ−, γ+ and γ2

• For x ≤ 0,

v =
b

d
− β1e

λ1x − β2e
λ2x

where the β2 term is the free solution (λ2 > 0)

cλ2 + νλ2
2 = d.

The β1 term is the particular solution

β1[d− cλ1 − νλ2
1] = b(1− θ). (6)

This rises the first condition on c, namely that d − cλ1 − νλ2
1 6= 0, and thus the condition c 6= c1 in

the statement of Theorem 2.1.

• For x ≥ 0,
v = γ−e

−µ−x + γ+e
−µ+x + γ2e

−µ2x.

The free solution term yields the value µ2

−cµ2 + νµ2
2 = d.

The particular solutions gives conditions on the parameters

γ−[d+ cµ− − νµ2
−] = αθ, (7)

γ+[d+ cµ+ − νµ2
+] = (1− α)θ. (8)

These also impose conditions c 6= c− and c 6= c+.
• For x = 0, we have to check that v ∈ C1, this means

b

d
− β1 − β2 = γ− + γ+ + γ2, (9)

β1λ1 + β2λ2 = γ−µ− + γ+µ+ + γ2µ2. (10)

Analysis of the algebraic system for the coefficients. Altogether, the conditions (6)–(10) give
five equations for five unknowns and we can expect there is a unique solution. We check this now.
Except for the values c1, c±, we can eliminate directly all variables but β2 and γ2. Then, these
conditions are reduced to the two conditions

b

d
− b(1− θ)
d− cλ1 − νλ2

1

− β2 =
αθ

d+ cµ− − νµ2
−

+
(1− α)θ

d+ cµ+ − νµ2
+

+ γ2,

λ1
b(1− θ)

d− cλ1 − νλ2
1

+ λ2β2 = µ−
αθ

d+ cµ− − νµ2
−

+ µ+
(1− α)θ

d+ cµ+ − νµ2
+

+ γ2µ2.

These relations are uniquely invertible and give the values γ2 and β2

λ2
b

d
+ (λ1 − λ2)

b(1− θ)
d− cλ1 − νλ2

1

=
(µ− + λ2)αθ

d+ cµ− − νµ2
−

+
(µ+ + λ2)(1− α)θ

d+ cµ+ − νµ2
+

+ (λ2 + µ2)γ2,

−µ2
b

d
+ (λ1 + µ2)

b(1− θ)
d− cλ1 − νλ2

1

+ (λ2 + µ2)β2 =
(µ− − µ2)αθ

d+ cµ− − νµ2
−

+
(µ+ − µ2)(1− α)θ

d+ cµ+ − νµ2
+

.

In other words, except for the possible bad values c1, c± of c, we have obtained a unique traveling
wave solution as announced.
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Positivity for c� 1. We can perform expansions for c� 1 and find

λ1 ≈
p−
c
, λ2 ≈

d

c
, µ− ≈

p+

c
, µ+ ≈ c, µ2 ≈

c

ν
.

We may also compute

β1 ≈
b(1− θ)
d− p−

, γ− ≈
αθ

d+ p+
, γ+ ≈

1

c2

(1− α)θ

1− ν
, β2 ≈

θ(b− α)

d
, γ2 = O(

1

c2
).

Therefore we may analyze what happens for x < 0. We observe that the exponential decay is very
slow and thus

v ≈ (1− θ)b[ 1
d
− 1

d− p−
] +

θα

d
,

which is not necessarily positive since d can be chosen as close as p− to make the negative term
dominant.

3 Monostable nonlinearity

For a completely coupled system and a monostable term f(u) we look for c > 0 large enough to find
traveling waves that are solutions of{

−cu′ − u′′ = f(u) + av, u(−∞) = 1, u(∞) = 0, u(0) = θ

−cv′ − νv′′ = bu− (a+ d)v, v(−∞) = b
a+d , v(∞) = 0,

(11)

with

f(u) =

{
p−u 0 ≤ u ≤ θ,

p+(1− u)− ab
a+d θ ≤ u ≤ 1,

(12)

Here all the numbers a, d, p± are positive and θ ∈ (0, 1). We assume that it holds:

ν < 1, (1− θ)p+(a+ d) > ab. (13)

For c large enough, we are going to build solutions with the explicit form (here again we implicitly
compute with the conditions λ0 > 0, λ± > 0, µ± > 0).

for x ≥ 0

{
u = α−e

−λ−x + α+e
−λ+x + α0e

−λ0x,

v = β−e
−λ−x + β+e

−λ+x + β0e
−λ0x,

for x ≤ 0

{
u = 1− γ+e

µ+x − γ−eµ−x,

v = b
a+d − δ+e

µ+x − δ−eµ−x.

Theorem 3.1 (Fisher-KPP case) We make the assumption (13) and that f(·) is of Fisher/KPP
type, that means (5). Traveling waves with the above expressions and speed c exists if the λ’s are the
three positive roots of a fourth order polynomial. There is a minimal speed c∗ such that for c ≥ c∗

these three roots exists.
Asymptotically for c large, the component u is always decreasing and thus there is a traveling wave

solution.
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The polynomial under consideration only gives a necessary condition for a traveling wave of the
form above. For c not large enough, we do not know if u is monotonic and thus if (11) holds true.

The end of this section is devoted to the proof of Theorem 3.1.

The exponential form for x ≥ 0. The construction uses that all solutions are linear combinations
of the form

u = αe−λx, v = βe−λx for x ≥ 0

satisfies {
cλ− λ2 − p− = aβα ,

cλ− νλ2 + a+ d = bαβ .

and thus we look for positive solutions of the fourth order polynomial in λ

Π+(λ) :=
(
cλ− λ2 − p−

) (
cλ− νλ2 + a+ d

)
= ab. (14)

Notice that, see Fig. 1, for c > 2
√
p−, the above fourth order polynomial Π+(λ) has one negative root

and three positive roots (for c = 2
√
p− a double positive root and another) which satisfy, thanks the

assumption ν < 1,

Λ0 :=
c+

√
c2 + 4ν(a+ d)

2ν
> Λ± :=

c±
√
c2 − 4p−
2

.

Figure 1: The fourth order polynomial Π+(λ) in red. The two second order polynomials which product
gives Π+(λ) are ploted in green (with root Λ0) and in blue (with roots Λ±).

We are going to establish the

Lemma 3.2 We assume (13). There is a value c∗, with 2
√
b+ p− > c∗ > 2

√
p−, such that for all

c > c∗, there are three positive solutions of (14) ordered as

Λ−(c) < λ− (c) < λ+(c) < Λ+(c) < Λ0(c) < λ0(c). (15)

Proof. Firstly, for Λ− < c < Λ+ we have

∂

∂c
Π+(λ) = λ

[(
cλ− λ2 − p−

)
+
(
cλ− νλ2 + a+ d

)]
> 0
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Secondly, for c2 > 4(b+ p−), at λ = c
2 we have Π(λ = c

2) > ab because it is worth

Π(λ =
c

2
) = (

c2

4
− p−)[

c2

4
(2− ν) + a+ d)] > b(a+ d) > ab

and thus we have two positive solutions of (14) in the interval Λ− < c < Λ+.
Consequently, we depart from c = 2

√
p− where there is clearly a single positive solution λ0 > Λ0 of

(14). When we increase c, there is a first value c∗ where maxΛ−<c<Λ+ Π(λ) = ab and for c > c∗ there
are two solutions and they are ordered as stated.

We also introduce the notations allowing to recover the β’s from the α’s (by αP = aβ):

Lemma 3.3 The roots built in Lemma 3.2 satisfy

∂cλ−(c) < 0, ∂cλ+(c) > 0, ∂cλ0(c) > 0,

and for c� 1 
λ0(c) = c

ν +O(1
c ), λ+(c) = c(1− p−

c2
+O( 1

c4
)),

λ−(c) = ρ−
c +O( 1

c3
), ρ− =

p−−a−d+
√

(a+d+p−)2+4ab

2 > p−,

(16)

 0 < P±(c) := cλ± − λ2
± − p− <

√
ab, P0(c) := cλ0 − λ2

0 − p− < −
√
ab,

P−(c) = ρ− − p− +O( 1
c2

), P+(c) = O( 1
c2

), P0(c) ≈ −c2 1−ν
ν2

+O(1).
(17)

Proof. Monotonicity in the statement (16). It is a consequence of the equality, obtained differentiating
Π+ in c along the roots,

λ±
[
(cλ± − λ2

± − p−
)

+
(
cλ± − νλ2

± + a+ d)
]

+ ∂cλ± Π′+(λ±) = 0.

Indeed, we have Π′+(λ−) > 0, Π′+(λ+) < 0, Π′+(λ0) > 0 and it remains to distinguish the signs of the
two polynomials which multiplication generates Π+ using

cλ− − λ2
− − p− > 0, cλ+ − λ2

+ − p− > 0, cλ0 − λ2
0 − p− < 0.

The limits at +∞. We notice that, because ν < 1,

cλ− λ2 − p− < cλ− νλ2 + a+ d.

Therefore, for λ± where these two quantities are positive, we have

ab = Π(λ±) >
(
cλ± − λ2

± − p−
)2

=⇒ cλ± − λ2
± − p− <

√
ab.

And the limits of the λ’s follows immediately from this inequality and the explicit roots for equality.
Indeed, we find

c ≈
c+

√
c2 − 4(p− +

√
ab)

2
< λ+(c) < Λ+(c) ≈ c.

A similar argument gives the result for λ0.
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Precise expansion for λ0 in the statement (16). We need however to be more precise and look for the
first correction under the form λ0 = cR+ S

c . We find

(
c2(R−R2) + S − 2SR− p−

)(
c2R(1− R

ν
) + S − 2νSR− a− d

)
= ab

which leads to the choice R = 1
ν , S = −a− d+O(c−2).

Precise expansion for λ+ in the statement (16). Next, we look for the first correction under the form
λ+ = c

(
1− R

c2
+O(c−4)

)
. To compute R, we insert this form in (14) and find

[
c2(1− R

c2
)− c2(1− 2

R

c2
)− p− +O(c−2)

][
c2(1− R

c2
)− νc2(1− 2

R

c2
) + a+ d+O(

1

c2
))
]

= ab

[
R− p− +O(c−2)

][
c2(1− ν) +O(1)

]
= ab.

Therefore it comes R = p−.

Precise expansion for λ− in the statement (16). We look for an expression λ− = ρ
c +O( 1

c3
). We find,

(ρ− p− +O(
1

c2
))(ρ+ a+ d+O(

1

c2
)) = ab⇐⇒ ρ2 + ρ(a+ d− p−)− p−(a+ d)− ab = 0.

Statement (17). It follows immediately from inserting the asymptotic expansions for the λ’s in the
expression for the P ’s.

The exponential form for x ≤ 0. We may proceed similarly for x ≤ 0 and the corresponding
formulas are {

−cµ− µ2 + p+ = a δγ ,

−cµ− νµ2 + a+ d = bγδ .

The possible bounded solutions are given by the two roots 0 < µ−(c) < µ+(c) of the polynomial

Π−(µ) :=
(
− cµ− µ2 + p+

) (
− cµ− νµ2 + a+ d

)
= ab. (18)

These roots satisfy  µ− < min(
−c+
√
c2+4p+
2 ,

−c+
√
c2+4ν(a+d)

2ν ),

µ+ > max(
−c+
√
c2+4p+
2 ,

−c+
√
c2+4ν(a+d)

2ν )

and we have  ∂cµ− < 0, ∂cµ+ < 0,

µ±(+∞) = R±
c +O( 1

c2
), R± =

p++a+d±
√

(p+−a−d)2+4ab

2 ,
(19)

{
Q+(c) := −cµ+ − µ2

+ + p+ < 0, Q−(c) := −cµ− − µ2
− + p+ > 0,

Q±(+∞) = −R± + p+.
(20)

Indeed, on the one hand differentiating Π− with respect to c gives

−µ±
[
(−cµ± − µ2

± + p+

)
+
(
− cµ± − νµ2

± + a+ d)
]

+ ∂cµ± Π′−(µ±) = 0.
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On the other hand, we have Π′−(µ−) < 0, Π′−(µ+) > 0 and Q−(c) := −cµ− − µ2
− + p+ > 0, and

Q+(c) := −cµ+ − µ2
+ + p+ < 0.

The expansions for µ± are easily obtained as for the λ’s, because, keeping the dominant terms in
the expression µ = R

c , we find(
−R+ p+ +O(

1

c2
)
)(
−R+ a+ d+O(

1

c2
)
)

= ab⇐⇒ R2 −R(p+ + a+ d) + p+(a+ d)− ab = 0.

Compatibility conditions at x = 0. We can now proceed to evaluate the coefficients α0, α±, β0,
β±, γ± and δ± related by construction of the exponential forms by

α0P0 = aβ0, α±P±(c) = aβ±, γ±Q± = aδ±.

With c a free parameter, these leave us 5 coefficients α0, α±, γ±. For these, we have to write the 5
compatibility conditions at x = 0, that are{

u(0+) = θ, u(0−) = θ, u′(0−) = u′(0+),

v(0+) = v(0−), v′(0+) = v′(0−).

They can be rewritten as
α+ + α− + α0 = θ, γ+ + γ− = 1− θ, λ+α+ + λ−α− + λ0α0 = µ+γ+ + µ−γ−,

P+α+ + P−α− + P0α0 = ab
a+d −Q+γ+ −Q−γ−,

λ+P+α+ + λ−P−α− + λ0P0α0 = µ+Q+γ+ + µ−Q−γ−.

(21)

After eliminating the terms α0 and γ+ using the first two relations, these are
(λ0 − λ+)α+ + (λ0 − λ−)α− − (µ+ − µ−)γ− = −µ+(1− θ) + λ0θ,

(P0 − P+)α+ + (P0 − P−)α− + (Q+ −Q−)γ− = P0θ − ab
a+d +Q+(1− θ),

(λ0P0 − λ+P+)α+ + (λ0P0 − λ−P−)α− − (µ+Q+ − µ−Q−)γ− = λ0P0θ − µ+Q+(1− θ).

In order to analyze if the solutions exist and define positives waves, we can reduce the complexity
by considering the large c asymptotic. One can observe a posteriori that the correct expansion is to
set

α+ =
a+

c2
, α− = θ +

a−
c2
.

The system becomes
λ0−λ+

c a+ + λ0−λ−
c a− − c(µ+ − µ−)γ− = −cµ+(1− θ) + cλ−θ,

P0−P+

c2
a+ + P0−P−

c2
a− + (Q+ −Q−)γ− = P−θ − ab

a+d +Q+(1− θ),
λ0P0−λ+P+

c3
a+ + λ0P0−λ−P−

c3
a− − µ+Q+−µ−Q−

c γ− = λ−P−
c θ − µ+Q+

c (1− θ).

Then, thanks to the expansions (16), (17), (19), (20), this is also, with coefficients up to O( 1
c2

)
according to the expansions at hand

1−ν
ν a+ + 1

ν a− − (R+ −R−)γ− = −R+(1− θ) + ρ−θ,

1−ν
ν2
a+ + 1−ν

ν2
a− + (R+ −R−)γ− = −(ρ− − p−)θ − a

a+d + (R+ − p+)(1− θ),
−1−ν

ν3
a+ − 1−ν

ν3
a− = 0.
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The system is invertible, which justifies a posteriori that we can neglect the terms of order O(1
c ), and

gives (it is simple to argue reversing the order of the equations)
a− = −p+(1− θ) + p−θ + ab

a+d ,

(R+ −R−)γ− = −(ρ− − p−)θ + ab
a+d + (R+ − p+)(1− θ),

a+ = −a−.

(22)

Consequently, back to the system (21), we conclude that α0 = 0(c−4).

Notice that we have

Lemma 3.4 We have the signs

a− ≥
ab

a+ d
> 0, γ− > 0, µ−γ− + µ+γ+ > 0.

Proof. The first inequality follows immediately from (5).
For the second inequality, we have, using the expressions of ρ− and R+,

(R+ −R−)γ−

= 1
2 [p−θ − p+(1− θ)] + ab

a+d + a+d
2 −

θ
2

√
(a+ d+ p−)2 + 4ab+ 1−θ

2

√
(p+ − a− d)2 + 4ab

≥ 1
2 [p−θ − p+(1− θ)] + ab

a+d + a+d
2 −

θ
2 [a+ d+ p− + 2ab

a+d+p−
] + 1−θ

2 (p+ − a− d)

≥ (1− θ) ab
a+d > 0.

The third inequality follows from the expression (obtained using (22) and ρ− > p−)

c[µ−γ− + µ+γ+] = R+(1− θ)− (R+ −R−)γ−

= R+(1− θ) + (ρ− − p−)θ − ab
a+d − (R+ − p+)(1− θ)

> − ab
a+d + p+(1− θ) > 0

by assumption (13).

Therefore, we may analyze the monotonicity of u.
• For x > 0, u is positive because it is a convex combination of the value at x � 1 (and dominant
term is u ≈ θe−λ−x at infinity) and of its value at x = 0 which is θ. To determine if it is decreasing,
we compute the derivative, and for c� 1, we find

−u′(x) = α0λ0e
−λ0x + α+λ+e

−λ+x + α−λ−e
−λ−x ≈ −a−

c
e−λ+x +

θρ−
c
e−λ−x > 0,

because it is again a convex combination at x = 0 and x� 1, and because −a−
c + θρ−

c = µ−γ−+µ+γ+ >
0 thanks to the lemma 3.4.

• For x < 0 the dominant term at −∞ is 1− γ−eµ−x < 1 thanks to lemma 3.4. Also we have

−u′(x) = µ−γ−e
µ−x + µ+γ+e

µ+x

and because −u′(x) > 0 for x� −1 and −u′(0) > 0, we have again u′(x) < 0.
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4 Bistable nonlinearity

We consider now the case of a bistable nonlinearity and thus solutions of{
−cu′ − u′′ = f(u) + av, u(−∞) = 1, u(∞) = 0, u(0) = θ

−cv′ − νv′′ = u− (a+ d)v, v(−∞) = 1
a+d , v(∞) = 0,

(23)

with

f(u) =

{
−p−u 0 ≤ u ≤ θ,
p+(1− u)− a

a+d θ ≤ u ≤ 1,
(24)

We assume that all numbers a, b, d, ν, p± are positive, θ ∈ (0, 1) and that the relations hold

ν < 1, p−(a+ d) > a, p+(a+ d) > a. (25)

We are going to consider condition so as solutions exists with the explicit form

for x ≥ 0

{
u = α+e

−λ+x + α−e
−λ−x,

v = β+e
−λ+x + β−e

−λ−x,

for x ≤ 0

{
u = 1− γ+e

µ+x − γ−eµ−x,
v = 1

a+d − δ+e
µ+x − δ−eµ−x.

Theorem 4.1 (Bistable case) We make assumption (25). If a traveling wave of speed c with the
above expressions exists, then λ±(c) and µ±(c) should satisfy a nonlinear relation.

There is at least one value of c∗ such that this relation is satisfied.

It is however unclear if the profile of u obtained with our construction is monotonic. Therefore, we
leave as an open problem to check that there are traveling waves associated with these values c∗. We
also leave open the question of uniqueness of c∗.

The end of this section is devoted to the proof of Theorem 3.1.

Step 1. The exponential form for x ≥ 0. The construction uses that all solutions are linear combina-
tions of the form

u = αe−λx, v = βe−λx for x ≥ 0

satisfies {
cλ− λ2 + p− = aβα ,

cλ− νλ2 + a+ d = α
β .

This gives the two values 0 < λ−(c) < λ+(c), namely the two positive solutions of

Π+(λ) :=
(
cλ− λ2 + p−

) (
cλ− νλ2 + a+ d

)
= a. (26)

Indeed, the fourth order polynomial on the left has two positive roots and two negative roots. The
condition (25) tells us that its value at λ = 0 is larger than a. We also mention the properties λ−(c) < min(

c+
√
c2+4p−
2 ,

c+
√
c2+4ν(a+d)

2ν ),

λ+(c) > max(
c+
√
c2+4p−
2 ,

c+
√
c2+4ν(a+d)

2ν ),

(27)
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P−(c) := cλ− − λ2
− + p− > 0, P+(c) := cλ+ − λ2

+ + p− < 0, (28)

∂cλ−(c) > 0, ∂cλ+(c) > 0, λ±(+∞) = +∞, λ±(−∞) = 0. (29)

To make the asymptotic more precise, for the end of this section we specify ν < 1 as announced (in
the case ν > 1 the order between λ+ and λ− is just reversed),

λ−(c) = c+ p−
c +O( 1

c3
), λ+(c) = c

ν + a+d
c +O( 1

c3
), for c� 1,

P−(c) = O( 1
c2

), P+(c) = −c2 1−ν
ν2

+O(1), for c� 1,

λ±(c) = ρ±
c +O( 1

c3
), ρ± =

−(a+d+p−)∓
√

(a+d−p−)2+4ab

2 , for c� −1,

P±(c) = p− + ρ±, for c� −1.

(30)

Notice that ρ± < 0.
Proof of the statement (29). Monotonicity is a consequence of the equality, along the roots,

λ
[
(cλ− λ2 + p−

)
+
(
cλ− νλ2 + a+ d)

]
+ ∂cλ Π′+(λ) = 0,

and of the fact that Π′+(λ−) < 0, Π′+(λ+) > 0.

The limit at +∞ follows because we know that min(
c+
√
c2+4p−
2 ,

c+
√
c2+4ν(a+d)

2ν ) > min(1, 1
ν )c and

for λ = min(1, 1
ν )c then Π+(λ) > a, therefore min(1, 1

ν )c < λ−(c).

The limit at −∞ follows using the same type of argument because max(
c+
√
c2+4p−
2 ,

c+
√
c2+4ν(a+d)

2ν ) ≈
max(p−, a+ d) 1

|c| and for λ = r
|c| with r > p− + a+ d we have Π+(λ) > a for c� −1.

Step 2. The exponential form for x ≤ 0. We may proceed similarly for x ≤ 0 and the corresponding
formulas are {

−cµ− µ2 + p+ = a δγ ,

−cµ− νµ2 + a+ d = γ
δ .

The possible bounded solutions are given by the two roots 0 < µ−(c) < µ+(c) of the polynomial

Π−(µ) :=
(
− cµ− µ2 + p+

) (
− cµ− νµ2 + a+ d

)
= a. (31)

These roots satisfy  µ− < min(
−c+
√
c2+4p+
2 ,

−c+
√
c2+4ν(a+d)

2ν ),

µ+ > max(
−c+
√
c2+4p+
2 ,

−c+
√
c2+4ν(a+d)

2ν )

(32)

and
Q−(c) := −cµ− − µ2

− + p+ > 0, Q+(c) := −cµ+ − µ2
+ + p+ < 0, (33)

∂cµ− < 0, ∂cµ+ < 0, µ±(+∞) = 0, µ±(−∞) = +∞. (34)
µ±(c) = R±

c +O( 1
c3

), R± = R± =
p++a+d±

√
(p+−a−d)2+4a

2 , for c� 1,

Q±(c) = p+ −R± +O( 1
c2

), for c� 1,

µ−(c) = −c− p+
c +O( 1

c3
), µ+(c) = − c

ν −
a+d
c +O( 1

c3
), for c� −1,

Q−(c) = O( 1
c2

), Q+(c) = −c2 1−ν
ν2

+O(1) for c� −1.

(35)

Notice that R+ ≥ max(p+, a+ d) and R− ≤ min(p+, a+ d).
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Step 3. Compatibility conditions at x = 0. We can now proceed to evaluate the coefficients α±, β±,
γ± and δ± related by construction of the exponential forms by

α±P±(c) = aβ±, γ±Q± = aδ±.

These leave us 4 coefficients α±, γ± and c. For these, we have to write the compatibility conditions
at x = 0, that are {

u(0+) = θ, u(0−) = θ, u′(0−) = u′(0+),

v(0+) = v(0−), v′(0+) = v′(0−).

They can be rewritten as{
α+ + α− = θ, γ+ + γ− = 1− θ, λ+α+ + λ−α− = µ+γ+ + µ−γ−,

P+α+ + P−α− = a
a+d −Q+γ+ −Q−γ−, λ+P+α+ + λ−P−α− = µ+Q+γ+ + µ−Q−γ−.

After eliminating the terms α− and γ− using the first two relations, these are
(λ+ − λ−)α+ + λ−θ = (µ+ − µ−)γ+ + µ−(1− θ),
(P+ − P−)α+ + P−θ = a

a+d − (Q+ −Q−)γ+ −Q−(1− θ),
(λ+P+ − λ−P−)α+ + λ−P−θ = (µ+Q+ − µ−Q−)γ+ + µ−Q−(1− θ).

We now eliminate γ+ using the first equation and find
[
P+ − P−
Q+ −Q−

+
λ+ − λ−
µ+ − µ−

]
α+ =

a
a+d −Q−(1− θ)− P−θ

Q+ −Q−
+
µ−(1− θ)− λ−θ

µ+ − µ−
,[

λ+P+ − λ−P−
µ+Q+ − µ−Q−

− λ+ − λ−
µ+ − µ−

]
α+ =

µ−Q−(1− θ)− λ−P−θ
µ+Q+ − µ−Q−

− µ−(1− θ)− λ−θ
µ+ − µ−

.

The value c is given by the equality[
P+ − P−
Q+ −Q−

+
λ+ − λ−
µ+ − µ−

] [
µ−Q−(1−θ)−λ−P−θ

µ+Q+−µ−Q− − µ−(1−θ)−λ−θ
µ+−µ−

]
=

[
λ+P+ − λ−P−
µ+Q+ − µ−Q−

− λ+ − λ−
µ+ − µ−

] [ a
a+d −Q−(1− θ)− P−θ

Q+ −Q−
+
µ−(1− θ)− λ−θ

µ+ − µ−

]
.

Step 4. Existence of a value c. We re-arrange the above relation as

F(c) := (1− θ)A(c) + θB(c)− a

a+ d
(µ+ − µ−)C(c) = 0. (36)

With the expressions

C(c) = (λ+P+ − λ−P−)(µ+ − µ−)− (µ+Q+ − µ−Q−)(λ+ − λ−),

D(c) = (P+ − P−)(µ+ − µ−) + (Q+ −Q−)(λ+ − λ−),

A(c) = [Q−(µ+ − µ−)− µ−(Q+ −Q−)]C(c) + µ− [Q−(µ+ − µ−)− (µ+Q+ − µ−Q−)]D(c),

and thus
A(c) = [µ+Q− − µ−Q+]C(c)− µ−µ+(Q+ −Q−)D(c).
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B(c) = [P−(µ+ − µ−) + λ−(Q+ −Q−)]C(c) + λ− [−P−(µ+ − µ−) + (µ+Q+ − µ−Q−)]D(c).

As general properties, from the signs in the definitions (28) and (33), we discover that

D(c) < 0, µ+Q− − µ−Q+ > 0, µ−µ+(Q+ −Q−) < 0,

Q−(µ+ − µ−)− µ−(Q+ −Q−) > 0.

A comparison among A(c), B(c) and C(c) gives

A(c) < C(c).

However these properties and monotonicity properties stated earlier do not seem to be enough to
conclude a monotonicity property useful for uniqueness. Therefore, to prove existence of a solution
of (36), we argue by continuity only and study the expansions for |c| � 1.

Analysis for c� 1. We only compute the dominant terms:

C(c) ≈ −c2 1− ν
ν3

(R+ −R−),

D(c) ≈ c[−1− ν
ν2

(R+ −R−)− (R+ −R−)
1− ν
ν

] = −c(R+ −R−)
1− ν2

ν2
,

A(c) ≈ 1

c
[R+(p+ −R−)−R−(p+ −R+)C(c) = −c1− ν

ν3
p+(R+ −R−)2,

B(c) ≈ −c(R+ −R−)C(c) = c3(R+ −R−)2 1− ν
ν3

.

We conclude that

F(c) ≈ θc3(R+ −R−)2 1− ν
ν3

for c� 1.

And because we assume ν < 1, we conclude that

F(c)→ +∞ as c→ +∞. (37)

Analysis for c� −1.

C(c) ≈ −c2 1− ν
ν3

(ρ+ − ρ−),

D(c) ≈ −c(ρ+ − ρ−)
1− ν2

ν2
,

A(c) ≈ −c3 1− ν
ν2

C + c4 1

ν

1− ν
ν2

D = −c5 (1− ν)2

ν3
(ρ+ − ρ−),

B(c) ≈ O(c2).

We conclude that

F(c) ≈ −(1− θ)c5 (1− ν)2

ν3
(ρ+ − ρ−) for c� −1.

And because ρ+ < ρ−, we conclude that

F(c)→ −∞ as c→ −∞. (38)

Conclusion. By continuity and from the behaviour of F at c = ±∞, we conclude from (37) and (38)
that there is at least one solution to F(c∗) = 0, and the proof of Theorem 4.1 is complete.
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Figure 2: The unstructured triangular grid used for solving the wave propagation problem depicted
the figures below.

Figure 3: The wave initiation. Left is the ‘surface’ component u. Right is the ‘volume’ component v.
See Fig. 4 and Fig. 5 for later times.

5 Numerical simulations

The coupled systems as (3) and (11), are ‘toy models’ for the calcic wave initiated after fertilization
as mentioned in the introduction.

We present numerical solutions for a reaction-diffusion equation of Fisher-KPP type, propagating
on a thin layer around a ball and diffusing within the core of the ball. Except the geometry of the
domain which we have chosen to represent a cell and the coupling of 1D reacting equation to a 2D
diffusion equation arising from the biological problem, this setting is closely related to the problems
initiated by [4, 5] and which has led to a very active field of research (see additional references in the
introduction).

The numerical simulations has been performed using finite elements and the software FreeFEM++
[9] with an unstructured grid presented in Fig. 2.

A wave is initiated (see Fig. 3) at a point located at the right of the computational domain. It
propagates a wave propagating along the surface and diffusing in the ball. The Fig. 4 and Fig. 5
present the numerical solution at two different times. One can observe the fast wave propagation
compared to the effect of diffusion.

Acknowledgment The authors would like to thank Patrick Cormier for several inspiring discussions
on calcic waves which motivated the present study.
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Figure 4: As in Fig. 3 at time t = 25. The color scale changes from left to right and from one figure
to the other.

Figure 5: As in Fig. 3 at time t = 50. The wave has invaded the boundary (color scale from 0.867 to
0.873 while diffusion is still active in the ball (color scale from 1.17 to 1.61.
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