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SPECIAL FUNCTIONS AND TWISTED L-SERIES

We introduce a generalization of the Anderson-Thakur special function, and we prove a rationality result for several variable twisted L-series associated to shtuka functions.

Introduction

Let X = P 1 /F q be the projective line over a finite field F q having q elements and let K be its function field. Let ∞ be a closed point of X of degree d ∞ = 1. Then K = F q (θ) for some θ ∈ K such that θ has a pole of order one at ∞. We set A = F q [θ]. Following Anderson ( [START_REF] Anderson | Rank one elliptic A-modules and A-harmonic series[END_REF], see also [START_REF] Thakur | Shtukas and Jacobi sums[END_REF]), we consider:

Y = K ⊗ Fq X.
Let K = Frac(K ⊗ Fq K) be the function field of Y. We identify K with K ⊗ 1 ⊂ K. If we set t = 1 ⊗ θ, then K = K(t). Let τ : K → K be the homomorphism of F q (t)-algebras such that: ∀x ∈ K, τ (x) = x q .

Let ∞ ∈ Y (K) be the pole of t, and let ξ ∈ Y (K) be the point corresponding to the kernel of the homomorphism of K-algebras K ⊗ Fq K → K which sends t to θ.

Then the divisor of f := t -θ is equal to (ξ) -( ∞). The function t -θ is a shtuka function, and in particular: 1) , with C a,i ∈ A.

∀a ∈ A, a(t) = deg θ a k=0 C a,i f • • • f (i-
The map C : A → A{τ }, a → C a := deg θ a k=0 C a,i τ i is a homomorphism of F qalgebras called the Carlitz module. Note that:

C θ = θ + τ.
There exists a unique element exp C ∈ K{{τ }} such that exp C ≡ 1 (mod τ ) and:

∀a ∈ A, exp C a = C a exp C .
Let C ∞ be the completion of a fixed algebraic closure of K ∞ := F q (( 1 θ )). Then exp C defines an entire function on C ∞ , and:

Ker exp C = πA, for some π ∈ C × ∞ (well-defined modulo F × q ) called the Carlitz period. We consider T the Tate algebra in the variable t with coefficients in C ∞ , i.e. T := C ∞ ⊗ Fq A. Let τ : T → T be the continuous homomorphism of F q [t]-algebras such that ∀x ∈ C ∞ , τ (x) = x q . Anderson and Thakur ( [START_REF] Anderson | Tensor Powers of the Carlitz Module and Zeta Values[END_REF]) showed that:

{x ∈ T, τ (x) = f x} = ωF q [t],
where ω ∈ T × is such that:

f ω | ξ = π. The function ω is called the Anderson-Thakur special function attached to the Carlitz module C. This function is intimately connected to Thakur-Gauss sums ( [START_REF] Anglès | Universal Gauss-Thakur sums and L-series[END_REF]).

In 2012, Pellarin ([19]) initiated the study of a twist of the Carlitz module by the shtuka function f. Let's consider the following homomorphism of F q -algebras ϕ : A → A[t]{τ }, θ → θ + f τ. Then, one observes that C and ϕ are isomorphic over T, i.e. we have the following equality in T{τ } : ∀a ∈ A, C a ω = ωϕ a .

To such an object, one can associate the special value of some twisted L-function (see [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF]):

L = a∈A,a monic a(t) a ∈ T × .
Then, using the Anderson log-algebraicity Theorem for the Carlitz module ( [START_REF] Anderson | Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in Characteristic p[END_REF], see also [START_REF] Papanikolas | Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss L-Functions[END_REF], [START_REF] Anglès | Anderson-Stark Units for Fq[END_REF]), Pellarin proved the following remarkable rationality result:

Lω π = 1 f ∈ K.
This result has been extended to the case of "several variables" ( [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], [START_REF] Demeslay | A class formula for L-series in positive characteristic[END_REF]) using methods developed by Taelman ([20], [START_REF] Taelman | Special L-values of Drinfeld modules[END_REF], [START_REF] Anglès | with an appendix by V. Bosser, Arithmetic of characteristic p special L-values[END_REF], [START_REF] Fang | Special L-values of abelian t-modules[END_REF], [START_REF] Fang | Equivariant Special L-values of abelian t-modules[END_REF], [START_REF] Fang | Equivariant trace formula mod p[END_REF]). This kind of rationality results leads to new advances in the arithmetic of function fields (see [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], [START_REF] Anglès | Arithmetic of function fields units[END_REF], [START_REF] Anglès | Exceptional Zeros of L-series and Bernoulli-Carlitz Numbers[END_REF]).

The aim of this paper is to extend the previous results to the general context, i.e. for any smooth projective geometrically irreducible curve X/F q of genus g and any closed point ∞ of degree d ∞ of X. In particular, we obtain a rationality result similar to that of Pellarin (Theorem 5.6). Our result involves twisted Lseries (see [START_REF] Anglès | Twisted Characteristic p Zeta Functions[END_REF]) and a generalization of the Anderson-Thakur special function. The involved techniques are based on ideas developed in [START_REF] Anglès | Exceptional Zeros of L-series and Bernoulli-Carlitz Numbers[END_REF] where an analogue of Stark Conjectures is proved for sign-normalized rank one Drinfeld modules.

We should mention that Green and Papanikolas ( [START_REF] Green | Special L-values and shtuka functions for Drinfeld modules on elliptic curves[END_REF]) have recently studied the particular case g = 1 and d ∞ = 1 and, in this case, they have obtained explicit formulas similar to that obtained by Pellarin (in the case g = 0 and d ∞ = 1).

The first author would like to thank David Goss and Federico Pellarin for interesting discussions around the topics considered in this article. The authors dedicate this work to David Goss.

Notation and background

Notation.

Let X/F q be a smooth projective geometrically irreducible curve of genus g, and ∞ be a closed point of degree d ∞ of X. Denote by K the function field of X, and by A the ring of elements of K which are regular outside ∞. The completion K ∞ of K at the place ∞ has residue field F ∞ . We fix an algebraic closure K ∞ of K ∞ and denote by C ∞ the completion of K ∞ .

We will fix a sign function sgn :

K × ∞ → F × ∞ which is a group homomorphism such that sgn | F × ∞ = Id | F × ∞ . We fix π ∈ K ∩ Ker(sgn) and such that K ∞ = F ∞ ((π)). Let v ∞ : C ∞ → Q ∪ {+∞} be the valuation on C ∞ normalized such that v ∞ (π) = 1. Observe that: ∀x ∈ K × , deg(xA) = -d ∞ v ∞ (x).
Let K be the algebraic closure of K in C ∞ .

Let I(A) be the group of non-zero fractional ideals of A. We have a natural surjective group homomorphism deg : I(A) → Z, such that for I ∈ I(A), I ⊂ A, we have:

deg

I = dim Fq A/I. Let P(A) = {xA, x ∈ K × }, then Pic(A) = I(A) P(A)
is a finite abelian group. Let I K be the group of idèles of K, and H/K be the finite abelian extension of K, H ⊂ C ∞ , corresponding via class field theory to the following subgroup of I K :

K × ker sgn v =∞ O × v ,
where for a place v = ∞ of K, O × v denotes the group of units of the v-adic completion of K. Then H/K is a finite extension of degree | Pic(A) | q d∞ -1 q-1 , unramified outside ∞, and the decomposition group of ∞ in H/K is equal to its inertia group and is isomorphic to

F × ∞ F × q . Set G = Gal(H/K). If we define P + (A) = {xA, x ∈ K × , sgn(x) = 1}, then the Artin map (•, H/K) : I(A) -→ G.
induces a group isomorphism:

I(A) P + (A) ≃ G.
For I ∈ I(A), we set: σ I = (I, H/K) ∈ G. Let H A be the Hilbert class field of A, i.e. H A /K corresponds to the following subgroup of the idèles of K :

K × K × ∞ v =∞ O × v .
Then H/H A is totally ramified at the places of H A above ∞. Furthermore:

Gal(H/H A ) ≃ F × ∞ F × q .
We denote by B the integral closure of A in H and B ′ the integral closure of A in

H A . Observe that F ∞ ⊂ B.

2.2.

Sign-normalized rank one Drinfeld modules.

We define the map τ :

C ∞ → C ∞ , x → x q .
By definition, a sign-normalized rank one Drinfeld module is a homomorphism of F q -algebras φ : A → C ∞ {τ } such that there exists n(φ) ∈ {0, • • • , d ∞ -1} with the following property:

∀a ∈ A, φ a = a + • • • + sgn(a) q n(φ) τ deg a . Let n ∈ {0, • • • , d ∞ -1}.
We denote by Drin n the set of sign-normalized rank one Drinfeld modules φ with n(φ) = n, and by Drin = ∪ d∞-1 n=0 Drin n the set of sign-normalized rank one Drinfeld modules. By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Corollary 7.2.17, Drin is a finite set and we have:

| Drin |=| Pic(A) | q d∞ -1 q -1 .
Let φ ∈ Drin be a sign-normalized rank one Drinfeld module, we say that φ is standard if Ker exp φ is a free A-module, where exp φ : C ∞ → C ∞ is the exponential map attached to φ (see for example [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], paragraph 4.6).

Lemma 2.1. Let n ∈ {0, • • • , d ∞ -1}. We have: | Drin n |= 1 d ∞ | Pic(A) | q d∞ -1 q -1 .
Let φ in Drin n and let [φ] denote the set of the φ ′ in Drin n which are isomorphic to φ. Then:

∀φ ∈ Drin n , | [φ] |= q d∞ -1 q -1 .
In particular, if

[Drin n ] = {[φ], φ ∈ Drin n }, we have: | [Drin n ] |= 1 d ∞ | Pic(A) | .
Proof. Let ψ : A → H{τ } be a sign-normalized rank one Drinfeld module (see [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 7). Let n(ψ) ∈ Z be such that:

∀a ∈ A, ψ a = a + • • • + sgn(a) q n(ψ) τ deg a .
Then the set of sign-normalized rank one Drinfeld modules is exactly Drin = {ψ σ , σ ∈ G}. Let σ ∈ G and write σ = (I, H/K) for some I ∈ I(A). We have:

∀a ∈ A, ψ σ a = a + • • • + sgn(a) q n(ψ)+deg(I) τ deg a .
Note that deg : I(A) → Z induces a surjective homomorphism of finite abelian groups:

deg :

I(A) P + (A) → Z d ∞ Z .
Since there are exactly | Pic(A) | q d∞ -1 q-1 sign-normalized rank one Drinfeld modules and d ∞ divides | Pic(A) |, we get the first assertion.

Let φ ∈ Drin n and let φ ′ ∈ [φ]. Then there exists α ∈ C × ∞ such that: ∀a ∈ A, αφ a = φ ′ a α. Thus, α ∈ F × ∞ . Since End C∞ (φ) = {φ a , a ∈ A}, we obtain: End C∞ (φ) ∩ F ∞ = F q .
Hence,

| [φ] |= q d∞ -1 q -1 .
Lemma 2.2. There are exactly q d∞ -1 q-1 standard elements in Drin. Furthermore, if φ is such a Drinfeld module, then [φ] is the set of standard elements in Drin.

Proof. By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Corollary 4.9.5 and [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Theorem 7.4.8, there exists φ ∈ Drin such that φ is standard. In particular, Drin = {φ σ , σ ∈ G}. Again, by [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Corollary 4.9.5 and [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Theorem 7.4.8, the Drinfeld module φ σ is standard if and only if σ | HA = Id HA . The Lemma follows.

Shtuka functions.

Let X = C ∞ ⊗ Fq X, Ā = C ∞ ⊗ Fq A, and let F be the function field of X, i.e. F = Frac( Ā). We will identify C ∞ with its image C ∞ ⊗ 1 in F. There are d ∞ points in X(C ∞ ) above ∞, and we denote the set of such points by S ∞ . Observe that Ā is the set of elements of F/C ∞ which are "regular outside ∞". We denote by τ : F → F the homomorphism of K-algebras such that:

τ | Ā= τ ⊗ 1.
For m ∈ Z, we also set: ∀x ∈ F, x (m) = τ m (x).

Let P be a point of X(C ∞ ). We denote by P (i) the point of X(K) obtained by applying τ i to the coordinates of P. If D = n j=1 n Pj P j ∈ Div( X), with P j ∈ X(C ∞ ), and n Pj ∈ Z, we set:

D (i) = n j=1 n Pj P (i) j . If D = (x), x ∈ F × , then: D (i) = (x (i)
). We consider ξ ∈ X(C ∞ ) the point corresponding to the kernel of the map:

Ā → C ∞ , i x i ⊗ a i → x i a i .
Let ρ : K → F, x → 1 ⊗ x and set t = ρ(π -1 ).

Let ∞ ∈ S ∞ . We identify the ∞-adic completion of F to

C ∞ (( 1 t )). Let sgn ∞ : C ∞ (( 1 t )) × → C × ∞ be the group homomorphism such that Ker(sgn ∞) = t Z × (1 + 1 t C ∞ [[ 1 t ]]), and sgn ∞ | C × ∞ = Id | C × ∞ . Let φ ∈ Drin. For a ∈ A, we write φ a = deg a i=0 φ a,i τ i , φ a,i ∈ H.
By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 6, and [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Proposition 7.11.4, there exists ∞ ∈ S ∞ and f φ ∈ F × such that:

∀a ∈ A, ρ(a) = deg a i=0 φ a,i f φ • • • f (i-1) φ
, and the divisor of f φ is of the form:

(f φ ) = V (1) -V + (ξ) -( ∞),
where V is some effective divisor of degree g.

Let (∞) = ∞′ ∈S∞ ( ∞′ ). Set W (C ∞ ) = ∪ m≥0 L(V + m(∞)),
and

L(V + m(∞)) = {x ∈ F × , (x) + V + m(∞) ≥ 0} ∪ {0}.
We have:

W (C ∞ ) = ⊕ i≥0 C ∞ f φ • • • f (i-1) φ .
The function f φ is called the shtuka function attached to φ, and we say that φ is the signed-normalized rank one Drinfeld module associated to f φ . We define the set of shtuka functions to be:

Sht = {f φ , φ ∈ Drin}.
Then, the map Drin → Sht, φ → f φ is a bijection called the Drinfeld correspondence.

Remark 2.3.

There is a misprint in [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], page 229. In fact, as we will see in the proof of of Lemma 3.3, when d ∞ > 1, we do not have: sgn ∞(-1) (f φ ) q d∞ -1 q-1 = 1 as stated in the loc. cit.

Special functions attached to shtuka functions

Basic properties of a shtuka function.

Let H = Frac(H ⊗ Fq A), and K = Frac(K ⊗ Fq A). Recall that G = Gal(H/K) and we will identify G with the Galois group of H/K. Let f ∈ Sht, and let φ ∈ Drin n(φ) be the sign-normalized rank one Drinfeld module attached to f for some

n(φ) ∈ {0, . . . , d ∞ -1}. Then φ : A → B{τ } is a homomorphism of F q -algebras such that: ∀a ∈ A, φ a = deg a i=0 φ a,i τ i ,
where φ a,0 = a, φ a,deg a = sgn(a) q n(φ) , and ρ(a 1) . Recall that there exists an effective H-divisor V ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 6) of degree g such that the divisor of f is:

) = deg a i=0 φ a,i f • • • f (i-
(f ) = V (1) -V + (ξ) -( ∞),
for some ∞ ∈ S ∞ . By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Lemma 7.11.3, ξ, ∞(-1) do not belong to the support of

V. Let v ∞ be the normalized valuation on H attached to ∞ (v ∞(t) = -1). Note that v ∞(f ) ≤ -1 and, when d ∞ > 1, ∞ can a priori belong to the support of V.
We identify the ∞-adic completion of H with H(( 1 t )). Therefore we deduce that:

f = α(f ) t k + i≥k+1 f i 1 t i , k ≤ -1
where α(f ) ∈ H × , and

f i ∈ H, for all i ≥ k + 1.
Let exp φ be the unique element in H{{τ }} such that exp φ ≡ 1 (mod τ ) and:

∀a ∈ A, exp φ a = φ a exp φ .
Write exp φ = i≥0 e i (φ)τ i , then by [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Corollary 7.4.9, we obtain:

H = K(e i (φ), i ≥ 0).
Observe that exp φ induces an entire function on C ∞ , and there exists α ∈ C × ∞ and

I ∈ I(A) such that: ∀z ∈ C ∞ , exp φ (z) = i≥0 e i (φ)z q i = z a∈I\{0} (1 - z αa ).
Furthermore, we have (see for example [START_REF] Thakur | Shtukas and Jacobi sums[END_REF], Proposition 0.3.6):

∀i ≥ 0, e i (φ) = 1 f • • • f (i-1) | ξ (i)
.

Thakur proved that if e n (φ) = 0, then n ∈ {2, . . . , g -1} ( [START_REF] Thakur | Shtukas and Jacobi sums[END_REF], proof of Theorem 3.2), and if K has a place of degree one then ∀n ≥ 0, e n (φ) = 0.

Let 1) . Then W (B) is a finitely generated B ⊗ Fq A = B[ρ(A)]-module of rank one (see for example [START_REF] Anglès | Stark units in positive characteristic[END_REF], Lemma 4.4). Furthermore,

W (B) = ⊕ i≥0 Bf • • • f (i-
∀x ∈ W (B), f x (1) ∈ W (B).
Let I ∈ I(A). Let φ I ∈ H{τ } such that the coefficient of its term of highest degree in τ is one , and such that:

a∈I H{τ }φ a = H{τ }φ I .
Then, we get:

deg τ φ I = deg I, Ker φ I | C∞ = ∩ a∈I Ker φ a | C∞ , φ I ∈ B{τ }.
We denote by ψ φ (I) ∈ B \ {0} the constant term of φ I . We set:

u I = deg I j=0 φ I,j f • • • f (j-1) ∈ W (B),
where φ I = deg I j=0 φ I,j τ j . Lemma 3.1. Let I, J be two non-zero ideals of A. We have:

u I | ξ = ψ φ (I), σ I (f )u I = f u (1) I , u IJ = σ I (u J )u I .
Proof. In [START_REF] Anglès | Stark units in positive characteristic[END_REF], Lemma 4.6, we only gave a sketch of the proof of the above results. We give here a detailed proof for the convenience of the reader.

Observe that:

∀i ≥ 1, (f • • • f (i-1) ) = V (i) -V + i-1 k=0 (ξ (k) ) - i-1 k=0 ( ∞(k) ).
Since ξ does not belong to the support of V, we deduce that:

u I | ξ = ψ φ (I).
Note that we have a natural isomorphism of B-modules:

γ : W (B) ∼ -→ B{τ } ∀i ≥ 0, f • • • f (i-1) -→ τ i .
For all x ∈ W (B) and for all a ∈ A, we have:

γ(f x (1) ) = τ γ(x), γ(ρ(a)x) = γ(x)φ a .
In particular γ is an isomorphism of B[ρ(A)]-modules, and since W (B) is a finitely generated B[ρ(A)]-module of rank one, this is also the case of B{τ }. Write

f = i ρ(ai)bi k ρ(c k )d k , for some a i , c k ∈ A, b i , d k ∈ B, we have the following equality in B{τ } : i b i φ ai = k d k τ φ c k .
For σ ∈ G, we set: 1) .

W σ (B) = ⊕ i≥0 Bσ(f ) • • • σ(f ) (i-
We have again an isomorphism of B[ρ(A)]-modules:

γ σ : W σ (B) ≃ B{τ }. Again, ∀x ∈ W σ (B), ∀a ∈ A, γ σ (ρ(a)x) = γ σ (x)φ σ a .
Let I be a non-zero ideal of A, and let σ = σ I ∈ G. We start from the relation:

i b σ i φ σ ai = k d σ k τ φ σ c k .
We multiply on the right by φ I , to obtain (see [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Theorem 7.4.8):

i b σ i φ I φ ai = k d σ k τ φ I φ c k . Since γ(f u (1) 
I ) = τ φ I , we get:

( i ρ(a i )b σ i ).γ(u I ) = ( k d σ k ρ(c k )).γ(f u (1) 
I ).

In other words, we have proved:

σ(f )u I = f u (1) 
I .

Now, let J be a non-zero ideal of A. We have:

γ(u IJ ) = φ IJ = φ σ J φ I . Since ∀i ≥ 0, σ(f • • • f (i-1) )u I = f • • • f (i-1) u (i) I , we get: γ(u σ J u I ) = φ σ J φ I . It implies: u IJ = σ(u J )u I .
Corollary 3.2. We have:

Sht = {σ(f ), σ ∈ G}.
Furthermore, for σ ∈ G, φ σ is the Drinfeld module associated to the shtuka function σ(f ).

Proof. Let σ ∈ G and let g ∈ Sht be the shtuka function associated to

φ σ . By the proof of Lemma 3.1, if a ′ i , c ′ k ∈ A, b ′ i , d ′ k ∈ B are such that i b ′ i φ σ a ′ i = k d ′ k τ φ σ c ′ k , then: g = i ρ(a ′ i )b ′ i k ρ(c ′ k )d ′ k .
Again, by the proof of Lemma 3.1, we get:

g = σ(f ). Lemma 3.3. Let ι ∞ : H → H(( 1 t )) be a homomorphism of K-algebras correspond- ing to ∞. Write ι ∞(f ) = α(f ) t k + i≥k+1 f i 1 t i ∈ H(( 1 t )), α(f ) ∈ H × , f i ∈ H, i ≥ 0, k ≤ -1. Then: H = K(F ∞ , α(f ), f i , i ≥ k + 1).
Furthermore:

H A = K(F ∞ , f i α(f ) , i ≥ k + 1).
In particular, there exists u(f ) ∈ B × such that:

• H = H A (u(f )), • α(f ) ≡ ι ∞(u(f )) (mod H × A ), • K( f u(f ) ) = Frac(H A ⊗ Fq A). Proof. By Corollary 3.2, since |G| = | Sht |, we have: H = K(f ). Recall that H(( 1 t )) is isomorphic to the completion of H at ∞. Since ∞ splits totally in K(F ∞ ) in d ∞ places, we deduce that the natural map ι ∞ : H ֒→ H(( 1 t )) is Gal(H/K(F ∞ ))-equivariant. Thus: H = K(F ∞ , α(f ), f i , i ≥ k + 1). If I = aA, a ∈ A \ {0}, then u I = ρ(a)
, so that we have by Lemma 3.1 :

σ I (f ) = sgn(a) q n(φ) -q n(φ)+1 f. In particular: sgn ∞(-1) (ι ∞(-1) (f )) ∈ F × ∞ .
We have α(f )

q d∞ -1 q-1 ∈ H A , and f α ′ (f ) ∈ Frac(H A ⊗ Fq A), where α ′ (f ) ∈ H × is such that ι ∞(α ′ (f )) = α(f ) (observe that ι ∞ | H ∈ G). Since H = K(f ), we get the second assertion. Since H/H A is totally ramified at each place of H A above ∞, B × (B)
′× is a finite abelian group, where we recall that B ′ is the integral closure of A in H A . Now recall that H/H A is a cyclic extension of degree q d∞ -1 q-1 , and

F ∞ ⊂ H A . Let σ = Gal(H A ((B) × )/H A ).
Then we have an injective homomorphism:

B × (B ′ ) × ֒→ F × ∞ , x → x σ(x)
.

The image of this homomorphism is a cyclic group of order dividing q d∞ -1 q-1 . By the proof [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Theorem 7.6.4, there exists

ζ ∈ C × ∞ , ζ q-1 ∈ H, such that: ∀a ∈ A \ {0}, ζφ a ζ -1 ∈ B ′ {τ } and its highest coefficient is in (B ′ ) × . Thus ζ q-1 ∈ B × and H = H A (ζ q-1
). In particular, there exists a group isomorphism:

B × (B ′ ) × ≃ F × ∞ F × q .
This implies by Kummer Theory that:

α(f ) ≡ u ′ (f ) (mod H × A ), for some u ′ (f ) ∈ B × that generates the cyclic group B × (B ′ ) × . Now define u(f ) to be the element in B × such that ι ∞(u(f )) = u ′ (f ).

Special functions.

We fix q d∞ -1 √ -π ∈ C ∞ a root of the polynomial X q d∞ -1 + π = 0. We consider the period lattice of φ:

Λ(φ) = {x ∈ C ∞ , exp φ (x) = 0}.
Then Λ(φ) is a finitely generated A-module of rank one and we have an exact sequence of A-modules induced by exp φ :

0 → Λ(φ) → C ∞ → φ(C ∞ ) → 0,
where φ(C ∞ ) is the F q -vector space C ∞ viewed as an A-module via φ. Lemma 3.4. We have:

Λ(φ) ⊂ q d∞ -1 √ -π -q n(φ) K ∞ ,
and for all I ∈ I(A) : Λ(φ σI ) = ψ φ (I)I -1 Λ(φ).

Proof. Observe that Λ(φ)K ∞ is a K ∞ -vector space of dimension one. Let J be a non-zero ideal of A, and let λ J = 0 be a generator of the A-module of J-torsion points of φ. By the proof of [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Proposition 7.5.16, we have:

λ J ∈ Λ(φ)K ∞ .
By class field theory (see [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], section 7.5), we have:

E := H(λ J ) ⊂ K ∞ ( q d∞ -1 √ -π).
Furthermore, by [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Remark 7.5.17,

λ q d∞ -1 J ∈ K × ∞ .
By local class field theory, for x ∈ K × ∞ , we have:

(x, K ∞ ( q d∞ -1 √ -π)/K ∞ )( q d∞ -1 √ -π) = q d∞ -1 √ -π sgn(x)
.

By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Corollary 7.5.7, for all a ∈ K × , a ≡ 1 (mod J), we get:

(aA, E/K)(λ J ) = sgn(a) -q n(φ) λ J .

Thus, for all a ∈ K × , a ≡ 1 (mod J) :

(a, K ∞ ( q d∞ -1 √ -π)/K ∞ )(λ J ) = sgn(a) q n(φ) λ J .
Therefore, by the approximation Theorem, we get:

∀x ∈ K × ∞ , (x, K ∞ ( q d∞ -1 √ -π)/K ∞ )(λ J ) = sgn(x) q n(φ) λ J .
It implies:

λ J ∈ q d∞ -1 √ -π -q n(φ) K ∞ . Hence, Λ(φ) ⊂ q d∞ -1 √ -π -q n(φ) K ∞ .
The second assertion comes from the fact that we have the following equality in H{{τ }} : φ I exp φ = exp φ σ I ψ φ (I).

Set:

L = ρ(K)(F ∞ )(( q d∞ -1 √ -π)).
Then, by the above Lemma,

H ⊂ F ∞ (( q d∞ -1 √ -π)) ⊂ L. Let v ∞ : L → Q ∪ {+∞} be the valuation on L which is trivial on ρ(K)(F ∞ ) and such that v ∞ ( q d∞ -1 √ -π) = 1 q d∞ -1 . Let τ : L → L be the continuous homomorphism of ρ(K)-algebras such that: ∀x ∈ F ∞ (( q d∞ -1 √ -π)), τ (x) = x q . Observe that: ∀x ∈ L, v ∞ (τ (x)) = qv ∞ (x).
Lemma 3.5. We have:

Ker exp φ | L = Λ(φ)ρ(K),
where Λ(φ)ρ(K) is the ρ(K)-vector space generated by Λ(φ).

Proof. The proof is standard in non-archimedean functional analysis, we give a sketch of the proof for the convenience of the reader. We have:

Λ(φ)ρ(K) ⊂ Ker exp φ | L .
Let:

M = q d∞ -1 √ -πρ(K)(F ∞ )[[ q d∞ -1 √ -π]].
Let log φ ∈ H{{τ }} such that log φ exp φ = exp φ log φ = 1. If we write: log φ = i≥0 l i (φ)τ i , then there exists C ∈ R such that, for all i ≥ 0, v ∞ (l i (φ)) ≥ Cq i . It implies that there exists an integer N ≥ 0 such that exp φ is an isometry on M N . Now, select θ ∈ A \ F q . Then:

Ker exp φ | F∞[ρ(θ)](( q d∞ -1 √ -π)) = Λ(φ)F q [ρ(θ)].
Since ρ(A) is finitely generated and free as an F q [ρ(θ)]-module, it implies:

Ker exp φ | ρ(A)[F∞](( q d∞ -1 √ -π)) = Λ(φ)ρ(A).
Let V be the ρ(K)-vector space generated by ρ(A)[F ∞ ](( q d∞ -1 √ -π)). Then:

Ker exp φ | V = Λ(φ)ρ(K).
Let x ∈ Ker exp φ | L , then there exists y ∈ V such that:

x -y ∈ M N . Thus, exp φ (y -x) = exp φ (y) ∈ M N ∩ V = exp φ (M N ∩ V ).
Therefore, y = z + v, for some z ∈ M N ∩ V, and some v ∈ Λ(φ)ρ(K). It implies that x -v ∈ M N , and hence:

x = v ∈ Λ(φ)ρ(K).
Lemma 3.6. We consider the following ρ(K)-vector space:

V = a∈A\Fq exp φ ( 1 a -ρ(a) Λ(φ)ρ(K))
Then, we have:

dim ρ(K) V = 1.
Proof. For any a ∈ A, we set:

V a = {x ∈ L, φ a (x) = ρ(a)x}.
Then, if a ∈ F q , by Lemma 3.5, we have:

V a = exp φ ( 1 a -ρ(a) Λ(φ)ρ(K)),
and:

dim ρ(K) V a = deg a = [K : F q (a)].
Select θ ∈ A\ F q such that K/F q (θ) is a finite separable extension. Let b ∈ A\ F q and let P b (X) ∈ F q [θ][X] be the minimal polynomial of b over F q (θ). Since V θ is an A-module via φ and φ b induces a ρ(K)-linear endomorphism of V θ , it follows that:

ρ(P b )(φ b ) = 0.
This implies that the minimal polynomial of φ b viewed as an F q (ρ(θ))-linear endomorphism of V θ is ρ(P b (X)). Observe that V θ is the ρ(K)-vector space generated by:

exp φ ( 1 θ -ρ(θ) Λ(φ)F q (ρ(θ))),
and:

dim Fq(ρ(θ)) exp φ ( 1 θ -ρ(θ) Λ(φ)F q (ρ(θ))) = deg θ.
Therefore, ρ(P b (X)) is the minimal polynomial of φ b viewed as a ρ(K)-linear endomorphism of V θ .

Select θ ′ ∈ A \ F q such that K = F q (θ, θ ′ ). Then the characteristic polynomial of φ θ ′ on the ρ(K)-vector space V θ is ρ(P θ ′ (X)). Since P θ ′ (X) has simple roots, if

V ′ = V θ ∩ V θ ′ , we get: dim ρ(K) V ′ = 1. Now, let b ∈ A, there exists x, y ∈ A[θ, θ ′ ], such that b = x y . Let λ b ∈ ρ(K) such φ b | V ′ is
the multiplication by λ b , then for any v ∈ V ′ \ 0, we have:

ρ(y)λ b v = φ yb v = ρ(x)v
It follows that:

λ b = ρ(b). Let sgn : ρ(K)(F ∞ )((π)) × → ρ(K)(F ∞ ) × be the group homomorphism such that Ker sgn = π Z × (1 + πρ(K)(F ∞ )[[π]]), and sgn | ρ(K)(F∞) × = Id | ρ(K)(F∞) × . Let π * = ( q d∞ -1 √
-π) (q-1)q n(φ) .

Lemma 3.7. We have:

f π * ∈ ρ(K)(F ∞ )((π)), v ∞ (f ) ≡ - (q -1)q n(φ)
q d∞ -1 (mod (q -1)Z), and:

N ρ(K)(F∞)/ρ(K) (sgn(f π * )) = 1.
Proof. 1) Recall that:

V = a∈A\Fq exp φ ( 1 a -ρ(a) Λ(φ)ρ(K)).
By Lemma 3.4, we have:

V ⊂ ( q d∞ -1 √ -π) -q n(φ) ρ(K)(F ∞ )((π)).
Thus, by Lemma 3.6, there exists

U ∈ ( q d∞ -1 √ -π) -q n(φ) ρ(K)(F ∞ )((π)) \ {0}, such that: ∀a ∈ A, φ a (U ) = ρ(a)U. Write f = i ρ(ai)bi k ρ(a ′ k )b ′ k , a i , a ′ k ∈ A, b i , b ′ k ∈ B.
Then, by the proof of Lemma 3.1, we have:

i b i φ ai = k b ′ k τ φ a ′ k . Thus, ( i ρ(a i )b i )U = ( k ρ(a ′ k )b ′ k )τ (U ).
Therefore:

τ (U ) = f U. In particular, {x ∈ L, τ (x) = f x} = ρ(K)U.
We also get:

f ∈ π -1 * ρ(K)(F ∞ )((π)). 2) Let F = f π * ∈ ρ(K)(F ∞ )((π)). Set R = U ( q d∞ -1 √ -π) q n(φ) ∈ ρ(K)(F ∞ )((π)). We have: τ (R) = F R.
Let i 0 = v ∞ (F ) ∈ Z, and write:

F = i≥i0 F i (-π) i , F i ∈ ρ(K)(F ∞ ).
Let λ = F i0 . Set:

α = q-1 √ -π i0 ( i≥0 F (i) λ (i) (-π) q i i0 ) -1 ∈ L × , where q-1 √ -π = ( q d∞ -1 √ -π) q d∞ -1 q-1
. Then clearly:

τ (α) = F λ α.
Thus:

τ ( R α ) = λ R α .
This implies:

R = µα, µ ∈ ρ(K)(F ∞ ) × .
In particular, i 0 ≡ 0 (mod q -1), i.e. v ∞ (f ) ≡ -(q-1)q n(φ)

q d∞ -1

(mod q -1). Also:

sgn(R) = µ sgn(α).
Since sgn(α) = (-1)

i 0 q-1 , we get: τ (µ) µ = λ.
We set:

T := ρ(A)[F ∞ ](( q d∞ -1 √ -π)) ⊂ L.
Then T is complete with respect to the valuation v ∞ , and:

{x ∈ T, τ (x) = x} = ρ(A).
Furthermore, we have (see the proof of Lemma 3.5):

Ker exp φ | T = Λ(φ)ρ(A).
Let ev : ρ(A)[F ∞ ] → F q ⊂ C ∞ be a homomorphism of F ∞ -algebras. Such a homomorphism induces a continuous homomorphism F ∞ (( q d∞ -1 √ -π))-algebras:

ev : T → C ∞ .
We denote by E the set of such continuous homomorphisms from T to C ∞ .

Proposition 3.8. We have:

f ∈ T × , sgn(f π * ) ∈ ρ(A)[F ∞ ] × .
Furthermore there exists U ∈ T \ {0} such that:

{x ∈ L, τ (x) = f x} = U ρ(K).
If d ∞ = 1, then sgn(f π * ) = 1, and we can take:

U = q d∞ -1 √ -π -1 q-1 √ -π i0 ( i≥0 (f π * ) (i) (-π) q i i0 ) -1 ∈ T × , where i 0 := v ∞ (f π * ).
Proof. Recall that f ∈ H ⊂ L. Le P be a point in X(F q ) above a maximal ideal of ρ(A). Then P above a maximal ideal of ρ(A)[F ∞ ] which can be viewed as the kernel of some homomorphism of F ∞ -algebras ev :

ρ(A)[F ∞ ] → F q .
Since the field of constants of H is F ∞ , we deduce that ev can be uniquely extended to a homomorphism of H-algebras:

ev : ρ(A)[H] → C ∞ .
Furthermore, the kernel of the above homomorphism corresponds to P ∩ H (recall that H = Frac(ρ(A)[H])). Then ev extends to a continuous homomorphism of F ∞ (( q d∞ -1 √ -π))-algebras:

ev : T → C ∞ .
We deduce that, by [START_REF] Thakur | Shtukas and Jacobi sums[END_REF], Lemma 1.1, for any ev ∈ E, ev(f ) is well-defined. Thus f ∈ T. Therefore, by Lemma 3.7, we have:

f ∈ π Z * × (sgn(f π * ) + πρ(A)[F ∞ ][[π]]), where sgn(f π * ) ∈ ρ(A)[F ∞ ] is such that: N ρ(K)(F∞)/ρ(K) (sgn(f π * )) = 1. Thus: sgn(f π * ) ∈ ρ(A)[F ∞ ] × ,
and there exists

µ ∈ ρ(A)[F ∞ ] \ {0} such that: sgn(f π * ) = τ (µ) µ .
In particular, f ∈ T × . Furthermore, there exists a non-zero ideal I of A such that:

µρ(A)[F ∞ ] = ρ(I)ρ(A)[F ∞ ].
Now, we use the proof of Lemma 3.7. We put i 0 = v ∞ (f π * ) (observe that i 0 ≡ 0 (mod q -1)) and set:

U = µα q d∞ -1 √ -π -q n(φ)
, Proposition 3.11. There exists θ ∈ A \ F q , a ∈ A[ρ(A)], and a special function U ∈ T, such that for all i ≥ 0 :

ρ(θ) -θ q i a (i) U | ξ (i) = e i (φ) π q i .
In particular, for any special function U ′ associated to f, we have :

∀i ≥ 0, f (i) U ′ | ξ (i) ∈ π q i H. Proof. Let A = A[ρ(K)].
We still denote by ρ the obvious ρ(K)-linear map A → ρ(K). We observe that:

Kerρ = a∈A (a -ρ(a))A.
We also observe that there exists θ ∈ A \ F q such that ρ(θ) -θ ∈ Kerρ \ (Kerρ) 2 . Set z = ρ(θ). Then z -θ has a zero of order one at ξ (observe that z -θ q i has a zero of order one at ξ (i) ). Note that K/F q (θ) is a finite separable extension, therefore there exists y ∈ A such that K = F q (θ, y). Let P (X) ∈ F q [θ][X] be the minimal polynomial of y over F q (θ) and set:

a = P (X) X -y | X=ρ(y) ∈ A[ρ(A)] ⊂ A.
Since P (X) has a zero of order one at y, we have:

a ∈ Kerρ.
Let's set:

U = exp φ ( a z -θ π) ∈ T.
Since a z-θ ∈ A, we have:

U = 0.
Furthermore, observe that F q [θ, y] ⊂ A ⊂ Frac(F q [θ, y]). Thus:

∀b ∈ A, φ b (U ) = ρ(b)U.
We conclude that:

U ∈ ({x ∈ L, τ (x) = f x} \ {0}) ∩ T.
Let's set: δ = a z -θ .

We have:

U = i≥0 δ (i) e i (φ) π q i .
We therefore get:

∀i ≥ 0, (δ -1 ) (i) U | ξ (i) = e i (φ) π q i .
The last assertion comes from the fact that f (i) has a zero of order at least one at ξ (i) .

We refer the reader to [START_REF] Anderson | Rank one elliptic A-modules and A-harmonic series[END_REF] for the explicit construction of f in the case d ∞ = 1, and to [START_REF] Green | Special L-values and shtuka functions for Drinfeld modules on elliptic curves[END_REF] for the explicit construction of the special functions attached to f in the case g = 1 and d ∞ = 1.

We easily deduce that if f is a shtuka function relative to ∞ (note that f is well-

defined modulo {x ∈ F × ∞ , x q d∞ -1 q-1 = 1}), then f is of the form: z -x z -ζ v, v ∈ H × . Let θ = 1 P∞(x) ∈ A. Then: sgn(θ) = 1, deg θ = d ∞ .
Let φ be the Drinfeld module attached to f, then:

φ θ = θ + • • • + τ d∞ .
We have:

f • • • f (d∞-1) = d∞-1 k=0 (z -x q k ) P ∞ (z) v q d∞ -1 q-1
.

We get:

1 = d∞-1 k=0 (ζ -x q k )v q d∞ -1 q-1
.

Thus:

(vg q-1 )

q d∞ -1 q-1 = 1, So that, f = z -x z -ζ g 1-q ζ ′ , where ζ ′ ∈ F × ∞ is such that: (ζ ′ ) q d∞ -1 q-1 = 1.
Furthermore, if we write exp φ = i≥0 e i (φ)τ i , e i (φ) ∈ H, then:

e i (φ) = g q i -1 (ζ ′ ) -q i -1 q-1 i-1 k=0 x q i -ζ q k x q i -x q k .
We also deduce that:

∀a ∈ A, φ a = a + • • • + sgn(a)τ deg a . Recall that H ⊂ C ∞ , and v ∞ (x -ζ) = 1. We now work in L = F ∞ (z)(( q d∞ -1 -P ∞ (x))).
Recall that g is the Thakur-Gauss sum associated to sgn, i.e. let C :

F q [x] → F q [x]{τ } the homomorphism of F q -algebras such that C x = x + τ, we have chosen λ ∈ H \ {0} such that C P∞(x) (λ) = 0
, and:

g = - y∈Fq[x]\{0},deg x y<d∞ sgn(y) -1 C y (λ).
Furthermore, λ is chosen is such a way that:

λ ∈ q d∞ -1 -P ∞ (x)K ∞ , sgn( λ q d∞ -1 -P ∞ (x) ) = 1.
Thus: sgn( g

q d∞ -1 -P ∞ (x) ) = 1.
Recall also that:

T = ρ(A)[F ∞ ](( q d∞ -1 -P ∞ (x))). We can choose f such that ζ ′ = 1, i.e. f = z-x z-ζ g 1-q
. Now, recall that:

f, z -x z -ζ ∈ T × .
Set:

U = i≥0 (1 + (ζ -x) q i z -ζ q i ) -1 ∈ L × .
Then: U ∈ T × .

Furthermore:

τ (U ) = z -x z -ζ U.
Let's set:

ω = g -1 U,
Then:

τ (ω) = f ω, sgn(ω q d∞ -1 -P ∞ (x)) = 1, ω ∈ T × , {x ∈ T, τ (x) = f x} = ωρ(A).
Finally observe that:

(z -x)ω | ξ = g -1 (x -ζ) i≥1 (1 + (ζ -x) q i x -ζ q i ) -1 .
Thus, there exists b ∈ K × , sgn(b) = 1, ζ ′ a root of P ∞ (x), such that:

π = bg ′-1 (x -ζ ′ ) i≥1 (1 + (ζ ′ -x) q i x -(ζ ′ ) q i ) -1 ,
for some well-chosen Thakur Gauss sum g ′ relative to a twist of sgn . Let's treat the elementary (and well-known, see [START_REF] Anderson | Tensor Powers of the Carlitz Module and Zeta Values[END_REF], and especially the proof of Lemma 2.5.4) case d ∞ = 1.Then A = F q [θ] for some θ ∈ K, sgn(θ) = 1. Let's take x = θ+1 θ . Then P ∞ (x) = x -1, and ζ = 1. In that case:

g = q-1 -P ∞ (x) = q-1 - 1 θ .
We get:

f = z -x z -1 g 1-q = t -θ,
where t = ρ(θ). We have:

φ 1 P∞ (x) = φ θ = θ + τ.
We get:

ω = q-1 √ -θ i≥0 (1 - t θ q i ) -1 ∈ T = F q [t](( q-1 -1 θ )).
In this case φ is standard, thus we have:

Ker exp φ = πA, for π ∈ q-1 √ -θK ∞ , sgn( π q-1 -1 θ ) = 1.
Let's set:

ω ′ = exp φ ( π f ) ∈ T \ {0}.
Then, one has:

φ θ (ω ′ ) = exp φ (θ π t -θ ) = tω ′ .
Thus:

∀a ∈ A, φ a (ω ′ ) = ρ(a)ω ′ .
Therefore there exists a ∈ A \ {0} such that:

ω ′ = ωρ(a).
But, since ∀i ≥ 0, v ∞ (e i (φ)) = iq i , by examining the Newton polygon of i≥0 e i (φ)τ i , we get:

v ∞ ( π) = -q q -1 .
This implies:

v ∞ (ω ′ - π f ) ≥ q - q q -1 .
Therefore:

sgn(ω ′ q-1 -1 θ ) = sgn( π f q-1 -1 θ ) = -1.
Thus:

ω ′ = -ω.
We get:

-π θ 2 = (z -x)ω ′ | ξ = -(z -x)ω | ξ . Thus: (z -x)ω | ξ = π θ 2
, and therefore:

π = θ 2 (z -x)ω | ξ = q-1 √ -θθ i≥1 (1 -θ 1-q i ) -1 .

A rationality result for twisted L-series

Let s be an integer, s ≥ 1. We introduce:

A s = A ⊗ Fq • • • ⊗ Fq A = A ⊗s ,
and set:

k s = Frac(A s ). For i = 1, . . . , s, let ρ i : K → k s be the homomorphism of F q -algebras such that ∀a ∈ A, ρ i (a) = 1 ⊗ • • • 1 ⊗ a ⊗ 1 • • • ⊗ 1
, where a appears at the ith position. We set:

A s = A ⊗ Fq k s , K s = Frac(A s ),
H s = Frac(B ⊗ Fq k s ). We identify H with its image H ⊗ 1 in H s , and k s with its image 1 ⊗ k s . Thus:

A s = A[k s ].
We also identify G with the Galois group of H s /K s . For i = 1, . . . , s, ρ i induces a homomorphism of H-algebras:

ρ i : H → H s . Let K s,∞ be the ∞-adic completion of K s , i.e.: K s,∞ = k s [F ∞ ]((π)).
We set:

H s,∞ = H s ⊗ Ks K s,∞ . Then we have an isomorphism of K s,∞ -algebras:

κ : H s,∞ ≃ k s [F ∞ ]((π * )) |Pic(A)| ,
where we set π * := q d∞ -1 q-1 √ -π. Let V be a finite dimensional K s,∞ -vector space. An A s -module M, M ⊂ V, will be called an A s -lattice in V, if M is a finitely generated A s -module which is discrete in V and such that M contains a K s,∞ -basis of V. For example,

B s := B[k s ] is an A s -lattice in H s,∞ .
Let φ ∈ Drin and let f be its associated shtuka function. For i = 1, . . . , s we set:

f i = ρ i (f ).
Let τ : H s,∞ → H s,∞ be the continuous homomorphism of k s -algebras such that:

∀x ∈ H ⊗ K K ∞ , τ (x) = x q .
Let ϕ s : A s → H s {τ } be the homomorphism of k s -algebras such that:

∀a ∈ A, ϕ s,a = deg a k=0 φ a,k s i=1 k-1 j=0 f (j) i τ k .
We consider:

exp ϕs = k≥0 e k (φ) s i=1 k-1 j=0 f (j) i τ k ∈ H s {{τ }}.
Then: ∀a ∈ A s , exp ϕs a = ϕ s,a exp ϕs . Furthermore exp ϕs converges on H s,∞ . Proposition 5.1. Assume that s ≡ 1 (mod q -1). The A s -module Ker(exp ϕs : H s,∞ → H s,∞ ) is a finitely generated A s -module, discrete in H s,∞ and of rank | Pic(A) |. In particular, Ker exp ϕs is an A s -lattice in {x ∈ H s,∞ , ∀a ∈ A \ {0}, σ aA (x) = sgn(a) q n(φ) (s-1) x}. Furthermore, if s ≡ 1 (mod q -1), then:

Ker exp ϕs = {0}.
Proof. One can show that, for any s, Ker exp ϕs is a finitely generated A s -module and is discrete in H s,∞ .

We view H s as a subfield of k s [F ∞ ]((π * )). There exists G ⊂ G a system of representatives of G Gal(H/HA) , such that: ∀x ∈ H s , κ(x) = (σ(x)) σ∈G .

By Proposition 3.8, for i = 1, . . . , s, σ ∈ G, we can select a non-zero element

U i,σ ∈ L s = k s [F ∞ ](( q d∞ -1 √ -π)) such that: τ (U i,σ ) = σ(f i )U i,σ .
Thus, by similar arguments to those of the proof of Lemma 3.5, we get:

Ker exp σ(ϕs) | Ls = Λ(φ σ )k s s i=1 U i,σ
.

Recall that (see Proposition 3.8):

U i,σ ∈ Λ(φ σ )k s ⊂ ( q d∞ -1 √ -π) -q n(φ) K s,∞ ,
and (Lemma 3.4): Λ(φ σ )k s ⊂ ( q d∞ -1 √ -π) -q n(φ) K s,∞ . Thus:

Ker exp σ(ϕs) | Ls ⊂ ( q d∞ -1 √ -π) q n(φ) (s-1) K s,∞ .

Thus, if s ≡ 1 (mod q -1), we get:

Ker exp σ(ϕs) | ks[F∞]((π * )) = Λ(φ σ )k s s i=1 U i,σ
, and if s ≡ 1 (mod q -1) :

Ker exp σ(ϕs) | ks[F∞]((π * )) = {0}. Remark 5.2. Let H ′ s = Frac(H A ⊗ Fq k s ). Let I = aA, a ∈ A \ {0}
, and σ = σ I ∈ Gal(H/H A ). We have already noticed that: σ(f ) = sgn(a) q n(φ) -q n(φ)+1 f. We verify that:

∀σ ∈ Gal(H/H A ), ϕ σ s = ϕ s ⇔ s ≡ 1 (mod q d∞ -1 q -1 ).
In particular, when s ≡ 1 (mod q d∞ -1), ϕ s is defined over H ′ s , exp ϕs : H s → H s is Gal(H/H A )-equivariant, and Ker exp ϕs is an

A s -lattice in H ′ s,∞ := H ′ s ⊗ Ks K s,∞ .
We introduce (see [START_REF] Anglès | Stark units in positive characteristic[END_REF]):

L s = I∈I(A),I⊂A s k=1 ρ k (u I ) ψ φ (I) σ I ∈ H s,∞ [G] × .
Theorem 5.3. Let s ≡ 1 (mod q d∞ -1 q-1 ). Set:

W ′ s = (⊕ i1,...,is≥0 B s k=1 f k • • • f (i k -1) k
) Gal(H/HA) .

Then:

exp ϕs (L s W ′ s ) ⊂ W ′ s .
Proof. By our assumption on s, and by Lemma 3.1, we get:

L s ∈ H ′ s,∞ [G] × .
The result is then a consequence of the above remark and [START_REF] Anglès | Stark units in positive characteristic[END_REF], Corollary 4.10.

Remark 5.4. Let W ′ s = (⊕ i1,...,is≥0 B s k=1 f k • • • f (i k -1) k
) Gal(H/HA) . By Lemma 3.3, there exists u ∈ B × such that:

f u ∈ Frac(H A ⊗ Fq A).
In particular:

B = B ′ [u]
, where we recall that B ′ is the integral closure of A in H A . Thus:

W ′ s = ⊕ i1,...,is≥0 B ′ u -s k=1 q i k -1 q-1 s k=1 f k • • • f (i k -1) k .
Let W ′ s be the k s -vector space generated by W ′ s . Then, by the proof of [START_REF] Anglès | Stark units in positive characteristic[END_REF], Lemma 4.4, W ′ s is a fractional ideal of B ′ s := B ′ [k s ], and therefore W ′ s is an A s -lattice in H ′ s,∞ .

Proposition 5.5. Let s ≡ 1 (mod q d∞ -1 q-1 ). We set:

U s = {x ∈ H ′ s,∞ , exp ϕs (x) ∈ W ′ s }. Then U s is an A s -lattice in H ′ s,∞ and: L s W ′ s ⊂ U s . If furthermore s ≡ 1 (mod q d∞ -1), then
Us Ker exp ϕs is a finite dimensional k s -vector space. In particular, there exists a ∈ A s \ {0} such that:

aL s W ′ s ⊂ Ker exp ϕs . Proof. Since W ′ s is an A s -lattice in H ′ s,∞ , we deduce that U s is discrete in H ′ s,∞
and is a finitely generated A s -module. By Theorem 5.6, we have: If s ≡ 1 (mod q d∞ -1), then Ker exp ϕs is a A s -lattice in H ′ s,∞ by Proposition 5.1. The proposition follows.

L s W ′ s ⊂ U s . Let G ′ = Gal(H A /K),
Theorem 5.6. Let s ≡ 1 (mod q d∞ -1). We work in L s := k s [F ∞ ](( q d∞ -1 √ -π)). There exist non-zero elements ω 1 , . . . , ω s ∈ T s := A s [F ∞ ](( q d∞ -1 √ -π)) such that:

τ (ω i ) = f i ω i .
There also exists h ∈ B \ {0} such that:

∀x ∈ W ′ s , L s (x) s k=1 ω i π ∈ hK s .
Furthermore, if φ is standard, then h ∈ F × ∞ . Proof. By Proposition 3.8, we have: f 1 , . . . , f s ∈ T × s . By the same proposition, there exist ω 1 , . . . , ω s ∈ T s \ {0} such that:

τ (ω i ) = f i ω i .
We deduce, by Lemma 3. We end this section with an application of the above Theorem. Let φ ∈ Drin such that φ is standard, i.e.

Ker exp φ = πA.

Let f ∈ Sht be the shtuka function associated to φ.

Theorem 5.7. Let n ≥ 1, n ≡ 0 (mod q d∞ -1). Then, there exists b ∈ B ′ \ {0} such that we have the following property in C ∞ :

I σI (b) ψ φ (I) n π n ∈ H × A .
Proof. Write n = q k -s, k ≡ 0 (mod d ∞ ), s ≡ 1 (mod q d∞ -1).

1) Observe that the map u . extends naturally into a map u . : I(A) → H × , such that: 2) By Theorem 5.6, we have:

L s (1) s j=1 ω j π ∈ K s .
We now apply τ k to the above rationality result. We get:

s j=1 (f j • • • f (k-1) j ω j ) τ k (L s (1)) π q k ∈ K s .
Let j ∈ {1, . . . , s}. Let H s,j = H(ρ k (K), k = 1, . . . , s, k = j). Let ξ j be the place of H s /H s,j which corresponds to the kernel of the homomorphism of H s,j -algebras: ρ j (A)[H s,j ] → H s,j , ρ j (a) → a. By Proposition 3.11, there exists x j ∈ K(ρ j (K)) × such that we have (recall that e 1 (φ) = 0) : (1 -1 ψ φ (P ) q k -s (P, H/K)) -1 (b) ∈ K × ∞ .

x j f j • • • f (k-1) j ω j | ξj ∈ πH × A . Now: τ k (L s (1)) =
The Theorem follows.

  4 and Lemma 3.5, that: Ker exp ϕs | L = h πIA s s k=1 ω i , where I is some factional ideal of A, h ∈ H × . Let x ∈ W ′ s , by Proposition 5.5, we get: L s (x) s k=1 ω i π ∈ hK s .

  ∀x ∈ K × , u xA = ρ(x) sgn(x) , ∀I, J ∈ I(A), u IJ = σ I (u J )u I .By Lemma 3.1, we deduce that for all l ≥ 0, τ l (uI ) uI has no zero and no pole at ξ.For m ≥ 1, m ≡ 0 (mod d ∞ ), let χ m : I A → H ×A , such that:∀I ∈ I(A), χ m (I) = τ m (u I ) u I | ξ .We observe that:∀x ∈ K × , χ m (xA) =1, ∀I, J ∈ I(A), χ m (IJ) = σ I (χ m (J))χ m (I). In particular, there exists b m ∈ B ′ \ {0} such that: ∀I ∈ I(A), χ m (I) = σ I (b m ) b m .

  j (u I ) ψ φ (I) q k s j=1 τ k (ρ j (u I )) ρ j (u I ) .Therefore, there exists b ∈ B ′ \ {0} such that:τ k (L s (1)) | ξ1,...,ξs = 1 b P

  and let res :H ′ s,∞ [G] → H ′ s,∞ [G ′ ] be the usual restriction map, then: res(L s ) ∈ H ′ s,∞ [G ′ ] × . Therefore L s W ′ s is an A s -lattice in H ′ s,∞ . We conclude that U s is an A s -lattice in H ′ s,∞ .
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where :

Then:

Note that U is well-defined modulo ρ(K) × and if d ∞ = 1, then U ∈ T × . Definition 3.9. A non-zero element in {x ∈ L, τ (x) = f x} will be called a special function attached to the shtuka function f. Remark 3.10. Let M = {x ∈ T, τ (x) = f x}. Then, by the above Proposition, there exists U ∈ T \ {0} such that:

Furthermore (see the proof of Lemma

Thus M is a finitely generated ρ(A)-module of rank one. When d ∞ = 1, the above Proposition tells us that M is a free ρ(A)-module. In general, we have:

where B ∈ I(A), U ′ ∈ L × , and M = U ′′ ρ(B ′ ) if and only if

Let I be a non-zero ideal of A, and let σ = σ I ∈ G. Recall that, by Lemma 3.1, we have:

uI ∈ T × , but in general we don't have u I ∈ T × . By Lemma 3.1, we have:

where I n = x I A, n being the order of I in Pic(A). Thus:

We leave open the following question: is M a free ρ(A)-module ? We will show in section 4 that the answer is positive if g = 0.

3.3. The period π. By Lemma 2.2, and Lemma 3.4, let f be the unique shtuka function in Sht such that, if φ is the Drinfeld module associated to f, we have:

where π ∈ q d∞ -1 √ -π

K ∞ , sgn( π ( q d∞ -1 √ -π) q n(φ) ) = 1.

4.

A basic example: the case g = 0

In this section, we assume that the genus of K is zero. Let's select x ∈ K such that K = F q (x) and v ∞ (x) = 0. Let P ∞ (x) ∈ F q [x] be the monic irreducible polynomial corresponding to ∞, then deg x P ∞ (x) = d ∞ . Let sgn : K × ∞ → F × ∞ be the sign function such that sgn(P ∞ (x)) = 1. Then:

Observe that:

.

Let P be the maximal ideal of A which corresponds to the pole of x, i.e.

, the order of P in Pic(A) is exactly d ∞ , and P d∞ = 1 P∞(x) A. We also observe that the Hilbert class field of

We know that A[F ∞ ] is a principal ideal domain and we have:

, where u ∈ B × is such that:

Indeed, using Thakur Gauss sums ( [START_REF] Thakur | Gauss sums for Fq[T[END_REF]), there exists g ∈ K such that K(F ∞ , g)/K is a finite abelian extension and:

Furthermore K(F ∞ , g)/K is unramified outside ∞ and the pole of x, and P ∞ (x) is a local norm for every place of K(F ∞ , g) above ∞. Let z = ρ(x) ∈ ρ(K) × . Then:

Let Q ∈ X(F q ) be the unique point which is a pole of z, then:

We choose ∞ to be the point of X(F ∞ ) which is the zero of z -ζ. Then: