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STARK UNITS IN POSITIVE CHARACTERISTIC

BRUNO ANGLES, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

ABSTRACT. We show that the module of Stark units associated to a sign-
normalized rank one Drinfeld module can be obtained from Anderson’s equi-
variant A-harmonic series. We apply this to obtain a class formula a la Tael-
man and to prove a several variable log-algebraicity theorem, generalizing An-
derson’s log-algebraicity theorem. We also give another proof of Anderson’s
log-algebraicity theorem using shtukas and obtain various results concerning
the module of Stark units for Drinfeld modules of arbitrary rank.
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INTRODUCTION

The power-series Y, <, % is log-algebraic:

Z % = —log(1 — 2).

n>1

This identity allows one to obtain the value of a Dirichlet L-series at s = 1 as an
algebraic linear combination of logarithms of circular units. Inspired by examples
of Carlitz [I0] and Thakur [26], Anderson ([I], [2]) proved an analogue of this
identity for a sign-normalized rank one Drinfeld A-module, known as Anderson’s
log-algebraicity theorem.

When A = F,[6] (the genus 0 case), various works ([T} 2, 3] 61 [7, 9], 1T}, [15] 16 [I7,
20, 211, 221 23] ) have revealed the importance of certain units in the study of special
values of the Goss L-functions at s = 1. To give a simple example, the Carlitz
module is considered to play the role of the multiplicative group G,, over Z, and
Anderson ([I} 2]) showed that the images through the Carlitz exponential of some
special units give algebraic elements which are the equivalent of the circular units.
The special units constructed in such a way are then “log-algebraic”. Recently,
Taelman ([22, 23]) introduced the module of units attached to any Drinfeld module
and proved a class formula which states that the special value of the Goss L-
function attached to a Drinfeld module at s = 1 is the product of a regulator term
arising from the module of units and an algebraic term arising from a certain class
module. Also, deformations of Goss L-series values in Tate algebras are investigated
by Pellarin and two of the authors ([6] [7, @, 21]). For higher dimensional versions of
Drinfeld modules, we refer the reader to [3] 1T} 15} 16l 17, [20]. We should mention
that all these works are based on a crucial fact that F,[6] is a principal ideal domain,
which is no longer true in general.

In the present paper, we develop a new method to deal with higher genus cases.
We introduce Stark units attached to Drinfeld A-modules extending the previous
work of two of the authors (J9]) and make a systematic study of these modules of
Stark units. For a sign-normalized rank one Drinfeld module, we prove a direct link
between the module of Stark units and Anderson’s equivariant A-harmonic series,
which is an analogue of Stark’s conjectures. It allows us to obtain a class formula a
la Taelman and a several variable log-algebraicity theorem in the general context.

Let us give now more precise statements of our results.

Let K/F, be a global function field (F, is algebraically closed in K), let A
be the ring of elements of K which are regular outside a fixed place co of K of
degree doo, > 1. The completion K, of K at the place co has residue field F,
and is endowed with the co-adic valuation v : Koo — Z U {+00}. For a € A, we
set: dega := —dsoVso(a). We fix an algebraic closure K o, of Ko, and still denote
Voo ¢ Koo = QU {+00} the extension of ve to Koo. Let 7 : Koo — Koo be the
[F,-algebra homomorphism which sends x to z9.

We choose a sign function sgn : K X — FX, that is, a group homomorphism such
that sgn |px = Idgpx . Let ¢ : A — Ko {7} be a sign-normalized rank one Drinfeld
module (see Section [B2), i.e. there exists an integer i(¢) € N such that:

Vac A, ¢o=a+- -+ sgn(a)qi(d)),rdega'
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Then, the exponential series attached to ¢ is the unique element exp, € Koo {{7}},
such that exp, =1 (mod 7), and:

Va € A, expya = ¢qexp,,.

If we write:
expy = »_ei()T,
i>0

with e;(¢) € K, then the field H := K(e;(¢),i € N) is a finite abelian extension
of K which is unramified outside co (see Section[3.2]). Let B be the integral closure
of Ain H. For all a € A, we have:

0o € B{7}.
For a non-zero ideal I of A, we define ¢y € H{7} to be the monic element in H{7}
such that:

H{r}¢r => H{r}da.

acl
In fact, ¢; € B{r} and we denote its constant term by ¢(I) € B\ {0}.

For simplicity, we will work over the abelian extension H/K. We should mention
that the results presented below are still valid for any finite abelian extension E/K
such that H C E.

Let G = Gal(H/K). For a non-zero ideal I of A, we denote by o7 = (I, H/K) €
G, where (-, H/K) is the Artin map. Let z be an indeterminate over Ko, and let
T.(K~) be the Tate algebra in the variable z with coefficients in K. Let’s set:

Hyo =H®g K,
and:
Tz(HOO) =H®g Tz(KOO)-
Let 7 : T,(Hx) — T,(Hsx) be the continuous F,[z]-algebra homomorphism such
that:
Vo € Hy, 7(x) =2
We set:

expy = Z ei(9)2'tt € H[2J{{r}}.

i>0
Then exp; converges on T (H). Following [9], we introduce the module of z-units
attached to ¢/B:

U(¢/Blz]) = {f € T-(Hu), expz(f) € Blz]}.
We denote by ev : T,(Hs) — Ho the evaluation at z = 1. The module of Stark
units attached to ¢/B is defined by (see [9], Section 2):
Usi(¢/B) = ev(U(¢/Blz])) C Heo.

Then Us(¢p/B) is an A-lattice in Ho, (see Theorem [27), i.e. Usi(¢/B) is an A-
module which is discrete and cocompact in He,. In fact, Us;(¢/B) is contained in
the A-module of the Taelman module of units [22] defined by:

U(¢/B) = {x € Hx,expy(x) € B},
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which is also an A-lattice in Ho. Following Taelman [22], the Taelman class module
H(¢/B) is a finite A-module (via ¢) defined by:
Hy

H(¢/B) = B +expy(Hoo)

Following Anderson [I], we introduce the following series (see Section B.3)):

Zdeg[

L(¢/B;1;2) = ; WU[ € T.(Hw)[G],

where the sum runs through the non-zero ideals I of A. The equivariant A-harmonic
series attached to ¢/B is defined by:

L(6/B) = ev(L(9/B; 1;2)) € Huo[G]

One of our main theorems states (see Theorem B.8)) that the module of Stark
units Ug.(¢/B) can be obtained from the equivariant A-harmonic series L£(¢/B),
which is reminiscent of Stark’s Conjectures ([25]):

Theorem A. We have:
U(¢/Bl2]) = L(¢/B; 1;2) B2
In particular,
Usi(¢/B) = L(¢/B)B.
We will present several applications of this theorem.

Firstly, we apply Theorem [Al to obtain a class formula & la Taelman for ¢/B, by
a different method of Taelman’s original one [23]. Roughly speaking, we introduce
the Stark regulator (resp. the regulator defined by Taelman [23]) attached to ¢/B
by [B : Usi(¢/B)|a € K., (vesp. [B: U(¢/B)la € K. (see Section Z3). We
show (see Theorem 27]):
Theorem B. We have:
. U(¢/B) .
Fitty ———— = Fitt 4 H(¢/B),
Ty~ A0
where, for a finite A-module M, Fitt 4 M is the Fitting ideal of M.

Observe that L(¢/B) induces a Ky-linear map on H.,, and we denote by
detx_ L(¢/B) its determinant. We prove the following formula (see Theorem [B26)):

detKooﬁ((b/B) = CB(l) = H(l - [Bl]
P B4

)te KL,

where 8 runs through the maximal ideals of B. Note that {g(1) is a special value
at s = 1 of some zeta function (p(s) introduced by Goss (see [19], Chapter 8).
Therefore, Theorem [Aland Theorem [Blimply Taelman’s class formula for ¢/B (see

Theorem B.10):
Theorem C. We have:

(8(1) = [B:Usi(¢/B)]a = [B: U(¢/B)|a[H(¢/B)]a.
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When the genus of K is zero and do, = 1, Taelman’s class formula, its higher
dimensional versions, and its arithmetic consequences are now well-understood due
to the recent works ([6], [8], [9], [11], [15], [16], [I7], [22], [23]). All these works are
based on the crucial fact that when g = 0 and d, = 1, the ring A is a principal ideal
domain (when A is not assumed to be principal, the existence of a class formula
is still an open problem in general). Using the module of Stark units, we are able
to overcome this difficulty, and Theorem [C] provides a large class of examples of
Taelman’s class formula when A is no longer principal. We refer the reader to
Section 2.4] for a more detailed discussion.

Secondly, we apply Theorem [A] to prove a several variable log-algebraicity the-
orem, generalizing Anderson’s log-algebraicity theorems (see Theorem [£2). (The
theorem below is valid for any finite abelian extension E/K, H C E, see Theorem
for the precise statement).

Theorem D. Let n > 0 and let X4,...,X,,,2 be n + 1 indeterminates over K.
Let 7 : K[X1,...,X,][[2]] = K[X1,...,X,][[2]] be the continuous F,[[z]]-algebra
homomorphism for the z-adic topology such that Vo € K[X;,...,X,],7(z) = «7.
Then:

Vb € B, expg Z

where I runs through the non-zero ideals of A.

¢1 (X1) - ¢r(Xn)28") € B[Xy,..., Xn, 2],

For n <1 and do = 1, this theorem was due to G. Anderson ([I], Theorem 5.1.1
and [2], Theorem 3):

b
Vb € B, exp¢z zdeel) e Bz,

Vb € B, X)zdeel) € BIX, 2],

where the sum runs through the non-zero ideals of A. Again, this result is now
well-understood when the genus of K is zero (and des = 1) due to the recent
works of many people ([6], [7], [8], [9], [23], [28] Sections 8.9 and 8.10, and the
forthcoming work of M. Papanikolas [20]). However, to our knowledge, Anderson’s
log-algebraicity remains quite mysterious for g > 0 until now.

Thirdly, we present an alternative approach to the previous several variable log-
algebraicity theorem (Theorem [D]) via Drinfeld’s correspondence between Drinfeld
modules and shtukas. Using the shtuka function attached to ¢/B via Drinfeld’s
correspondence, we introduce one variable versions of the previous objects, i.e. the
modules of z-units and Stark units, the equivariant A-harmonic series and the L-
series (see Section 2]). We prove an analogue of Theorem [Al in this one variable
context (see Theorem [L0). More generally, we also obtain a several variable log-
algebraicity theorem (see Corollary [LI0). In the case ¢ = 0 and d, = 1, we
rediscover the Pellarin’s L-series [21] and its several variable variants studied in [4],
[6], [7], [O]. We deduce from this another proof of Theorem [Dl (see Section [4.4]).

Finally, we prove some results concerning the module of Stark units for Drinfeld
modules of arbitrary rank in Section @l In particular, Theorem [Blis still valid for
any Drinfeld module.
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1. NOTATION

Let K/F, be a global function field of genus g, where Fy is a finite field of
characteristic p, having ¢ elements (I, is algebraically closed in K). We fix a place
oo of K of degree d,, and denote by A the ring of elements of K which are regular
outside of co. The completion K, of K at the place co has residue field Fo, and
comes with the oo-adic valuation v : Koo — Z U {4+00}. We fix an algebraic
closure K o, of K4, and still denote by v : Coo — QU {+00} the extension of v
to the completion Coo of K o.

We will fix a uniformizer m of K. Set m; = 7, and for n > 2, choose 7, € ?;
such that 7} = m,—1. If 2 € Q, 2 = I} for some m € Z,n > 1, we set:

zZ . _m
=T, .

Let [, be the algebraic closure of F, in K o, and let Us, = {7 € K, voo(7—1) > 0}.
Then:
F;ZWQXF; X Uso.

Therefore, if z € ?:O, one can write in a unique way:
x = =@ sgn(z)(x), sgn(z) e qu, (x) € Uso.

Let Z(A) be the group of non-zero fractional ideals of A. For I € Z(A),I C A,
we set:
deg I := dimp, A/I.
Then, the function deg on non-zero ideals of A extends into a group homomorphism:
deg : Z(A) — Z.
Let’s observe that, for x € K*, we have:

deg(x) := deg(zA) = —dooVoo (2).

Let I € Z(A), then there exists an integer h > 1 such that I" = 24, r € K*.
We set:
(I) == (2)* € Us.
deg I

Then one shows (see [19], Section 8.2) that the map [] : Z(A) = K o, 1 — ()7~ e
is a group homomorphism such that:
x

sgn(x)’

Vee KX, [zA] =
Observe that:
VI e€Z(A), sgn([I])=1.
If M is a finite A-module, and Fitt 4 (M) is the Fitting ideal of M, we set:
[M]a := [Fitta(M)].

Let’s observe that, if 0 - M; — M — M, — 0 is a short exact sequence of finite
A-modules, then:
[M]a = [Mi]a[M2]a.

Let E/K be a finite extension, and let Og be the integral closure of A in E.
Let Z(Og) be the group of non-zero fractional ideals of Og. We denote by Np/k :
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Z(Og) — Z(A) the group homomorphism such that, if P8 is a maximal ideal of Og
and P =B N A, we have:
[ 3]

Ng/k(P) =P 7
Note that, if B = 2Op,x € E*, then:

Ng/k(B) = Ng/k(2)A,

where Np i : E — K also denotes the usual norm map.

2. STARK UNITS AND L-SERIES ATTACHED TO DRINFELD MODULES
2.1. L-series attached to Drinfeld modules.

Let E/K be a finite extension, and let O be the integral closure of A in E. Let
7:FE — E,z— 2% Let p be an Drinfeld A-module (or a Drinfeld module for short)
of rank 7 > 1 defined over Og, i.e. p: A — Og{7} is an F4-algebra homomorphism
such that:

VGEA\{O}, pa:pa)o-|—pa)17—_|_..._i_paﬂ_deglﬂ_rdega7

where pq.0, ., Pa,rdega € OF, Pa,0 = @, and pg rdega 7 0.
Let 9B be a maximal ideal of O, we denote by p(Og/B) the finite dimensional
F,-vector space Og /B equipped with the structure of A-module induced by p.

Proposition 2.1. The following product converges to a principal unit in KX (i.e.
an element in Use N KX ):

[
Op) = I I ,
Falp/Or) 5 P(G)a

where P runs through the maximal ideals of Of.

Proof. By [19], Remark 7.1.8.2, we have: H4y C E, where Hs/K is the maximal
unramified abelian extension of K such that oo splits completely in H4. Thus
Ng/k () is a principal ideal. Observe that:

FittA% = Ng/x(B).

Thus:
[%]A )

By [18], Theorem 5.1, there exists a unitary polynomial P(X) € A[X] of degree
r’ < r such that:

Ng/r(B) = P(0)4,
Fitmp(%) = P(1)4,

deg(Ng/k (B))
7 doo '

’

(=D)" P(0)
P(1)

This last assertion comes from the fact that P(X) is a power of the minimal poly-
nomial over K of the Frobenius F of % (see [18], Lemma 3.3), and that K(F)/K

Voo ( -1) >
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is totally imaginary (i.e. there exists a unique place of K(F) over co). By the
properties of [-] (see Section [Il), we have:

(Sl (=1)7" P(0)

PG PO

The proposition follows. O

Remark 2.2. The element La(p/Ofr) € KZ is called the L-series attached to
p/Og. By the proof of Proposition 21 La(p/Opg) depends on A, p and Op, but
not on the choice of 7.

Let F//K be a finite extension with F' C E, and such that there exists a unique
place of F' above oo (still denoted by oo). Let A’ be the integral closure of A in F,
then A’ is the set of elements in F' which are regular outside co. We assume that
p extends into a Drinfeld A’-module: p: A’ < Op{7}. Let []a : Z(A) — K be
the map constructed as in Section [I] with the help of the choice of a uniformizer
'€ FX. Let Np_ k.. : Foo = Ko be the usual norm map.

Corollary 2.3. We have:
Nk (La(p/Or)) = La(p/Og).
Proof. Recall that:

[SE]a
La(p/Op) = [~
1;,[ (%) a
where ¥ runs through the maximal ideals of Og. Since Np_/k__ is continuous, we
get by the proof of Proposition 2T}

[O—E]A'
Nr. k. (La(p/OE)) HNF /Koo ?;E )-

@

Let B be a maximal ideal of Of. Since [?E# € F*, we get:

(OB a
[SE]ar [SE ]
Nr /Ko (—op—) = Nryk ( )-
M= 0(ZE) (%

But, observe that if M is a finite A’-module, we have:

NF/K (FittA/M) = Fitt 4 M.
_E
By the proof of Proposition 2.1] “‘T]A is a principal unit in F}, and therefore
T /

NF/K(ﬂ) is also a principal unit in K% . Again, by the proof of Proposition

(P(E)]ar
2.1 we get:
Ny [SE] 4 - [GE]a
(2 (%)l

The corollary follows. O
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2.2. Stark units and the Taelman class module.

Let E/K be a finite extension of degree n, and let O be the integral closure of
Ain E. Set:

FEow = F Qg Ke.

Let M be an A-module, M C FE., we say that M is an A-lattice in E,, if M
is discrete and cocompact in F,. Observe that if M is an A-lattice in F.,, then
there exist e1,...,e, € Ex (recall that n = [E : K]) such that By = @ Koey,
N := @ Ae; C M and 4F is a finite A-module. Note also that Og is an A-lattice
in Fy.

Let 7 : Foo = Eoo,z +— 2% Let p: A — Og{7} be a Drinfeld module of rank
7 > 1. Then, there exist unique elements exp,, log, € E{{7}} such that

exp,, log, € 1+ E{{r}}r,
Va € A, exp,a = p,exp,,
exp, log, = log,exp, = 1.

The formal series exp,, and log, are respectively called the exponential series and
the logarithm series associated to p/Og. We will write:

exp, = Z ei(p)T,

>0
log, = Zli(p)Ti,
>0
with e;(p), li(p) € E. Moreover, exp, converges on Ex, (see [19], proof of Theorem
46.9).

Definition 2.4. We define the Taelman module of units associated to p/Of as
follows:

U(p/Op) ={x € Ex,exp,(z) € Op}.

Then, as a consequence of [22], Theorem 1, the A-module U(p/Op) is an A-
lattice in F.

Definition 2.5. We define the Taelman class module associated to p/Og by:

Eu

Note that H(p/Og) is an A-module via p, and by [22], Theorem 1, H(p/Op) is
a finite A-module.
Let z be an indeterminate over K, and let T, (K ) be the Tate algebra in the
variable z with coefficients in K,,. We set:
T.(Ex) =E®x T,(Ks).

Observe that Es C T,(Fw), and T,(Es) is a free T, (K« )-module of rank [F : K.
Let 7 : T,(Fo) — T.(Ex) be the continuous F,[z]-algebra homomorphism such
that:

Vi € Es, 7(x) =2

Let ev : T,(Ex) = Es be the surjective E-algebra homomorphism given by:

Vf€T.(Ex), ev(f)=fl.=1.
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We have: ker ev = (z — 1)T,(E), and:

Vf€T.(Ex), ev(r(f)) =7(ev(f)).
Recall that: ‘
exp, = Zei(p)T’, with e;(p) € E.

i>0

exp; = Zei(p)ziTi € Elzl{{7}}.

i>0

We set:

Observe that exp; converges on T, (Fx), and:

VfeT:(Ex), ev(exps(f)) =exp,(ev(f)).
Let p: A — Oglz]{r} be the Fy-algebra homomorphism given by:
Va € A, po=a+pe127+-+ pa,rdegazrdegaTTdegaa
where po = a + pa1T +++ + Pa,rdegaT” 8. Then:
Va € A, expya = pgexp;.
Definition 2.6. The module of z-units associated to p/Opg is defined by:
U(p/Oglz]) ={f € Tz(Ex), exp;(f) € Ogplz]}.

And the module of Stark units associated to p/Op is defined by:

Ust(p/Op) :=ev(U(p/Oglz])).

Observe that Ug(p/Og) C U(p/Og).

Theorem 2.7. The A-module Usi(p/Og) is an A-lattice in E. Furthermore:

[ U(p/On)
Ust(p/OF)
Proof. This is a consequence of the proof of [9], Theorem 1. For the convenience of

the reader, we give a sketch of the proof. Let’s set:

T ey
H(p/Oglz]) = Oplz] + expﬁ(Tz (Exo))

Observe that H(p/Og|z]) is an A[z]-module via p, and furthermore H(p/Og[z]) is
a finite F,[z]-module ([9], Proposition 2). Let’s set:

V ={xz € H(p/Ogl#]), (¢ — 1)z = 0}.

Since ker ev = (z — 1)T,(E ), the multiplication by z — 1 on H(p/Ofg) gives rise
to an exact sequence of finite A-modules:

0=V — H(3/Oglz]) — H(5/Og[2]) — H(p/Og) — 0.

Ja=[H(p/Op)]a.

Thus:
Fitt 4V = FittAH(p/OE).
Now, let’s consider the homomorphism of F,[z]-modules a : T.(Esx) — T.(Ex)
given by:
expﬁ(x) - expp(x)

Ve € T,(Fx), «afx)= P

Observe that:
(z = 1)a(U(p/Or)) C Op + exp;(T.(Ex)),
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Va € A,Vx € U(p(Og)), alax) — pa(a(x)) € Oglz].
Thus « induces a homomorphism of A-modules:
a:U(p/Og) = V.

By [9], Proposition 3, this homomorphism is surjective and its kernel is precisely
Ust(p/Og). The theorem follows. O

2.3. Co-volumes.

Let V be a finite dimensional K ,.-vector space of dimension n > 1. An A-lattice
in V is a discrete and cocompact sub-A-module of V.

Lemma 2.8. Let M, N be two A-lattices in V. Then there exists an isomorphism
of Koo-vector spaces o : V. — V such that:

o(M)C N.

Proof. Since A is a Dedekind domain, there exist two non-zero ideals I, J of A, and
two Ko-basis {e1,...en}, {f1,..., fn} of V, such that:

M =@} Ae; ® Iep,
N =" [Af; & Jfn.
Furthermore, M and N are isomorphic as A-modules if and only if I and J have the

same class in the ideal class group Pic(A4) of A. Let x € I71J\{0}. Let 0 : V — V
such that:

O'(Gj)zfj, jzl,...,n—l,

olen) = xfn.
Then:
o(M) C N.
Note that if M and N are isomorphic A-modules then we can select x € K* such
that I=1J = zA and in this case o(M) = N. O

Lemma 2.9. Let M, N be two A-lattices in V. Let 01,09 : V — V be two isomor-
phisms of K -vector spaces such that o;(M) C N,i =1,2. Then:

detho o1 N detho 09 N

sgn(detg__ 1) o1 (M)]A ~ sgn(detx_ o9) og(M)]A '

Proof. Let 0 = a105 ". Since o(02(M)) = 01(M) C N, with o2(M) C N, we can
find a € A with sgna = 1 such that ag(N) C N. Set U = L55(M) N N. Then the

multiplication by a induces an exact sequence of finite A-modules:
oY N o N N
02(M) UQ(M) UQ(M) alN

from which we deduce

U N n
[UQ(M)]A = [la=a"
And ao similarly induces an exact sequence of finite A-modules:
U N 4w N N

0— — 0.

(M) oa(M)  oi(M)  ao(N)
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We get:
N B N v .4, N . N _, detg_(ao)
[al(M)]A B [UQ(M)]A[@(M)]A [ao(N)]A UQ(M)] sgn(detx_(ao))
B N detg__ (o)
- [UQ(M)]Asgn(deth(a))'
The lemma follows. O

Let M, N be two A-lattices in V. By Lemma 2.8 there exists an isomorphism of
K -vector spaces 0 : V — V such that o(M) C N, we set:

deth g [ N ]71
sgn(detg_ o) 'o(M)'4 "
By Lemma [Z9] this is well-defined. In particular, if M, N are two A-lattices in V
such that N C M, then:

[M:N]a=

[M: N]a= [%]A.

N
If M, N,U are three A-lattices in V, we get:
[M: N]a=[M:U]alU : N]a.

Let F//K be a finite extension such that there exists a unique place of F' above
oo (still denoted by co0). Let A’ be the integral closure of A in F. We assume that
V is also an Fi-vector space. Let []ar : Z(A") — F:O be the map constructed as
in Section [I] with the help of the choice of a uniformizer 7’ € FX. Let Np_/x__ :
F — K be the usual norm map.

Lemma 2.10. Let M, N be two A’-lattices in V. Then there exists an integer m > 1
such that [M : N}, € FX,[M : NI} € KX, and:

Proof. Let o : V — V be an isomorphism of F,.-vector spaces such that o(M) C N,

and we set: I' = FittA/%. Then:

FittA% = Np;(I').
Let m > 1 be an integer such that:

' =gzA", zeA\{0}.
Then:

(M2 ] = ( detp o )msgn’(:v)'

sgn’(detp_ o) x
Furthermore, we have:
dethU = NFOO/KOQ (detpooa).
Thus:
Np_ k. (detp o) | sen(Np g (z))

[M: NJ} = (sgn(NFm/Koo (detr_ o)) Nk ()

Therefore:
NFOO/KOO([M : N|'%) € [M: NRFX.
The lemma follows. O
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2.4. Regulator of Stark units and L-series.

Let E/K be a finite extension, F C Cu. Recall that Foo = F Q@ Koo. If M is
an A-lattice in Fo, then we call [Og : M| 4 the A-regulator of M.

Definition 2.11. Let p : A < Og{7} be a Drinfeld module of rank r > 1. We
define the regulator of Stark units associated to p/Og by [Og : Usi(p/Og)]a.

Proposition 2.12. Let p: A < Og{r} be a Drinfeld module of rank r > 1. We
have:

[OE : USt(p/OE)]A € Ux.
Furthermore, the regulator of Stark units relative to p/Op depends on p, A and Og,
not on the choice of .

Proof. Let 8 € A\ TF,, and let L =TF,(0), B = F,[0]. Let [-|p : Z(B) — LZ be the
map as in Section [Tl associated to the choice of % as a uniformizer of L,. Then, by
Theorem 2.7, we have:

[0k : Ust(p/Ok)lp =[Ok : U(p/Or)]5[H(p/OF)]5-
Then, by [22], Theorem 2, we get:
1 1
05+ Usi(p/Os))s € 1+ SE,[[3]).
Now, by Lemma 210, there exists an integer m > 1 such that:

Nk /L. ([OF : Usi(p/Op)IX) = [0k : Usi(p/Or)]E-
This implies:
Vo ([Op : Usi(p/Op)]a) = 0.
Thus:
[OF : Usi(p/Op)la €F, x Us.
But sgn([Og : Ust(p/Og)]a) = 1, thus:

[OE : USt(p/OE)]A € Us.

Let 7’ be another uniformizer of Ko, and let [-], : Z(4) — K be the map as
in Section [Il associated to «’. Then, by the above discussion, we get:

[OF : Usi(p/OF)]'s € Usc.
Again, by Lemma [2.10 there exists an integer m’ > 1 such that:
([0 : Usi(p/Op)/)™ = [Op : Usi(p/Or)]4 -
Since [Og : Usi(p/OE)'s, [Or : Usi(p/OE)]a € Uso, we get:
[Or : Usi(p/Ok))s = [Ok : Usi(p/Ok)) a-
This concludes the proof of the proposition. O

Let’s set: (0/Og)
La(p/Op
Og) =
“AWIOP) = [0, Usi(p/ 08
By Proposition 212 and Remark 221 a4(p/Op) depends on A, p, and Og, not on
the choice of 7. Furthermore:

—X
ceKL.

OzA(p/OE) € Us.
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Let’s also observe that, if p¥ is the exact power of p dividing | Pic(A) |, then:
aa(p/Op)P %> € KX.
We have the fundamental result due to L. Taelman ([23], Theorem 1):
Theorem 2.13 (Taelman). Assume that the genus of K is zero and dos = 1. Then:
aa(p/Op) = 1.

Proof. Select 8 € A\F, such that vo, () = 1. Then A = F,[0]. Let []4 : T(A) — KX
be the map as in Section [I] associated to the choice of % as a uniformizer of K.
Then, by Proposition 212, Theorem [27 and [23], Theorem 1:

[OF : Usi(p/Ok)la = [Op : U(p/Op)|a[H(p/Ok)la = La(p/Og).
This concludes the proof of the theorem. O

Corollary 2.14.
1) Let F/K be a finite extension, F C E, and such that there exists a unique place
of F' above oo (still denoted by 0o). Let A’ be the integral closure of A in F. Let
Nr. /Ko  Foo = Koo be the usual norm map. Then, there exists an integer k > 1
such that aar(p/Og)* € FX,aa(p/Op)* € KX, and:

Nr.. k. (@4 (p/Op)*) = aa(p/Op)".
In particular, aa(p/Og) =1 = aa(p/Or) = 1.
2) If there exists an integer m > 1 such that aa(p/Or)™ € K*, then aa(p/Og) =
1. In particular, if o(aa(p/Og)) = aa(p®/o(Og)) for all 0 € Autg(Cx), then
aa(p/Op) = 1.
Proof.
1) The first assertion is a consequence of Corollary 23] and Lemma 2I0 If

aa/(p/Og) = 1, then there exists an integer k¥ > 1 such that aa(p/Og)* = 1.
But, since sgn(aa(p/Og)) = 1, we get aa(p/Or) = 1.

2) Let x = aa(p/Og)™ € K*. Let P be a maximal ideal of A, and select an integer

l > 1 such that P! is a principal ideal. Let § € A\ F, such that P! = 6A. Let

L =TF,(0) and B = Fy[f]. Then, by Taelman’s Theorem (Theorem 2.13]), we have:
ap(p/Op) = 1.

Therefore, by 1), we have:

Since P is the only maximal ideal of A above 6B, we deduce that x is a P-adic

unit. Since this is true for all maximal ideal of A, we get:

reFy.
But, sgn(aa(p/Og)) =1, thus: aa(p/Og) = 1.

Let’s assume that o(aa(p/Og)) = aa(p?/o(Og)) for all 0 € Autg(Cs). Let
o € Autg (Co). Let P be a maximal ideal of Op, then:

o(Or), _ Ok
o T e
o 9(Or) Or
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Thus:
La(p?/0(Og)) = La(p/Og).
Observe that ¢ induces a K-algebra isomorphism:
Ey =~ 0(F)co-

Note that exp; : E[[z]] — E[[z]] is an Fy[[z]]-algebra isomorphism. Therefore:

U(p/Oglz]) C E[[2]].
Thus:

U(p7 [0(0p)[2]) = o(U(p/Opl2)-

By the definition of Stark units, we get:

Usi(p?/o(Ok)) = o(Ust(p/Ok)).

Thus:
[0(Og) : Usi(p? /0(Op))|a =[O : Usi(p/Ok)] -
Therefore:
aa(p?/0(Op)) = aalp/Og).
We get:

Vo € Autg(Cx), o(aa(p/Or)) = aa(p/OE).

This implies that aa(p/Og) is algebraic over K and that there exists an integer
k > 0 such that:

aalp/Op)" € K*.
Therefore:
aalp/O) = 1.
O

We do not know whether a4(p/Og) is algebraic over K, and it might be too
naive to expect that as(p/Og) = 1 in general. However, in the next section, we
will prove that, if ¢ is a sign-normalized rank one Drinfeld module and E/K is a
finite abelian extension such that H C F, then as(¢/Og) = 1 (Theorem B.10). L.
Taelman informed us that the class formula ([23], Theorem 1) has been generalized
by C. Debry to the case where A is a principal ideal domain.

We also prove below that a4(¢/Op) is invariant under isogeny, which could be
considered as an analogue of the isogeny invariance of the Birch and Swinnerton-
Dyer conjecture due to Tate [24]:

Theorem 2.15. Let E/K be a finite extension and let p,¢ : A — Og{t} be
two Drinfeld A-modules such that there exists uw € Og{7} \ {0} with the following

property:
Va € A, pau = udq,

then:
aa(p/Or) = aa(¢/OF).
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Proof. Let P be a maximal ideal of Og such that uw Z 0 (mod ). Then by [18],
Theorem 3.5 and Theorem 5.1, we get:

This implies that there exists an ideal I € Z(A) such that:
La(p/Og)
La(6/Og)

Let ¢ € Og \ {0} be the constant coefficient of u. Then we have the following
equality in E{{7}}:

= 11].

exp, ( = uexp,,.
Thus:
exp; ¢ = Eexpg,

where, if u=>""" u;7",u; € Op, w =Y ;" ,u;z'7". This implies that:

(U(6/0xl2]) C U(p/Oglz).

Therefore:
CUsi(¢/OR) C Usi(p/OE).
We get:
(Or : CUst(6/08)]a = [Op : Usi(6/0p)] a1,
(Op
and:
Usi(p/OE)

[Or : CUsi(¢/O0g)]a = [0 : Usi(p/Op)]al
Therefore, there exists an element J € Z(A) such that:
[Or : Usi(p/Op)]a

(Usi(¢/0r)

= |J].
Ok Usi9/Op)la "
Finally, we get:
aa(p/Or) -1
————= =[IJ" .
axo/0g)
Let z = (%)h(qdm_l) € K*, where h =| Pic(A) | . Then, by Corollary 214

and Theorem [Z13] if § € A\ F,, there exists an integer & > 1 such that:
Nic ey = 1.
But, by Proposition 2.12] x is a principal unit in K, thus:
NK/]Fq(g)(.’IJ) =1.

The above equality being valid for any § € A\ F,, by the proof of Corollary 2.14]
we deduce that:

=1
Since sgn(%) =1, we get:
aa(p/Ok) -1
aa(¢/Og)
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3. STARK UNITS ASSOCIATED TO SIGN-NORMALIZED RANK ONE DRINFELD
MODULES

3.1. Zeta functions.

In this section, we briefly recall the definition of some zeta functions ([19], Chap-
ter 8).
Recall that if I € Z(A), we have set:

deg I

[ = I)r ix € K.
where voo ((I) — 1) > 0, and:

sgn(z)

Let Soo = CX X Z,, be the Goss “complex plane”. The group action of S, is written
additively. Let I € Z(A) and s = (x;y) € S, We set:

I° = (I)vzdes! ¢ CX.

v (@),

Vee K*, (zA) =

We have a natural injective group homomorphism: Z — S, j — s5; = (wft,j).
Observe that:

Vj € Z,VI € I(A), I% =[I}).
Let E/K be a finite extension, and let Og be the integral closure of A in E. Let J
be a non-zero ideal of E. We have:

. . Op.
Vj€Z, Ngig(3) = [TE]Q-

Let s € Soo, then the following sum converges in Co, ([19], Theorem 8.9.2):

Co (s Z Z Ng/x(3)7°

d>03€Z(0Og), TICOE,
deg(Ng,/k(3))=d

The function (o, : Seoc = Coo is called the zeta function attached to Og and []a.
Observe that:

. Or,—;
v‘] € Z? COE( ) - COE SJ Z Z [T]AJ'
d>0 JEI(A),ICOg,
deg(Np /K (3))=d

In particular:
1 ., —x
Cop(1) =[]0 5 e K,
B [T]A
where B runs through the maximal ideals of Og.

Lemma 3.1. Let Hy be the Hilbert class field of A, i.e. Ha/K is the mazimal
unramified abelian extension of A in which oo splits completely. If Hy C E, then
the function (o, (.) depends only on Op and sgn [ x .

Proof. Let 3 be a maximal ideal of Og. Let A’ be the integral closure of A in H 4.

Let PP =R NA,P =N A. By class field theory, PlE#] s a principal ideal.
Thus:

Ng/kx(B) = 04,
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for some § € A\ F,. Let j € N,j > 1. We have:

9
(1 _ 1 )71 _ sgn(67)
[9z)] 01
P 1A sgn(67)

But, observe that:

G (i) = [T~ )" € U NEZ.

by [ T ]A
The lemma is thus a consequence of [19], Theorem 8.7.1. O

3.2. Background on sign-normalized rank one Drinfeld modules.

Let ¢ : A — K. {7} be a rank one Drinfeld module such that there exists
i(¢) € N with the following property:

Va € A\ {0}, ¢o=a-+---+ Sgn(a)qiw)Tdcga.

Such a Drinfeld module ¢ is said to be sign-normalized. By [19], Theorem 7.2.15,
there always exist sign-normalized rank one Drinfeld modules.

From now on, we will fix a sign-normalized rank one Drinfeld module

¢:A— Koo{7}.

Let I be the group of ideles of K. Let’s consider the following subgroup of the
ideles of K :
K*kersgn |x H oy,
vF#00
where for a place v of K, O, denotes the valuation ring of the v-adic completion of
K. By class field theory, there exists a unique finite abelian extension H/K such
that the reciprocity map induces an isomorphism:

Ix
~ Gal(H/K).
K>kersgn |pex [[,.00 O0 al(H/K)

The natural surjective homomorphism Ix — Z(A) induces an isomorphism given
by the Artin map (., H/K) :

Z(A)

P1(A)
where Py (A) = {zA,z € K,sgn(z) = 1}. Let H4 be the Hilbert class field of A,
i.e. Hy/K corresponds to the following subgroup of the ideles of K :

K*Kk% ] or.
vF#00

Then H/K is unramified outside co, and H/H 4 is totally ramified at the places of
H 4 above co. Furthermore:

~ Gal(H/K),

Fa
Fx '
If w is a place of H above oo, then the w-adic completion of H is isomorphic to:

Gal(H/H ) ~

q—1

Koo(((=1)"="tm)am==1).

We denote by B the integral closure of A in H and set A’ = BN H4. We observe
that Foo C A’.
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We denote by G the Galois group Gal(H/K). For I € Z(A), we set:
(3.1) or=(,H/K) e€G.

By [19], Proposition 7.4.2 and Corollary 7.4.9, the subfield of C., generated by
K and the coefficients of ¢, is H. Furthermore ([I9], Lemma 7.4.5):

Vae A, ¢, € B{r}.

Let I be a non-zero ideal of A, and let’s define ¢; to be the unitary element in
H{7} such that:

H{r}pr =Y H{r}éa.

acl
We have:
ker ¢y = () ker ¢,
acl
¢r € B{t},

deg, ¢; = deg 1.
We write: ¢; = ¢ro+---+ ¢17degﬂdcg] with ¢7deg 7 = 1 and denote by (I) €
B\ {0} the constant coeflicient ¢y o of ¢r.

Lemma 3.2. The map ¢ extends uniquely into a map ¢ : Z(A) — H* with the
following properties:

1) for all T, € T(A), $(1.7) = 05 (1)) (),
2) for all I € Z(A),IB = ¢(I)B,
3) for all x € K* ¢(zA) =

In particular, we have:
Ve e KX, o,4((I)) = sgn(z) ().
Proof. Let I € Z(A), select a € A,sgn(a) =1, such that al C A. Let’s set:

_xr
sgn(m)ql(d)) '

qi(¢) _qi(¢)+dcg I

I
W(l) = —WZ ) e n.
By [19], Theorem 7.4.8 and Theorem 7.6.2, the map ¢ : Z(A) — H* is well-defined
and satisfies the desired properties. ([l

Note that the map ¢ determines H and H 4:

Proposition 3.3. We have:
1) H =K(@(I),I € Z(A));
2)Hy=K(((I),I € Z(A),degI =0 (mod dw)).

Proof.
1) Let 0 € Gal(H/K (v(I),I € Z(A)). Let J € Z(A) such that o = ;. Then:

VI e Z(4), or(¥(J)) =p(J).

Therefore:
P(J) e K*.

Since JB = v(J)B (Lemma [B.2]), we get that J = zA for some x € K*. Thus, for
all I € Z(A), we get:
)qi<¢)_qi<¢)+dcg1 _1
Since deg : Z(A) — Z is a surjective group homomorphism, this implies that
sgn(z) € Fy and thus J € Py (A). Therefore o = 1.

sgn(z
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2) Set E=K@(I),I € Z(A),degI =0 (mod d,)). Observe that:
Gal(H/Ha) = {oza,x € K*}.
Thus:
K(F) C E C Hy.
We also have:
Gal(Ha/K(Fx)) ={(I,Ha/K),I € Z(A),deg I =0 (mod dw)}.

Let 0 € Gal(H4/E). Then, there exists J € Z(A), deg J =0 (mod d), such that
o= (J,Ha/K). But for all I € Z(A),degI =0 (mod do,), we have:

(1) = o((D))d(]) = P(I)b(J]),

— =

and therefore:
(I, Ha/K)(®(J)) = ¢(J).
This implies:
U(J) € K(Foo)™.
But:
JA[Fo] = (J)A[F o).
Thus J%= is a principal ideal. But:

D(JT=) = ().

In particular:

gdoo
P(J)l= " e KX,
Thus, if ¢ is the Frobenius in Gal(K (F)/K), there exists ¢ € FX such that:

5((J)) = CP(J).

Observe that:
Nr_ sr,(C) = 1.
Thus:

for some p € FX . This implies that:
Y(J)p e K™
Therefore J is a principal ideal and thus o = 1. (|
We have the following crucial fact:
Proposition 3.4. Let E/K be a finite extension such that H C E. Then:
La(¢/Og) = Cop(1).
Proof. Let 9 be a maximal ideal of Op. Let m = [% : 4]. Then:
Ng/k(B) = P™.
Since H C Og, by class field theory, we get:
P™ =0A, with 6¢€ A,sgn(f) =1.
Since ¢ is a rank one Drinfeld module, it implies that:

dg =79 F  (mod P).
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This implies that:

AN =01 [(;;m—l
We get:
[%
A(¢/Og) H OE‘B H E = (o (1)
P [a - P [ ]a

3.3. Equivariant A-harmonic series: a detailed example.

We keep the notation of Section Let z be an indeterminate over K, and
recall that T, (K ) denotes the Tate algebra in the variable z with coefficients in
K. Recall that:

Hoo =H QK K007
T.(He) = H®k T,(Ks).
For n € Z, we set:

Or,_,
=2 > HEh
d>0 3J€Z(B),JCB,
deg(NE/K(j)):d
Then, by [19], Theorem 8.9.2, for all n € Z, Zg(n;.) defines an entire function on
Cs, and:
VneN, Zp(—n;z) e Alz].
Observe that:
VTLEZ, ZB(n7Z) ETZ(KOO)a
and:
odeg(Np k()

T

Vn>1, Zp(n;z)= H(l —
s;p]A

B

e T (Ky)™.

Finally, we note that:
ZB(l; 1) = CB(l)

Recall that G = Gal(H/K). Then G ~ Gal(H(z)/K(z)) acts on T,(Hs). We
denote by T, (Ho)[G] the non-commutative group ring where the commutation rule
is given by:

Vh,h' € T,(Hx),Yg,9' € G, hg.h'g' = hg(h')gg
Recall that for I € Z(A), we have set [B.I)):
or=U,H/K)eG.

Lemma 3.5. Let n € Z. The following infinite sum converges in T,(Hoo)[G] :
deg I

L(¢/B;n;z) Z Z ﬁal.

d>0T€Z(A),ICA,
dcg] d

Furthermore, for all n > 1, we have:

Zdeg P

UP)_l € (Tz (HOO)[G])X
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and for all n < 0:
L(¢/B;n;2) € B[z][G].
Proof. Let n > 1. First let’s observe that for any place w of H above oo :
ICA,dlclgn}%Jroow(w(I)) = foo.
Let P be a maximal ideal of A. Note that:
Yk 20, (P = op((PM)U(P) = oh(¥(P)w(P).

Thus:
Zmdch (H )[G]
spmyn o € T=(He)G,
o=, vem)
and we have:
chg P Lm deg P m deg P chg P
l1—-—o0 ———0p) = ———o0p)(l— ——=—0op)=1
=S L Sy #) = (2 gy )0 = )
Thus, we have:
chgP Zmdch
1-— op)li= o e (T, (Hx)[G])*.
=) = X R € (TG
Let P,Q be two distinct maximal ideals of A. We have:

Zdeg P Zdeg Q Zdeg Q Zdeg P Zdeg(PQ)
l-———0p)(1———0¢) = (1— 00)(l————0p) = (1———=——0p9).
R T (7) Eh (o) TR T/ ST AT 2 ) LA
Therefore:

chgP 1 chg[ »
L(¢p/B;n;z) = 1- op) T = ——o7 € (T, (Hx)[G])”.
orpen) <TI0 = gpen™ = 2w € ()
Let n € Z. For d € N, we set:
SpaBin)= Y (I)"or € HIG.
IET(A),ICA,

deg I=d

Let h be the order of %. Let I1,...,I; € Z(A)NA be a system of representatives

of 7>Z+((2)' Then:
h
Sp.a(Bin) =Y ¢(I;) "o, > a".
Jj=1 a€K* sgn(a)=1,
anCA,
deg(alj)=d

Now, let’s assume that n < 0. Then, by [5], Lemma 3.2, there exists an integer
do(n, v, H) € N such that, for all d > dg(n, v, H), for all j € {1,...,h}, we have:

Z a " =0.

a€K* sgn(a)=1,
anCA7
deg(alj)=d
Therefore, for d > do(n,v, H), we have:

Sy.a(B;n) =0.
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Thus:
Vn e N, L(¢/B;—n;z) € Bz][G].
(]

The element L(¢/B) := L(¢/B;1;1) € (Hx|[G])* will be called the equivariant
A-harmonic series attached to ¢/B.

Note that L£(¢/B;1;z2) induces a T, (K )-linear map L(¢/B;1;2) : T,(Hy) —
T.(Hy). Since T,(Hs) is a free T,(K)-module of rank [H : K] (recall that
T.(Kw) is a principal ideal domain), detr_(x_)L(¢/B;1;z2) is well-defined. We
also observe that £(¢/B) induces a K -linear map £(¢/B) : Heo — Hoo, and we
denote by detx_ L£(¢/B) its determinant. Recall that ev : T,(Ho) — Hso is the
H.-linear map given by:

VfeT:.(Hx), ev(f)=f|:=1-
Observe that, if {e1,...,e,} is a K-basis of H/K (recall that n = [H : K]), then:

Hoo = @?leooeiv
TZ(HOO) = ®?:1TZ(K00)61'-
We deduce that:
detr  L(¢/B) = ev(detr, (k) L(¢/B;1; 2)).

Theorem 3.6. We have:

detr, (k) L(¢/B;1;2) = Zp(1; 2).
In particular:

detx. L(¢/B) = ¢p(1).

Proof. First, we recall that, by Lemma B.5] we have the following equality in

T.(Hw)[G] : o
z4eg

1——o0p) ' =L(¢/B;1;2),
where P runs through the maximal ideals of A, and:
ZdegP anegP
(1-"——0op) = ———op
(P) 2P
By the properties of ¢ (Lemma B.2]), we have:
chgP
lim (1-"—cop) =
N—foo dcglz:[>1v »(P)
Thus:
dch
det'ﬂ‘z(Koo)ﬁ ¢/B Hdet'ﬂ‘z Koo 1 ¢(P) P)71
Thus, we are led to compute:
chgP
det 1————op).
€ TZ(KOO)( o(P) op)

But 1 — ¢(P) op induces a K|[z]-linear map on Hz]. Thus:
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ZdegP ) det (1 ZdegP ) |
————0p) =delg - orP)|H .
(P) AN ) T

Let e > 1 be the order of P in ((2) Write & = 2 ;I; op |mp:)- We have £ =
yedeg P

W € K|z]. Since e is the order of op in G, by Dedekind’s Theorem ¢, op,

S, 0n ! are linearly independent over H(z). We deduce that X¢ —

detr, (x..)(1 —

—i?;il)) is the
minimal polynomial of & over K (z) and also over H{??)(z), and that:

deg P e deg P
2 o) = (1 - ——r

oy 7 =0 )
Now, let 3 be a maximal ideal of B above P. Then, by class field theory, we have:
B A
55 =

TP

[H:K]

detK[z](l

Therefore:

Thus:
deg P ydeg(Nu/k (B))

detK[z](l — ZJ(—P)UP) |H[z]: q:!_]];(l - [%]A

Finally, we get:

ydeg(Nu/k (B))

detr. (k. )L(¢/B; 1;2) = [ [(1 = —5—) 7",

% [F]a
where B runs through the maximal ideals of B. Thus:
detr, (x.)L(¢/B; 1;2) = Zp(1; 2).
Now:
detr. L(¢/B) = ev(detr, (k) £(d/B;1;2)) = ev(Zp(1; 2)) = (B(1).
O

Although this is not evident, the above theorem reflects a class formula a la
Taelman which will be proved in Section

3.4. Stark units.

We keep the notation of the previous sections. We will need the following basic
result:

Lemma 3.7. Let L/K be a finite extension, and let Oy, be the integral closure of
Avin L. Let p: A — Or{7} be a Drinfeld module of rank r > 1. Let exp,,log, €
1+ L{{7}}7 be such that:

Va € A, exp,a = p,exp,,
exp, log, = log,exp, = 1.

exp, = Z ei(p)T,

i>0

log, = Y _Li(p)T

i>0

Write:
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with e;(p),li(p) € L.

1) Let P be a mazimal ideal of A. Let Ap be the P-adic completion of A. Then:
¥n >0, P%e,(p)Or C POL ®4 Ap,
vn >0, PlEErl, (p)OL c OL©4 Ap.

2) Let 0 : L — Ko be a field homomorphism such that o |x= Idg. Then, there
ezist n(p,0) € N,C(p,0) €]0; +o0[, such that:
Vn > n(p,0), v(o(en(p))) = Clp,o)ng".

Proof.
1) Let 8 € A\ F, such that 8Ap = PAp. Let d = rdeg(6), and let’s write:

d
po = Z po.,T.
=0

From exp, 6 = pg exp,,, we get:

W >0, (07 —0)ea(p) =Y poseni(p)”

where e; = 0 if ¢ < 0. Since eg(p) = 1, one proves by induction on n > 0 that
en(p)0?" € LTI O @4 Ap.

Observe that:
Va € A, alog,=1log, pa.

Thus:
rdega

Vae AVn >0, (a—a" ()= Y loi(p)p?y
Thus, if n Z 0 (mod deg P), we get:

l(p)OE ®a Ap C Z L—1(p)OL @4 Ap.
=1

If n=0 (mod deg P), we have:
d

(0 — 9q Zlnl Pez

In any case, we get:
oL, () € 3011, (0)0L 94 A,
1=1

Since lp(p) = 1, we get the desired second assertion by induction on n > 0.

2) This is a consequence of the proof of [19], Theorem 4.6.9. We give a proof for
the convenience of the reader. We keep the previous notation. In particular, let
6 € A\ F,, and write:

r deg(0)
Z png with pg)jEKoo
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Recall that pg o = 6. Set d = rdeg(f). Then:

d
¥n >0, (07 —0)en(p) = > posen-i(p)? .
=1

Set u = ded—oi& = —Uoo(f) > 1. We get :
'Uoo(ez(p)) >+ lnf{UOO(eZ:j(p)) + Uoo(i@,j) j=1,.. ,d}
q q q

Let 3 €]0;u]. There exists an integer ng such that:
Vn > ng, inf{w,jz 1,...,d} > B —u.
qn
Therefore:

Vn > ng, %ﬂigﬁzﬁ+mﬂﬁﬂ@2@DJ=L”w@.

n qnfj
Thus, for n € [ng;ng + d — 1], we get:
Voo (€n(p)) . Voo (€no—j(P)) .
——ﬁ——2ﬂ+mﬂ—iﬁi%—J:L”w@.
Set:
C:mﬁﬁﬁ@i@ﬁqu”w@.

qn()_j
By induction, we show that if n > ng + md, m € N, then:
Voo (En
() o
q
Therefore there exist ny > ng, C’,C € Q, with ¢’ > 0, such that:
Vn > mn1,  vsolen(p)) = C'ng" + C.

m+ 1)+ C.

O

Let E/K be a finite abelian extension H C E. Let G = Gal(E/K). We denote
by Sg the set of maximal ideals P of A which are wildly ramified in E/K (note
that we can have S = ). Let P be a maximal ideal of A such that P ¢ Sg.
We fix a maximal ideal 3 of O above P. Let Dp C G be the decomposition
group associated to P, i.e. Dp = {g € G, g(PB) = P}. We have a natural surjective
homomorphism Dp —» Gal(%/%),g — g. Let Ip be the inertia group at P, i.e.

Ip =ker(Dp — Gal(%f/%)). Then, since P & Sg, we have:

[ Ip [#0  (mod p).
Let Frobp € Gal(2z /%) be the Frobenius at P, i.e.

Ed
Vo € %, Frobp(x) = 21"
B
We set: )
opOp = T | Z g € Fp[G].

g€Dp,g=Frobp
If P € Sg, we set:
OP,Op = 0.
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Note that, if L/K is a finite abelian extension, L C E, and if P is unramified in L
with P ¢ Sg, then:

OPOg |L: (P,L/K)
IfIeZ(A),IC A I=][pP™"", we set:

01,05 = HUESE e F,[G].
P

For all n € Z, we set:
d
L(6/Opiniz) =S — 01,0, € HIA[Z]].

nn
d>01€Z(A),ICA, 1/}( )
deg I=d

By the proof of Lemma 3.5 we have:
VneZ, L(¢/Opin;z)e T.(He)Gl,

and:

chgP
L(¢/Op;1;2) = H(l - WUP,OEY1 € (T.(Hx)[G]) ™.
P

Note that, if L/K is a finite abelian extension, H C L C F, we have:

deg P
MWEm@m%F<IIu—%ﬁwmmwmﬂmmﬂ@.
PGSE\SL
We set:
1(0g)= [] P

PeSE
Recall that

U(3/0sl2) = {f € T-(Ew), exp3(f) € Opl]}.
Theorem 3.8. We always have:
Y(I(0p))L(6/Or;1;2)0pl2] C U(6/Oplz]).
Furthermore, if Sg = (), we have an equality:
L(¢/0g:1;2)0p2] = U(¢/O0x[2]).
Proof. We divide the proof into several steps.

1) We will first work in E[[z]]. Observe that exp; : E[[z]] — d(E[[2]]) is an isomor-
phism of A-modules. In fact, if we write: log, = Eizo 1;(¢)T%, then we set:

logg =Y _li(¢)2'".
i>0
Thus, log; converges on E[[z]], and loggexps = expglogs = 1.
2) Let P be a maximal ideal of A. Let Rp = S~'Op C E, where S = A\ P. Then:
PRp = (P)Rp.

By Lemma 3.7 we have:

expg(PRp([z]]) € PRp[[2]],

logz(PRp([z]]) C PRp[[2]].
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Thus:
(3.2) expy(PRe[[2])) = PRe[[2]].

3) Recall that there exists a sign-normalized rank one Drinfeld module ¢ := Px ¢ :
A — B{7} such that:

Va € A, ¢P¢a = <Pa¢P-
Furthermore ([I9], Theorem 7.4.8):

rdega
Va € A, Pa = UP(¢a) = Z UP((ZSa,i)TZ
=0
Thus:
expw—op exp¢ ZO’p 61 ,
>0
log, =op (logy) : ZUP
>0

In particular:

¢p expy = op(exp,)(P),

¥(P)log, = op(log,)dp.
The same properties hold for g
4) Let’s set: N

U(¢/Rp([z]]) = {z € E[[z]]; expg(x) € Rp[[z]]}-

Let’s assume that P ¢ Sg. Then, by 1) and 2), expg induces an isomorphism of
A-modules:

B g ElE)
PRp[[2]] ~ " PRp|[z]]”
Therefore, we get an isomorphism of A-modules:
U(qNS/RP[[Z]]) N 5( Rp|[2]] )
PRp[[2]] PRp[[2]]”
Now observe that:
(QNSP — zdegPUP,OE)Qz(%[[ZgH) = {0}.

Furthermore, if € E[[z]] \ Rp[[z]], then one can easily verify that:

(6p — 2% 0p 0, )(z) & PRp|[2]].
Thus:

~ Rp[lz]] | ~
fb(m) ={z € ¢(

Let « € F[[z]], we deduce that:

z € U(9/Rpl[2]]) & (¢p — 28 0p0,)(expy(x)) € PRp|[2]].
Observe that, by 3), we have:

Efl=]]

W% (dp — 298P 0p o, )(x) = 0}.

OP,0g (expg) = expg,
and also: _
¢pexpg = ap,0,(expz)Y(P).
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Thus:
z € U(9/Rp|[2]]) & exps(¢(P)z — 2%¢ P op o, (x)) € PRp([2]].
Applying 2) for ¢, we have:
v € U(¢/Rp[2])) & ¢(P)x — 295 op o, (x) € PRp[[2]].
Thus:

ZdegP

U(¢/Rp[l2]]) = (1 - WUP,OE)_lRP[[Z]]-

5) Let P be a maximal ideal of A. If P ¢ Sg, by 4), we have:
ZdegP

U(¢/Rp[[2]]) = (1 (Or))L(¢/Or; 1;2)Rp[[z]] = (1 — W(P)

If P € Sg, then:
Y(I(OR))L(6/Or; 1; 2)Rp[[2]] = PRp|[2]] C U(é/Rp[2]).
Since ¥(I(Og))L(¢/Op; 1;2) € T.(Hx)[G], we get:
Y(I(OE))L(¢/Or;1;2)R[z] C T.(Ex).
Observe that Og[[z]] = (\p Rp[[2]]. Therefore, we get:
exp;(Y(I1(Og))L(¢/Ok;1;2)Oglz]) C Op[[2]] N T:(Ex) = Orlz].

Thus, we get the first assertion.

Now, let’s assume that Sg = 0. We have:

(U @/Rel2]) = {z € Ex][]],expz(x) € Op|[]]}.

By 4), we get:
ZdegP
[10 - S proros)is € Bxllel) exvz(e) € Osl[]} = Oxlle])
P
Thus:

{z € Exl[z]], expy(x) € Opl[2]]} = L(¢/0g;1; 2)Op|[2]].
Hence:
U(6/R[z]) = L(¢/Op3 1;2)0p|[2]] N T=(Ex).
Since L(¢/0g;1;2) € (T,(Hw)[G])*, we have:
L(¢/O0p;1;2)0p([2]] N T.(Ex) = L(¢/O0p; 1;2)0p|z].

This concludes the proof of the theorem.

opo;) " Rel[2]].

29
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3.5. A class formula a la Taelman.

Recall that ev : T, (Fw) — Fo is the evaluation at z = 1.
Definition 3.9. We define the equivariant A-harmonic series L(¢/Of) attached

to ¢/Og by:
L(¢/Or) = ev(L(¢/Or;1; 2)) € (Huo|G]) ™.
Note that:
1 1
‘C(¢/O ): (1_—07 E)ilz T 91,0g-
? E] w(p) 0 IdggmAwa>IO
Theorem 3.10. We have:
aa(¢/0p) =1,
- Cox (1) = [0r : U(6/Op)]alH(9/Op)] .
Furthermore:
Y(I(Og))L(¢/Or)Ok C Usi(¢/OE),
and
Y(I(0)L(6/0)0r " ~ " 1(0r)0r "
Proof.
1) Let J C I(Og) be a finite product of maximal ideals of A. Set:
mwmm:ga—ﬁﬁw%>%&umn
chgP

Ly(6/0p;1;2) =[]0 opop) " € (T=(H)[G])*,

L u(P)
where P runs through the maximal ideals of A that do not divide J.
By Lemma [3.7 and the proof of Theorem 3.8, we have:

{z € E[[z]], expy(z) € ¥()Op(l2]]} = ¥(J)Ls(¢/0x; 1;2)Op|[2]].
We can conclude as in the proof of Theorem [3.8] that:
()L (¢/O0p;1;2)0plz] = {z € T.(Ex), expg(x) € ¥(J)Ogp[z]}.

Therefore, we have a short exact sequence of A-modules:

U(%/OE [2]) ~  Ogl?]
B3 O N 6/0m L0 Y SthosrE
5 T (Beo) ~ H(3/Osl2]) — 0.

G(1)0RTE + expy(T- (Bo))

Note that 5(#0[2[4) is a finitely generated and free F,[z]-module. Let p be the

Drinfeld module defined over Of such that:
exp, = ¢(J) ! exp, ¥(J).
Then, the map x — 1 (J) 'z induces an isomorphism of A-modules (the left module
is an A-module via ¢ and the right module is an A-module via p):
T.(Ex)
¥(J)Opl2] + expy(T=(Ex))

~ H(p/Oglz]).
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Observe that ker ev = (2 — 1)T,(Fw ). Furthermore, since Og[z]N(z —1)T,(Fx) =
(z — 1)Oglz], we have :

U($/Og[2]) Nker ev = (z — 1)U ($/Ogplz]),
()L (6/0p; 152)0p[2] Nker ev = (2 — 1)y (J)L(¢/Op; 1; 2)Op]2].

Thus, the evaluation at z = 1 induces the following exact sequence of A-modules:
(3.4)
UG/OslE) . UG/Osl) . Us(é/Ox)

V()L (¢/Op;1;2)0plz]  ¢(J)Ls(¢/Op;1;2)0plz] — ¢(J)Ls(¢/Or)OE

Note also that the evaluation at z = 1 induces a sequence of A-modules:
3.5 0= (:z-1Dp(—i—) 2 (———) —
(89) C=0GmoeE) ™ SmosE 7 Yos
For an F,[z]-module M, we denote by Mz — 1] the (z — 1)-torsion. By B.3),

B4), B3) and the Snake Lemma, we get the following exact sequence of finite
A-modules:

0— (2-1) — 0.

) — 0.

Usi(¢/Og)
Y(J)L;(¢/Or)OE

) = H(p/Or) = H(¢/Og) — 0.

0 — H(p/Op[2])[z — 1] = H($/Og[z])[z - 1] =

Og
= N0z

By the proof of Theorem 2.7, we have:
[H(p/Og(z])[z — 1]]a = [H(p/Ok)]a,

[H(a/OE[Z])[Z —1]Ja = [H(¢/Og))]a.

Thus:
Usi(¢/Or) — o 22
L16/08)08* = P G0, 1
2) Now, we have:
' B detKOO Ly (¢/OE)
[OE : ACJ(¢/OE)OE]A - sgn(detx L;(¢/OR)) '

Thus:
OE A detKOOEJ((b/OE)
JOg " sgn(detx L;(¢/OE))

[Op : (J)L;(¢/Or)Or]a = |

And finally, we get:

[%—i]A detKooﬁJ((b/OE)
Or

[OE : USt(¢/0E)]A = [(b( s )]A Sgn(dethﬁj(qb/OE))'

Set:
[SE]a
LJ = Ok
wis P(F)]a
Then:
detKooACJ((b/OE)

(O : Usi(¢/Op)]a = b (et _£4(0/05))
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3) Let N > 1, and we define Jy to be the l.c.m. of the product of all maximal
ideals of degree < N and I(Opg). We have:

Nl_ig_loo Ly = LA(¢/OE)7

yim Ly (¢/0p) =1.

In particular:

Nl—lg-loo dethLJN (gf)/OE) =1.

Thus:
[OF : Ust(¢/Og)|a = La(¢/Og).
If we apply Theorem 2.7 and Proposition [3.4] we get:

Cop(1) = [Op : U(¢/Or)|a[H(¢/Or)] a-

4. LOG-ALGEBRAICITY THEOREM
4.1. A refinement of Anderson’s log-algebraicity theorem.
We keep the notation of the previous sections.

Lemma 4.1. Let E/K be a finite separable extension, H C E. Let P be a maximal
ideal of A which is unramified in E. Let A\p € K \ {0} be a root of ¢p. Then:

Ogr(p) = Or[Ap].

Proof. Let F' = E(Ap). Recall that F/FE is a finite abelian extension unramified
outside P, 0o, and totally ramified at P ([I9], Proposition 7.5.18). We also have:

[F:E]=qs? 1.

Write: ¢p = Ezfop ¢pr*, dpr € B C Op. Recall that ¢po = (P) and
®pdeg p = 1. Furthermore, P is unramified in E/K and:

$(P)Og = POg.

Let:
deg P

G(X)= Y éprX? '€ Op[X].
k=0
Then, for any maximal ideal 3 of Og above P :
G(X)=X""*""1 (mod P).

This implies that G(X) is an Eisenstein polynomial at 8 for every maximal ideal
of Og B above P. Furthermore:

XG'(X)+G(X) = ¢(P).

Therefore:
deg P

Np/p(G'(Ap))Op = P*" ~20p.
But P9"*" =20y is the discriminant of Op/Og. Thus Op = Og[Ap]. 0
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Let E/K be a finite abelian extension, H C FE. Let n > 0 be an integer, let
X1,..., X, benindeterminates over K. Let 7 : E[X1, ..., X,][[z]] = E[X1,..., Xu][[#]]
be the F[[z]]-homomorphism continuous for the z-adic topology such that:

VfeE[Xy,..., X, 7(f)=7r~

For anon-zeroideal I of Aand for f =37, _y fir i Xt Xin € B[Xy,..., X,
with f;, . . € E, we set:

Iigf= Y 010p(fi,in)dr(X1)" - dr(X,)™,
i1,e0yin €N
where 01,0, is defined in Section B4l Recall that I(Op) is the product of maximal
ideals of A that are wildly ramified in E/K.

Theorem 4.2. For all f € Og[Xy,...,X,], we have:

expy(0(I(0g) 3. Ig(i)f A1) € OplXy, .. Xy 2],
T€Z(A),ICA

In particular, for oll f € B[X1,...,X,], we have:
I*H e
expg( Z Wl)fzd eIy e B[X1,...,X,, 2].
IE€T(A),ICA

Remark 4.3. This result is a generalization of the Log-Algebraicity Theorems
established in [I], [2] (in these papers the theorem is proved for £ = H, doo =1
and n < 1). Furthermore, the result in the case E = H can be proved along the
same lines as that used to prove [2], Theorem 3. Following [9], Section 2.6, we will
show below how Theorem [3.8 implies the Log-Algebraicity Theorem. Observe also
that the case n = 0 is a direct consequence of Theorem 3.8

Proof. Let’s write:
I %
exp¢ 1(OR)) Z Ef zdesl) ng(Xl,...,Xn)zm,
m>0

with gm(Xla- ,Xn) S E[Xl,.. ,Xn]

1) Let P,..., P, be n distinct maximal ideals of A which are unramified in E, with
qie >3i=1,...,n,and fori = 1,...,n, let \; # 0 be a root of ¢p,. Set:
F=FE\,. ..., \).

Then F/FE is unramified outside P, ..., P,,00, F/K a finite abelian extension of
K which is tamely ramified at Py, ..., P,. Let Op be the integral closure of A in
F. Let @ be any maximal ideal of A, if @ is not wildly ramified in F, we have ([19],
Proposition 7.5.4):

0Q.or(Ai) = do(Ni), if Q# P,
and:

op,0r(Ai) =0.

We deduce that:

oML

2480 | x 0= V(I (OF))L(¢/Op; 1;2) f( A1, o, An).



34 BRUNO ANGLES, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Therefore, by Theorem B8 we get:
szov g’m(Alv"'v)\n)EOF-

Let i € {1,...,n}. Then:

E()\l) n E()\l, R, VIS TR PR B ,)\n) =F.
Furthermore, the discriminant of Og(y,)/Or and Og(y,,..x
relatively prime, thus, by Lemma [£.1] we have:

OF = OE[Alv . aAn]

Finally, for m > 0, for n distinct maximal ideals Py, ..., P, of A that are unramified
in E/K, with ¢4 >34 =1,...,n,and for i = 1,...,n, if A\; # 0 be a root of
¢p,, then we have:

'L717)\i+17~~~;>\n)/0E are

gm()\l,...,)\n) EOE[)\lu'-'u)\n]'
This implies:
Ym >0, gn(Xi,...,X,) € Og[X1,...,X,]

2) We fix a K-embedding of K in Co. For 0 € Gal(H/K), let A(¢”) C Co be the
A-module of periods of ¢7, and let A(¢7) K be the K-vector space generated by

A(¢7). Then A(I‘f&zfg"" is compact, thus there exists a constant C' € R such that:
Vo € Gal(H/K),Vz € A(¢7) Koo, Voo(expye (7)) > C.

Recall that, if o € Gal(H/K), then there exists a non-zero ideal J of A such that

o= (J,H/K) =0y, and we have ([19], Theorem 7.4.8):

¢J¢a = ¢Z¢J'

Thus:
€XPyo V(J) = by €XPg -
In particular:
A(¢7) = ()T A(9),
A(¢7) Koo = (J)AM(¢) Kes.
Therefore, there exists a constant ¢’ € R, such that:

Vo € Gal(H/K),Vx1,. .. a0 € M¢7) Koo, VI € T(A),  voo(I55£°

Xi=expyo (zl)) > Cla

where 7, is the map * attached to ¢. Now, recall that exp,, = ijo e;(¢)77, then
there exists a constant C” > 0 such that (Lemma [B.7):

Vo € Gal(H/K),Vj >0, vs(e;(¢7)) > C"jg.
Note also that there exists C”” € R such that:

1
Vo € Gal(H/K),VI € Z(A),deg I = m > 0,

v )

This implies that there exists an integer mg € N, such that:
Vm > mg,Vo € Gal(E/K),VYA1,..., A\n € expyo (AM¢7)Kx),  Voo(gm (A1, An)) > 0.

) > dﬁ+c///'

3) Let mg € N be as in 2). Let A1,...,\, be n torsion points for ¢. Let F =
E(A1,..., ). Then F/K is a finite abelian extension. Let w be a place of F' above
0. Let iy, 1 E — C4 be the K-embedding of F' in C., corresponding to w. Then
there exists o € Gal(F/K) such that:

Ym >0, iuw(gm(At,. 5 A0) = 0(gm(A1, -, An)) = g (A1), ..., a(An)).
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Observe that o(\i) € expyo(A(¢97)K),@ = 1,...,n ([19], Proposition 7.5.16).
Therefore:
Ym > mo, w(gm(A1,...,An)) > 0.

Thus, we get that for any place w of F' above oo :
Vm > mo,  w(gm(A1,...,An)) > 0.

But by 1), Vm > 0, gm(A1,..., ) € Op. Since Op is the set of elements of F
which are regular outside the places of F' above co, we deduce that:

Ym > mo, gm(A,...,An) =0.
And the above property is true for any n torsion points of ¢, thus:
Ym > mg, gm(X1,...,Xn) =0.
O

M. Papanikolas informed us that, together with N. Green, they obtained explicit
formulas for Anderson’s Log-Algebraicity Theorem ([I], Theorem 5.1.1) when the
genus g of K is one and dy, = 1.

4.2. Several variable L-series and shtukas.

In this section, we present an alternative approach to the several variable Log-
Algebraicity Theorem (Theorem [2)) by using the seminal works of Drinfeld [12],
[13], [14] (see also [, [27], and [19], Chapter 6).

We recall some notation for the convenience of the reader. Let X/F, be a smooth
projective geometrically irreducible curve of genus g whose function field is K.
We will consider co as a closed point of X of degree d.,. Recall that K, is the
completion of K at oo, K. is a fixed algebraic closure of K., and Co is the
completion of K. Let sgn : KX — FX be a sign function (F,, is the residue
field of Ko and deo = [Foo @ Fy]), i.e. sgn is a group homomorphism such that
sgn [px = Id [px . We fix 7 € K N Ker(sgn) and such that Koo = Foo(()).

Weset X = X ®F, Coo, and A=A ®F, Coo. Then F := Frac(A) is the function
field of X. We identify C., with its image 1 ® Co, in F. Note that A is the set of
elements of F'/C,, which are “regular outside co”. We denote by 7 : F — F the
K-algebra homomorphism such that:

T |[l: Idsg ® Frob(cm.
For m > 0, we also set:
Ve e F, 2™ = 7" ().

Let P be a point of X(Cs). We denote by P® the point of X(Co) obtained by
applying 7° to the coordinates of P. If D € Div(X), D = Y7 np,(P;), P; €
X(Cw), np, € Z, we set:

DO =3 "np (PY).
j=1

If D= (z), v € F*, then:
DO = (z(),
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We fix a point 6o of X (Cs) above co. Let £ be the point of X (C) corresponding
to the kernel of the map A — Coo, Y. 7;®a; — Y. mia;. Let p: K — K®1,z — z®1.
Then:

y [27] (see also [19], section 7.11), there exists a function f € F*, such that:
VW =V 4 (&) — (%) = (f),
for some effective divisor V of X /Cs of degree g. The points & and co(~) do not

belong to the support of V' ([27], Corollary 0.3.3). We identify the completion of F'
at co with:

(Coo((_))u

t
where ¢ = p(7~1). We have a natural sign function 5g0 : C((1))* — CZ attached
to 1. We normalize f such that sgn(f) = 1.

We set:
doo—1 _
(00) = > (),
i=0
m>0
where:

L(V 4+ m(0)) ={xz € F*,(z) + V +m(co) > 0}U{0}.
Observe that for 7 > 0 :
i—1

1) (O D) = VO V() 4 (D) = 3 (),

k=0
We have (see for example [27], paragraph 0.3.5):
W(Co) = ®i>0Co0f - - f(ifl).
If L is a sub-IFy-algebra of C,, we set:
W(L) = @i>oLf--- fO71.

Let a € A, then we can write:

dega

p(a) = a®1 = Z (ba,if"'f(iil)v

i=0
where ¢q,; € C, and:
(ba,dega = Sg—n(a)u
(ba,O = a.

In particular, note that co does not belong to the support of V. The map ¢ : A —
Coo{7} such that:

Va€ A, ¢,= Z¢a,¢7i7

is a sign-normalized rank one Drinfeld module by the Drinfeld correspondence at-
tached to f (|27], paragraph 0.3.5, see also [19], section 7.11 ). Let’s write:

exp,, = Zei(qﬁ)Ti, ei(4) € Cxo
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We have ([27], Proposition 0.3.6):
viz0, 0=y
Let H = Frac(A ® B) C F. By Drinfeld’s correspondence (see [19], Chapter 6),
f € H. Thus:

=143 fir € H(G)) € Cal(7),

>0
where f; € H,¥i > 0.
We view H as a function field over p(K) = K ® 1. Let K = Frac(A ® A). Let
oo be the unique place of K/p(K) which is above the place oo of K/F,. Then the
completion of K above oo is:

Koo = p(K)(Foo)((1 @ 7)).
Observe that the set of elements of K/p(K) which are regular outside oo is:
A:=Ap(K)]=K® A.
We set B := B[p(K)] = K ® B, then B is the integral closure of A in H. Let G =

Gal(H/K) ~ Gal(H/K). Let ¢ : A — H{7} be the p(K)-algebra homomorphism

such that:
dega

Vae A, o= Z Gaif - fOVT € H{r).
i=0

Let exp,, € H{{7}} be the following element:

ex Zf f11e T*Z I f11 B E——
Pe = il foo O ey

i>0 i>0
Then:

Va € A, exp,a = p,exp,,.
Let Hy, = H ®g Ky, then exp,, COnverges on Hoo

Let B be a maximal ideal of B. Then BB is a maximal ideal of B. Let vy :
H — Z U {400} be the valuation on H attached to PB. Since for all a € A,

pla) = Z?igoa Qaif - fU=1 we deduce that:

¥i>0, op(f?) =q'up(f) =0.
However, we warn the reader that, if g > 0, we have:

f ¢B.
We set:
W(B) = ®@i>oBf--- f01.

Lemma 4.4.
1) W(B) is a A® B-module containing A® B, furthermore W (B) is a A® A-module
via .
2) Lit W(B)B be the B-module generated by W(B). Let B be a mazimal ideal of
B. The inclusion B C W(B)B induces an equality:

B W(B)B

TE PV (BB
3) W(B)B is a fractional ideal of B. In particular, it is discrete in Hyo
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Proof. We have:
dega
Vi>0,Yae A, pla)f-- fO7N = Z¢ fee fUHTD e W(B).

Observe that:
Vi, j >0, foo-fOTDRI(f fUTDy = pol D)

The assertion 1) follows.
. o
We set: Op = {z € H,vp(x) > 0}. Since 53 ‘” ~ %
the assertion 2) holds.
Let’s prove the assertion 3). Note that A ® H is the set of elements of H which

are regular outside co. By the expression (@I of the divisor of f - - FE=0 5 >0,
there exists a € A® B\ {0} such that:

Vi>0, af---f0VeAH.

Since for every maximal ideal ¢ of B, and for all i > 0, vp(f--- f07Y) = 0, we
deduce that:

and B C W(B)B C Og,

Vi>0,af - fOY e A® B.

Thus, there exists a € B\ {0} such that aW (B) C B. Since B is discrete in Hy, we
get the desired result. O

Let’s observe that, by Lemma 4 W (B)B is an A-module via . Let 3 be a
maximal ideal of B, then, again by Lemma (4] % is an A-module via ¢, and we

denote this latter A-module by @(%).

Lemma 4.5. Let P be a mazximal ideal of B. Then:

)= (= D

FlttASD( ‘B—B]A - p([‘B—B

T )4

Proof. Recall that:
ﬁ]A = (P,

where e = dim 4 %. Set aA = P¢ where sgn(a) = 1. Then:

- Z¢a,if"'f(i71)-

B
Vz € @, Pa—p(a)(T) = 0.

Thus, by similar arguments to those of [6], Lemma 5.8, we have an A-module
isomorphism:

Therefore:

(E) ~ L
PPB’ T (a—pla)A

O

If M is an A-module such that M is a finite dimensional p(K)-vector space and
its Fitting ideal is principal, Fitty (M) = zA, then we set:
x

[M]a = sgn(z)’
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By the above Lemma, we can form the L-series attached to ¢/W(B) :

B [5)a _ _P([%]A) . "
L(sD/W(B))—];3[7[90(%)]A E[(l T )l e Koo

Note that L(¢/W (B)) is in fact an element in the co-adic completion of Ko [p(A)] =
A ® K which is an affinoid algebra over K, and L(p/W(B)) is a special value
of a twisted zeta function (see [5], Section 5.2).

We denote by 7 : Ho — Hy the continuous homomorphism of p(K)-algebras
such that Vo € Huo, 7(x) = 29. Let 2z be an indeterminate. The map 7 : Hy, — Heo
extends uniquely into a continuous homomorphism (for the z-adic topology) of
F,[[z]]-algebras 7 : Hu[[z]] = Hool[[#]]. Let T.(Ho) C Hoo[[2]] be the oc-adic
completion of Hy[z], i.e. an element g € T,(Hy) can be uniquely written g =
Yoo giz', gi € Hy, such that lim; , . g; = 0. We also denote by T.(Ku) the
oo-adic completion of Koo[z]. Note that T, (H..) is a free T, (K )-module of rank
[H : K], and if (e1,...,€e,) is a K-basis of H (n = [H : K])), then:

T.(Hoo) = @iy T (Koo).

Observe also that G acts on T, (Hs) and T,(Hy) is a free T, (Ko )[G]-module

of rank one by the normal basis Theorem. We denote by T,(H)[G] the ring:
TZ(HOO)[G] = EBUEGTZ(HOO)07

where the product rule is given by:

Voi,02 € G,Yg1,92 € T.(Hw), (g101) (9202) = g101(92) o102.
Let’s set: ]
LS i e HE)
exXps = AT z|{{7T}}.
@ izof"'f( 1) e
Let I be a non-zero ideal of A. We set:
deg I

ur="Y_ ¢rif - f7 e W(B),
i=0

where ¢y = Z?i%l é1,:7%, ¢1; € B. Note that if I = aA, we have:
_ _pla)
sgn(a)’
Furthermore, we prove (see [I], Section 3.7 for the case do, = 1):

Lemma 4.6. Let I,J be two non-zero ideals of A. We have:
ur |£: ¢(I)=
or(flur = fr(ur),
ury = or(uy)us.
Proof. The fact that u; |¢= ¥(I) comes from the definition of u;. Note that we
have a natural isomorphism of B-modules:
Yo W(B) = B{r}, f- {001
In particular:
Vo e W(B), 7s(faM)) = m4(2),
Vo € W(B),Va € A, v4(p(a)z) = 74 (2)da-
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By explicit reciprocity law (see [19], Theorem 7.4.8), we have:
Va € A, ¢r1¢a = 0r($)adr.

By direct calculations, we deduce from this:

or(flur = fr(ur),

Now, let J be a non-zero ideal of A. We have:
Ye(ury) = ¢ry = or(¢ps)or.
But, since Vi > 0, o7 (f - fO"DNuy = f--- f(i_l)ugi), we have :

Yo(or(uy)ur) = or(dr)dr.

Thus:
'LL[J:O'[('LLJ)U].
O
We deduce that if P,Q are maximal ideals of A :
UP  degP UQ  _degQ _ UQ deg(Q) UP  degP
1———2z9°¢ - 29%€%0n) = (1— z9°8 - z op).
05w g™ o) = Mgy ) gy o)

For every integer n > 1, we set:

(1- up zdegPUP)_l = Z - kdegPUPk € T.(Ho ) [G].

PPy eGP
We define:
Yn>1, L(p;n;z)= H(l — %zdcgpap)fl € (T, (Hw)[G]) ™,
P

where P runs through the maximal ideals of A. Note that, for any n > 1, L(p; n; 2)
induces a T (K )-linear endomorphism of T, (H ), and we denote by detr_ x_ ) L(@;n; 2)
its determinant. Let’s set:

W (B[2]) = ®i»oB[2]f -+ fO71 C H[2].
Proposition 4.7. We have:

p([m%]A)zdegNH/K(m))—l c T (K )><

Vn>1, detr k) )L(p;n;2) = H(l — 5o
b [SB_B]A

where P runs through the maximal ideals of B.

Proof. The proof is similar to that of Theorem [B.6]. We give a sketch of the proof
for the convenience of the reader.
Let n > 1. We have:

U _
detﬂrz(Km)E(% n;z) = HdetK[z](l - —PnzdegPUP |H[z]) L
e Y(P)
Let P be a maximal ideal of A. Let e > 1 be the order of P in Pic(A). Then
l,0p,..., 0163_1 are linearly independent over H(z). We have :

U e Zede P
(w(;)n ZdegPUP)e _ p("/’(g(;})e)n & c K[z]
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Thus the minimal polynomial of —*£—29€Fop |y over K(z) (and also over

(P
H{“P) (2)) is equal to:

P B

e K|z][X].
v ]1X]
Therefore the characteristic polynomial of wé;’)n zdee Py p (=) over K(z) is equal
to:
(Xe p(w(Pe))ZedegP)i[H:K]
P(pe)r '
One obtains the desired result by the same arguments as that used in the proof of
Theorem O

Remark 4.8. Let L = p(K)(IFOO)((qdmflx/—w)), and let 7 : L — L be the continu-

ous morphism of p(K )-algebras such that Va € Foo (7"~ ~1y/=7)), 7(z) = 29. Then
there exists an element w € L* (unique up to the multiplication of an element in
p(K)*) such that:
T(w) = fw.

This element is a generalization of the special function introduced by G. Ander-
son and D. Thakur in [3]. The existence of this element (combined with the
log-algebraicity theorem) gives new arithmetic informations on special values of
L-series. We refer the interested reader to a forthcoming work of the authors.

4.3. Stark units and several variable log-algebraicity theorem.
We set:
U(@/W(B[2])) = {z € T.(Hx), expg(z) € W(B[2])}-
The following result is a twisted (by the shtuka function f) version of [I], Theorem
5.1.1. :

Theorem 4.9. We have:

U(p/W(Bl2])) = L(p; 15 2)W (B[z]).
In particular,

expg(L(y; 15 2)W(Bz])) € W(Blz]),

Proof. The proof is similar to that of Theorem B8 We give a sketch of the proof
for the convenience of the reader.

Observe that exps : HJ[z]] — H][[z]] is an isomorphism of A[[z]]-modules. Fur-
thermore, if we set:

W(H[[2)]) = @izoH[[])f - fO7Y,
we get:
expg(W(H|[[z]])) = W (H[[=]))-
Let:
W(B[2]]) = @izoB[[]]f -~ SO € H[2]].
Let P be a maximal ideal of A. Let Wp = S~*W(B][2]]), where S = A\ P. Then:
PWp = (P)Wp.
By Lemma 3.7, we have:
eXp[’;(PWp) = PWP.
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If
deg P
op =Y dpiT,
i=0
we set:
deg P
Zr=Y épif - fOVL
i=0
We have:
P expy = expy, Y(P)
where:
€XPyp = Z op(ei(d))f - f(lfl)Zsz.
i>0
Let’s set:

U(g/Wp) = {x € H[[z]], expz(x) € Wp} C W(H][z]]).

We have an isomorphism of A[[z]]-modules induced by expg:

Ulg/Wp) a( Wp )
PWp — TCPWp’”
Note that:
Vi>0, op(f--fONup=f- fO VD (up) e W(B).
Therefore:
(Br — 2% Pupop)3( o) = {0},
PWp

Since up is a “P-unit”, for # € W(H[[2]]) \ Wp, (pp — 298 Pupop)(z) is not
P-integral as an element of H[[z]]. Thus:
- Wp ~ W (H][=]])
— V={x € v
w(PWp[[z]]) {z € o P,
Let © € W(H][[2]]), we deduce that:

zeU(p/Wp) < (pp — degPuPap)(expsz(x)) € PWp.

), (#p — 298 upop)(z) = 0}.

Thus:
x € U(g/Wp) & exp,, (Y(P)z — 2% Pupop(z)) € PWp.
Lemma [3.7] implies:
z € U(@/Wp) & p(P)x — 298 Pupop(x) € PWp.

Thus:

chg PuP

U(p/Wp) = (1- o)
Observe that W (B[[z]]) = (1 Wp. We conclude that:
W(B[[z]]) = expg(L(p; L; 2)W (B[[2]]))-
By Lemma [£4] we get:
expg(L(p; 1; 2)W(B[z])) C T.(Hoo) N W(B([[2]]) = W(BIz]).
Recall that:

Up)71Wp.

U(p/W(Blz])) = {z € T.(He), expz(z) € W(B[z])}.
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Then:
U(p/W(B[2])) = L(; 1; 2)W (B[[2]]) N T (Hoo)-
But recall that:
L(p;1;2) € (T (Hoo )[G]) ™.
Thus:
U(p/W(Blz])) = L(g;1;2)W(Blz]).
O

Let ev : T,(Hy) — Hy be the evaluation map at z = 1. Then by Proposition
A7 we get:
L(p/W(B)) = detk. ev(L(p;1;2)),

where:
u

“1:2)) = __Po, -1 _ io_ X
ev(6lei15) = J10 = Seggor)™ = 37 o € (lGD",

where I runs through the non-zero ideals of A. Furthermore, by the above Theorem:
expy(ev(L(p; 15 2))W(B)) € W(B).
And also:
exp,,(ev(L(p; 1;2))W(B)B) C W(B)B.
If we define the regulator of Stark units ev(L(p;1;2))W (B)B as follows:
[W(B)B : ev(L(p; 1;2))W (B)B|a := detk ev(L(p;1;2)),
then:
L(p/W(B)) = [W(B)B : ev(L(y;1; 2))W(B)Ba-
We now briefly discuss the several variable version of Theorem 4.9l Let s > 0 be
an integer. Let:
K, = Frac(A®®),
where:
A®s =A®]Fq "'®]Fq A.
If s =0, then Ko = ;. Let:
H, = FraC(A®S ®]Fq B),
K, = Frac(A®® ®r, A).
Fori=1,...,s, let:
pi:A—-Hy, a—» (10 10a®---®1)®1,

where a appears at the i-th position. We still denote by p; : H — H the homo-
morphism of H-algebras such that:

Va€ A, pi(p(a)) = pi(a).
We view Hy and K, as functions fields over K ® 1. Let co be the unique place of
Ks/K,s ® 1 above the place oo of K/F,. Then:

Ksoo = (Ks @ 1)(Foo) (1% @ 7)),

and we set:
Hs,oo = Hs ®]KS Ks,oo-
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Let T,(H; ) be the Tate algebra in the variable z with coefficients in Hj o. Let
7: T, (Hs,00) = T, (Hs,00) be the continuous homomorphism of (K ® 1)[z]-algebras
such that:

Vo € Hy, 7(x) = 2%
Let’s set:

Wi(B[z]) = ®iy....i.>0Blz] [[ s (£) -+ 7% (p;(f)) € Halz].

j=1
In particular Wy(B[z]) = B|z]. By similar arguments as those of the proof of Lemma
[£4] we show that Wy (B]z]) is discrete in T, (Hj ). For n > 1, we set:

L(ps;n;z) = 1;[(1 (P

where P runs through the maximal ideals of A. Then, by the same proof as that of
Proposition @7 for all n > 1, we get:

(L= s ([%]A))zdeg Nry/x ()
A

Up)il S (Tz (HS,OO)[GDXv

detTZ(KS’m)ﬁ((ps;n;Z) = H(l - )_1 € TZ(KS oo)xa

B ,
P ko
where B runs through the maximal ideals of B.
We define:
expg, = Y _ei(d)([[ pi(f) -7 (0s(1))='7" € Ho{{T}}.
i>0 j=1

Then expg_ converges on Ts(Hs,00), and we set:
U(@s/Ws(Bl2])) = {x € T:(Hs,00), expg, (z) € Wi(Blz])}.
By similar arguments as those of the proof of Theorem [4.9] we get:
Corollary 4.10. We have:
U(@s/Ws(Blz])) = L(s; 1; 2)Ws(B[2]).
Example 4.11. We consider the Carlitz example, where ¢ = 0 and do, = 1.
Observe that there exists # € K such that sgn(f) = 1, and A = Fy[f]. Thus,
K =TFy(0), and Ko =Fy((5))-
Let ¢ : A — K..{7} be the Carlitz module defined by

pg =0+T.
Then the Carlitz exponential is given by:
L
eXp¢ = Z ET B
>0

where for i > 0, D; = [[._ (09 —69").
The Hilbert class field H of K is K, and then B = A. Then, the shtuka function
f € K ® H associated to the Carlitz module via the Drinfeld correspondence is
given by:
f=001-106.
Let s > 0 be an integer. Fori =1,... s, let t; = p;(#). We have:

pi(f) =ti—0,
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Hs = Ks = ]Fq(tla B atsae)a

1
Hs,oo = Ks,oo = Fq(tla o ats)((g))
Fori>0,5=1,---s, set:

We get:

Observe that:
5 bi(ty) .
expy, = Y =)
i>0
We have:
t1) - ats
ﬁ(gps; 1;2) = Z Mzdcg9a7

a
a€Ay

where Ay denotes the set of monic polynomials in A = Fy[f]. In particular, for
s =1, we recover the zeta function introduced by Pellarin [21].
Corollary .10 implies:

expg, (L(ps; 15 2)Alta, .. ., ts, 2]) C Alty, ..., ts, 2]

We refer the interested reader to [4], [6], [7], [9], for arithmetic applications of this
latter result.

4.4. Another proof of Anderson’s log-algebraicity theorem.

Corollary 4.12. Letn > 0 and let X1,...,Xn, 2z be n+ 1 indeterminates over K.
Let 7 : K[X1,...,X,][[2]] = K[X1,...,X,][[2]] be the continuous Fy[[z]]-algebra
homomorphism for the z-adic topology such that Vo € K[X1,...,X,],7(z) = 29.
Then:

¥be B, expy() 21(—(;)))@()(1) e r(Xn)2%) € B[Xy,..., Xn, 2],
1

where I runs through the non-zero ideals of A, and:
expy = Z ei(p)zire.
i>0
Proof. We first treat the case n = 0. Let b € B. By Theorem [£9] we get:
, @ b
Vk >0, 3 ei(@f...f(z—l)m € W(B),

deg I+i=k Y1)
and:

k> 0, (D) f ... pan T uor®) g
> deg}Zﬂ_kew)f f o0

The coefficient of f--- f*=1 in 2 deg 1-+i—k €i(O)f f(i_l)% is:
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Therefore:
or (b)ql
vk > 0, > eil9) —€B.
deg I+i=k ’(/J(I)q
or(b)?
VEk >0 > eil9) —=0.
deg I+i=Fk Y1)
Thus:

exp¢ Z

deg[ 6 B[ ]
We now assume that n > 1. We have an isomorphism of B[z]-modules

~v: W(B[z]) = @il,...,inzoB[z]X{I o
such that:

Vi1, ... in €N, ﬁ f<%—1>))=ﬁxq”.

Observe that:

j=1
vo[[ri(f)r=70n.
j=1
Furthermore: .
”Y((H pi(ur))) = ¢r(X1) - or(Xn).
=1
Thus, we get by Corollaryjm
expg, (L(pn; 1;2)b) € Wi (Blz]),
and thus:
expy Z %) ¢1 X1) - or(Xy)z8T) € @il,...inzoB[«Z]Xfil "'quzin'
I
O
Remark 4.13. Let s > 1 be an integer and let B{ry, ..., 75} be the non-commutative
polynomial ring in the variables 71,

., Ts, such that:

TiTj = TjTi,

Vbe B,Yn >0, 77b=10""1.
Fori=1,... s, we set:
dega
Va€ A, ¢iq= Z ba 7] € B{T1,...,Ts},
=0
and:
dega
Yac A, ¢o= Z ¢a ;7 € B{T1,...,Ts},
Jj=0
where 7 = 71 -+ - 7.
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Let Ws(B) = ®i,....:. B H§:1 pi(f) 757 (p;(f)) C H,. Then W (B) is an
A®S @ B-module. Let j € {1,...s}. Let a € A, we have a natural B-module
homomorphism:

pi(a) : B{m,...,7s} = B{m,...,Ts},
such that:

S

Vi, ..is €N, pia).(rt ) = (7 eia) [
k=1,k#j

Observe that:
Vi€ {l,...s}Vabe A, Fila)opb) = Fib) o 7ya).
Thus B{7y,...,7s} becomes an A®* @ B-module via:

Va € B{Tl, Ce ,TS}, (Z b; H pj(am»)) T = Z bZ(H ﬁj(ai,j))(x).

Then, by the proof of Corollary E12] we have an A®® @ B-module isomorphism:
B{m,...,7s} = W4(B).

In particular, B{r1,...,7s} is a finitely generated A®* ® B-module of rank one.
The case s = 1 was already observed by G. Anderson ([19], page 230, line 21 - there
is a misprint in line 24, since in general f ¢ A®r, C). If I is a non-zero ideal of A,
we define [ *-: B{ry,...,7s} = B{m1,...,7s} to be the B-module homomorphism
such that:

I (i1l = Z (bl},h o ¢?js7—ll1 R T;S—H\ )

J1serjs €40,...,deg I}

where ¢y = Z(I:C:gol ¢17k7k.
Let £: B{m,...,7s} = H{{m1,...,7s}} be defined as follows:

; ; biy,.. i i ;
L0 biyiei - omie) = 3 270’(1/,3;5"5)1*(711---T;s>.
i1yenis 1

115---2s

Then by Corollary 10, we get that the multiplication by exp, € H{{7}} on
H{{r,...,7s}} yields to the following property:

Vo € B{71,...,7s}, expy(L(x)) € B{r1,...,7s}.
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