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STARK UNITS IN POSITIVE CHARACTERISTIC

BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Abstract. We show that the module of Stark units associated to a sign-
normalized rank one Drinfeld module can be obtained from Anderson’s equi-
variant A-harmonic series. We apply this to obtain a class formula à la Tael-
man and to prove a several variable log-algebraicity theorem, generalizing An-
derson’s log-algebraicity theorem. We also give another proof of Anderson’s
log-algebraicity theorem using shtukas and obtain various results concerning
the module of Stark units for Drinfeld modules of arbitrary rank.
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Introduction

The power-series
∑
n≥1

zn

n is log-algebraic:

∑

n≥1

zn

n
= − log(1 − z).

This identity allows one to obtain the value of a Dirichlet L-series at s = 1 as an
algebraic linear combination of logarithms of circular units. Inspired by examples
of Carlitz [10] and Thakur [26], Anderson ([1], [2]) proved an analogue of this
identity for a sign-normalized rank one Drinfeld A-module, known as Anderson’s
log-algebraicity theorem.

When A = Fq[θ] (the genus 0 case), various works ([1, 2, 3, 6, 7, 9, 11, 15, 16, 17,
20, 21, 22, 23]) have revealed the importance of certain units in the study of special
values of the Goss L-functions at s = 1. To give a simple example, the Carlitz
module is considered to play the role of the multiplicative group Gm over Z, and
Anderson ([1, 2]) showed that the images through the Carlitz exponential of some
special units give algebraic elements which are the equivalent of the circular units.
The special units constructed in such a way are then “log-algebraic”. Recently,
Taelman ([22, 23]) introduced the module of units attached to any Drinfeld module
and proved a class formula which states that the special value of the Goss L-
function attached to a Drinfeld module at s = 1 is the product of a regulator term
arising from the module of units and an algebraic term arising from a certain class
module. Also, deformations of Goss L-series values in Tate algebras are investigated
by Pellarin and two of the authors ([6, 7, 9, 21]). For higher dimensional versions of
Drinfeld modules, we refer the reader to [3, 11, 15, 16, 17, 20]. We should mention
that all these works are based on a crucial fact that Fq[θ] is a principal ideal domain,
which is no longer true in general.

In the present paper, we develop a new method to deal with higher genus cases.
We introduce Stark units attached to Drinfeld A-modules extending the previous
work of two of the authors ([9]) and make a systematic study of these modules of
Stark units. For a sign-normalized rank one Drinfeld module, we prove a direct link
between the module of Stark units and Anderson’s equivariant A-harmonic series,
which is an analogue of Stark’s conjectures. It allows us to obtain a class formula à
la Taelman and a several variable log-algebraicity theorem in the general context.

Let us give now more precise statements of our results.
Let K/Fq be a global function field (Fq is algebraically closed in K), let A

be the ring of elements of K which are regular outside a fixed place ∞ of K of
degree d∞ ≥ 1. The completion K∞ of K at the place ∞ has residue field F∞

and is endowed with the ∞-adic valuation v∞ : K∞ ։ Z ∪ {+∞}. For a ∈ A, we
set: deg a := −d∞v∞(a). We fix an algebraic closure K∞ of K∞, and still denote
v∞ : K∞ ։ Q ∪ {+∞} the extension of v∞ to K∞. Let τ : K∞ → K∞ be the
Fq-algebra homomorphism which sends x to xq .

We choose a sign function sgn : K×
∞ → F×

∞, that is, a group homomorphism such
that sgn |

F
×

∞

= Id
F
×

∞

. Let φ : A →֒ K∞{τ} be a sign-normalized rank one Drinfeld

module (see Section 3.2), i.e. there exists an integer i(φ) ∈ N such that:

∀a ∈ A, φa = a+ · · ·+ sgn(a)q
i(φ)

τdeg a.
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Then, the exponential series attached to φ is the unique element expφ ∈ K∞{{τ}},
such that expφ ≡ 1 (mod τ), and:

∀a ∈ A, expφ a = φa expφ .

If we write:

expφ =
∑

i≥0

ei(φ)τ
i,

with ei(φ) ∈ K∞, then the field H := K(ei(φ), i ∈ N) is a finite abelian extension
of K which is unramified outside ∞ (see Section 3.2). Let B be the integral closure
of A in H. For all a ∈ A, we have:

φa ∈ B{τ}.
For a non-zero ideal I of A, we define φI ∈ H{τ} to be the monic element in H{τ}
such that:

H{τ}φI =
∑

a∈I

H{τ}φa.

In fact, φI ∈ B{τ} and we denote its constant term by ψ(I) ∈ B \ {0}.
For simplicity, we will work over the abelian extension H/K.We should mention

that the results presented below are still valid for any finite abelian extension E/K
such that H ⊂ E.

Let G = Gal(H/K). For a non-zero ideal I of A, we denote by σI = (I,H/K) ∈
G, where (·, H/K) is the Artin map. Let z be an indeterminate over K∞ and let
Tz(K∞) be the Tate algebra in the variable z with coefficients in K∞. Let’s set:

H∞ = H ⊗K K∞,

and:

Tz(H∞) = H ⊗K Tz(K∞).

Let τ : Tz(H∞) → Tz(H∞) be the continuous Fq[z]-algebra homomorphism such
that:

∀x ∈ H∞, τ(x) = xq.

We set:

expφ̃ =
∑

i≥0

ei(φ)z
iτ i ∈ H [z]{{τ}}.

Then expφ̃ converges on Tz(H∞). Following [9], we introduce the module of z-units

attached to φ/B:

U(φ̃/B[z]) = {f ∈ Tz(H∞), expφ̃(f) ∈ B[z]}.
We denote by ev : Tz(H∞) → H∞ the evaluation at z = 1. The module of Stark
units attached to φ/B is defined by (see [9], Section 2):

USt(φ/B) = ev(U(φ̃/B[z])) ⊂ H∞.

Then USt(φ/B) is an A-lattice in H∞ (see Theorem 2.7), i.e. USt(φ/B) is an A-
module which is discrete and cocompact in H∞. In fact, USt(φ/B) is contained in
the A-module of the Taelman module of units [22] defined by:

U(φ/B) = {x ∈ H∞, expφ(x) ∈ B},
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which is also an A-lattice in H∞. Following Taelman [22], the Taelman class module
H(φ/B) is a finite A-module (via φ) defined by:

H(φ/B) =
H∞

B + expφ(H∞)
.

Following Anderson [1], we introduce the following series (see Section 3.3):

L(φ/B; 1; z) =
∑

I

zdeg I

ψ(I)
σI ∈ Tz(H∞)[G],

where the sum runs through the non-zero ideals I of A. The equivariant A-harmonic
series attached to φ/B is defined by:

L(φ/B) = ev(L(φ/B; 1; z)) ∈ H∞[G].

One of our main theorems states (see Theorem 3.8) that the module of Stark
units USt(φ/B) can be obtained from the equivariant A-harmonic series L(φ/B),
which is reminiscent of Stark’s Conjectures ([25]):

Theorem A. We have:

U(φ̃/B[z]) = L(φ/B; 1; z)B[z].

In particular,

USt(φ/B) = L(φ/B)B.

We will present several applications of this theorem.

Firstly, we apply Theorem A to obtain a class formula à la Taelman for φ/B, by
a different method of Taelman’s original one [23]. Roughly speaking, we introduce
the Stark regulator (resp. the regulator defined by Taelman [23]) attached to φ/B

by [B : USt(φ/B)]A ∈ K
×

∞ (resp. [B : U(φ/B)]A ∈ K
×

∞) (see Section 2.3). We
show (see Theorem 2.7):

Theorem B. We have:

FittA
U(φ/B)

USt(φ/B)
= FittAH(φ/B),

where, for a finite A-module M, FittAM is the Fitting ideal of M .

Observe that L(φ/B) induces a K∞-linear map on H∞, and we denote by
detK∞

L(φ/B) its determinant. We prove the following formula (see Theorem 3.6):

detK∞
L(φ/B) = ζB(1) :=

∏

P

(1− 1

[B
P
]A

)−1 ∈ K
×

∞,

where P runs through the maximal ideals of B. Note that ζB(1) is a special value
at s = 1 of some zeta function ζB(s) introduced by Goss (see [19], Chapter 8).
Therefore, Theorem A and Theorem B imply Taelman’s class formula for φ/B (see
Theorem 3.10):

Theorem C. We have:

ζB(1) = [B : USt(φ/B)]A = [B : U(φ/B)]A[H(φ/B)]A.
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When the genus of K is zero and d∞ = 1, Taelman’s class formula, its higher
dimensional versions, and its arithmetic consequences are now well-understood due
to the recent works ([6], [8], [9], [11], [15], [16], [17], [22], [23]). All these works are
based on the crucial fact that when g = 0 and d∞ = 1, the ring A is a principal ideal
domain (when A is not assumed to be principal, the existence of a class formula
is still an open problem in general). Using the module of Stark units, we are able
to overcome this difficulty, and Theorem C provides a large class of examples of
Taelman’s class formula when A is no longer principal. We refer the reader to
Section 2.4 for a more detailed discussion.

Secondly, we apply Theorem A to prove a several variable log-algebraicity the-
orem, generalizing Anderson’s log-algebraicity theorems (see Theorem 4.2). (The
theorem below is valid for any finite abelian extension E/K, H ⊂ E, see Theorem
4.2 for the precise statement).

Theorem D. Let n ≥ 0 and let X1, . . . , Xn, z be n + 1 indeterminates over K.
Let τ : K[X1, . . . , Xn][[z]] → K[X1, . . . , Xn][[z]] be the continuous Fq[[z]]-algebra
homomorphism for the z-adic topology such that ∀x ∈ K[X1, . . . , Xn], τ(x) = xq.
Then:

∀b ∈ B, expφ̃(
∑

I

σI(b)

ψ(I)
φI(X1) · · ·φI(Xn)z

deg I) ∈ B[X1, . . . , Xn, z],

where I runs through the non-zero ideals of A.

For n ≤ 1 and d∞ = 1, this theorem was due to G. Anderson ([1], Theorem 5.1.1
and [2], Theorem 3):

∀b ∈ B, expφ̃(
∑

I

σI(b)

ψ(I)
zdeg I) ∈ B[z],

∀b ∈ B, expφ̃(
∑

I

σI(b)

ψ(I)
φI(X)zdeg I) ∈ B[X, z],

where the sum runs through the non-zero ideals of A. Again, this result is now
well-understood when the genus of K is zero (and d∞ = 1) due to the recent
works of many people ([6], [7], [8], [9], [23], [28] Sections 8.9 and 8.10, and the
forthcoming work of M. Papanikolas [20]). However, to our knowledge, Anderson’s
log-algebraicity remains quite mysterious for g > 0 until now.

Thirdly, we present an alternative approach to the previous several variable log-
algebraicity theorem (Theorem D) via Drinfeld’s correspondence between Drinfeld
modules and shtukas. Using the shtuka function attached to φ/B via Drinfeld’s
correspondence, we introduce one variable versions of the previous objects, i.e. the
modules of z-units and Stark units, the equivariant A-harmonic series and the L-
series (see Section 4.2). We prove an analogue of Theorem A in this one variable
context (see Theorem 4.9). More generally, we also obtain a several variable log-
algebraicity theorem (see Corollary 4.10). In the case g = 0 and d∞ = 1, we
rediscover the Pellarin’s L-series [21] and its several variable variants studied in [4],
[6], [7], [9]. We deduce from this another proof of Theorem D (see Section 4.4).

Finally, we prove some results concerning the module of Stark units for Drinfeld
modules of arbitrary rank in Section 2. In particular, Theorem B is still valid for
any Drinfeld module.
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1. Notation

Let K/Fq be a global function field of genus g, where Fq is a finite field of
characteristic p, having q elements (Fq is algebraically closed in K). We fix a place
∞ of K of degree d∞, and denote by A the ring of elements of K which are regular
outside of ∞. The completion K∞ of K at the place ∞ has residue field F∞ and
comes with the ∞-adic valuation v∞ : K∞ ։ Z ∪ {+∞}. We fix an algebraic
closure K∞ of K∞ and still denote by v∞ : C∞ ։ Q ∪ {+∞} the extension of v∞
to the completion C∞ of K∞.

We will fix a uniformizer π of K∞. Set π1 = π, and for n ≥ 2, choose πn ∈ K
×

∞

such that πnn = πn−1. If z ∈ Q, z = m
n! for some m ∈ Z, n ≥ 1, we set:

πz := πmn .

Let Fq be the algebraic closure of Fq inK∞, and let U∞ = {x ∈ K∞, v∞(x−1) > 0}.
Then:

K
×

∞ = πQ × F
×

q × U∞.

Therefore, if x ∈ K
×

∞, one can write in a unique way:

x = πv∞(x) sgn(x)〈x〉, sgn(x) ∈ F
×

q , 〈x〉 ∈ U∞.

Let I(A) be the group of non-zero fractional ideals of A. For I ∈ I(A), I ⊂ A,
we set:

deg I := dimFq A/I.

Then, the function deg on non-zero ideals of A extends into a group homomorphism:

deg : I(A) ։ Z.

Let’s observe that, for x ∈ K×, we have:

deg(x) := deg(xA) = −d∞v∞(x).

Let I ∈ I(A), then there exists an integer h ≥ 1 such that Ih = xA, x ∈ K×.
We set:

〈I〉 := 〈x〉 1
h ∈ U∞.

Then one shows (see [19], Section 8.2) that the map [·] : I(A) → K
×

∞, I 7→ 〈I〉π− deg I
d∞

is a group homomorphism such that:

∀x ∈ K×, [xA] =
x

sgn(x)
.

Observe that:

∀I ∈ I(A), sgn([I]) = 1.

If M is a finite A-module, and FittA(M) is the Fitting ideal of M , we set:

[M ]A := [FittA(M)].

Let’s observe that, if 0 → M1 → M → M2 → 0 is a short exact sequence of finite
A-modules, then:

[M ]A = [M1]A[M2]A.

Let E/K be a finite extension, and let OE be the integral closure of A in E.
Let I(OE) be the group of non-zero fractional ideals of OE . We denote by NE/K :
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I(OE) → I(A) the group homomorphism such that, if P is a maximal ideal of OE
and P = P ∩ A, we have:

NE/K(P) = P [
OE
P

:AP ].

Note that, if P = xOE , x ∈ E×, then:

NE/K(P) = NE/K(x)A,

where NE/K : E → K also denotes the usual norm map.

2. Stark units and L-series attached to Drinfeld modules

2.1. L-series attached to Drinfeld modules.

Let E/K be a finite extension, and let OE be the integral closure of A in E. Let
τ : E → E, x 7→ xq. Let ρ be an Drinfeld A-module (or a Drinfeld module for short)
of rank r ≥ 1 defined over OE , i.e. ρ : A →֒ OE{τ} is an Fq-algebra homomorphism
such that:

∀a ∈ A \ {0}, ρa = ρa,0 + ρa,1τ + · · ·+ ρa,r deg aτ
r deg a,

where ρa,0, . . . , ρa,r deg a ∈ OE , ρa,0 = a, and ρa,r deg a 6= 0.
Let P be a maximal ideal of OE , we denote by ρ(OE/P) the finite dimensional

Fq-vector space OE/P equipped with the structure of A-module induced by ρ.

Proposition 2.1. The following product converges to a principal unit in K×
∞ (i.e.

an element in U∞ ∩K×
∞):

LA(ρ/OE) :=
∏

P

[OE

P
]A

[ρ(OE

P
)]A

,

where P runs through the maximal ideals of OE .

Proof. By [19], Remark 7.1.8.2, we have: HA ⊂ E, where HA/K is the maximal
unramified abelian extension of K such that ∞ splits completely in HA. Thus
NE/K(P) is a principal ideal. Observe that:

FittA
OE
P

= NE/K(P).

Thus:

[
OE
P

]A = [NE/K(P)].

By [18], Theorem 5.1, there exists a unitary polynomial P (X) ∈ A[X ] of degree
r′ ≤ r such that:

NE/K(P) = P (0)A,

FittAρ(
OE
P

) = P (1)A,

v∞(
(−1)r

′

P (0)

P (1)
− 1) ≥ deg(NE/K(P))

r′d∞
.

This last assertion comes from the fact that P (X) is a power of the minimal poly-
nomial over K of the Frobenius F of OE

P
(see [18], Lemma 3.3), and that K(F )/K
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is totally imaginary (i.e. there exists a unique place of K(F ) over ∞). By the
properties of [·] (see Section 1), we have:

[OE

P
]A

[ρ(OE

P
)]A

=
(−1)r

′

P (0)

P (1)
.

The proposition follows. �

Remark 2.2. The element LA(ρ/OE) ∈ K×
∞ is called the L-series attached to

ρ/OE. By the proof of Proposition 2.1, LA(ρ/OE) depends on A, ρ and OE , but
not on the choice of π.

Let F/K be a finite extension with F ⊂ E, and such that there exists a unique
place of F above ∞ (still denoted by ∞). Let A′ be the integral closure of A in F,
then A′ is the set of elements in F which are regular outside ∞. We assume that

ρ extends into a Drinfeld A′-module: ρ : A′ →֒ OE{τ}. Let [·]A′ : I(A′) → K
×

∞ be
the map constructed as in Section 1 with the help of the choice of a uniformizer
π′ ∈ F×

∞. Let NF∞/K∞
: F∞ → K∞ be the usual norm map.

Corollary 2.3. We have:

NF∞/K∞
(LA′(ρ/OE)) = LA(ρ/OE).

Proof. Recall that:

LA′(ρ/OE) :=
∏

P

[OE

P
]A′

[ρ(OE

P
)]A′

,

where P runs through the maximal ideals of OE . Since NF∞/K∞
is continuous, we

get by the proof of Proposition 2.1:

NF∞/K∞
(LA′(ρ/OE)) =

∏

P

NF∞/K∞
(

[OE

P
]A′

[ρ(OE

P
)]A′

).

Let P be a maximal ideal of OE . Since
[
OE
P

]A′

[ρ(
OE
P

)]A′

∈ F×, we get:

NF∞/K∞
(

[OE

P
]A′

[ρ(OE

P
)]A′

) = NF/K(
[OE

P
]A′

[ρ(OE

P
)]A′

).

But, observe that if M is a finite A′-module, we have:

NF/K(FittA′M) = FittAM.

By the proof of Proposition 2.1,
[
OE
P

]A′

[ρ(
OE
P

)]A′

is a principal unit in F×
∞, and therefore

NF/K(
[
OE
P

]A′

[ρ(
OE
P

)]A′

) is also a principal unit in K×
∞. Again, by the proof of Proposition

2.1, we get:

NF/K(
[OE

P
]A′

[ρ(OE

P
)]A′

) =
[OE

P
]A

[ρ(OE

P
)]A

.

The corollary follows. �
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2.2. Stark units and the Taelman class module.

Let E/K be a finite extension of degree n, and let OE be the integral closure of
A in E. Set:

E∞ = E ⊗K K∞.

Let M be an A-module, M ⊂ E∞, we say that M is an A-lattice in E∞ if M
is discrete and cocompact in E∞. Observe that if M is an A-lattice in E∞, then
there exist e1, . . . , en ∈ E∞ (recall that n = [E : K]) such that E∞ = ⊕ni=1K∞ei,
N := ⊕ni=1Aei ⊂M and M

N is a finite A-module. Note also that OE is an A-lattice
in E∞.

Let τ : E∞ → E∞, x 7→ xq. Let ρ : A →֒ OE{τ} be a Drinfeld module of rank
r ≥ 1. Then, there exist unique elements expρ, logρ ∈ E{{τ}} such that

expρ, logρ ∈ 1 + E{{τ}}τ,
∀a ∈ A, expρ a = ρa expρ,

expρ logρ = logρ expρ = 1.

The formal series expρ, and logρ are respectively called the exponential series and
the logarithm series associated to ρ/OE. We will write:

expρ =
∑

i≥0

ei(ρ)τ
i,

logρ =
∑

i≥0

li(ρ)τ
i,

with ei(ρ), li(ρ) ∈ E. Moreover, expρ converges on E∞ (see [19], proof of Theorem
4.6.9).

Definition 2.4. We define the Taelman module of units associated to ρ/OE as
follows:

U(ρ/OE) = {x ∈ E∞, expρ(x) ∈ OE}.
Then, as a consequence of [22], Theorem 1, the A-module U(ρ/OE) is an A-

lattice in E∞.

Definition 2.5. We define the Taelman class module associated to ρ/OE by:

H(ρ/OE) =
E∞

OE + expρ(E∞)
.

Note that H(ρ/OE) is an A-module via ρ, and by [22], Theorem 1, H(ρ/OE) is
a finite A-module.

Let z be an indeterminate over K∞, and let Tz(K∞) be the Tate algebra in the
variable z with coefficients in K∞. We set:

Tz(E∞) = E ⊗K Tz(K∞).

Observe that E∞ ⊂ Tz(E∞), and Tz(E∞) is a free Tz(K∞)-module of rank [E : K].
Let τ : Tz(E∞) → Tz(E∞) be the continuous Fq[z]-algebra homomorphism such
that:

∀x ∈ E∞, τ(x) = xq.

Let ev : Tz(E∞) ։ E∞ be the surjective E∞-algebra homomorphism given by:

∀f ∈ Tz(E∞), ev(f) = f |z=1 .
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We have: ker ev = (z − 1)Tz(E∞), and:

∀f ∈ Tz(E∞), ev(τ(f)) = τ(ev(f)).

Recall that:
expρ =

∑

i≥0

ei(ρ)τ
i, with ei(ρ) ∈ E.

We set:
expρ̃ =

∑

i≥0

ei(ρ)z
iτ i ∈ E[z]{{τ}}.

Observe that expρ̃ converges on Tz(E∞), and:

∀f ∈ Tz(E∞), ev(expρ̃(f)) = expρ(ev(f)).

Let ρ̃ : A →֒ OE [z]{τ} be the Fq-algebra homomorphism given by:

∀a ∈ A, ρ̃a = a+ ρa,1zτ + · · ·+ ρa,r deg az
r deg aτr deg a,

where ρa = a+ ρa,1τ + · · ·+ ρa,r deg aτ
r deg a. Then:

∀a ∈ A, expρ̃ a = ρ̃a expρ̃ .

Definition 2.6. The module of z-units associated to ρ/OE is defined by:

U(ρ̃/OE [z]) = {f ∈ Tz(E∞), expρ̃(f) ∈ OE [z]}.
And the module of Stark units associated to ρ/OE is defined by:

USt(ρ/OE) := ev(U(ρ̃/OE [z])).

Observe that USt(ρ/OE) ⊂ U(ρ/OE).

Theorem 2.7. The A-module USt(ρ/OE) is an A-lattice in E∞. Furthermore:

[
U(ρ/OE)

USt(ρ/OE)
]A = [H(ρ/OE)]A.

Proof. This is a consequence of the proof of [9], Theorem 1. For the convenience of
the reader, we give a sketch of the proof. Let’s set:

H(ρ̃/OE [z]) =
Tz(E∞)

OE [z] + expρ̃(Tz(E∞))
.

Observe that H(ρ̃/OE [z]) is an A[z]-module via ρ̃, and furthermore H(ρ̃/OE [z]) is
a finite Fq[z]-module ([9], Proposition 2). Let’s set:

V = {x ∈ H(ρ̃/OE [z]), (z − 1)x = 0}.
Since ker ev = (z − 1)Tz(E∞), the multiplication by z − 1 on H(ρ̃/OE) gives rise
to an exact sequence of finite A-modules:

0 → V → H(ρ̃/OE [z]) → H(ρ̃/OE [z]) → H(ρ/OE) → 0.

Thus:
FittAV = FittAH(ρ/OE).

Now, let’s consider the homomorphism of Fq[z]-modules α : Tz(E∞) → Tz(E∞)
given by:

∀x ∈ Tz(E∞), α(x) =
expρ̃(x) − expρ(x)

z − 1
.

Observe that:
(z − 1)α(U(ρ/OE)) ⊂ OE + expρ̃(Tz(E∞)),
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∀a ∈ A, ∀x ∈ U(ρ(OE)), α(ax) − ρ̃a(α(x)) ∈ OE [z].

Thus α induces a homomorphism of A-modules:

ᾱ : U(ρ/OE) → V.

By [9], Proposition 3, this homomorphism is surjective and its kernel is precisely
USt(ρ/OE). The theorem follows. �

2.3. Co-volumes.

Let V be a finite dimensional K∞-vector space of dimension n ≥ 1. An A-lattice
in V is a discrete and cocompact sub-A-module of V.

Lemma 2.8. Let M,N be two A-lattices in V. Then there exists an isomorphism
of K∞-vector spaces σ : V → V such that:

σ(M) ⊂ N.

Proof. Since A is a Dedekind domain, there exist two non-zero ideals I, J of A, and
two K∞-basis {e1, . . . en}, {f1, . . . , fn} of V, such that:

M = ⊕n−1
j=1Aej ⊕ Ien,

N = ⊕n−1
j=1Afj ⊕ Jfn.

Furthermore,M and N are isomorphic as A-modules if and only if I and J have the
same class in the ideal class group Pic(A) of A. Let x ∈ I−1J \ {0}. Let σ : V → V
such that:

σ(ej) = fj , j = 1, . . . , n− 1,

σ(en) = xfn.

Then:

σ(M) ⊂ N.

Note that if M and N are isomorphic A-modules then we can select x ∈ K× such
that I−1J = xA and in this case σ(M) = N. �

Lemma 2.9. Let M,N be two A-lattices in V. Let σ1, σ2 : V → V be two isomor-
phisms of K∞-vector spaces such that σi(M) ⊂ N, i = 1, 2. Then:

detK∞
σ1

sgn(detK∞
σ1)

[
N

σ1(M)
]−1
A =

detK∞
σ2

sgn(detK∞
σ2)

[
N

σ2(M)
]−1
A .

Proof. Let σ = σ1σ
−1
2 . Since σ(σ2(M)) = σ1(M) ⊂ N , with σ2(M) ⊂ N , we can

find a ∈ A with sgna = 1 such that aσ(N) ⊂ N . Set U = 1
aσ2(M) ∩N . Then the

multiplication by a induces an exact sequence of finite A-modules:

0 −→ U

σ2(M)
−→ N

σ2(M)

a−→ N

σ2(M)
−→ N

aN
−→ 0

from which we deduce

[
U

σ2(M)
]A = [

N

aN
]A = an.

And aσ similarly induces an exact sequence of finite A-modules:

0 −→ U

σ2(M)
−→ N

σ2(M)

aσ−→ N

σ1(M)
−→ N

aσ(N)
−→ 0.
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We get:

[
N

σ1(M)
]A = [

N

σ2(M)
]A[

U

σ2(M)
]−1
A [

N

aσ(N)
]A = [

N

σ2(M)
]Aa

−n detK∞
(aσ)

sgn(detK∞
(aσ))

= [
N

σ2(M)
]A

detK∞
(σ)

sgn(detK∞
(σ))

.

The lemma follows. �

Let M,N be two A-lattices in V. By Lemma 2.8, there exists an isomorphism of
K∞-vector spaces σ : V → V such that σ(M) ⊂ N, we set:

[M : N ]A =
detK∞

σ

sgn(detK∞
σ)

[
N

σ(M)
]−1
A .

By Lemma 2.9, this is well-defined. In particular, if M,N are two A-lattices in V
such that N ⊂M, then:

[M : N ]A = [
M

N
]A.

If M,N,U are three A-lattices in V, we get:

[M : N ]A = [M : U ]A[U : N ]A.

Let F/K be a finite extension such that there exists a unique place of F above
∞ (still denoted by ∞). Let A′ be the integral closure of A in F. We assume that

V is also an F∞-vector space. Let [·]A′ : I(A′) → K
×

∞ be the map constructed as
in Section 1 with the help of the choice of a uniformizer π′ ∈ F×

∞. Let NF∞/K∞
:

F∞ → K∞ be the usual norm map.

Lemma 2.10. LetM,N be two A′-lattices in V. Then there exists an integer m ≥ 1
such that [M : N ]mA′ ∈ F×

∞, [M : N ]mA ∈ K×
∞, and:

NF∞/K∞
([M : N ]mA′) = [M : N ]mA .

Proof. Let σ : V → V be an isomorphism of F∞-vector spaces such that σ(M) ⊂ N,
and we set: I ′ = FittA′

N
σ(M) . Then:

FittA
N

σ(M)
= NF/K(I ′).

Let m ≥ 1 be an integer such that:

I ′m = xA′, x ∈ A′ \ {0}.
Then:

[M : N ]mA′ = (
detF∞

σ

sgn′(detF∞
σ)

)m
sgn′(x)

x
.

Furthermore, we have:

detK∞
σ = NF∞/K∞

(detF∞
σ).

Thus:

[M : N ]mA = (
NF∞/K∞

(detF∞
σ)

sgn(NF∞/K∞
(detF∞

σ))
)m

sgn(NF/K(x))

NF/K(x)
.

Therefore:

NF∞/K∞
([M : N ]mA′) ∈ [M : N ]mAF

×
∞.

The lemma follows. �
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2.4. Regulator of Stark units and L-series.

Let E/K be a finite extension, E ⊂ C∞. Recall that E∞ = E ⊗K K∞. If M is
an A-lattice in E∞, then we call [OE :M ]A the A-regulator of M .

Definition 2.11. Let ρ : A →֒ OE{τ} be a Drinfeld module of rank r ≥ 1. We
define the regulator of Stark units associated to ρ/OE by [OE : USt(ρ/OE)]A.

Proposition 2.12. Let ρ : A →֒ OE{τ} be a Drinfeld module of rank r ≥ 1. We
have:

[OE : USt(ρ/OE)]A ∈ U∞.

Furthermore, the regulator of Stark units relative to ρ/OE depends on ρ,A and OE ,
not on the choice of π.

Proof. Let θ ∈ A \ Fq, and let L = Fq(θ), B = Fq[θ]. Let [·]B : I(B) → L×
∞ be the

map as in Section 1 associated to the choice of 1
θ as a uniformizer of L∞. Then, by

Theorem 2.7, we have:

[OE : USt(ρ/OE)]B = [OE : U(ρ/OE)]B[H(ρ/OE)]B .

Then, by [22], Theorem 2, we get:

[OE : USt(ρ/OE)]B ∈ 1 +
1

θ
Fq[[

1

θ
]].

Now, by Lemma 2.10, there exists an integer m ≥ 1 such that:

NK∞/L∞
([OE : USt(ρ/OE)]

m
A ) = [OE : USt(ρ/OE)]

m
B .

This implies:

v∞([OE : USt(ρ/OE)]A) = 0.

Thus:

[OE : USt(ρ/OE)]A ∈ F
×

q × U∞.

But sgn([OE : USt(ρ/OE)]A) = 1, thus:

[OE : USt(ρ/OE)]A ∈ U∞.

Let π′ be another uniformizer of K∞, and let [·]′A : I(A) → K
×

∞ be the map as
in Section 1 associated to π′. Then, by the above discussion, we get:

[OE : USt(ρ/OE)]
′
A ∈ U∞.

Again, by Lemma 2.10, there exists an integer m′ ≥ 1 such that:

([OE : USt(ρ/OE)]
′
A)
m′

= [OE : USt(ρ/OE)]
m′

A .

Since [OE : USt(ρ/OE)]
′
A, [OE : USt(ρ/OE)]A ∈ U∞, we get:

[OE : USt(ρ/OE)]
′
A = [OE : USt(ρ/OE)]A.

This concludes the proof of the proposition. �

Let’s set:

αA(ρ/OE) :=
LA(ρ/OE)

[OE : USt(ρ/OE)]A
∈ K

×

∞.

By Proposition 2.12 and Remark 2.2, αA(ρ/OE) depends on A, ρ, and OE , not on
the choice of π. Furthermore:

αA(ρ/OE) ∈ U∞.
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Let’s also observe that, if pk is the exact power of p dividing | Pic(A) |, then:
αA(ρ/OE)

pkd∞ ∈ K×
∞.

We have the fundamental result due to L. Taelman ([23], Theorem 1):

Theorem 2.13 (Taelman). Assume that the genus of K is zero and d∞ = 1. Then:

αA(ρ/OE) = 1.

Proof. Select θ ∈ A\Fq such that v∞(θ) = 1. Then A = Fq[θ]. Let [·]A : I(A) → K×
∞

be the map as in Section 1 associated to the choice of 1
θ as a uniformizer of K∞.

Then, by Proposition 2.12, Theorem 2.7 and [23], Theorem 1:

[OE : USt(ρ/OE)]A = [OE : U(ρ/OE)]A[H(ρ/OE)]A = LA(ρ/OE).

This concludes the proof of the theorem. �

Corollary 2.14.

1) Let F/K be a finite extension, F ⊂ E, and such that there exists a unique place
of F above ∞ (still denoted by ∞). Let A′ be the integral closure of A in F. Let
NF∞/K∞

: F∞ → K∞ be the usual norm map. Then, there exists an integer k ≥ 1

such that αA′(ρ/OE)
k ∈ F×

∞, αA(ρ/OE)
k ∈ K×

∞, and:

NF∞/K∞
(αA′(ρ/OE)

k) = αA(ρ/OE)
k.

In particular, αA′(ρ/OE) = 1 ⇒ αA(ρ/OE) = 1.

2) If there exists an integer m ≥ 1 such that αA(ρ/OE)
m ∈ K×, then αA(ρ/OE) =

1. In particular, if σ(αA(ρ/OE)) = αA(ρ
σ/σ(OE)) for all σ ∈ AutK(C∞), then

αA(ρ/OE) = 1.

Proof.
1) The first assertion is a consequence of Corollary 2.3 and Lemma 2.10. If
αA′(ρ/OE) = 1, then there exists an integer k ≥ 1 such that αA(ρ/OE)

k = 1.
But, since sgn(αA(ρ/OE)) = 1, we get αA(ρ/OE) = 1.

2) Let x = αA(ρ/OE)
m ∈ K×. Let P be a maximal ideal of A, and select an integer

l ≥ 1 such that P l is a principal ideal. Let θ ∈ A \ Fq such that P l = θA. Let
L = Fq(θ) and B = Fq[θ]. Then, by Taelman’s Theorem (Theorem 2.13), we have:

αB(ρ/OE) = 1.

Therefore, by 1), we have:
NK/L(x) ∈ F×

q .

Since P is the only maximal ideal of A above θB, we deduce that x is a P -adic
unit. Since this is true for all maximal ideal of A, we get:

x ∈ F×
q .

But, sgn(αA(ρ/OE)) = 1, thus: αA(ρ/OE) = 1.

Let’s assume that σ(αA(ρ/OE)) = αA(ρ
σ/σ(OE)) for all σ ∈ AutK(C∞). Let

σ ∈ AutK(C∞). Let P be a maximal ideal of OE , then:

[
σ(OE)

σ(P)
]A = [

OE
P

]A,

[ρσ(
σ(OE)

σ(P)
)]A = [ρ(

OE
P

)]A.
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Thus:

LA(ρ
σ/σ(OE)) = LA(ρ/OE).

Observe that σ induces a K∞-algebra isomorphism:

E∞ ≃ σ(E)∞.

Note that expρ̃ : E[[z]] → E[[z]] is an Fq[[z]]-algebra isomorphism. Therefore:

U(ρ̃/OE[z]) ⊂ E[[z]].

Thus:

U(ρ̃σ/σ(OE)[z]) = σ(U(ρ̃/OE [z])).

By the definition of Stark units, we get:

USt(ρ
σ/σ(OE)) = σ(USt(ρ/OE)).

Thus:

[σ(OE) : USt(ρ
σ/σ(OE))]A = [OE : USt(ρ/OE)]A.

Therefore:

αA(ρ
σ/σ(OE)) = αA(ρ/OE).

We get:

∀σ ∈ AutK(C∞), σ(αA(ρ/OE)) = αA(ρ/OE).

This implies that αA(ρ/OE) is algebraic over K and that there exists an integer
k ≥ 0 such that:

αA(ρ/OE)
pk ∈ K×.

Therefore:

αA(ρ/OE) = 1.

�

We do not know whether αA(ρ/OE) is algebraic over K, and it might be too
naive to expect that αA(ρ/OE) = 1 in general. However, in the next section, we
will prove that, if φ is a sign-normalized rank one Drinfeld module and E/K is a
finite abelian extension such that H ⊂ E, then αA(φ/OE) = 1 (Theorem 3.10). L.
Taelman informed us that the class formula ([23], Theorem 1) has been generalized
by C. Debry to the case where A is a principal ideal domain.

We also prove below that αA(φ/OE) is invariant under isogeny, which could be
considered as an analogue of the isogeny invariance of the Birch and Swinnerton-
Dyer conjecture due to Tate [24]:

Theorem 2.15. Let E/K be a finite extension and let ρ, φ : A → OE{τ} be
two Drinfeld A-modules such that there exists u ∈ OE{τ} \ {0} with the following
property:

∀a ∈ A, ρau = uφa,

then:

αA(ρ/OE) = αA(φ/OE).
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Proof. Let P be a maximal ideal of OE such that u 6≡ 0 (mod P). Then by [18],
Theorem 3.5 and Theorem 5.1, we get:

[ρ(
OE
P

)]A = [φ(
OE
P

)]A.

This implies that there exists an ideal I ∈ I(A) such that:

LA(ρ/OE)

LA(φ/OE)
= [I].

Let ζ ∈ OE \ {0} be the constant coefficient of u. Then we have the following
equality in E{{τ}} :

expρ ζ = u expφ .

Thus:

expρ̃ ζ = ũ expφ̃,

where, if u =
∑m

i=0 uiτ
i, ui ∈ OE , ũ =

∑m
i=0 uiz

iτ i. This implies that:

ζU(φ̃/OE [z]) ⊂ U(ρ̃/OE [z]).

Therefore:

ζUSt(φ/OE) ⊂ USt(ρ/OE).

We get:

[OE : ζUSt(φ/OE)]A = [OE : USt(φ/OE)]A[
OE
ζOE

]A,

and:

[OE : ζUSt(φ/OE)]A = [OE : USt(ρ/OE)]A[
USt(ρ/OE)

ζUSt(φ/OE)
]A.

Therefore, there exists an element J ∈ I(A) such that:

[OE : USt(ρ/OE)]A
[OE : USt(φ/OE)]A

= [J ].

Finally, we get:
αA(ρ/OE)

αA(φ/OE)
= [IJ−1].

Let x = (αA(ρ/OE)
αA(φ/OE) )

h(qd∞−1) ∈ K×, where h =| Pic(A) | . Then, by Corollary 2.14,

and Theorem 2.13, if θ ∈ A \ Fq, there exists an integer k ≥ 1 such that:

NK∞/Fq((
1
θ ))

(xk) = 1.

But, by Proposition 2.12, x is a principal unit in K∞, thus:

NK/Fq(θ)(x) = 1.

The above equality being valid for any θ ∈ A \ Fq, by the proof of Corollary 2.14,
we deduce that:

x = 1.

Since sgn(αA(ρ/OE)
αA(φ/OE) ) = 1, we get:

αA(ρ/OE)

αA(φ/OE)
= 1.

�
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3. Stark units associated to sign-normalized rank one Drinfeld

modules

3.1. Zeta functions.

In this section, we briefly recall the definition of some zeta functions ([19], Chap-
ter 8).

Recall that if I ∈ I(A), we have set:

[I] = 〈I〉π− deg I
d∞ ∈ K

×

∞,

where v∞(〈I〉 − 1) > 0, and:

∀x ∈ K×, 〈xA〉 = x

sgn(x)
π−v∞(x).

Let S∞ = C×
∞×Zp be the Goss “complex plane”. The group action of S∞ is written

additively. Let I ∈ I(A) and s = (x; y) ∈ S∞, we set:

Is = 〈I〉yxdeg I ∈ C×
∞.

We have a natural injective group homomorphism: Z → S∞, j 7→ sj = (π− j
d∞ , j).

Observe that:

∀j ∈ Z, ∀I ∈ I(A), Isj = [I]j .

Let E/K be a finite extension, and let OE be the integral closure of A in E. Let I
be a non-zero ideal of E. We have:

∀j ∈ Z, NE/K(I)sj = [
OE
I

]jA.

Let s ∈ S∞, then the following sum converges in C∞ ([19], Theorem 8.9.2):

ζOE (s) :=
∑

d≥0

∑

I∈I(OE),I⊂OE ,
deg(NE/K(I))=d

NE/K(I)−s.

The function ζOE : S∞ → C∞ is called the zeta function attached to OE and [·]A.
Observe that:

∀j ∈ Z, ζOE (j) := ζOE (sj) =
∑

d≥0

∑

I∈I(A),I⊂OE ,
deg(NE/K(I))=d

[
OE
I

]−jA .

In particular:

ζOE (1) =
∏

P

(1− 1

[OE

P
]A

)−1 ∈ K
×

∞,

where P runs through the maximal ideals of OE .

Lemma 3.1. Let HA be the Hilbert class field of A, i.e. HA/K is the maximal
unramified abelian extension of A in which ∞ splits completely. If HA ⊂ E, then
the function ζOE (.) depends only on OE and sgn |K×

∞

.

Proof. Let P be a maximal ideal of OE . Let A
′ be the integral closure of A in HA.

Let P ′ = P ∩ A′, P = P ∩ A. By class field theory, P [A
′

P ′
:AP ] is a principal ideal.

Thus:

NE/K(P) = θA,



18 BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

for some θ ∈ A \ Fq. Let j ∈ N, j ≥ 1. We have:

(1− 1

[OE

P
]jA

)−1 =

θj

sgn(θj)

θj

sgn(θj) − 1
.

But, observe that:

ζOE (j) =
∏

P

(1− 1

[OE

P
]jA

)−1 ∈ U∞ ∩K×
∞.

The lemma is thus a consequence of [19], Theorem 8.7.1. �

3.2. Background on sign-normalized rank one Drinfeld modules.

Let φ : A → K∞{τ} be a rank one Drinfeld module such that there exists
i(φ) ∈ N with the following property:

∀a ∈ A \ {0}, φa = a+ · · ·+ sgn(a)q
i(φ)

τdeg a.

Such a Drinfeld module φ is said to be sign-normalized. By [19], Theorem 7.2.15,
there always exist sign-normalized rank one Drinfeld modules.

From now on, we will fix a sign-normalized rank one Drinfeld module

φ : A→ K∞{τ}.
Let IK be the group of idèles of K. Let’s consider the following subgroup of the

idèles of K :
K×ker sgn |K×

∞

∏

v 6=∞

O×
v ,

where for a place v of K, Ov denotes the valuation ring of the v-adic completion of
K. By class field theory, there exists a unique finite abelian extension H/K such
that the reciprocity map induces an isomorphism:

IK

K×ker sgn |K×

∞

∏
v 6=∞O×

v
≃ Gal(H/K).

The natural surjective homomorphism IK → I(A) induces an isomorphism given
by the Artin map (., H/K) :

I(A)
P+(A)

≃ Gal(H/K),

where P+(A) = {xA, x ∈ K, sgn(x) = 1}. Let HA be the Hilbert class field of A,
i.e. HA/K corresponds to the following subgroup of the idèles of K :

K×K×
∞

∏

v 6=∞

O×
v .

Then H/K is unramified outside ∞, and H/HA is totally ramified at the places of
HA above ∞. Furthermore:

Gal(H/HA) ≃
F×
∞

F×
q
.

If w is a place of H above ∞, then the w-adic completion of H is isomorphic to:

K∞(((−1)d∞−1π)
q−1

qd∞−1 ).

We denote by B the integral closure of A in H and set A′ = B ∩HA. We observe
that F∞ ⊂ A′.
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We denote by G the Galois group Gal(H/K). For I ∈ I(A), we set:

(3.1) σI = (I,H/K) ∈ G.

By [19], Proposition 7.4.2 and Corollary 7.4.9, the subfield of C∞ generated by
K and the coefficients of φa is H . Furthermore ([19], Lemma 7.4.5):

∀a ∈ A, φa ∈ B{τ}.
Let I be a non-zero ideal of A, and let’s define φI to be the unitary element in
H{τ} such that:

H{τ}φI =
∑

a∈I

H{τ}φa.

We have:
kerφI =

⋂

a∈I

kerφa,

φI ∈ B{τ},
degτ φI = deg I.

We write: φI = φI,0 + · · · + φI,deg Iτ
deg I with φI,deg I = 1 and denote by ψ(I) ∈

B \ {0} the constant coefficient φI,0 of φI .

Lemma 3.2. The map ψ extends uniquely into a map ψ : I(A) → H× with the
following properties:

1) for all I, J ∈ I(A), ψ(IJ) = σJ(ψ(I))ψ(J),
2) for all I ∈ I(A), IB = ψ(I)B,
3) for all x ∈ K×, ψ(xA) = x

sgn(x)q
i(φ) .

In particular, we have:

∀x ∈ K×, σxA(ψ(I)) = sgn(x)q
i(φ)−qi(φ)+deg I

ψ(I).

Proof. Let I ∈ I(A), select a ∈ A, sgn(a) = 1, such that aI ⊂ A. Let’s set:

ψ(I) :=
ψ(aI)

a
∈ H×.

By [19], Theorem 7.4.8 and Theorem 7.6.2, the map ψ : I(A) → H× is well-defined
and satisfies the desired properties. �

Note that the map ψ determines H and HA:

Proposition 3.3. We have:
1) H = K(ψ(I), I ∈ I(A));
2) HA = K(ψ(I), I ∈ I(A), deg I ≡ 0 (mod d∞)).

Proof.
1) Let σ ∈ Gal(H/K(ψ(I), I ∈ I(A)). Let J ∈ I(A) such that σ = σJ . Then:

∀I ∈ I(A), σI(ψ(J)) = ψ(J).

Therefore:
ψ(J) ∈ K×.

Since JB = ψ(J)B (Lemma 3.2), we get that J = xA for some x ∈ K×. Thus, for
all I ∈ I(A), we get:

sgn(x)q
i(φ)−qi(φ)+deg I

= 1.

Since deg : I(A) → Z is a surjective group homomorphism, this implies that
sgn(x) ∈ F×

q and thus J ∈ P+(A). Therefore σ = 1.
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2) Set E = K(ψ(I), I ∈ I(A), deg I ≡ 0 (mod d∞)). Observe that:

Gal(H/HA) = {σxA, x ∈ K×}.
Thus:

K(F∞) ⊂ E ⊂ HA.

We also have:

Gal(HA/K(F∞)) = {(I,HA/K), I ∈ I(A), deg I ≡ 0 (mod d∞)}.
Let σ ∈ Gal(HA/E). Then, there exists J ∈ I(A), deg J ≡ 0 (mod d∞), such that
σ = (J,HA/K). But for all I ∈ I(A), deg I ≡ 0 (mod d∞), we have:

ψ(IJ) = σ(ψ(I))ψ(J) = ψ(I)ψ(J),

and therefore:

(I,HA/K)(ψ(J)) = ψ(J).

This implies:

ψ(J) ∈ K(F∞)×.

But:

JA[F∞] = ψ(J)A[F∞].

Thus Jd∞ is a principal ideal. But:

ψ(Jd∞) = ψ(J)d∞ .

In particular:

ψ(J)d∞
qd∞−1

q−1 ∈ K×.

Thus, if δ is the Frobenius in Gal(K(F∞)/K), there exists ζ ∈ F×
∞ such that:

δ(ψ(J)) = ζψ(J).

Observe that:

NF∞/Fq
(ζ) = 1.

Thus:

ζ =
µ

δ(µ)
,

for some µ ∈ F×
∞. This implies that:

ψ(J)µ ∈ K×.

Therefore J is a principal ideal and thus σ = 1. �

We have the following crucial fact:

Proposition 3.4. Let E/K be a finite extension such that H ⊂ E. Then:

LA(φ/OE) = ζOE (1).

Proof. Let P be a maximal ideal of OE . Let m = [OE

P
: AP ]. Then:

NE/K(P) = Pm.

Since H ⊂ OE , by class field theory, we get:

Pm = θA, with θ ∈ A, sgn(θ) = 1.

Since φ is a rank one Drinfeld module, it implies that:

φθ ≡ τm degP (mod P).
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This implies that:

[φ(
OE
P

)]A = θ − 1 = [
OE
P

]A − 1.

We get:

LA(φ/OE) =
∏

P

[OE

P
]A

[OE

P
]A − 1

=
∏

P

(1− 1

[OE

P
]A

)−1 = ζOE (1).

�

3.3. Equivariant A-harmonic series: a detailed example.

We keep the notation of Section 3.2. Let z be an indeterminate over K∞, and
recall that Tz(K∞) denotes the Tate algebra in the variable z with coefficients in
K∞. Recall that:

H∞ = H ⊗K K∞,

Tz(H∞) = H ⊗K Tz(K∞).

For n ∈ Z, we set:

ZB(n; z) =
∑

d≥0

∑

I∈I(B),I⊂B,
deg(NE/K(I))=d

[
OE
I

]−nA zd.

Then, by [19], Theorem 8.9.2, for all n ∈ Z, ZB(n; .) defines an entire function on
C∞, and:

∀n ∈ N, ZB(−n; z) ∈ A[z].

Observe that:

∀n ∈ Z, ZB(n; z) ∈ Tz(K∞),

and:

∀n ≥ 1, ZB(n; z) =
∏

P

(1 − zdeg(NH/K(P))

[OE

P
]nA

)−1 ∈ Tz(K∞)×.

Finally, we note that:

ZB(1; 1) = ζB(1).

Recall that G = Gal(H/K). Then G ≃ Gal(H(z)/K(z)) acts on Tz(H∞). We
denote by Tz(H∞)[G] the non-commutative group ring where the commutation rule
is given by:

∀h, h′ ∈ Tz(H∞), ∀g, g′ ∈ G, hg.h′g′ = hg(h′)gg′.

Recall that for I ∈ I(A), we have set (3.1):

σI = (I,H/K) ∈ G.

Lemma 3.5. Let n ∈ Z. The following infinite sum converges in Tz(H∞)[G] :

L(φ/B;n; z) :=
∑

d≥0

∑

I∈I(A),I⊂A,
deg I=d

zdeg I

ψ(I)n
σI .

Furthermore, for all n ≥ 1, we have:

L(φ/B;n; z) =
∏

P

(1 − zdegP

ψ(P )n
σP )

−1 ∈ (Tz(H∞)[G])×
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and for all n ≤ 0:
L(φ/B;n; z) ∈ B[z][G].

Proof. Let n ≥ 1. First let’s observe that for any place w of H above ∞ :

lim
I⊂A,deg I→+∞

w(ψ(I)) = +∞.

Let P be a maximal ideal of A. Note that:

∀k ≥ 0, ψ(P k+1) = σP (ψ(P
k))ψ(P ) = σkP (ψ(P ))ψ(P

k).

Thus: ∑

m≥0

zmdegP

ψ(Pm)n
σmP ∈ Tz(H∞)[G],

and we have:

(1− zdegP

ψ(P )n
σP )(

∑

m≥0

zm degP

ψ(Pm)n
σmP ) = (

∑

m≥0

zm degP

ψ(Pm)n
σmP )(1− zdegP

ψ(P )n
σP ) = 1.

Thus, we have:

(1− zdegP

ψ(P )n
σP )

−1 :=
∑

m≥0

zmdegP

ψ(Pm)n
σmP ∈ (Tz(H∞)[G])×.

Let P,Q be two distinct maximal ideals of A. We have:

(1− zdegP

ψ(P )n
σP )(1−

zdegQ

ψ(Q)n
σQ) = (1− zdegQ

ψ(Q)n
σQ)(1−

zdegP

ψ(P )n
σP ) = (1−z

deg(PQ)

ψ(PQ)n
σPQ).

Therefore:

L(φ/B;n; z) =
∏

P

(1− zdegP

ψ(P )n
σP )

−1 =
∑

I∈I(A),I⊂A

zdeg I

ψ(I)n
σI ∈ (Tz(H∞)[G])×.

Let n ∈ Z. For d ∈ N, we set:

Sψ,d(B;n) =
∑

I∈I(A),I⊂A,
deg I=d

ψ(I)−nσI ∈ H [G].

Let h be the order of I(A)
P+(A) . Let I1, . . . , Ih ∈ I(A)∩A be a system of representatives

of I(A)
P+(A) . Then:

Sψ,d(B;n) =

h∑

j=1

ψ(Ij)
−nσIj

∑

a∈K×,sgn(a)=1,
aIj⊂A,

deg(aIj)=d

a−n.

Now, let’s assume that n ≤ 0. Then, by [5], Lemma 3.2, there exists an integer
d0(n, ψ,H) ∈ N such that, for all d ≥ d0(n, ψ,H), for all j ∈ {1, . . . , h}, we have:

∑

a∈K×,sgn(a)=1,
aIj⊂A,

deg(aIj)=d

a−n = 0.

Therefore, for d ≥ d0(n, ψ,H), we have:

Sψ,d(B;n) = 0.
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Thus:

∀n ∈ N, L(φ/B;−n; z) ∈ B[z][G].

�

The element L(φ/B) := L(φ/B; 1; 1) ∈ (H∞[G])× will be called the equivariant
A-harmonic series attached to φ/B.

Note that L(φ/B; 1; z) induces a Tz(K∞)-linear map L(φ/B; 1; z) : Tz(H∞) →
Tz(H∞). Since Tz(H∞) is a free Tz(K∞)-module of rank [H : K] (recall that
Tz(K∞) is a principal ideal domain), detTz(K∞) L(φ/B; 1; z) is well-defined. We
also observe that L(φ/B) induces a K∞-linear map L(φ/B) : H∞ → H∞, and we
denote by detK∞

L(φ/B) its determinant. Recall that ev : Tz(H∞) → H∞ is the
H∞-linear map given by:

∀f ∈ Tz(H∞), ev(f) = f |z=1 .

Observe that, if {e1, . . . , en} is a K-basis of H/K (recall that n = [H : K]), then:

H∞ = ⊕ni=1K∞ei,

Tz(H∞) = ⊕ni=1Tz(K∞)ei.

We deduce that:

detK∞
L(φ/B) = ev(detTz(K∞)L(φ/B; 1; z)).

Theorem 3.6. We have:

detTz(K∞)L(φ/B; 1; z) = ZB(1; z).

In particular:

detK∞
L(φ/B) = ζB(1).

Proof. First, we recall that, by Lemma 3.5, we have the following equality in
Tz(H∞)[G] :

∏

P

(1− zdegP

ψ(P )
σP )

−1 = L(φ/B; 1; z),

where P runs through the maximal ideals of A, and:

(1 − zdegP

ψ(P )
σP )

−1 =
∑

n≥0

zndegP

ψ(Pn)
σPn .

By the properties of ψ (Lemma 3.2), we have:

lim
N→+∞

∏

degP≥N

(1− zdegP

ψ(P )
σP )

−1 = 1.

Thus:

detTz(K∞)L(φ/B; 1; z) =
∏

P

detTz(K∞)(1−
zdegP

ψ(P )
σP )

−1.

Thus, we are led to compute:

detTz(K∞)(1−
zdegP

ψ(P )
σP ).

But 1− zdeg P

ψ(P ) σP induces a K[z]-linear map on H [z]. Thus:
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detTz(K∞)(1−
zdegP

ψ(P )
σP ) = detK[z](1−

zdegP

ψ(P )
σP ) |H[z] .

Let e ≥ 1 be the order of P in I(A)
P+(A) . Write ξ = zdeg P

ψ(P ) σP |H[z]. We have ξe =

ze deg P

ψ(P e) ∈ K[z]. Since e is the order of σP in G, by Dedekind’s Theorem σ0
P , σP ,

. . . , σe−1
P are linearly independent over H(z). We deduce that Xe − ze deg P

ψ(P e) is the

minimal polynomial of ξ over K(z) and also over H〈σP 〉(z), and that:

detK[z](1−
zdegP

ψ(P )
σP ) |H[z]= (1 − zedegP

ψ(P e)
)

[H:K]
e .

Now, let P be a maximal ideal of B above P. Then, by class field theory, we have:

[
B

P
:
A

P
] = e.

Therefore:

[
B

P
]A = ψ(P e).

Thus:

detK[z](1 −
zdegP

ψ(P )
σP ) |H[z]=

∏

P|P

(1− zdeg(NH/K(P))

[B
P
]A

).

Finally, we get:

detTz(K∞)L(φ/B; 1; z) =
∏

P

(1− zdeg(NH/K(P))

[B
P
]A

)−1,

where P runs through the maximal ideals of B. Thus:

detTz(K∞)L(φ/B; 1; z) = ZB(1; z).

Now:

detK∞
L(φ/B) = ev(detTz(K∞)L(φ/B; 1; z)) = ev(ZB(1; z)) = ζB(1).

�

Although this is not evident, the above theorem reflects a class formula à la
Taelman which will be proved in Section 3.5.

3.4. Stark units.

We keep the notation of the previous sections. We will need the following basic
result:

Lemma 3.7. Let L/K be a finite extension, and let OL be the integral closure of
A in L. Let ρ : A → OL{τ} be a Drinfeld module of rank r ≥ 1. Let expρ, logρ ∈
1 + L{{τ}}τ be such that:

∀a ∈ A, expρ a = ρa expρ,

expρ logρ = logρ expρ = 1.

Write:
expρ =

∑

i≥0

ei(ρ)τ
i,

logρ =
∑

i≥0

li(ρ)τ
i,
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with ei(ρ), li(ρ) ∈ L.

1) Let P be a maximal ideal of A. Let AP be the P -adic completion of A. Then:

∀n ≥ 0, P q
n

en(ρ)OL ⊂ POL ⊗A AP ,
∀n ≥ 0, P [ n

deg P ]ln(ρ)OL ⊂ OL ⊗A AP .
2) Let σ : L →֒ K∞ be a field homomorphism such that σ |K= IdK . Then, there
exist n(ρ, σ) ∈ N, C(ρ, σ) ∈]0; +∞[, such that:

∀n ≥ n(ρ, σ), v∞(σ(en(ρ))) ≥ C(ρ, σ)nqn.

Proof.
1) Let θ ∈ A \ Fq such that θAP = PAP . Let d = r deg(θ), and let’s write:

ρθ =
d∑

j=0

ρθ,jτ
j .

From expρ θ = ρθ expρ, we get:

∀n ≥ 0, (θq
n − θ)en(ρ) =

d∑

l=1

ρθ,len−l(ρ)
ql

where ei = 0 if i < 0. Since e0(ρ) = 1, one proves by induction on n ≥ 0 that

en(ρ)θ
qn ∈ θinf{q−1,qn}OL ⊗A AP .

Observe that:
∀a ∈ A, a logρ = logρ ρa.

Thus:

∀a ∈ A, ∀n ≥ 0, (a− aq
n

)ln(ρ) =

r deg a∑

l=1

ln−l(ρ)ρ
qn−l

a,l .

Thus, if n 6≡ 0 (mod degP ), we get:

ln(ρ)OE ⊗A AP ⊂
n∑

l=1

ln−l(ρ)OL ⊗A AP .

If n ≡ 0 (mod degP ), we have:

(θ − θq
n

)ln(ρ) =

d∑

l=1

ln−l(ρ)ρ
qn−l

θ,l .

In any case, we get:

θ[
n

deg P ]ln(ρ) ∈
n∑

l=1

θ[
n−l
deg P ]ln−l(ρ)OL ⊗A AP .

Since l0(ρ) = 1, we get the desired second assertion by induction on n ≥ 0.

2) This is a consequence of the proof of [19], Theorem 4.6.9. We give a proof for
the convenience of the reader. We keep the previous notation. In particular, let
θ ∈ A \ Fq, and write:

ρθ =

r deg(θ)∑

j=0

ρθ,jτ
j , with ρθ,j ∈ K∞.
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Recall that ρθ,0 = θ. Set d = r deg(θ). Then:

∀n ≥ 0, (θq
n − θ)en(ρ) =

d∑

l=1

ρθ,len−l(ρ)
ql .

Set u = deg(θ)
d∞

= −v∞(θ) ≥ 1. We get :

v∞(en(ρ))

qn
≥ u+ inf{v∞(en−j(ρ))

qn−j
+
v∞(ρθ,j)

qn
, j = 1, . . . , d}.

Let β ∈]0;u[. There exists an integer n0 such that:

∀n ≥ n0, inf{v∞(ρθ,j)

qn
, j = 1, . . . , d} ≥ β − u.

Therefore:

∀n ≥ n0,
v∞(en(ρ))

qn
≥ β + inf{v∞(en−j(ρ))

qn−j
, j = 1, . . . , d}.

Thus, for n ∈ [n0;n0 + d− 1], we get:

v∞(en(ρ))

qn
≥ β + inf{v∞(en0−j(ρ))

qn0−j
, j = 1, . . . , d}.

Set:

C = inf{v∞(en0−j(ρ))

qn0−j
, j = 1, . . . , d}.

By induction, we show that if n ≥ n0 +md,m ∈ N, then:

v∞(en(ρ))

qn
≥ β(m+ 1) + C.

Therefore there exist n1 ≥ n0, C
′, C ∈ Q, with C′ > 0, such that:

∀n ≥ n1, v∞(en(ρ)) ≥ C′nqn + C.

�

Let E/K be a finite abelian extension H ⊂ E. Let G = Gal(E/K). We denote
by SE the set of maximal ideals P of A which are wildly ramified in E/K (note
that we can have SE = ∅). Let P be a maximal ideal of A such that P 6∈ SE .
We fix a maximal ideal P of OE above P . Let DP ⊂ G be the decomposition
group associated to P, i.e. DP = {g ∈ G, g(P) = P}. We have a natural surjective
homomorphism DP ։ Gal(OE

P
/AP ), g 7→ ḡ. Let IP be the inertia group at P, i.e.

IP = ker(DP → Gal(OE

P
/AP )). Then, since P 6∈ SE , we have:

| IP |6≡ 0 (mod p).

Let FrobP ∈ Gal(OE

P
/AP ) be the Frobenius at P, i.e.

∀x ∈ OE
P
, FrobP (x) = xq

deg P

.

We set:

σP,OE :=
1

| IP |
∑

g∈DP ,ḡ=FrobP

g ∈ Fp[G].

If P ∈ SE , we set:

σP,OE = 0.
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Note that, if L/K is a finite abelian extension, L ⊂ E, and if P is unramified in L
with P 6∈ SE , then:

σP,OE |L= (P,L/K).

If I ∈ I(A), I ⊂ A, I =
∏
P P

mP , we set:

σI,OE =
∏

P

σmP

P,OE
∈ Fp[G].

For all n ∈ Z, we set:

L(φ/OE ;n; z) =
∑

d≥0

∑

I∈I(A),I⊂A,
deg I=d

zd

ψ(I)n
σI,OE ∈ H [G][[z]].

By the proof of Lemma 3.5, we have:

∀n ∈ Z, L(φ/OE ;n; z) ∈ Tz(H∞)[G],

and:

L(φ/OE ; 1; z) =
∏

P

(1 − zdegP

ψ(P )
σP,OE )

−1 ∈ (Tz(H∞)[G])×.

Note that, if L/K is a finite abelian extension, H ⊂ L ⊂ E, we have:

L(φ/OE ; 1; z) |Tz(L∞)= (
∏

P∈SE\SL

(1− zdegP

ψ(P )
σP,OL)L(φ/OL; 1; z)) |Tz(L∞) .

We set:
I(OE) =

∏

P∈SE

P.

Recall that

U(φ̃/OE[z]) = {f ∈ Tz(E∞), expφ̃(f) ∈ OE [z]}.
Theorem 3.8. We always have:

ψ(I(OE))L(φ/OE ; 1; z)OE[z] ⊂ U(φ̃/OE [z]).

Furthermore, if SE = ∅, we have an equality:

L(φ/OE ; 1; z)OE[z] = U(φ̃/OE[z]).

Proof. We divide the proof into several steps.

1) We will first work in E[[z]]. Observe that expφ̃ : E[[z]] → φ̃(E[[z]]) is an isomor-

phism of A-modules. In fact, if we write: logφ =
∑
i≥0 li(φ)τ

i, then we set:

logφ̃ =
∑

i≥0

li(φ)z
iτ i.

Thus, logφ̃ converges on E[[z]], and logφ̃ expφ̃ = expφ̃ logφ̃ = 1.

2) Let P be a maximal ideal of A. Let RP = S−1OE ⊂ E, where S = A \ P. Then:
PRP = ψ(P )RP .

By Lemma 3.7, we have:

expφ̃(PRP [[z]]) ⊂ PRP [[z]],

logφ̃(PRP [[z]]) ⊂ PRP [[z]].
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Thus:

(3.2) expφ̃(PRP [[z]]) = PRP [[z]].

3) Recall that there exists a sign-normalized rank one Drinfeld module ϕ := P ∗φ :
A →֒ B{τ} such that:

∀a ∈ A, φPφa = ϕaφP .

Furthermore ([19], Theorem 7.4.8):

∀a ∈ A, ϕa = σP (φa) :=

r deg a∑

i=0

σP (φa,i)τ
i.

Thus:
expϕ = σP (expφ) :=

∑

i≥0

σP (ei(φ))τ
i,

logϕ = σP (logφ) :=
∑

i≥0

σP (li(φ))τ
i.

In particular:
φP expφ = σP (expφ)ψ(P ),

ψ(P ) logφ = σP (logφ)φP .

The same properties hold for φ̃.

4) Let’s set:

U(φ̃/RP [[z]]) = {x ∈ E[[z]]; expφ̃(x) ∈ RP [[z]]}.
Let’s assume that P 6∈ SE . Then, by 1) and 2), expφ̃ induces an isomorphism of

A-modules:
E[[z]]

PRP [[z]]
≃ φ̃(

E[[z]]

PRP [[z]]
).

Therefore, we get an isomorphism of A-modules:

U(φ̃/RP [[z]])

PRP [[z]]
≃ φ̃(

RP [[z]]

PRP [[z]]
).

Now observe that:

(φ̃P − zdegPσP,OE )φ̃(
RP [[z]]

PRP [[z]]
) = {0}.

Furthermore, if x ∈ E[[z]] \RP [[z]], then one can easily verify that:

(φ̃P − zdegPσP,OE )(x) 6∈ PRP [[z]].

Thus:

φ̃(
RP [[z]]

PRP [[z]]
) = {x ∈ φ̃(

E[[z]]

PRP [[z]]
), (φ̃P − zdegPσP,OE )(x) = 0}.

Let x ∈ E[[z]], we deduce that:

x ∈ U(φ̃/RP [[z]]) ⇔ (φ̃P − zdegPσP,OE )(expφ̃(x)) ∈ PRP [[z]].

Observe that, by 3), we have:

σP,OE (expφ̃) = expϕ̃,

and also:
φ̃P expφ̃ = σP,OE (expφ̃)ψ(P ).
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Thus:

x ∈ U(φ̃/RP [[z]]) ⇔ expϕ̃(ψ(P )x− zdegPσP,OE (x)) ∈ PRP [[z]].

Applying (3.2) for ϕ, we have:

x ∈ U(φ̃/RP [[z]]) ⇔ ψ(P )x− zdegPσP,OE (x) ∈ PRP [[z]].

Thus:

U(φ̃/RP [[z]]) = (1− zdegP

ψ(P )
σP,OE )

−1RP [[z]].

5) Let P be a maximal ideal of A. If P 6∈ SE , by 4), we have:

U(φ̃/RP [[z]]) = ψ(I(OE))L(φ/OE ; 1; z)RP [[z]] = (1− zdegP

ψ(P )
σP,OE )

−1RP [[z]].

If P ∈ SE , then:

ψ(I(OE))L(φ/OE ; 1; z)RP [[z]] = PRP [[z]] ⊂ U(φ̃/RP [[z]]).

Since ψ(I(OE))L(φ/OE ; 1; z) ∈ Tz(H∞)[G], we get:

ψ(I(OE))L(φ/OE ; 1; z)R[z] ⊂ Tz(E∞).

Observe that OE [[z]] =
⋂
P RP [[z]]. Therefore, we get:

expφ̃(ψ(I(OE))L(φ/OE ; 1; z)OE[z]) ⊂ OE [[z]] ∩ Tz(E∞) = OE [z].

Thus, we get the first assertion.

Now, let’s assume that SE = ∅. We have:

⋂

P

U(φ̃/RP [[z]]) = {x ∈ E∞[[z]], expφ̃(x) ∈ OE [[z]]}.

By 4), we get:

∏

P

(1 − zdegP

ψ(P )
σP,OE ){x ∈ E∞[[z]], expφ̃(x) ∈ OE [[z]]} = OE [[z]].

Thus:

{x ∈ E∞[[z]], expφ̃(x) ∈ OE [[z]]} = L(φ/OE ; 1; z)OE[[z]].
Hence:

U(φ̃/R[z]) = L(φ/OE ; 1; z)OE[[z]] ∩ Tz(E∞).

Since L(φ/OE ; 1; z) ∈ (Tz(H∞)[G])×, we have:

L(φ/OE ; 1; z)OE [[z]] ∩ Tz(E∞) = L(φ/OE ; 1; z)OE[z].

This concludes the proof of the theorem. �
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3.5. A class formula à la Taelman.

Recall that ev : Tz(E∞) → E∞ is the evaluation at z = 1.

Definition 3.9. We define the equivariant A-harmonic series L(φ/OE) attached
to φ/OE by:

L(φ/OE) = ev(L(φ/OE ; 1; z)) ∈ (H∞[G])×.

Note that:

L(φ/OE) =
∏

P

(1 − 1

ψ(P )
σP,OE )

−1 =
∑

I∈I(A),I⊂A

1

ψ(I)
σI,OE .

Theorem 3.10. We have:
αA(φ/OE) = 1,

i.e.
ζOE (1) = [OE : U(φ/OE)]A[H(φ/OE)]A.

Furthermore:
ψ(I(OE))L(φ/OE)OE ⊂ USt(φ/OE),

and

[
USt(φ/OE)

ψ(I(OE))L(φ/OE)OE
]A = [φ(

OE
I(OE)OE

)]A.

Proof.
1) Let J ⊂ I(OE) be a finite product of maximal ideals of A. Set:

LJ (φ/OE) :=
∏

P

(1− 1

ψ(P )
σP,OE )

−1 ∈ (H∞[G])×,

LJ (φ/OE ; 1; z) :=
∏

P

(1− zdegP

ψ(P )
σP,OE )

−1 ∈ (Tz(H∞)[G])×,

where P runs through the maximal ideals of A that do not divide J.
By Lemma 3.7 and the proof of Theorem 3.8, we have:

{x ∈ E[[z]], expφ̃(x) ∈ ψ(J)OE [[z]]} = ψ(J)LJ (φ/OE ; 1; z)OE[[z]].
We can conclude as in the proof of Theorem 3.8 that:

ψ(J)LJ (φ/OE ; 1; z)OE[z] = {x ∈ Tz(E∞), expφ̃(x) ∈ ψ(J)OE [z]}.
Therefore, we have a short exact sequence of A-modules:

0 → U(φ̃/OE [z])

ψ(J)LJ (φ/OE ; 1; z)OE[z]
→ φ̃(

OE [z]

ψ(J)OE [z]
) →(3.3)

→ Tz(E∞)

ψ(J)OE [z] + expφ̃(Tz(E∞))
→ H(φ̃/OE [z]) → 0.

Note that φ̃( OE [z]
ψ(J)OE [z] ) is a finitely generated and free Fq[z]-module. Let ρ be the

Drinfeld module defined over OE such that:

expρ = ψ(J)−1 expφ ψ(J).

Then, the map x 7→ ψ(J)−1x induces an isomorphism of A-modules (the left module
is an A-module via φ and the right module is an A-module via ρ):

Tz(E∞)

ψ(J)OE [z] + expφ̃(Tz(E∞))
≃ H(ρ̃/OE[z]).
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Observe that ker ev = (z−1)Tz(E∞). Furthermore, since OE [z]∩ (z−1)Tz(E∞) =
(z − 1)OE [z], we have :

U(φ̃/OE [z]) ∩ ker ev = (z − 1)U(φ̃/OE[z]),

ψ(J)LJ (φ/OE ; 1; z)OE[z] ∩ ker ev = (z − 1)ψ(J)LJ (φ/OE ; 1; z)OE[z].
Thus, the evaluation at z = 1 induces the following exact sequence of A-modules:
(3.4)

0 → (z−1)
U(φ̃/OE [z])

ψ(J)LJ(φ/OE ; 1; z)OE[z]
→ U(φ̃/OE[z])

ψ(J)LJ (φ/OE ; 1; z)OE[z]
→ USt(φ/OE)

ψ(J)LJ (φ/OE)OE
→ 0.

Note also that the evaluation at z = 1 induces a sequence of A-modules:

(3.5) 0 → (z − 1)φ̃(
OE [z]

ψ(J)OE [z]
) → φ̃(

OE [z]

ψ(J)OE [z]
) → φ(

OE
ψ(J)OE

) → 0.

For an Fq[z]-module M , we denote by M [z − 1] the (z − 1)-torsion. By (3.3),
(3.4), (3.5) and the Snake Lemma, we get the following exact sequence of finite
A-modules:

0 → H(ρ̃/OE [z])[z − 1] → H(φ̃/OE [z])[z − 1] → USt(φ/OE)

ψ(J)LJ (φ/OE)OE
→

→ φ(
OE

ψ(J)OE
) → H(ρ/OE) → H(φ/OE) → 0.

By the proof of Theorem 2.7, we have:

[H(ρ̃/OE [z])[z − 1]]A = [H(ρ/OE)]A,

[H(φ̃/OE [z])[z − 1]]A = [H(φ/OE)]A.

Thus:

[
USt(φ/OE)

ψ(J)LJ (φ/OE)OE
]A = [φ(

OE
JOE

)]A.

2) Now, we have:

[OE : LJ(φ/OE)OE ]A =
detK∞

LJ (φ/OE)
sgn(detK∞

LJ (φ/OE))
.

Thus:

[OE : ψ(J)LJ (φ/OE)OE ]A = [
OE
JOE

]A
detK∞

LJ (φ/OE)
sgn(detK∞

LJ(φ/OE))
.

And finally, we get:

[OE : USt(φ/OE)]A =
[ OE

JOE
]A

[φ( OE

JOE
)]A

detK∞
LJ(φ/OE)

sgn(detK∞
LJ (φ/OE))

.

Set:

LJ =
∏

P|J

[OE

P
]A

[φ(OE

P
)]A

.

Then:

[OE : USt(φ/OE)]A = LJ
detK∞

LJ(φ/OE)
sgn(detK∞

LJ (φ/OE))
.
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3) Let N ≥ 1, and we define JN to be the l.c.m. of the product of all maximal
ideals of degree ≤ N and I(OE). We have:

lim
N→+∞

LJN = LA(φ/OE),

lim
N→+∞

LJN (φ/OE) = 1.

In particular:

lim
N→+∞

detK∞
LJN (φ/OE) = 1.

Thus:

[OE : USt(φ/OE)]A = LA(φ/OE).

If we apply Theorem 2.7 and Proposition 3.4, we get:

ζOE (1) = [OE : U(φ/OE)]A[H(φ/OE)]A.

�

4. Log-Algebraicity Theorem

4.1. A refinement of Anderson’s log-algebraicity theorem.

We keep the notation of the previous sections.

Lemma 4.1. Let E/K be a finite separable extension, H ⊂ E. Let P be a maximal
ideal of A which is unramified in E. Let λP ∈ K \ {0} be a root of φP . Then:

OE(λP ) = OE [λP ].

Proof. Let F = E(λP ). Recall that F/E is a finite abelian extension unramified
outside P,∞, and totally ramified at P ([19], Proposition 7.5.18). We also have:

[F : E] = qdegP − 1.

Write: φP =
∑degP

k=0 φP,kτ
k, φP,k ∈ B ⊂ OE . Recall that φP,0 = ψ(P ) and

φP,degP = 1. Furthermore, P is unramified in E/K and:

ψ(P )OE = POE .

Let:

G(X) =

degP∑

k=0

φP,kX
qk−1 ∈ OE [X ].

Then, for any maximal ideal P of OE above P :

G(X) ≡ Xqdeg P−1 (mod P).

This implies that G(X) is an Eisenstein polynomial at P for every maximal ideal
of OE P above P. Furthermore:

XG′(X) +G(X) = ψ(P ).

Therefore:

NF/E(G
′(λP ))OE = P q

deg P−2OE .

But P q
deg P−2OE is the discriminant of OF /OE . Thus OF = OE [λP ]. �
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Let E/K be a finite abelian extension, H ⊂ E. Let n ≥ 0 be an integer, let
X1, . . . , Xn be n indeterminates over K. Let τ : E[X1, . . . , Xn][[z]] → E[X1, . . . , Xn][[z]]
be the Fq[[z]]-homomorphism continuous for the z-adic topology such that:

∀f ∈ E[X1, . . . , Xn], τ(f) = f q.

For a non-zero ideal I ofA and for f =
∑

i1,...,in∈N fi1,...,inX
i1
1 · · ·X in

n ∈ E[X1, . . . , Xn],
with fi1,...,in ∈ E, we set:

I ∗E f =
∑

i1,...,in∈N

σI,OE (fi1,...,in)φI(X1)
i1 · · ·φI(Xn)

in ,

where σI,OE is defined in Section 3.4. Recall that I(OE) is the product of maximal
ideals of A that are wildly ramified in E/K.

Theorem 4.2. For all f ∈ OE [X1, . . . , Xn], we have:

expφ̃(ψ(I(OE))
∑

I∈I(A),I⊂A

I ∗E f
ψ(I)

zdeg I) ∈ OE [X1, . . . , Xn, z].

In particular, for all f ∈ B[X1, . . . , Xn], we have:

expφ̃(
∑

I∈I(A),I⊂A

I ∗H f

ψ(I)
zdeg I) ∈ B[X1, . . . , Xn, z].

Remark 4.3. This result is a generalization of the Log-Algebraicity Theorems
established in [1], [2] (in these papers the theorem is proved for E = H, d∞ = 1
and n ≤ 1). Furthermore, the result in the case E = H can be proved along the
same lines as that used to prove [2], Theorem 3. Following [9], Section 2.6, we will
show below how Theorem 3.8 implies the Log-Algebraicity Theorem. Observe also
that the case n = 0 is a direct consequence of Theorem 3.8.

Proof. Let’s write:

expφ̃(ψ(I(OE))
∑

I

I ∗E f
ψ(I)

zdeg I) =
∑

m≥0

gm(X1, . . . , Xn)z
m,

with gm(X1, . . . , Xn) ∈ E[X1, . . . , Xn].

1) Let P1, . . . , Pn be n distinct maximal ideals of A which are unramified in E, with
qdegPi ≥ 3, i = 1, . . . , n, and for i = 1, . . . , n, let λi 6= 0 be a root of φPi . Set:

F = E(λ1, . . . , λn).

Then F/E is unramified outside P1, . . . , Pn,∞, F/K a finite abelian extension of
K which is tamely ramified at P1, . . . , Pn. Let OF be the integral closure of A in
F. Let Q be any maximal ideal of A, if Q is not wildly ramified in E, we have ([19],
Proposition 7.5.4):

σQ,OF (λi) = φQ(λi), if Q 6= Pi,

and:

σPi,OF (λi) = 0.

We deduce that:

ψ(I(OE))
∑

I

I ∗E f
ψ(I)

zdeg I |Xi=λi= ψ(I(OF ))L(φ/OF ; 1; z)f(λ1, . . . , λn).
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Therefore, by Theorem 3.8, we get:

∀m ≥ 0, gm(λ1, . . . , λn) ∈ OF .

Let i ∈ {1, . . . , n}. Then:
E(λi) ∩ E(λ1, . . . λi−1, λi+1, . . . , λn) = E.

Furthermore, the discriminant of OE(λi)/OE and OE(λ1,...λi−1,λi+1,...,λn)/OE are
relatively prime, thus, by Lemma 4.1, we have:

OF = OE [λ1, . . . , λn].

Finally, form ≥ 0, for n distinct maximal ideals P1, . . . , Pn of A that are unramified
in E/K, with qdegPi ≥ 3, i = 1, . . . , n, and for i = 1, . . . , n, if λi 6= 0 be a root of
φPi , then we have:

gm(λ1, . . . , λn) ∈ OE [λ1, . . . , λn].

This implies:
∀m ≥ 0, gm(X1, . . . , Xn) ∈ OE [X1, . . . , Xn].

2) We fix a K-embedding of K in C∞. For σ ∈ Gal(H/K), let Λ(φσ) ⊂ C∞ be the
A-module of periods of φσ, and let Λ(φσ)K∞ be the K∞-vector space generated by

Λ(φσ). Then Λ(φσ)K∞

Λ(φσ) is compact, thus there exists a constant C ∈ R such that:

∀σ ∈ Gal(H/K), ∀x ∈ Λ(φσ)K∞, v∞(expφσ (x)) ≥ C.

Recall that, if σ ∈ Gal(H/K), then there exists a non-zero ideal J of A such that
σ = (J,H/K) = σJ , and we have ([19], Theorem 7.4.8):

φJφa = φσaφJ .

Thus:
expφσ ψ(J) = φJ expφ .

In particular:
Λ(φσ) = ψ(J)J−1Λ(φ),

Λ(φσ)K∞ = ψ(J)Λ(φ)K∞.

Therefore, there exists a constant C′ ∈ R, such that:

∀σ ∈ Gal(H/K), ∀x1, . . . , xn ∈ Λ(φσ)K∞, ∀I ∈ I(A), v∞(I∗σEfσ |Xi=expφσ (xi)) ≥ C′,

where ∗σE is the map ∗ attached to φσ. Now, recall that expφ =
∑
j≥0 ej(φ)τ

j , then

there exists a constant C′′ > 0 such that (Lemma 3.7):

∀σ ∈ Gal(H/K), ∀j ≫ 0, v∞(ej(φ
σ)) ≥ C′′jqj .

Note also that there exists C′′′ ∈ R such that:

∀σ ∈ Gal(H/K), ∀I ∈ I(A), deg I = m≫ 0, v∞(
1

σ(ψ(I))
) ≥ m

d∞
+ C′′′.

This implies that there exists an integer m0 ∈ N, such that:

∀m ≥ m0, ∀σ ∈ Gal(E/K), ∀λ1, . . . , λn ∈ expφσ(Λ(φσ)K∞), v∞(gσm(λ1, . . . , λn)) > 0.

3) Let m0 ∈ N be as in 2). Let λ1, . . . , λn be n torsion points for φ. Let F =
E(λ1, . . . , λn). Then F/K is a finite abelian extension. Let w be a place of F above
∞. Let iw : E → C∞ be the K-embedding of F in C∞ corresponding to w. Then
there exists σ ∈ Gal(F/K) such that:

∀m ≥ 0, iw(gm(λ1, . . . , λn)) = σ(gm(λ1, . . . , λn)) = gσm(σ(λ1), . . . , σ(λn)).
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Observe that σ(λi) ∈ expφσ(Λ(φσ)K∞), i = 1, . . . , n ([19], Proposition 7.5.16).
Therefore:

∀m ≥ m0, w(gm(λ1, . . . , λn)) > 0.

Thus, we get that for any place w of F above ∞ :

∀m ≥ m0, w(gm(λ1, . . . , λn)) > 0.

But by 1), ∀m ≥ 0, gm(λ1, . . . , λn) ∈ OF . Since OF is the set of elements of F
which are regular outside the places of F above ∞, we deduce that:

∀m ≥ m0, gm(λ1, . . . , λn) = 0.

And the above property is true for any n torsion points of φ, thus:

∀m ≥ m0, gm(X1, . . . , Xn) = 0.

�

M. Papanikolas informed us that, together with N. Green, they obtained explicit
formulas for Anderson’s Log-Algebraicity Theorem ([1], Theorem 5.1.1) when the
genus g of K is one and d∞ = 1.

4.2. Several variable L-series and shtukas.

In this section, we present an alternative approach to the several variable Log-
Algebraicity Theorem (Theorem 4.2) by using the seminal works of Drinfeld [12],
[13], [14] (see also [1], [27], and [19], Chapter 6).

We recall some notation for the convenience of the reader. Let X/Fq be a smooth
projective geometrically irreducible curve of genus g whose function field is K.
We will consider ∞ as a closed point of X of degree d∞. Recall that K∞ is the
completion of K at ∞, K̄∞ is a fixed algebraic closure of K∞, and C∞ is the
completion of K̄∞. Let sgn : K×

∞ → F×
∞ be a sign function (F∞ is the residue

field of K∞ and d∞ = [F∞ : Fq]), i.e. sgn is a group homomorphism such that
sgn |

F
×

∞

= Id |
F
×

∞

. We fix π ∈ K ∩Ker(sgn) and such that K∞ = F∞((π)).

We set X̄ = X ⊗Fq C∞, and Ā := A⊗Fq C∞. Then F := Frac(Ā) is the function

field of X̄. We identify C∞ with its image 1 ⊗ C∞ in F. Note that Ā is the set of
elements of F/C∞ which are “regular outside ∞”. We denote by τ : F → F the
K-algebra homomorphism such that:

τ |Ā= IdA ⊗ FrobC∞
.

For m ≥ 0, we also set:

∀x ∈ F, x(m) = τm(x).

Let P be a point of X̄(C∞). We denote by P (i) the point of X̄(C∞) obtained by
applying τ i to the coordinates of P. If D ∈ Div(X̄), D =

∑n
j=1 nPj (Pj), Pj ∈

X̄(C∞), nPj ∈ Z, we set:

D(i) =

n∑

j=1

nPj (P
(i)
j ).

If D = (x), x ∈ F×, then:

D(i) = (x(i)).
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We fix a point ∞̄ ofX(C∞) above∞. Let ξ be the point of X̄(C∞) corresponding
to the kernel of the map Ā→ C∞,

∑
xi⊗ai 7→

∑
xiai. Let ρ : K → K⊗1, x 7→ x⊗1.

Then:

F = C∞(ρ(K)).

By [27] (see also [19], section 7.11), there exists a function f ∈ F×, such that:

V (1) − V + (ξ)− (∞̄) = (f),

for some effective divisor V of X̄/C∞ of degree g. The points ξ and ∞̄(−1) do not
belong to the support of V ([27], Corollary 0.3.3). We identify the completion of F
at ∞̄ with:

C∞((
1

t
)),

where t = ρ(π−1). We have a natural sign function sgn : C∞((1t ))
× → C×

∞ attached

to 1
t . We normalize f such that sgn(f) = 1.
We set:

(∞) =

d∞−1∑

i=0

(∞̄(i)),

W (C∞) =
⋃

m≥0

L(V +m(∞)),

where:

L(V +m(∞)) = {x ∈ F×, (x) + V +m(∞) ≥ 0} ∪ {0}.
Observe that for i > 0 :

(4.1) (ff (1) · · · f (i−1)) = V (i) − V + (ξ) + · · ·+ (ξ(i−1))−
i−1∑

k=0

(∞̄(k)).

We have (see for example [27], paragraph 0.3.5):

W (C∞) = ⊕i≥0C∞f · · · f (i−1).

If L is a sub-Fq-algebra of C∞, we set:

W (L) = ⊕i≥0Lf · · · f (i−1).

Let a ∈ A, then we can write:

ρ(a) = a⊗ 1 =

deg a∑

i=0

φa,if · · · f (i−1),

where φa,i ∈ C∞, and:

φa,deg a = sgn(a),

φa,0 = a.

In particular, note that ∞̄ does not belong to the support of V. The map φ : A→
C∞{τ} such that:

∀a ∈ A, φa =
∑

φa,iτ
i,

is a sign-normalized rank one Drinfeld module by the Drinfeld correspondence at-
tached to f ([27], paragraph 0.3.5, see also [19], section 7.11 ). Let’s write:

expφ =
∑

ei(φ)τ
i, ei(φ) ∈ C∞.
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We have ([27], Proposition 0.3.6):

∀i ≥ 0, ei(φ) =
1

f · · · f (i−1) |ξ(i)
.

Let H = Frac(A ⊗ B) ⊂ F. By Drinfeld’s correspondence (see [19], Chapter 6),
f ∈ H. Thus:

f = t+
∑

i≥0

fi
1

ti
∈ H((

1

t
)) ⊂ C∞((

1

t
)),

where fi ∈ H, ∀i ≥ 0.
We view H as a function field over ρ(K) = K ⊗ 1. Let K = Frac(A ⊗ A). Let

∞ be the unique place of K/ρ(K) which is above the place ∞ of K/Fq. Then the
completion of K above ∞ is:

K∞ = ρ(K)(F∞)((1⊗ π)).

Observe that the set of elements of K/ρ(K) which are regular outside ∞ is:

A := A[ρ(K)] = K ⊗A.

We set B := B[ρ(K)] = K ⊗ B, then B is the integral closure of A in H. Let G =
Gal(H/K) ≃ Gal(H/K). Let ϕ : A → H{τ} be the ρ(K)-algebra homomorphism
such that:

∀a ∈ A, ϕa =

deg a∑

i=0

φa,if · · · f (i−1)τ i ∈ H{τ}.

Let expϕ ∈ H{{τ}} be the following element:

expϕ =
∑

i≥0

f · · · f (i−1)ei(φ)τ
i =

∑

i≥0

f · · · f (i−1)

f · · · f (i−1) |ξ(i)
τ i.

Then:
∀a ∈ A, expϕ a = ϕa expϕ .

Let H∞ = H⊗K K∞, then expϕ converges on H∞.
Let P be a maximal ideal of B. Then PB is a maximal ideal of B. Let vP :

H → Z ∪ {+∞} be the valuation on H attached to PB. Since for all a ∈ A,

ρ(a) =
∑deg a
j=0 φa,jf · · · f (j−1), we deduce that:

∀i ≥ 0, vP(f (i)) = qivP(f) = 0.

However, we warn the reader that, if g > 0, we have:

f 6∈ B.

We set:
W (B) = ⊕i≥0Bf · · · f (i−1).

Lemma 4.4.

1) W (B) is a A⊗B-module containing A⊗B, furthermore W (B) is a A⊗A-module
via ϕ.
2) Let W (B)B be the B-module generated by W (B). Let P be a maximal ideal of
B. The inclusion B ⊂W (B)B induces an equality:

B

PB
=

W (B)B

PW (B)B
.

3) W (B)B is a fractional ideal of B. In particular, it is discrete in H∞.
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Proof. We have:

∀i ≥ 0, ∀a ∈ A, ρ(a)f · · · f (i−1) =

deg a∑

j=0

φq
i

a,jf · · · f (i+j−1) ∈W (B).

Observe that:

∀i, j ≥ 0, f · · · f (j−1)τ j(f · · · f (i−1)) = f · · · f (i+j−1).

The assertion 1) follows.

We set: OP = {x ∈ H, vP(x) ≥ 0}. Since
OP

POP
≃ B

PB
and B ⊂ W (B)B ⊂ OP,

the assertion 2) holds.
Let’s prove the assertion 3). Note that A⊗H is the set of elements of H which

are regular outside ∞̄. By the expression (4.1) of the divisor of f · · · f (i−1), i ≥ 0,
there exists a ∈ A⊗B \ {0} such that:

∀i ≥ 0, af · · · f (i−1) ∈ A⊗H.

Since for every maximal ideal P of B, and for all i ≥ 0, vP(f · · · f (i−1)) = 0, we
deduce that:

∀i ≥ 0, af · · · f (i−1) ∈ A⊗B.

Thus, there exists a ∈ B \ {0} such that aW (B) ⊂ B. Since B is discrete in H∞, we
get the desired result. �

Let’s observe that, by Lemma 4.4, W (B)B is an A-module via ϕ. Let P be a
maximal ideal of B, then, again by Lemma 4.4, B

PB
is an A-module via ϕ, and we

denote this latter A-module by ϕ( B
PB

).

Lemma 4.5. Let P be a maximal ideal of B. Then:

FittAϕ(
B

PB
) = ([

B

PB
]A − ρ([

B

PB
]A))A.

Proof. Recall that:

[
B

PB
]A = ψ(P e),

where e = dimA
P

B
P
. Set aA = P e where sgn(a) = 1. Then:

ρ(a) =
∑

φa,if · · · f (i−1).

Therefore:

∀x ∈ B

PB
, ϕa−ρ(a)(x) = 0.

Thus, by similar arguments to those of [6], Lemma 5.8, we have an A-module
isomorphism:

ϕ(
B

PB
) ≃ A

(a− ρ(a))A
.

�

If M is an A-module such that M is a finite dimensional ρ(K)-vector space and
its Fitting ideal is principal, FittA(M) = xA, then we set:

[M ]A =
x

sgn(x)
.
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By the above Lemma, we can form the L-series attached to ϕ/W (B) :

L(ϕ/W (B)) =
∏

P

[ B
PB

]A

[ϕ( B
PB

)]A
=

∏

P

(1 −
ρ([ B

PB ]A)

[ B
PB ]A

)−1 ∈ K∞
×.

Note that L(ϕ/W (B)) is in fact an element in the∞-adic completion ofK∞[ρ(A)] =
A ⊗K∞ which is an affinoid algebra over K∞, and L(ϕ/W (B)) is a special value
of a twisted zeta function (see [5], Section 5.2).

We denote by τ : H∞ → H∞ the continuous homomorphism of ρ(K)-algebras
such that ∀x ∈ H∞, τ(x) = xq. Let z be an indeterminate. The map τ : H∞ → H∞

extends uniquely into a continuous homomorphism (for the z-adic topology) of
Fq[[z]]-algebras τ : H∞[[z]] → H∞[[z]]. Let Tz(H∞) ⊂ H∞[[z]] be the ∞-adic
completion of H∞[z], i.e. an element g ∈ Tz(H∞) can be uniquely written g =∑
i≥0 giz

i, gi ∈ H∞, such that limi→+∞ gi = 0. We also denote by Tz(K∞) the

∞-adic completion of K∞[z]. Note that Tz(H∞) is a free Tz(K∞)-module of rank
[H : K], and if (e1, . . . , en) is a K-basis of H (n = [H : K])), then:

Tz(H∞) = ⊕ni=1eiTz(K∞).

Observe also that G acts on Tz(H∞) and Tz(H∞) is a free Tz(K∞)[G]-module
of rank one by the normal basis Theorem. We denote by Tz(H∞)[G] the ring:

Tz(H∞)[G] := ⊕σ∈GTz(H∞)σ,

where the product rule is given by:

∀σ1, σ2 ∈ G, ∀g1, g2 ∈ Tz(H∞), (g1σ1) (g2σ2) = g1σ1(g2)σ1σ2.

Let’s set:

expϕ̃ =
∑

i≥0

f · · · f (i−1)

f · · · f (i−1) |ξ(i)
ziτ i ∈ H[z]{{τ}}.

Let I be a non-zero ideal of A. We set:

uI =

deg I∑

i=0

φI,if · · · f (i−1) ∈ W (B),

where φI =
∑deg I

i=0 φI,iτ
i, φI,i ∈ B. Note that if I = aA, we have:

uI =
ρ(a)

sgn(a)
.

Furthermore, we prove (see [1], Section 3.7 for the case d∞ = 1):

Lemma 4.6. Let I, J be two non-zero ideals of A. We have:

uI |ξ= ψ(I),

σI(f)uI = fτ(uI),

uIJ = σI(uJ )uI .

Proof. The fact that uI |ξ= ψ(I) comes from the definition of uI . Note that we
have a natural isomorphism of B-modules:

γφ :W (B) ≃ B{τ}, f · · · f (i−1) 7→ τ i.

In particular:
∀x ∈ W (B), γφ(fx

(1)) = τγφ(x),

∀x ∈W (B), ∀a ∈ A, γφ(ρ(a)x) = γφ(x)φa.
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By explicit reciprocity law (see [19], Theorem 7.4.8), we have:

∀a ∈ A, φIφa = σI(φ)aφI .

By direct calculations, we deduce from this:

σI(f)uI = fτ(uI),

Now, let J be a non-zero ideal of A. We have:

γφ(uIJ ) = φIJ = σI(φJ )φI .

But, since ∀i ≥ 0, σI(f · · · f (i−1))uI = f · · · f (i−1)u
(i)
I , we have :

γφ(σI(uJ)uI) = σI(φJ )φI .

Thus:

uIJ = σI(uJ )uI .

�

We deduce that if P,Q are maximal ideals of A :

(1− uP
ψ(P )

zdegPσP )(1−
uQ
ψ(Q)

zdegQσQ) = (1− uQ
ψ(Q)

zdeg(Q)σQ)(1−
uP
ψ(P )

zdegPσP ).

For every integer n ≥ 1, we set:

(1 − uP
ψ(P )n

zdegPσP )
−1 :=

∑

k≥0

uPk

ψ(P k)n
zk degPσPk ∈ Tz(H∞)[G].

We define:

∀n ≥ 1, L(ϕ;n; z) =
∏

P

(1− uP
ψ(P )n

zdegPσP )
−1 ∈ (Tz(H∞)[G])×,

where P runs through the maximal ideals of A. Note that, for any n ≥ 1, L(ϕ;n; z)
induces a Tz(K∞)-linear endomorphism of Tz(H∞), and we denote by detTz(K∞) L(ϕ;n; z)
its determinant. Let’s set:

W (B[z]) = ⊕i≥0B[z]f · · · f (i−1) ⊂ H[z].

Proposition 4.7. We have:

∀n ≥ 1, detTz(K∞)L(ϕ;n; z) =
∏

P

(1−
ρ([ B

PB ]A)z
degNH/K(P)

[ B
PB ]nA

)−1 ∈ Tz(K∞)×,

where P runs through the maximal ideals of B.

Proof. The proof is similar to that of Theorem 3.6 . We give a sketch of the proof
for the convenience of the reader.

Let n ≥ 1. We have:

detTz(K∞)L(ϕ;n; z) =
∏

P

detK[z](1 −
uP

ψ(P )n
zdegPσP |H[z])

−1.

Let P be a maximal ideal of A. Let e ≥ 1 be the order of P in Pic(A). Then
1, σP , . . . , σ

e−1
P are linearly independent over H(z). We have :

(
uP

ψ(P )n
zdegPσP )

e =
ρ(ψ(P e))zedegP

ψ(P e)n
∈ K[z].
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Thus the minimal polynomial of uP

ψ(P )n z
degPσP |H(z) over K(z) (and also over

H〈σP 〉(z)) is equal to:

Xe − ρ(ψ(P e))ze degP

ψ(P e)n
∈ K[z][X ].

Therefore the characteristic polynomial of uP

ψ(P )n z
degPσP |H(z) over K(z) is equal

to:

(Xe − ρ(ψ(P e))ze degP

ψ(P e)n
)

[H:K]
e .

One obtains the desired result by the same arguments as that used in the proof of
Theorem 3.6. �

Remark 4.8. Let L = ρ(K)(F∞)((q
d∞−1

√−π)), and let τ : L→ L be the continu-

ous morphism of ρ(K)-algebras such that ∀x ∈ F∞((q
d∞−1

√−π)), τ(x) = xq. Then
there exists an element ω ∈ L× (unique up to the multiplication of an element in
ρ(K)×) such that:

τ(ω) = fω.

This element is a generalization of the special function introduced by G. Ander-
son and D. Thakur in [3]. The existence of this element (combined with the
log-algebraicity theorem) gives new arithmetic informations on special values of
L-series. We refer the interested reader to a forthcoming work of the authors.

4.3. Stark units and several variable log-algebraicity theorem.

We set:

U(ϕ̃/W (B[z])) = {x ∈ Tz(H∞), expϕ̃(x) ∈W (B[z])}.
The following result is a twisted (by the shtuka function f) version of [1], Theorem
5.1.1. :

Theorem 4.9. We have:

U(ϕ̃/W (B[z])) = L(ϕ; 1; z)W (B[z]).

In particular,
expϕ̃(L(ϕ; 1; z)W (B[z])) ⊂W (B[z]),

Proof. The proof is similar to that of Theorem 3.8. We give a sketch of the proof
for the convenience of the reader.

Observe that expϕ̃ : H[[z]] → H[[z]] is an isomorphism of A[[z]]-modules. Fur-
thermore, if we set:

W (H [[z]]) = ⊕i≥0H [[z]]f · · · f (i−1),

we get:
expϕ̃(W (H [[z]])) =W (H [[z]]).

Let:
W (B[[z]]) = ⊕i≥0B[[z]]f · · · f (i−1) ⊂ H[[z]].

Let P be a maximal ideal of A. Let WP = S−1W (B[[z]]), where S = A \ P. Then:
PWP = ψ(P )WP .

By Lemma 3.7, we have:

expϕ̃(PWP ) = PWP .
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If

φP =

degP∑

i=0

φP,iτ
i,

we set:

ϕ̃P =

degP∑

i=0

φP,if · · · f (i−1)ziτ i.

We have:

ϕ̃P expϕ̃ = expσP
ψ(P ),

where:

expσP
=

∑

i≥0

σP (ei(φ))f · · · f (i−1)ziτ i.

Let’s set:

U(ϕ̃/WP ) = {x ∈ H[[z]], expφ̃(x) ∈ WP } ⊂W (H [[z]]).

We have an isomorphism of A[[z]]-modules induced by expϕ̃:

U(ϕ̃/WP )

PWP
≃ ϕ̃(

WP

PWP
).

Note that:

∀i ≥ 0, σP (f · · · f (i−1))uP = f · · · f (i−1)τ i(uP ) ∈ W (B).

Therefore:

(ϕ̃P − zdegPuPσP )ϕ̃(
WP

PWP
) = {0}.

Since uP is a “P -unit”, for x ∈ W (H [[z]]) \ WP , (ϕ̃P − zdegPuPσP )(x) is not
P -integral as an element of H[[z]]. Thus:

ϕ̃(
WP

PWP [[z]]
) = {x ∈ ϕ̃(

W (H [[z]])

PWP
), (ϕ̃P − zdegPuPσP )(x) = 0}.

Let x ∈W (H [[z]]), we deduce that:

x ∈ U(ϕ̃/WP ) ⇔ (ϕ̃P − zdegPuPσP )(expϕ̃(x)) ∈ PWP .

Thus:

x ∈ U(ϕ̃/WP ) ⇔ expσP
(ψ(P )x− zdegPuPσP (x)) ∈ PWP .

Lemma 3.7 implies:

x ∈ U(ϕ̃/WP ) ⇔ ψ(P )x − zdegPuPσP (x) ∈ PWP .

Thus:

U(ϕ̃/WP ) = (1− zdegPuP
ψ(P )

σP )
−1WP .

Observe that W (B[[z]]) =
⋂
P WP . We conclude that:

W (B[[z]]) = expϕ̃(L(ϕ; 1; z)W (B[[z]])).

By Lemma 4.4, we get:

expϕ̃(L(ϕ; 1; z)W (B[z])) ⊂ Tz(H∞) ∩W (B[[z]]) =W (B[z]).

Recall that:

U(ϕ̃/W (B[z])) = {x ∈ Tz(H∞), expϕ̃(x) ∈W (B[z])}.
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Then:

U(ϕ̃/W (B[z])) = L(ϕ; 1; z)W (B[[z]]) ∩ Tz(H∞).

But recall that:

L(ϕ; 1; z) ∈ (Tz(H∞)[G])×.

Thus:

U(ϕ̃/W (B[z])) = L(ϕ; 1; z)W (B[z]).

�

Let ev : Tz(H∞) → H∞ be the evaluation map at z = 1. Then by Proposition
4.7, we get:

L(ϕ/W (B)) = detK∞
ev(L(ϕ; 1; z)),

where:

ev(L(ϕ; 1; z)) =
∏

P

(1− uP
ψ(P )

σP )
−1 =

∑

I

uI
ψ(I)

σI ∈ (H∞[G])×,

where I runs through the non-zero ideals of A. Furthermore, by the above Theorem:

expϕ(ev(L(ϕ; 1; z))W (B)) ⊂W (B).

And also:

expϕ(ev(L(ϕ; 1; z))W (B)B) ⊂W (B)B.

If we define the regulator of Stark units ev(L(ϕ; 1; z))W (B)B as follows:

[W (B)B : ev(L(ϕ; 1; z))W (B)B]A := detK∞
ev(L(ϕ; 1; z)),

then:

L(ϕ/W (B)) = [W (B)B : ev(L(ϕ; 1; z))W (B)B]A.

We now briefly discuss the several variable version of Theorem 4.9. Let s ≥ 0 be
an integer. Let:

Ks = Frac(A⊗s),

where:

A⊗s = A⊗Fq · · · ⊗Fq A.

If s = 0, then K0 = Fq. Let:

Hs = Frac(A⊗s ⊗Fq B),

Ks = Frac(A⊗s ⊗Fq A).

For i = 1, . . . , s, let:

ρi : A→ Hs, a 7→ (1⊗ · · · 1⊗ a⊗ · · · ⊗ 1)⊗ 1,

where a appears at the i-th position. We still denote by ρi : H → Hs the homo-
morphism of H-algebras such that:

∀a ∈ A, ρi(ρ(a)) = ρi(a).

We view Hs and Ks as functions fields over Ks ⊗ 1. Let ∞ be the unique place of
Ks/Ks ⊗ 1 above the place ∞ of K/Fq. Then:

Ks,∞ = (Ks ⊗ 1)(F∞)((1⊗s ⊗ π)),

and we set:

Hs,∞ = Hs ⊗Ks Ks,∞.
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Let Tz(Hs,∞) be the Tate algebra in the variable z with coefficients in Hs,∞. Let
τ : Tz(Hs,∞) → Tz(Hs,∞) be the continuous homomorphism of (Ks⊗1)[z]-algebras
such that:

∀x ∈ H∞, τ(x) = xq.

Let’s set:

Ws(B[z]) = ⊕i1,...is≥0B[z]
s∏

j=1

ρj(f) · · · τ (ij−1)(ρj(f)) ⊂ Hs[z].

In particularW0(B[z]) = B[z]. By similar arguments as those of the proof of Lemma
4.4, we show that Ws(B[z]) is discrete in Tz(Hs,∞). For n ≥ 1, we set:

L(ϕs;n; z) :=
∏

P

(1−
∏s
j=1 ρj(uP )

ψ(P )n
zdegPσP )

−1 ∈ (Tz(Hs,∞)[G])×,

where P runs through the maximal ideals of A. Then, by the same proof as that of
Proposition 4.7, for all n ≥ 1, we get:

detTz(Ks,∞)L(ϕs;n; z) =
∏

P

(1−
(
∏s
j=1 ρj([

B
PB ]A))z

degNH/K(P)

[ B
PB ]nA

)−1 ∈ Tz(Ks,∞)×,

where P runs through the maximal ideals of B.

We define:

expϕ̃s
=

∑

i≥0

ei(φ)(

s∏

j=1

ρj(f) · · · τ i−1(ρj(f)))z
iτ i ∈ Hs{{τ}}.

Then expϕ̃s
converges on Ts(Hs,∞), and we set:

U(ϕ̃s/Ws(B[z])) = {x ∈ Tz(Hs,∞), expϕ̃s
(x) ∈ Ws(B[z])}.

By similar arguments as those of the proof of Theorem 4.9, we get:

Corollary 4.10. We have:

U(ϕ̃s/Ws(B[z])) = L(ϕs; 1; z)Ws(B[z]).

Example 4.11. We consider the Carlitz example, where g = 0 and d∞ = 1.
Observe that there exists θ ∈ K such that sgn(θ) = 1, and A = Fq[θ]. Thus,
K = Fq(θ), and K∞ = Fq((

1
θ )).

Let φ : A→ K∞{τ} be the Carlitz module defined by

φθ = θ + τ.

Then the Carlitz exponential is given by:

expφ =
∑

i≥0

1

Di
τ i,

where for i ≥ 0, Di =
∏i−1
k=0(θ

qi − θq
k

).
The Hilbert class field H of K is K, and then B = A. Then, the shtuka function

f ∈ K ⊗ H associated to the Carlitz module via the Drinfeld correspondence is
given by:

f = θ ⊗ 1− 1⊗ θ.

Let s ≥ 0 be an integer. For i = 1, . . . , s, let ti = ρi(θ). We have:

ρi(f) = ti − θ,
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Hs = Ks = Fq(t1, . . . , ts, θ),

Hs,∞ = Ks,∞ = Fq(t1, . . . , ts)((
1

θ
)).

For i ≥ 0, j = 1, · · · s, set:

bi(tj) =

i−1∏

k=0

(tj − θq
k

).

We get:

Ws(B[z]) = A[t1, . . . , ts][z].

Observe that:

expϕ̃s
=

∑

i≥0

∏s
j=1 bi(tj)

Di
τ i.

We have:

L(ϕs; 1; z) =
∑

a∈A+

a(t1) · · ·a(ts)
a

zdegθ a,

where A+ denotes the set of monic polynomials in A = Fq[θ]. In particular, for
s = 1, we recover the zeta function introduced by Pellarin [21].

Corollary 4.10 implies:

expϕ̃s
(L(ϕs; 1; z)A[t1, . . . , ts, z]) ⊂ A[t1, . . . , ts, z].

We refer the interested reader to [4], [6], [7], [9], for arithmetic applications of this
latter result.

4.4. Another proof of Anderson’s log-algebraicity theorem.

Corollary 4.12. Let n ≥ 0 and let X1, . . . , Xn, z be n+ 1 indeterminates over K.
Let τ : K[X1, . . . , Xn][[z]] → K[X1, . . . , Xn][[z]] be the continuous Fq[[z]]-algebra
homomorphism for the z-adic topology such that ∀x ∈ K[X1, . . . , Xn], τ(x) = xq.
Then:

∀b ∈ B, expφ̃(
∑

I

σI(b)

ψ(I)
φI(X1) · · ·φI(Xn)z

deg I) ∈ B[X1, . . . , Xn, z],

where I runs through the non-zero ideals of A, and:

expφ̃ =
∑

i≥0

ei(φ)z
iτ i.

Proof. We first treat the case n = 0. Let b ∈ B. By Theorem 4.9, we get:

∀k ≥ 0,
∑

deg I+i=k

ei(φ)f · · · f (i−1) τ
i(uIσI(b))

ψ(I)qi
∈W (B),

and:

∀k ≫ 0,
∑

deg I+i=k

ei(φ)f · · · f (i−1) τ
i(uIσI(b))

ψ(I)qi
= 0.

The coefficient of f · · · f (k−1) in
∑

deg I+i=k ei(φ)f · · · f (i−1) τ
i(uIσI (b))

ψ(I)qi
is:

∑

deg I+i=k

ei(φ)
σI (b)

qi

ψ(I)qi
.
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Therefore:

∀k ≥ 0,
∑

deg I+i=k

ei(φ)
σI(b)

qi

ψ(I)qi
∈ B.

∀k ≫ 0,
∑

deg I+i=k

ei(φ)
σI (b)

qi

ψ(I)qi
= 0.

Thus:

expφ̃(
∑

I

σI(b)

ψ(I)
zdeg I) ∈ B[z].

We now assume that n ≥ 1. We have an isomorphism of B[z]-modules

γ :W (B[z]) → ⊕i1,...,in≥0B[z]Xqi1

1 · · ·Xqin
n

such that:

∀i1, . . . , in ∈ N, γ(
n∏

j=1

ρj(f · · · f (ij−1))) =
n∏

j=1

Xqij

j .

Observe that:

γ ◦
n∏

j=1

ρj(f)τ = τ ◦ γ.

Furthermore:

γ((

n∏

j=1

ρj(uI))) = φI(X1) · · ·φI(Xn).

Thus, we get by Corollary 4.10:

expϕ̃n
(L(ϕn; 1; z)b) ∈ Wn(B[z]),

and thus:

expφ̃(
∑

I

σI(b)

ψ(I)
φI(X1) · · ·φI(Xn)z

deg I) ∈ ⊕i1,...in≥0B[z]Xqi1

1 · · ·Xqin
n .

�

Remark 4.13. Let s ≥ 1 be an integer and letB{τ1, . . . , τs} be the non-commutative
polynomial ring in the variables τ1, . . . , τs, such that:

τiτj = τjτi,

∀b ∈ B, ∀n ≥ 0, τni b = bq
n

τi.

For i = 1, . . . , s, we set:

∀a ∈ A, ϕi,a =

deg a∑

j=0

φa,jτ
j
i ∈ B{τ1, . . . , τs},

and:

∀a ∈ A, ϕa =

deg a∑

j=0

φa,jτ
j ∈ B{τ1, . . . , τs},

where τ = τ1 · · · τs.
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Let Ws(B) = ⊕i1,...,isB
∏s
j=1 ρj(f) · · · τ ij−1(ρj(f)) ⊂ Hs. Then Ws(B) is an

A⊗s ⊗ B-module. Let j ∈ {1, . . . s}. Let a ∈ A, we have a natural B-module
homomorphism:

ρ̃j(a) : B{τ1, . . . , τs} → B{τ1, . . . , τs},
such that:

∀i1, . . . , is ∈ N, ρ̃j(a).(τ
i1
1 · · · τ iss ) = (τ

ij
j ϕj,a)

s∏

k=1,k 6=j

τ ikk .

Observe that:

∀i, j ∈ {1, . . . s}, ∀a, b ∈ A, ρ̃j(a) ◦ ρ̃i(b) = ρ̃i(b) ◦ ρ̃j(a).
Thus B{τ1, . . . , τs} becomes an A⊗s ⊗B-module via:

∀x ∈ B{τ1, . . . , τs}, (
∑

i

bi

s∏

j=1

ρj(ai,j)) · x =
∑

i

bi(

s∏

j=1

ρ̃j(ai,j))(x).

Then, by the proof of Corollary 4.12, we have an A⊗s ⊗B-module isomorphism:

B{τ1, . . . , τs} ≃Ws(B).

In particular, B{τ1, . . . , τs} is a finitely generated A⊗s ⊗ B-module of rank one.
The case s = 1 was already observed by G. Anderson ([19], page 230, line 21 - there
is a misprint in line 24, since in general f 6∈ A⊗Fq C∞). If I is a non-zero ideal of A,
we define I ∗ · : B{τ1, . . . , τs} → B{τ1, . . . , τs} to be the B-module homomorphism
such that:

I ∗ (τ i11 · · · τ iss ) =
∑

j1,...,js∈{0,...,deg I}

φq
i1

I,j1
· · ·φq

is

I,js
τ i1+j11 · · · τ is+jss ,

where φI =
∑deg I

k=0 φI,kτ
k.

Let L : B{τ1, . . . , τs} → H{{τ1, . . . , τs}} be defined as follows:

L(
∑

i1,...is

bi1,...,isτ
i1
1 · · · τ iss ) =

∑

i1,...,is

∑

I

σI(bi1,...,is)

ψ(I)
I ∗ (τ i11 · · · τ iss ).

Then by Corollary 4.10, we get that the multiplication by expφ ∈ H{{τ}} on
H{{τ1, . . . , τs}} yields to the following property:

∀x ∈ B{τ1, . . . , τs}, expφ(L(x)) ∈ B{τ1, . . . , τs}.
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