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EXCEPTIONAL ZEROS OF L-SERIES AND BERNOULLI-CARLITZ NUMBERS

Bernoulli-Carlitz numbers were introduced by L. Carlitz in 1935, they are the analogues in positive characteristic of Bernoulli numbers. We prove a conjecture formulated by F. Pellarin and the first author on the nonvanishing modulo a given prime of families of Bernoulli-Carlitz numbers. We then show that the "exceptional zeros" of certain L-series are intimately connected to the Bernoulli-Carlitz numbers.

Recently, M. Kaneko and D. Zagier have introduced the Q-algebra of finite multiple zeta values which is a sub-Q-algebra of A := p Fp ⊕pFp (p runs through the prime numbers). This algebra of finite multiple zeta values contains the following elements:

∀k ≥ 2, Z(k) = B p-k k p ∈ A,
where B n denotes the nth Bernoulli number. It is not known that the algebra of finite multiple zeta values is non-trivial. In particular, it is an open problem to prove that Z(k) = 0 for k ≥ 3, k ≡ 1 (mod 2) (observe that Z(k) = 0 if k ≥ 2, k ≡ 0 (mod 2)). This latter problem is equivalent to the following:
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Conjecture 1. Let k ≥ 3 be an odd integer. Then, there exist infinitely many primes p such that B p-k ≡ 0 (mod p).

Let k ≥ 3 be an odd integer. M. Kaneko ([14]) remarked that, viewing the B p-k 's as being random modulo p when p varies through the prime numbers, taking into account that p 1 p diverges, then it is reasonable to expect that there exist infinitely many prime numbers p such that B p-k ≡ 0 (mod p).

Let F q be a finite field having q elements, q being a power of a prime number p, and let θ be an indeterminate over F q . In 1935, L. Carlitz has introduced the analogues of Bernoulli numbers for A := F q [θ] ( [START_REF] Carlitz | On certain functions connected with polynomials in a Galois field[END_REF]). The Bernoulli-Carlitz numbers, BC n ∈ K := F q (θ), n ∈ N, are defined as follows:

-BC n = 0 if n ≡ 0 (mod q -1), -for n ≡ 0 (mod q -1), we have:

BC n Π(n) = ζ A (n) π n ,
where Π(n) ∈ A is the Carlitz factorial ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 9, paragraph 9.1), π is the Carlitz period ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 3, paragraph 3.2), and ζ A (n) := a∈A,a monic 1

a n ∈ K ∞ := F p (( 1 θ ))
is the value at n of the Carlitz-Goss zeta function. The Bernoulli-Carlitz numbers are connected to Taelman's class modules introduced in [START_REF] Taelman | A Dirichlet unit theorem for Drinfeld modules[END_REF] (see for example [START_REF] Taelman | A Herbrand-Ribet theorem for function fields[END_REF] and [START_REF] Anglès | with an appendix by V. Bosser, Arithmetic of characteristicc p special L-values[END_REF]). L. Carlitz established a von-Staudt result for these numbers ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 9, paragraph 9.2), and as an easy consequence, we get that if P is a monic irreducible polynomial in A, then BC n is P -integral for 0 ≤ n ≤ q deg θ P -2. It is natural to ask if Conjecture 1 is valid in the carlitzian context. In this paper, we prove a stronger result which answers positively to a Conjecture formulated in [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]: Theorem 1.1. Let N ≥ 2 be an integer, N ≡ 1 (mod q -1). Let ℓ q (N ) be the sum of the digits in base q of N. Let P ∈ A be a monic irreducible polynomial of degree d such that q d > N. If d ≥ ℓq(N )-1 q-1 N, then: BC q d -N ≡ 0 (mod P ).

The above Theorem is linked with the study of exceptional zeros of certain Lseries introduced in 2012 by F. Pellarin ([15]), but from a slightly different point of view. More precisely, let N be as above and for simplicity we assume that ℓ q (N ) ≥ q, let t be an indeterminate over K ∞ , let's consider:

L N (t) := d≥0 a∈A +,d a N a(t) ∈ A[[ 1 t ]] × ,
where A +,d is the set of monic elements in A of degree d. It was already noticed by F. Pellarin ( [16]) that such L-series can be related with Anderson's solitons and should play an important role in the arithmetic theory of function fields. Let C ∞ be the completion of a fixed algebraic closure of K ∞ . Then, one can show that L N (t) converges on {x ∈ C ∞ , v ∞ (x) < 0}, where v ∞ is the valuation on C ∞ normalized such that v ∞ (θ) = -1. Furthermore, one can easily see that the elements of S := {θ q j , j ∈ Z, q j ≤ N } are zeros of the function L N (t). We call the zeros of L N (t) which belong to {x ∈ C ∞ , v ∞ (x) < 0} \ S the exceptional zeros of L N (t). Let's briefly describe the case q = p. In this case, the exceptional zeros of L N (t) are simple, belong to F p (( 1 θ )) and are the eigenvalues of a certain K-linear endomorphism φ

(N ) t of a finite dimensional K-vector space H(φ (N ) ) connected to the generalization of Taelman's class modules introduced in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF]. The proof of the fact that the exceptional zeros are simple and "real" uses combinatorial techniques introduced by F. Diaz-Vargas ( [START_REF] Diaz-Vargas | Riemann Hypothesis for Fp[T[END_REF]) and J. Sheats ([18]). Furthermore, if p d > N, then:

BC p d -N (-1) ℓp(N )-p p-1 k l=0 d-1 n=0,n =l (θ p l -θ p n ) n l Π(N )Π(p d -N ) = det K (θ p d Id -φ (N ) t | H(φ (N ) ) ),
where Π(.) is the Carlitz factorial, and N = k l=0 n l p l , n l ∈ {0, . . . , p -1}. Since the eigenvalues of φ (N ) t are exactly in this situation the exceptional zeros of L N (t), we also obtain another proof of Theorem 1.1 as a consequence of the fact that:

det K[Z] (ZId -φ (N ) t | H(φ (N ) ) ) ∈ F p [Z, θ],
and therefore (P is a monic irreducible polynomial of degree d):

det K (θ p d Id -φ (N ) t | H(φ (N ) ) ) ≡ det K (θId -φ (N ) t | H(φ (N ) ) ) (mod P ).
Let's observe that Theorem 1.1 implies the following (see [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], page 248):

d≥0 a∈A +,d (a ′ ) N a = 0,
where a ′ denotes the derivative of a and N ≡ 1 (mod q -1). In the appendix of this paper, we discuss a digit principle for such Euler type sums. We mention that the construction of Kaneko-Zagier's objects in the positive characteristic world is the subject of a forthcoming work of F. Pellarin and R. Perkins ( [START_REF] Pellarin | On finite zeta values in positive characteristic[END_REF]), they prove, in this context, that the algebra of finite multiple zeta values is non-trivial. In this situation, it would be very interesting to examine the validity of Conjecture 1 for Bernoulli-Goss numbers (see [START_REF] Anglès | Arithmetic of "units" in Fq[T[END_REF] for a special case).

2. Proof of Theorem 1.1 2.1. Notation. Let F q be a finite field having q elements and let p be the characteristic of F q . Let θ be an indeterminate over F q and let A

= F q [θ], K = F q (θ), K ∞ = F q (( 1 θ )). Let C ∞ be the completion of a fixed algebraic closure of K ∞ . Let v ∞ : C ∞ → Q ∪ {+∞} be the valuation on C ∞ normalized such that v ∞ (θ) = -1. For d ∈ N, let A +,d be the set of monic elements in A of degree d.

The L-series L N (t).

Let N ≥ 1 be an integer. Let t be an indeterminate over C ∞ . Let T t be the Tate algebra in the variable t with coefficients in C ∞ . Let's set:

L N (t) = d≥0 a∈A +,d a(t) N a ∈ T × t .
Then, we can write:

L N (t) = i≥0 α i,N (t)θ -i , α i,N (t) ∈ F q [t].
Observe that α 0,N (t) = 1.

Lemma 2.1. We have:

∀i ≥ 0, deg t α i,N (t) ≤ N (Max{ log(i) log(q) , 0} + [ ℓ q (N ) q -1 ] + 1).
In particular L N (t) is an entire function.

Proof. Let u = [ ℓq(N ) q-1 ] ∈ N.
This Lemma is a consequence of the proof of [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Lemma 7. We give a proof for the convenience of the reader. We will use the following elementary fact ( [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Lemma 4): Let s ≥ 1 be an integer and let t 1 , . . . , t s be s indeterminate over

F p . If d(q -1) > s then a∈A +,d a(t 1 ) • • • a(t s ) = 0.
If a is a monic polynomial in A, we will set:

< a > ∞ = a θ deg θ a ∈ 1 + 1 θ F q [[ 1 θ ]]. Let S d := a∈A +,d a(t) N a . Observe that: deg t S d = dN.
We have :

S d = 1 θ d a∈A +,d a(t) N < a > -1 ∞ .
Observe that (p-adically) -1 = n≥0 (q -1)q n . For m ≥ 0, set:

y m = m n=0 (q -1)q n .
Then: y m ≡ -1 (mod q m+1 ), ℓ q (y m ) = (m + 1)(q -1). Therefore:

v ∞ ( a∈A +,d a(t) N < a > -1 ∞ - a∈A +,d a(t) N < a > ym ∞ ) ≥ q m+1 ,
where v ∞ is the ∞ -adic valuation on T t such that v ∞ (θ) = -1. Thus, if ℓ q (N ) + (m + 1)(q -1) < d(q -1), we get:

a∈A +,d a(t) N a ym = 0. We therefore get, if d ≥ u + 2 : v ∞ (S d ) ≥ d + q d-u-1 .
This implies that L N (t) is an entire function. Let j such that t j appears in α i,N (t). Let x = [ j N ]. Let d be minimal such that t j comes from S d . We must have d ≥ x and j ≤ dN. Furthermore, if d ≥ u + 2, we have:

i ≥ d + q d-u-1 .
In particular:

i ≥ d + q d-u-1 ≥ q d-u-1 . Therefore: d ≤ Max{ log(i) log(q) , 0} + u + 1.

The two variable polynomial B N (t, θ).

Let N ≥ 2, N ≡ 1 (mod q -1). If ℓ q (N ) = 1, we set B N (t, θ) = 1. Let's assume that ℓ q (N ) = 1 and let's set s = ℓ q (N ) ≥ 2. Let t 1 , . . . , t s be s indeterminates over C ∞ . Let T s be the Tate algebra in the indeterminates t 1 , . . . , t s with coefficients in C ∞ . Let τ : T s → T s be the continuous morphism of F q [t 1 , . . . , t s ]-algebras such that ∀c ∈ C ∞ , τ (c) = c q . For i = 1, . . . , s, we set:

ω(t i ) = λ θ j≥0 (1 - t i θ q j ) -1 ∈ T s ,
where λ θ is a fixed (q -1)th-root of -θ in C ∞ . Set:

π = λ θ θ j≥1 (1 -θ 1-q j ) -1 .
Set:

L s = d≥0 a∈A +,d a(t 1 ) • • • a(t s ) a ∈ T × s .
We also set:

B s = (-1) s-1 q-1 L s ω(t 1 ) . . . ω(t s ) π ∈ T s .
Then, by [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], Lemma 7.6 (see also [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Corollary 21),

B s ∈ F q [t 1 , . . . , t s , θ] is a monic polynomial in θ of degree r = s-q q-1 . Write N = ℓq(N ) n=1 q en , e 1 ≤ e 2 ≤ • • • ≤ e ℓq(N ) . We set: B N (t, θ) = B s | ti=t q e i ∈ F q [t, θ]. We observe that B N (t, θ) is a monic polynomial in θ such that deg θ B N (t, θ) = r. Lemma 2.2. Let N ≥ 2, N ≡ 1 (mod q -1). Then: 1) B N (t p , θ p ) = B N (t, θ) p . 2) B qN (t, θ) = B N (t q , θ).
3) We have:

B N (t, θ) ≡ (θ -t) r -r(t q -t)(θ -t) r-1 (mod (t q -t) 2 F p [t, θ]). 4) If N ≡ 0 (mod p), then B N (t, θ) ∈ F p [t p , θ].
Proof. Recall that:

B N (t, θ) = (-1) ℓq (N )-1 q-1 π d≥0 a∈A +,d a(t) N a k l=0 ω(t q l ) n l ,
where N = k l=0 n l q l , n 0 , . . . , n k ∈ {0, . . . q -1}. Observe that:

d≥0 a∈A +,d a(t) N a ∈ F p [t][[ 1 θ ]].
Thus: θ]. Thus we get assertion 1). Assertion 2) is a consequence of the definition of B N (t, θ). Let ζ ∈ F q . By [4], theorem 2.9, we have:

B N (t, θ) ∈ F p [t,
ω(t) | t=ζ = exp C ( π θ -ζ ),
where exp C : C ∞ → C ∞ is the Carlitz exponential ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 3, paragraph 3.2). Now, by [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF] Theorem 1, we get:

d≥0 a∈A +,d a(t) N a | t=ζ = d≥0 a∈A +,d a(ζ) a = π (θ -ζ) exp C ( π θ-ζ )
.

But observe that:

exp C ( π θ -ζ ) q-1 = -(θ -ζ).
Thus:

B N (t, θ) | t=ζ = (θ -ζ) r .
Observe that d dt B N (t, θ) is equal to:

n 0 (-1) r+1 π k l=0 ω(t q l ) -n l d≥0 a∈A +,d d dt (a(t))a(t) N -1 a - a(t) N a d dt (ω(t)) ω(t) .
Thus we get assertion 4). Since for ℓ q (N ) = q, we have B N (t) = 1. We get:

∀ζ ∈ F q , d dt B N (t, θ) | t=ζ = 0.
This concludes the proof of the Lemma.

Lemma 2.3. Let N ≥ 2, N ≡ 1 (mod q -1). Then deg t B N (t, θ) ≥ p if r ≥ 1
and the total degree in t, θ of B N (t, θ) is less than or equal to Max{rN + r -2, 0}. Furthermore B N (t, θ) (as a polynomial in t) is a primitive polynomial.

Proof. Recall that if r = 0 then B N (t, θ) = 1. Let's assume that r ≥ 1. Observe that by Lemma 2.2,we have:

B N (t, 0) ≡ -(-t) r-1 (t + r(t q -t)) (mod (t q -t) 2 F p [t]).
In

particular deg t B N (t, θ) ≥ p. Let x ∈ C ∞ such that v ∞ (x) > -1
N . Then:

d≥ a∈A +,d a(x) N a = P monic irreducible in A (1 - P (x) N P ) -1 ∈ C × ∞ .
Write N = k l=0 n l q l , n l ∈ {0, . . . , q -1}, n k = 0. For l = 0, . . . , k, we have:

ω(t q l ) | t=x ∈ C × ∞ . Therefore: B N (t, θ) | t=x = 0. This implies that, if x ∈ C ∞ is a root of B N (t, θ) then v ∞ (x) ≤ -1 N < 0. Write in C ∞ [t] : B N (t, θ) = λ m j=1 (t -x j ), λ ∈ F p [θ] \ {0}, deg θ λ ≤ r -1, x 1 , . . . , x m ∈ C ∞ ,
where m = deg t β N (t, θ). Then:

θ r = (-1) m λ m j=1 x j . Therefore: deg θ λ -r ≤ -m N .
We finally get: 

deg t B N (t, θ) ≤ (r -deg θ λ)N ≤ rN. Since B N (t,
P i = σ i-1 (P 1 ), where σ : A → A is the morphism of F p [θ]-algebras such that ∀x ∈ F q , σ(x) = x p , and m = [F p d ∩ F q : F p ]. Let N ≥ 1,
and let's set:

χ N (f ) = m i=1 (P i (θ) -P i (t) N ) -f (θ) ∈ F p [t, θ].
We have:

deg t χ N (f ) = N deg θ f, deg θ χ N (f ) ≤ deg θ f -deg θ P 1 ≤ deg θ (f )(1 - log(p) log(q)
).

If f 1 , . . . , f n are n irreducible monic polynomials in F p [θ], we set:

χ N (f 1 • • • f m ) = n l=1 χ N (f l ) ∈ F p [t, θ]. Thus in F p [t](( 1 θ )): L N (t) = d≥0 a∈Fp[θ] +,d χ N (a) a .
Observe that

d≥0 a∈Fp[θ] +,d χN (a) a converges on {x ∈ C ∞ , v ∞ (x) > -1 N } and does not vanish. Therefore on {x ∈ C ∞ , v ∞ (x) > -1 N } : d≥0 a∈Fp[θ] +,d χ N (a) a = 1 θ ℓq (N )-q q-1 B N (t, θ) k l=0 j≥0 (1 - t q l θ q j ) n l ,
where N ≡ 1 (mod q -1), ℓ q (N ) ≥ q, N = k l=0 n l q l , n l ∈ {0, . . . , q -1}, n k = 0. Let s ≥ 2, s ≡ 1 (mod q -1). Recall that we have set:

B s = (-1) s-1 q-1 L s ω(t 1 ) . . . ω(t s ) π ∈ T s ,
where T s is the Tate algebra in the indeterminates t 1 , . . . , t s with coefficients in C ∞ , and for i = 1, . . . , s, ω(t i ) = λ θ j≥0 (1 -ti θ q j ) -1 . For m ∈ N, we denote by BC m ∈ K the mth Bernoulli-Carlitz number ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 9, paragraph 9.2). Proposition 2.5. 1)Let N ≥ 1, N ≡ 1 (mod q -1), ℓ q (N ) ≥ q. Recall that r = ℓq(N )-q q-1 . Let d ≥ 1 such that q d > N, then we have the following equality in C ∞ :

B N (θ, θ q d ) k l=0 d-1 n=0,n =l (θ q l -θ q n ) n l = (-1) r BC q d -N Π(N )Π(q d -N ) ,
where Π(.) is the Carlitz factorial, and N = k l=0 n l q l , n l ∈ {0, . . . , q -1}. 2) Let N ≥ 2, N ≡ 1 (mod q -1). Let P be a monic irreducible polynomial in A of degree d ≥ 1 such that q d > N. Then BC q d -N ≡ 0 (mod P ) if and only if B N (θ, θ) ≡ 0 (mod P ).

Proof.

1) The first assertion of the Proposition is a consequence of the proof of Theorem 2 in [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]. For the convenience of the reader, we give the proof of this result. Let s ≥ q, s ≡ 1 (mod q -1). Then ([5], Lemma 7.6), we have that B s ∈ F q [t 1 , . . . , t s , θ] is a monic polynomial in θ of degree s-q q-1 . Let τ : T s → T s be the continuous morphism of F q [t 1 , . . . , t s ]-algebras such that ∀x ∈ C ∞ , τ (x) = x q . Since λ q θ = -θλ θ , we have:

τ (ω(t i )) = (t i -θ)ω(t i ), i = 1, . . . , s. Let d ≥ 1, we get: (-1) s-1 q-1 τ d (L s ) π q d ω(t 1 ) . . . ω(t s ) = τ d (B s ) d-1 l=0 (t 1 -θ q l ) • • • (t s -θ q l )
.

Recall that, by formula (24) in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF], we have:

(t i -θ q l )ω(t i ) | t=θ q l = - π q l D l .
Let l 1 , . . . , l s ∈ N, we get:

(-1)

s-1 q-1 τ d (L s ) π q d (t 1 -θ q l 1 )ω(t 1 ) . . . (t s -θ q ls )ω(t s ) = τ d (B s )(t 1 -θ q l 1 ) • • • (t s -θ q ls ) d-1 l=0 (t 1 -θ q l ) • • • (t s -θ q l ) . Now, let N ≥ 1 such that ℓ q (N ) = s (observe that N ≡ 1 (mod q -1) and ℓ q (N ) ≥ q). Write N = k l=0 n l q l , n 0 , . . . n k ∈ {0, . . . , q -1}, n k = 0. Let d ≥ k + 1. We get: (-1) s-1 q-1 u≥0 a∈A +,u a(t) N a q d π q d ( k l=0 ((t q l -θ q l )ω(t q l )) n l ) = BN (t,θ q d ) k l=0 d-1 n=0,n =l (t q l -θ q n ) n l . We get: B N (t, θ q d ) k l=0 d-1 n=0,n =l (t q l -θ q n ) n l | t=θ = (-1) ℓq (N )-q q-1 BC q d -N Π(N )Π(q d -N ) . 
2) The result is well-known for ℓ q (N ) = 1 (this is a consequence of the definition of the Bernoulli-Carlitz numbers and [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Lemma 8.22.4). Thus, we will assume ℓ q (N ) ≥ q. The assertion is then a consequence of the fact that:

B N (θ, θ) ≡ B N (θ, θ q d ) (mod P ).
We have already mentioned that B s ∈ F q [t 1 , . . . , t s , θ] is a monic polynomial in θ of degree s-q q-1 ([5], Lemma 7.6). Let's observe that we have: Lemma 2.6. For s ≥ 2q -1, s ≡ 1 (mod q -1), we have:

B s (t 1 , . . . , t s-(q-1) , 0, . . . , 0) = (θ -t 1 • • • t s-(q-1) )B s-(q-1) (t 1 , . . . , t s-(q-1) ).
More generally, if ζ is in the algebraic closure of F q in C ∞ , let P be the monic irreducible polynomial in A such that P (ζ) = 0. Let s ≡ 1 (mod q-1), s ≥ q+q d -1, where d is the degree of P. Write s ′ = s -(q d -1). We have:

B s (t 1 , . . . , t s ′ ) , ζ, . . . , ζ) = (P -P (t 1 ) • • • P (t s ′ ))B s ′ (t 1 , . . . , t s ′ ).
Proof. The polynomial B s (t 1 , . . . , t s-(q-1) , 0, . . . , 0) is equal to:

(-θ)(-1) s-1 q-1 ω(t 1 ) . . . ω(t s-(q-1) ) π P monic irreducible in A, P =θ (1 - P (t 1 ) • • • P (t s-(q-1) ) P ) -1 .
The proof of the second assertion of the Lemma is similar, using [4], Theorem 2.9, and the properties of Gauss-Thakur sums ( [START_REF] Thakur | Gauss sums for Fq[t[END_REF]).

Lemma 2.7.

B 2q-1 = θ - 1≤i1<...<iq ≤2q-1 t i1 • • • t iq .
Proof. Let T 2q-1 (K ∞ ) be the Tate algebra in the variable t 1 , . . . , t 2q-1 with coefficients in K ∞ . Then:

T 2q-1 = 1 θ A[t 1 , . . . , t 2q-1 ] ⊕ N,
where

N = {f ∈ T 2q-1 , v ∞ (f ) ≥ 2}. Let φ : A → A[t 1 , . . . , t 2q-1 ]{τ } be the morphism of F q -algebras give by φ θ = (t 1 -θ) • • • (t 2q-1 -θ)τ + θ.
Then by the results in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], we have:

N = exp φ (T 2q-1 ),
and

H φ := T2q-1 A[t1,...,t2q-1]⊕N is a free F q [t 1 , . . . , t 2q-1 ]
-module of rank one generated by 1 θ . Furthermore:

B s = det Fq[t1,...,t2q-1][Z] (ZId -φ θ | H φ ⊗ Fq [t 1 ,...,t 2q-1 ] Fq[t1,...,t2q-1][Z] ) | Z=θ .
Now, observe that:

φ θ ( 1 θ ) ≡ 1≤i1<...<iq≤2q-1 t i1 • • • t iq θ (mod A[t 1 , . . . , t 2q-1 ] ⊕ N ).
The Lemma follows.

For m = (m 1 , . . . , m d ) ∈ N d , we set m 0 := s -(m 1 + • • • + m d )
, and:

σ s (m) = d u=1 i∈Ju t u i ,
where the sum runs through the disjoint unions

J 1 • • • J k ⊂ {1, . . . , s} such that | J u |= m u , u = 1, . . . , d. Notice in particular that σ s (m) = 0 if m 1 + • • • + m d > s,
that is, if m 0 < 0. To give an example, the above lemma shows that B 2q-1 = θσ((q)).

Lemma 2.8. Let m ∈ N d . We have :

σ s (m) | ts=0,...,t s-(q-2) =0 = σ s-(q-1) (m).
In particular, if m 0 < q -1, we have:

σ s (m) | ts=0,...,t s-(q-2) =0 = 0.
Proof. This is a straight computation.

Let ρ : F p [t 1 , . . . , t s ] → N ∪ {+∞} be the function given by:

-if f = 0, ρ(f ) = +∞, -if f = 0, f = α j1,...,js t j1 1 • • • t js s , α j1,...,js ∈ F p , then ρ(f ) = Inf{j 1 + . . . + j s , α j1,...,js = 0}.
Let's write:

B s = r i=0 B i,s θ r-i ,
where B i,s ∈ F p [t 1 , . . . , t s ] is a symmetric polynomial, and B 0,s = 1.

Proposition 2.9. For i = 1, . . . , r, we have:

ρ(B i,s ) ≥ i(q -1) + 1.
Proof. By Lemma 2.7, this is true for r = 1, thus we can assume that r ≥ 2. The proof is by induction on r. Recall that by Lemma 2.2, we have:

B s | t1=...=ts=0 = θ r .
Thus, for i = 1, . . . , r, we can write:

B i,s = m∈S x i,m σ s (m), x i,m ∈ F p , where S = {(m 1 , . . . , m s ) ∈ N s , 1 ≤ m 1 + • • • + m d ≤ s}. Set: B i,s = B i,s - m∈S,m0<q-1
x i,m σ s (m).

Then: ρ(B i,s -B i,s ) ≥ r(q -1) + 2. Therefore we have to prove:

ρ( B i,s ) ≥ i(q -1) + 1.
Observe that, by Lemma 2.8, we have:

B i,s | ts=...=t s-(q-2) =0 = B i,s | ts=...=t s-(q-2) =0 = m∈S,m0≥q-1 x i,m σ s-(q-1) (m).
By Lemma 2.6, we have:

B s | ts=...=t s-(q-2) =0 = (θ -t 1 • • • t s-(q-1) )B s-(q-1) .
We therefore get, for i = 1, . . . , r :

B i,s | ts=...=t s-(q-2) =0 = B i,s-(q-1) -t 1 • • • t s-(q-1) B i-1,s-(q-1) ,
where we have set B r,s-(q-1) = 0. Now, by the induction hypothesis:

ρ(B i,s-(q-1) -t 1 • • • t s-(q-1) B i-1,s-(q-1) ) ≥ i(q -1) + 1.

Thus:

ρ(B i,s ) ≥ i(q -1) + 1.

Corollary 2.10. Let N ≡ 1 (mod q -1), ℓ q (N ) ≥ 2q -1. Then ∀a ∈ F q [θ], we have:

B N (t, θ) | t=a = 0.
Proof. By Proposition 2.9, we have:

B N (t, θ) -θ r ∈ t(t, θ) r .
The Corollary follows easily.

Proof of Theorem 1.1

We can assume that ℓ q (N ) ≥ q. By Lemma 2.3, the total degree in t, θ of B N (t, θ) is strictly less than (r + 1)N, where r = ℓq(N )-q q-1 . Now, by Corollary 2.10:

B N (θ, θ) = 0.
Furthermore, deg θ B N (θ, θ) < (r +1)N. Thus if P is a monic irreducible polynomial in A such that deg θ P ≥ (r + 1)d, we have:

B N (θ, θ) ≡ 0 (mod P ).
We conclude the proof of the Theorem by Proposition 2.5.

Exceptional zeros and eigenvalues of certain K-endomorphisms

3.1. The L-series L N (t).
Let N ≥ 1 be an integer. Recall that

L N (t) = d≥0 a∈A +,d a(t) N a = i≥0 α i,N (t)θ -i , α i,N (t) ∈ T × t .
Let d ≥ 1 be an integer, we set for k = (k 0 , . . . ,

k d-1 ) ∈ N d : -ℓ(k) = d, -| k |= k 0 + • • • + k d-1 , -if a = a 0 + a 1 θ + • • • + a d-1 θ d-1 + θ d , a i ∈ F q , i = 0, . . . , d -1, a k = d-1 i=0 a ki i .
Let's begin by a simple observation. Let d ≥ 1 and let k = (k 0 , . . . , k d-1 ) ∈ N d . Let N ≥ 1 be an integer, we get:

a∈A +,d a(t) N a k = a∈A +,d m∈N d+1 ,|m|=N C(N, m)a k a m t m1+2m2+•••+dm d ,
where:

C(N, m) = N ! m 0 ! • • • m d ! ∈ F p .
Recall that by Luca's Theorem C(N, m) = 0 if and only if there is no carryover p-digits in the sum

N = m 0 + • • • + m d .
Furthermore, recall that, for n ∈ N, λ∈Fq λ n = 0 if and only if n ≡ 0 (mod q -1) and n ≥ 1. Thus, for m ∈ N d+1 , a∈A +,d a m = 0 unless (m 0 , . . . , m d-1 ) ∈ ((q -1)(N \ {0})) d and in this latter case a∈A +,d a m = (-1) d . Thus for d, N ≥ 1, k ∈ {0, . . . , q -1} d , we denote by U d (N, k) the set of elements m ∈ N d+1 such that: -there is no carryover p-digits in the sum

N = m 0 + • • • + m d , -for n = 0, . . . , d -1, m n -k n ∈ (q -1)N. For m ∈ U d (N, k), we set: deg m = m 1 + 2m 2 + • • • + dm d . An element m ∈ U d (N, k) is called optimal if deg m = Max{deg n, n ∈ U d (N, k)}. If U d (N, k) = ∅, the greedy element of U d (N, k) is the element m = (m 0 , . . . , m d ) ∈ U d (N, k) such that (m d , . . . , m 1 ) is largest lexicographically. Let k ∈ N d , d ≥ 1.
For n = 0, . . . , d -1, let kn ∈ {0, . . . , q -1} be the least integer such that k n + kn ∈ (q -1)(N \ {0}). We set: k = ( k0 , . . . , kd-1 ).

We get:

a∈A +,d a(t) N a k = (-1) d m∈U d (N, k) C(N, m)t deg m .
Let N ≥ 1 be an integer and let ℓ q (N ) be the sum of digits of N in base q. Then we can write in a unique way:

N = ℓq(N ) n=1 q en , e 1 ≤ e 2 ≤ • • • ≤ e ℓq(N ) .
We set:

r = Max{0, [ ℓ q (N ) -q q -1 ]} ∈ N.
Lemma 3.1. We have:

∀i ≥ 0, α i,N (t) = ℓ(k)+w(k)=i (-1) ℓ(k) C k a∈A +,ℓ(k) a(t) N a k ∈ F p [t],
where

C k = (-1) |k| |k|! k0!•••k d-1 ! ∈ F p , w(k) = k d-1 + • • • + (d -1)k 1 + dk 0 , for k = (k 0 , . . . , k d-1 ).
Proof. Let a ∈ A +,d . We have:

1 a = 1 θ d k∈N d C k a k 1 θ w(k) ,
where

C k = (-1) |k| |k|! k0!•••k d-1 ! ∈ F p , w(k) = k d-1 + • • • + (d -1)k 1 + dk 0 . Thus: a∈A +,d a(t) N a = (-1) d θ d k∈N d C k 1 θ w(k) a∈A +,d a(t) N a k .
Therefore:

α i,N (t) = ℓ(k)+w(k)=i (-1) ℓ(k) C k a∈A +,ℓ(k) a(t) N a k ∈ F p [t]. Lemma 3.2. Let j ∈ Z. Then L N (t) | t=θ q j =
0 if and only if N ≡ 1 (mod q -1), and q j N > 1.

Proof. This comes from the following facts: -∀n ≥ 1, d≥0 a∈A +,d 1 a n = 0, -for n ≥ 0, d≥0 a∈A +,d a n = 0 if and only if n ≥ 1, n ≡ 0 (mod q -1).

We will need the following Lemma in the sequel:

Lemma 3.3. Let F (t) = n≥0 β n (t) 1 θ n ∈ F q [t][[ 1 θ ]], β n (t) ∈ F q [t], and let ρ ∈ R such that F (t) converges on {x ∈ C ∞ , v ∞ (x) ≥ ρ}. Let M ≥ 1 and set F M (t) = M n=0 β n (t) 1 θ n ∈ K ∞ [t]. Let ε ∈ R, ε ≥ ρ. Suppose that F M (t) has exactly k ≥ 1 zeros in C ∞ with valuation ε. Then either F (t) has k zeros with valuation ε or F (t) has at least deg t F M (t) + 1 zeros with valuation > ε.
Proof. Let's assume that the side of the Newton polygon of F M (t) corresponding to the k zeros of valuation ε is not a portion of a side of the Newton polygon of

F (t), then F (t) has a side of slope -ε ′ < -ε with end point of abscissa k ′ > deg t F M (t).
Thus the Newton polygon of F (t) delimited by the vertical axis of abscissas 0 and k ′ has only sides of slope ≤ -ε ′ . Thus F (t) has k ′ zeros of valuation ≥ ε ′ .

An example.

For the convenience of the reader, we treat a basic example: N = 1. We set ℓ 0 = 1 and for d ≥ 1,

ℓ d = (θ -θ q ) • • • (θ -θ q d ). Lemma 3.4. Let d ≥ 0. Then: a∈A +,d 1 a = 1 ℓ d .
Proof. This is a well-known consequence of a result of Carlitz ([13], Theorem 3.1.5).

Let's give a proof for the convenience of the reader. We can assume that d ≥ 1.

Set:

e d (X) = a∈A,deg θ a<d (X -a) ∈ A[X].
Then ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Theorem 3.1.5):

e d (X) = d i=0 D d D i ℓ q i d-i X q i ,
where D 0 = 1, and for i ≥ 1, D i = (θ q iθ)D q i-1 . Now observe that:

d dX (e d (X -θ d )) e d (X -θ d ) | X=0 = - a∈A +,d 1 a . 
Since e d (θ d ) = D d ([13], Corollary 3.1.7), we get the desired result.

Lemma 3.5. Let d ≥ 0. then:

a∈A +,d a(t) a = (t -θ) • • • (t -θ q d-1 ) ℓ d .
Proof. We can assume that d ≥ 1. Set:

S = a∈A +,d a(t) a .
Then for i = 0, . . . , d -1, we have:

S | t=θ q i = 0.
Furthermore, by Lemma 3.4, S has degree d in t and the coefficient of t d is 1 ℓ d . The Lemma follows.

Lemma 3.6. The edge points of the Newton polygon of L 1 (t) are (d, q q d -q q-1 ), d ∈ N. Proof. Let's write:

L 1 (t) = d≥0 S d (t),
where:

S d (t) = a∈A +,d a(t) a . Let d ∈ N and let d ′ > d. Let x ∈ K be the coefficient of t d in S d ′ (t)
. Then, by Lemma 3.5, we get:

v ∞ (x) ≥ -v ∞ (ℓ d ′ ) -q d -• • • -q d ′ -1 > q q d -1 q -1 .
Thus, if we write:

L 1 (t) = d≥0 α d t d ∈ K ∞ [[t]], α d ∈ K ∞ , d ∈ N,
by the above observation and again by Lemma 3.5, we get:

∀d ≥ 0, v ∞ (α d ) = q q d -1 q -1 .
This latter Lemma implies the following formula due to F. Pellarin ([15], Theorem 1):

Proposition 3.7. Let λ θ ∈ C × ∞ be a fixed (q -1)th root of -θ. Set: π = λ θ θ j≥1 (1 -θ 1-q j ) -1 ∈ C × ∞ .
Then:

(θ -t)L 1 (t) = π λ θ j≥0 (1 - t θ q j ).
Proof. We observe that:

∀n ≥ 1, L 1 (t) | t=θ q n = 0, L 1 (θ) = 1. By Lemma 3.6, the entire function (t -θ)L 1 (t) has simple zeros in K ∞ and if x ∈ K ∞ is such a zero, v ∞ (x) ∈ {-q i , i ∈ N}. Thus, there exists α ∈ C × ∞ such that: (t -θ)L 1 (t) = α j≥0 (1 - t θ q j ).
But, observe that:

π λ θ j≥1 (1 - t θ q j ) | t=θ = θ. Therefore: α = -π λ θ .

Eigenvalues and Bernoulli-Carlitz numbers.

In this paragraph, we slightly change our point of view. Let t be an indeterminate over C ∞ and let ϕ :

C ∞ [[ 1 t ]] → C ∞ [[ 1 t ]
] be the continuous (for the 1 t -adic topology) morphism of C ∞ -algebras such that ϕ(t) = t q . We first recall some consequences of the work of F. Demeslay's (see the appendix of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF] or [START_REF] Demeslay | A class formula for L-series in positive characteristic[END_REF]) generalizing the work of L. Taelman ([20]).

Let N ≥ 1, N ≡ 1 (mod q-1), ℓ q (N ) ≥ q. Write N = k l=0 n l q l , n l ∈ {0, . . . , q-1}, l = 0, . . . , k, and n k = 0. We set B = K[t]. Let φ (N ) : B → B{ϕ} be the morphism of K-algebras given by:

φ (N ) t = ( k l=0 (θ q l -t) n l )ϕ + t.
Since t is transcendental over F q , there exists a unique "power series" exp φ (N ) ∈ K(t){{ϕ}} such that: exp φ (N ) ≡ 1 (mod ϕ),

exp φ (N ) t = φ (N ) t exp φ (N )
. One can easily see that:

exp φ (N ) = j≥0 k l=0 ( j-1 n=0 (θ q l -t q n )) n l j-1 n=0 (t q n -t q j ) ϕ j .
In particular exp φ (N ) induces a continuous K-linear endomorphism of K(( 1 t )) which is an isometry on a sufficiently small neighborhood of zero (for the 1 t -adic topology). Let's set:

H(φ (N ) ) = K(( 1 t )) (B + exp φ (N ) (K(( 1 t )))
.

Then H(φ (N ) ) is a finite K-vector space and a B-module via φ. Let's denote by [H(φ (N ) )] B the monic generator (as a polynomial in t) of the Fitting ideal of the B-module H(φ (N ) ), i.e.:

[H(φ (N ) )] B = det

K[Z] (ZId -φ (N ) t | H(φ (N ) ) ) | Z=t .
As in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], Proposition 7.2, one can prove that:

dim K H(φ (N ) ) = ℓ q (N ) -q q -1 , {x ∈ K(( 1 t )), exp φ (N ) (x) ∈ B} = π t ℓq (N )-q q-1 k l=0 ω(θ q l ) n l B,
where:

π = j≥1 (1 -t 1-q j ) -1 ∈ F p [[ 1 t ]] × , ω(θ q l ) = j≥0 (1 - θ q l t q j ) -1 ∈ A[[ 1 t ]] × .
Furthermore, if we set:

L N (t) = P (t) monic irreducible polynomial of Fq[t] [ B P (t)B ] B [φ (N ) ( B P (t)B )] B
, then, by the appendix of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], L N (t) converges in K(( 1 t )), and:

[H(φ (N ) )] B π t ℓq (N )-q q-1 k l=0 ω(θ q l ) n l = L N (t).
Now, one can compute L N (t) as in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], paragraph 5.3, and we get:

L N (t) = d≥0 a∈A +,d a N a(t) ∈ A[[ 1 t ]] × .
Therefore:

[H(φ (N ) )] B = B N (θ, t).
We warn the reader not to confuse B N (θ, t) and B N (t, θ), here and in the sequel of the paper, since we will be interested in those two polynomials. Recall that r = ℓq(N )-q q-1 . Let α 1 (N ), . . . , α r (N ) ∈ C ∞ be the eigenvalues (counted with multiplicity) of the K-endomorphism of H(φ (N ) ): φ (N ) t

. We get:

B N (θ, θ) = r j=1 (θ -α j (N )). Recall that L N (t) = d≥0 a∈A +,d a N a(t) ∈ A[[ 1 t ]]. By Lemma 2.1, L N (t) con- verges on {x ∈ C ∞ , v ∞ (x) < 0}. Let's write N = k l=0 n l q l ,
n l ∈ {0, . . . , q-1}, n k = 0. Set S = {θ q i , i ≤ k}. Then, by Lemma 3.2, the elements of S are zeros of L N (t) The elements of S are called the trivial zeros of L N (t). A zero of L N (t) which does belong to {x ∈ C ∞ , v ∞ (x) < 0} \ S will be called an exceptional zero of L N (t). It is clear that the exceptional zeros of L N (t) are roots of B N (θ, t) with the same multiplicity. Our aim in the remaining of the article is to study the following problem:

Problem 1.
Let N ≥ 2, N ≡ 1 (mod q -1), ℓ q (N ) ≥ q. Then all the eigenvalues of φ (N ) t

(viewed as a K-endomorphism of H(φ (N ) )) are simple and belong to F p (( 1 θ )).

Theorem 1.1 implies that θ is not an eigenvalue of φ (N ) t

. We presently do not know whether another trivial zero of L N (t) can be an eigenvalue of φ (N ) t .On the other side, the above problem implies that the exceptional zeros of L N (t) are simple. Observe that, by Lemma 2.2, the above Problem has an affirmative answer for q ≤ ℓ q (N ) ≤ 2q -1.

Answer to Problem 1 for q = p

In this section we give an affirmative answer to Problem 1 in the case q = p. By Proposition 2.5 and Proposition 4.6 below, this implies Theorem 1.1. For the convenience of the reader, we have tried to keep the text of this section as selfcontained as possible.

In this section q = p. Then: Proof. Let u = (u 0 , . . . , u d ) be the greedy element of U d (N, k). Let m ∈ U d (N, k) such that m = u. We will show that m is not optimal. Write c n = ℓ p (m n ), n = 0, . . . d -1. Then : n = 0, . . . , d -1, c n ≥ kn , c n ≡ kn (mod p -1).

m ∈ U d (N, k). Furthermore m is the greedy element of U d (N, k). In particular U d (N, k) = ∅ if and only if | k |≤ ℓ p (N ). Proof. Observe that σ d =| k |≤ ℓ p (N ). Thus m is well-defined. It is then straight- forward to verify that m ∈ U d (N, k) and that m is the greedy element of U d (N, k). Now assume that U d (N, k) = ∅. Let m ′ ∈ U d (N, k). Then: n = 0, . . . , d -1, ℓ p (m ′ n ) ≡ k n (mod p -1). This implies: n = 0, . . . , d -1, ℓ p (m ′ n ) ≥ k n . Thus: ℓ p (N ) ≥ d-1 n=0 ℓ p (m ′ n ) ≥| k | .
For n = 0, . . . , d -1, there exist f n,1 ≤ • • • ≤ f n,cn such that we can write in a unique way:

m n = cn l=1 p f n,l .
Case 1) There exists an integer j, 0 ≤ j ≤ d -1, such that c j > kj .

Let m ′ ∈ N d+1 be defined as follows:

-

m ′ n = m n for 0 ≤ n ≤ d -1, n = j, -m ′ j = kj l=1 p f j,l . -m ′ d = N -m ′ 0 -• • • -m ′ d-1 = m d + m j -m ′ j . Then m ′ ∈ U d (N, k) and: deg m ′ = deg m + (d -j)(m j -m ′ j ) > deg m. Thus m is not optimal.
Case 2) For n = 0, . . . , d -1, c n = kn . Let j ∈ {0, . . . d -1} be the smallest integer such that m j = u j . Then, by the construction of u, we have:

m j > u j .
Thus there exists an integer l such that the number of times p l appears in the sum of m j as kj powers of p is strictly greater than the number of times it appears in the sum of u j as kj powers of p. Also, there exists an integer v such that the number of times p v appears in the sum of u j as kj powers of p is strictly greater than the number of times it appears in the sum of m j as kj powers of p. Thus there exists an integer t > j such that p v appears in the sum of m t as ℓ p (m t ) powers of p. We observe that, by the construction of u, we can choose v and l such that v < l. Now set:

-

for n = 0, . . . , d, n = j, n = t, m ′ n = m n , -m ′ j = m j -p l + p v , -m ′ t = m t -p v + p l . Let m ′ = (m ′ 0 , . . . , m ′ d-1 ) ∈ N d . Then m ′ ∈ U d (N, k) and: deg m ′ = d l=0 lm ′ l = deg m + (t -j)(p l -p v ) > deg m.
Thus m is not optimal.

We have the following key result: Let m be the greedy element of U d (N, k). By Proposition 4.2, we have:

deg t a∈A +,d a(t) N a k = d n=0 nm n = dN - d n=1 nm d-n .
By Lemma 4.1, we have:

n = 0, . . . , d -1, m n ≤ kn p ek 0 +•••+ kn ,
where we recall that:

N = ℓp(N ) n=1 p en .
Let l = ℓ p (N ) -1. Observe that:

e ℓp(N )-p-(p-1)t ≤ e l -1 -t.
Since d(p -1) ≤ ℓ p (N )p, we get: Recall that if x ∈ R \ {1}, we have:

n = 1, . . . , d, k0 + • • • + kd-n ≤ (p -1)(d -n + 1) ≤ ℓ p (N ) -p -(p -1)(n - 
d n=1 nx n-1 = 1 -x d+1 + (d + 1)(x -1)x d (x -1) 2 .
Thus:

(p -1)

d n=1 np -n = p -p -d -(d + 1)(p -1)p -d p -1 < p p -1 . Now: d n=1 nm d-n < p p -1 p e l .
Thus:

d n=1 nm d-n < 2p e l .
But 2p e l ≤ N since l = ℓ p (N ) -1. Thus:

deg t a∈A +,d a(t) N a k = dN - d n=1 nm d-n > dN -N.

Newton polygons of truncated L-series.

For i, j ≥ 0, we set:

S j (i) = a∈A+,j a(t) i ∈ F p [t].
Note that by Proposition 4.2, we have S i (N ) = 0 for i = 0, . . . , r.

Proposition 4.4. We have:

i = 0, . . . , r, deg t α i,N (t) = deg t S i (N ).
Proof. We recall that:

r = Max{[ ℓ p (N ) -p p -1 ], 0} ∈ N.
We can assume that r ≥ 1. By Proposition 4.3, for i = 0, . . . , r,

Max{deg t a∈A +,ℓ(k) a(t) N a k , w(k) + ℓ(k) = i}
is attained for a unique k which is (0, . . . , 0) ∈ N i . It remains to apply Lemma 3.1.

We set:

Λ r (N ) = r i=0 α i (N )θ -i ∈ K ∞ [t].
Let's write:

N = k l=0 n l p l , n 0 , . . . , n k ∈ {0, . . . p -1}, n k = 0.
Proposition 4.5. We have deg t Λ r (N ) = deg t S r (N ). Furthermore the edge points of the Newton polygon of Λ r (N ) are:

(deg t S j (N ), j), j = 0, . . . , r.

Proof. We can assume that r ≥ 1. By Proposition 4.2, we have U r (N, (p-1, . . . , p-1)) = ∅. Let m ∈ N r+1 be the optimal element of U r (N, (p -1, . . . , p -1)) given by Proposition 4.2 and Lemma 4.1. For j = 0, . . . , r, let m(j) = (m 0 , . . . , m j-1 , N -

j-1 n=0 m n ) ∈ N j+1 .
Then, again by Proposition 4.2 and Lemma 4.1, m(j) is the optimal element of U j (N, (p -1, . . . , p -1)). Therefore, deg t S j (N ) = deg m(j), j = 0, . . . , r. For j = 0, . . . , r, we have:

p k+1 > N - j-1 n=0 m n > n k p k .
Now let j ∈ {0, . . . , r -1}, we have:

p k+1 > deg m(j + 1) -deg m(j) = N - j n=0 m n > n k p k .
Thus, by Proposition 4.4, we get deg t Λ r (N ) = deg t S r (N ). Furthermore, we observe that for j ∈ {1, . . . , r -1}, we have:

deg m(j) -deg m(j -1) > deg m(j + 1) -deg m(j).
Thus, one easily sees that the edge points of the Newton polygon of Λ r (N ) are (deg m(j), j), j = 0, . . . , r.

A positive answer to Problem 1.

Let N ≥ 2 be an integer, N ≡ 1 (mod p -1). Recall that:

N = k l=0 n l p l , n 0 , . . . , n k ∈ {0, . . . p -1}, n k = 0. Recall that ℓ p (N ) = n 0 + • • • + n k and r = M ax{ ℓp(N )-p p-1 , 0}. Let b N ∈ N be the total degree in t, θ of the polynomial B N (t).
Proposition 4.6. The polynomial B N (t, θ) has only one monomial of total degree b N , which is of the form t bN . Furthermore:

b N = deg t S r (N ).
Proof. We can assume that r ≥ 1. First let's observe that:

j≥1 (1 -θ 1-p j ) -1 B N (t, θ) ≡ (-1) ℓp(N )-1 p-1 δ N k l=0 j≥0 (1 - t p l θ p j ) -n l (mod 1 θ F p [t][[ 1 θ ]]),
where:

δ N = r i=0 α r-i (N )θ i .
Let ε N ∈ F p [t, θ] be uniquely determined by the congruence:

ε N ≡ δ N k l=0 j≥0 (1 - t p l θ p j ) -n l (mod 1 θ F p [t][[ 1 θ ]]).
Let i ∈ {0, . . . , r}. A monomial in the product

α i (N )θ i k l=0 j≥0 (1 - t p l θ p j ) -n l (mod 1 θ F p [t][[ 1 θ ]])
is of the form:

θ i t j t α θ β , j ≤ deg t α i (t), β ≤ i, α ≤ p k β.
Thus the total degree of a monomial in

α i (N )θ i k l=0 j≥0 (1 - t p l θ p j ) -n l (mod 1 θ F p [t][[ 1 θ ]])
is less than or equal to p k i + deg t α i (t). To conclude the proof of the Proposition, we use the same arguments as that used in the proof of Proposition 4.5. By Proposition 4.2, we have U r (N, (p -1, . . . , p -1)) = ∅. Let m ∈ N r+1 be the optimal element of U r (N, (p -1, . . . , p -1)) given by Proposition 4.2 and Lemma 4.1. For j = 0, . . . , r, let m(j) = (m 0 , . . . , m r-j-1 , N -r-j-1 n=0 m n ) ∈ N r-j+1 . Then, again by Proposition 4.2 and Lemma 4.1, m(j) is the optimal element of U r-j (N, (p -1, . . . , p -1)). For j = 0, . . . , r, we have:

N - r-j-1 n=0 m n > p k .
Now let j ∈ {0, . . . , r -1}, we have:

deg m(j) -deg m(j + 1) = N - r-j-1 n=0 m n > p k .
Thus, by Proposition 4.3 and Proposition 4.4, Max{p k i + deg t α i (t), i = 0, . . . , r} is attained exactly at i = 0. Again by Proposition 4.4, this implies that the total degree in t, θ of ε N is equal to deg t S r (N ) and that ε N (t) has only one monomial of total degree deg t S r (N ) which is of the form t deg t Sr(N ) . The Proposition follows.

Theorem 4.7. Let N ≥ 2, N ≡ 1 (mod p -1). The polynomial B N (θ, t) (viewed as a polynomial in t) has r simple roots and all its roots are contained in

F p (( 1 θ )) \ {θ p i , i ∈ Z}.

Proof.

Recall that B N (t, θ) is a monic polynomial in θ such that deg θ B N (t, θ) = r. We can assume that r ≥ 1. By Proposition 4.6, the leading coefficient of B N (t, θ) as a polynomial in t is in F × p and:

b N = deg t B N (t, θ) > r. Let S = {θ p i , i ≥ -k}. Then if α ∈ C ∞ is a zero of L N (t)
and α ∈ S, α must be a zero of B N (t, θ). Observe that by Proposition 4.5 and Proposition 4.6, we have:

deg t Λ r (N ) = deg t B N (t, θ).
By Proposition 4.5, the zeros in C ∞ of Λ r (N ) are not in S. By Lemma 2.1 and Lemma 3.3, θ -r B N (t, θ) and Λ r (t) have the same Newton polygon. Thus, by the proof of Proposition 4.5 and the properties of Newton polygons ( [13], chapter 2), we get in K ∞ [t] :

B N (t, θ) = λ r j=1 P j (t),
where λ ∈ F × p , P j (t) is an irreducible monic element in K ∞ [t], P j (t) = P j ′ (t) for j = j ′ . Furthermore each root of P j (t) generates a totally ramified extension of K ∞ and p k+1 > deg t P j (t) > n k p k . Also note that deg t P j (t) ≡ 0 (mod p k ) and

deg t P j (t) ≡ 1 (mod p -1). Observe that if x ∈ ∪ i∈Z (F p (( 1 θ p i )) ab ) perf , then there exist l ≥ 0, m ∈ Z, d ≥ 1, p ≡ 1 mod d, such that v ∞ (x) = m dp l . Thus, P j (t) has no roots in ∪ i∈Z (F p (( 1 θ p i )) ab ) perf . Write: θ -r B N (t, θ) = r j=0 β j (t)θ -j , β j (t) ∈ F p [t].
Observe that β 0 (t) = 1 and by the above discussion, θ -r B N (t, θ) and Λ r (t) have the same Newton polygon (as polynomials in t). Now, by Proposition 4.5 and Proposition 4.6, we get:

deg t β r (t) = deg t α r (t). We deduce that: i = 0, . . . , r, deg t β i (t) = deg t α i (t)
. By the proof of Proposition 4.5, for i ∈ {1, . . . , r -1}, deg t β i+1 (t)deg t β i (t) < deg t β i (t)deg t β i-1 (t). Thus the edges of the Newton polygon of θ -r B N (t, θ) viewed as polynomial in 1 θ are (i,deg t (β i (t))), i = 0, . . . , r.

5. Some hints for Problem 1 for general q.

In this section q is no longer assumed to be equal to p.

5.1.

The work of J. Sheats.

For N, d ≥ 1, we set U d (N ) = U d (N, (q -1, . . . , q -1)). Thus:

S d (N ) := a∈A +,d a(t) N = (-1) d m∈U d (N ) C(N, m)t deg m . J. Sheats proved ([18], Lemma 1.3) that if U d (N ) = ∅, U d (N )
has a unique optimal element and it is the greedy element of U d (N ). In particular

U d (N ) = ∅ ⇔ S d (N ) = 0. Observe that if m = (m 0 , . . . , m d ) ∈ U d (N ), then (m 0 , . . . , m d-2 , m d-1 + m d ) ∈ U d-1 (N ). In particular U d (N ) = ∅ ⇒ U d-1 (N ) = ∅. Proposition 5.1. 1) Let d ≥ 1 such that U d (N ) = ∅.
Then, for j ∈ {1, . . . , d -1}, we have:

deg t S j (N ) -deg t S j-1 (N ) > deg t S j+1 (N ) -deg t S j (N ).
2) Let d ≥ 1 such that U d+1 (N ) = ∅. Let m be the greedy element of U d+1 (N ).

Then:

deg t S d (N ) > N (d -1
), and:

deg t S d (N ) -deg t S d-1 (N ) > m d+1 .
Proof. 1) Observe that this assertion is a consequence of the proof of [START_REF] Sheats | The Riemann Hypothesis for the Goss Zeta Function for Fq[T[END_REF], Theorem 1.1 (see pages 127 and 128 of [START_REF] Sheats | The Riemann Hypothesis for the Goss Zeta Function for Fq[T[END_REF]).

2) Let m = (m 0 , . . . , m d+1 ) be the greedy element of U d+1 (N ). Define m ′ = (m 0 , . . . , m d ) ∈ U d (Nm d+1 ). Then:

m d ≡ 0 (mod q -1), m d ≥ q -1.
Furhermore, observe that m ′ is the greedy element of U d (Nm d+1 ). By [START_REF] Sheats | The Riemann Hypothesis for the Goss Zeta Function for Fq[T[END_REF], Lemma 1.3 and Proposition 4.6, we get:

deg t S d (N -m d+1 ) > (N -m d+1 )(d -1). Let m ′′ = (m 0 , . . . , m d-1 , m d + m d+1 ) ∈ U d (N ).
We have:

deg t S d (N ) ≥ m 1 + • • • + (d -1)(m d-1 ) + d(m d + m d+1 ).
Thus:

deg t S d (N ) ≥ deg t S d (N -m d+1 ) + dm d+1 > (N -m d+1 )(d -1) + dm d+1 = (d -1)N + m d+1 .
Thus:

deg t S d (N ) > N (d -1), deg t S d (N ) -deg t S d-1 (N ) ≥ deg t S d (N ) -(d -1)N > m d+1 .
To conclude this paragraph, we recall the following crucial result due to G. Böckle ([8], Theorem 1.2):

S d (N ) = 0 ⇔ d(q -1) ≤ Min{ℓ q (p i N ), i ∈ N}.
An integer N ≥ 1 will be called q-minimal if:

[ ℓ q (N ) q -1 ] = Min{[ ℓ q (p i N ) q -1 ], i ∈ N}.

Consequences of Sheats results.

Let N ≥ 1, and write:

L N (t) = i≥0 α i,N (t)θ -i , α i,N (t) ∈ F q [t]. Proposition 5.2. Let d ≥ 1 such that U d+1 (N ) = ∅. Set: Λ d (t) = d i=0 α i,N (t)θ -i ∈ K ∞ [t]
.

Then deg t Λ d (t) = deg t S d (N )
and the edge points of the Newton polygon of Λ d (t) are:

(deg t S i (N ), i), i = 0, . . . , d.
Proof. The proof uses similar arguments as that used in the proof of Proposition 4.5. Let j ≥ 0, then (see Lemma 3.1), we have:

α j,N (t) = ℓ(k)+w(k)=j (-1) ℓ(k) C k a∈A +,ℓ(k) a(t) N a k .
Observe that:

deg t a∈A +,ℓ(k) a(t) N a k ≤ ℓ(k)N.
Thus, for j = 0, . . . , d, by Proposition 5.1, assertion 2), we get:

deg t α j,N (t) = deg t S j (N ).
In particular, again by Proposition 5.1, assertion 2), we have:

deg t Λ d (t) = deg t S d (N ).
Finally, by Proposition 5.1, assertion 1), (deg t S i (N ), i), i = 0, . . . , d, are the edge points of the Newton polygon of Λ d (t).

Lemma 5.3. We assume that N is q-minimal, N ≡ 1 (mod q-1). We also assume that r ≥ 1 (recall that r = ℓq(N )-q q-1 ). 1) Write N = k l=0 n l q l , n 0 , • • • , n k ∈ {0, . . . , q -1}, n k = 0. Then there exists an integer 0 ≤ m ≤ k such that n m ≡ 0 (mod p).

2) Let n = Max{l, 0 ≤ l ≤ k, n l ≡ 0 (mod p)}. Let m = (m 0 , . . . , m r+1 ) ∈ U r+1 (N ) be the greedy element, then:

m r+1 = q n .
3) Assume that n < k. Then, for i ∈ {1, . . . , r -1}, we have:

deg t S i (N ) -deg t S i-1 (N ) > pq k .
Proof. 1) Let's assume that the assertion is false. Then:

ℓ q ( q p N ) = ℓ q (N ) p .
This contradicts the q-minimality of N.

2) Observe that: ∀i ≥ 0, ℓ q (p i N ) = ℓ q (p i Np i q n ) + ℓ q (p i ).

Therefore, Nq n is q-minimal. Thus, by Böckle's result: U r+1 (Nq n ) = ∅. This easily implies that there exits n = (n 0 , . . . , n r+1 ) ∈ U r+1 (N ) such that:

n r+1 = q n .
We have:

1 + (q -1)(r + 1) = ℓ q (N ) = r+1 i=0 ℓ q (m i ).

Furthermore:

r i=0
ℓ q (m i ) ≡ 0 (mod q -1), and r i=0 ℓ q (m i ) ≥ (q -1)(r + 1).

Thus:

ℓ q (m r+1 ) = 1.
This implies that m r+1 is a power of q and since m is the greedy element of U r+1 (N ), we also have: m r+1 |≥ q n . Since there is no carryover p-digits in the sum m 0 + • • • + m r+1 , by the definition of n, we deduce that m r+1 = q n . 3) Let m ′ = (m 0 , . . . , m r-1 , m r + m r+1 ) ∈ U r (N ). If n is the greedy element of U r (N ) then: n r ≥ m r + m r+1 . Since m is the greedy element of U r+1 (N ), we have:

m 0 ≤ m 1 ≤ • • • ≤ m r .
Since there is no carryover p-digits in the sum m 0 + • • • + m r+1 , and n < k, this implies that: m r = k l=0 j l q l , j l ∈ {0, . . . , q -1}, j k = 0, j k ≡ 0 (mod p).

Thus:

m r > pq k . It remains to apply Proposition 5.1.

Zeros of B N (θ, t).

The following theorem implies in particular Theorem 1.1 in the case where N is q-minimal.

Theorem 5.4. We assume that N is q-minimal, N ≡ 1 (mod q -1). We also assume that r ≥ 1. 1) B N (θ, θ) = 0 and the zeros of B N (t, θ) are algebraic integers (i.e. they are integral over A). Furthermore: (r -1)N < deg t B N (t, θ) < rN.

2) B N (θ, t) has only simple roots and its roots belong to F p (( 1 θ )) \ {θ}. Proof. The proof is in the same spirit as that of the proofs of Proposition 4.6 and Theorem 4.7.

Write N = k l=0 n l q l , where n 0 , . . . , n k ∈ {0, . . . , q -1}, and n k = 0. Recall that r + 1 = [ ℓq(N ) q-1 ]. Let n ≥ 0 be the integer such that n = Max{l, n l ≡ 0 (mod p)} (see Lemma 5.3). Let ε N (t) ∈ F p [t, 1 θ ] be the polynomial determined by the congruence:

ε N (t) ≡ Λ r (t) k j=0 i≥0
(1 -t q j θ q i ) nj (mod

1 θ r+1 F p [t][[ 1 θ ]]),
where Λ r (t) = r l=0 α l,N (t)θ -l . We can write:

ε N (t) = r l=0 η l (t)θ -l , η l (t) ∈ F p [t].
Note that η l (t) is a F p -linear combination of terms of the form x l,j,u = α l-u,N (t)θ -l+u t j θ -u , j ≤ q k u.

By Proposition 5.2, we have:

l = 0, . . . , r, deg t α l,N (t) = deg t S l (N ).
1) Case n = k. By Proposition 5.1 and Lemma 5.3 :

l = 0, . . . , h -1, deg t α h-l,N (t) < deg t α h,N (t) -q k l.
Thus, if l = h or u = 0, we get: l = 0, . . . , h, deg t x l,j,u < deg t α l,N (t).

Therefore: l = 0, . . . , r, deg t η l (t) = deg t S l (N ). 2) Case n < k. As in the proof of the case n = k, we get by Proposition 5.1 and Lemma 5.3:

l = 0, . . . , r -1, deg t η l (t) = deg t S l (N ).
Furthermore, by Proposition 5.1 and Lemma 5.3, we have for l ≥ 2:

deg t S r-l (N ) < deg t S r-1 (N ) -pq k (l -1), deg t S r (N ) -deg t S r-1 (N ) > q n .
Thus, for u ≥ 2:

deg t x r,j,u ≤ deg t S r-u (N ) + q k u < deg t S r (N ).
Now, observe that:

k j=0 i≥0 (1 - t q j θ q i ) nj ≡ 1 - 1 θ k l=0 n l t q l (mod 1 θ 2 F p [t][[ 1 θ ]]).
Thus: deg t x r,j,1 ≤ deg t S r-1 (N ) + q n < deg t S r (N ). Thus we get: deg t η r (t) = deg t S r (N ). Now, observe that:

(-1) ℓq (N )-1 q-1 θ -r B N (t, θ) j≥1 (1 -θ 1-q j ) ≡ ε N (mod 1 θ r+1 F p [t][[ 1 θ ]]).
We easily deduce that:

θ -r B N (t, θ) = r l=0 β l (t)θ -l , β l (t) ∈ F p [t], deg t β l (t) = deg t S l (N ), l = 0, . . . , r.
Observe that, by Proposition 5.1, we have deg t S r (N ) > N (r -1), and it is obvious that deg t S r (N ) < rN. Now, we get assertion 1) and 2) by the same reasoning as that used in the proof of Theorem 4.7.

Corollary 5.5. We assume that N is q-minimal, N ≡ 1 (mod q -1). We also assume that r ≥ 1. Then, B N (t, θ) has at most one zero in {θ q i , i ∈ Z}.

Proof. Let's assume that B N (t, θ) has a zero α ∈ {θ q i , i ∈ Z}. Let n be the integer introduced in the proof of Theorem 5.4. Then:

α = θ q -i , k ≥ i > n,
where q k ≤ N < q k+1 . Thus n < k, and therefore, by Lemma 5.3, we must have:

deg t S r (N ) -deg t S r-1 (N ) = q i .
By the proof of Theorem 5.4, we have:

θ -r B N (t, θ) = t q i θ -1 F (t),
where

F (t) = r-1 l=0 ν l (t)θ -l , ν l (t) ∈ F p [t], deg t ν l (t) = deg t S l ( 
N ), l = 0, . . . , r -1. Furthermore ν 0 (t) = -1.This implies that the zeros of F (t) are not in {θ q i , i ∈ Z}.

Corollary 5.6.

1) The polynomial B s is square-free, i.e. B s is not divisible by the square of a non-trivial polynomial in F q [t 1 , . . . , t s , θ].

2) For all l, n ∈ N, B s is relatively prime to (t q l 1θ q n ) (observe that B s is a symmetric polynomial in t 1 , . . . , t s ).

3) For all monic irreducible prime P of A, B s is relatively prime to P (t 1 ) • • • P (t s )-P.

Proof. Let N = q e1 + . . . + q es , 0 ≤ e 1 < e 2 < . . . < e s . Then:

B N (t, θ) = B s | ti=t q e i .
We observe that N is q-minimal. Thus we can apply Theorem 5.4. This Theorem and its proof imply that B N (t, θ) is square-free and has no roots in {θ q i , i ∈ Z}. This proves 1) and 2). Let P be a monic irreducible polynomial in A. Suppose that that P (t 1 ) • • • P (t s )-P and B s are not relatively prime.Then P (t) N -P and B N (t, θ) are not relatively prime. But, by the proof of Theorem

5.4, if α ∈ C ∞ is a root of B N (t, θ), then: v ∞ (α) > -1 N . Now, observe that if β ∈ C ∞ is a root of P (t) N -P, then v ∞ (β) = -1 N .
This leads to a contradiction.

Note that assertion 1) of the above Corollary gives the cyclicity result implied by [START_REF] Anglès | Arithmetic of function fields units[END_REF], Theorem 3.17, but by a completely different method.

An example

We study here an example of an N which is not q-minimal, so that our method does not apply. We choose q = 4, and N = 682 = 2 + 2 × 4 + 2 × 4 2 + 2 × 4 3 + 2 × 4 4 . We get l q (N ) = 10 = 3q -2 so that deg θ (B N (t, θ)) = 2. Moreover, l q (pN ) = 5 so that N is not q-minimal. By using the table of section B, we get : The Newton polygon of B N (t, θ) has then the end points (0, -2), (640, -1), (680, 0). We deduce that B N (t, θ) has 640 distinct zeroes of valuation -1 640 and 40 distinct zeros of valuation -1 40 . Similarly, B N (θ, t) has two zeros of respective valuations -40 and -640. In particular, we still have that B N (t, θ) has no zero of the form θ q i , i ∈ Z, and an affirmative answer to Problem 1.

B N (t, θ) = θ 2 + θ t
A. Appendix: The digit principle and derivatives of certain L-series, by B. Anglès, D. Goss, F. Pellarin and F. Tavares Ribeiro

We keep the notation of the article.

Let N be a positive integer. We consider its base-q expansion N = r i=0 n i q i , with n i ∈ {0, . . . , q -1}. We recall that ℓ q (N ) = r i=0 n i and the definition of the Carlitz factorial :

Π(N ) = i≥0 D ni i ∈ A + , where [k] = θ q k -θ if k > 0 and D j = [j][j -1] q • • • [1] q j-1 for j > 0.
It is easy to see (the details are in §A.1, A.2 and A.3) that, if we denote by a ′ the derivative d dθ a of a ∈ A with respect to θ, the series

k≥1 a∈A +,k
a ′N a converges in K ∞ to a limit that we denote by δ N . In particular, if n = q j with j > 0, we will see (Proposition A.4) that

δ 1 = - k≥1 1 [k] and δ q j = D j [j] π 1-q j .
Our aim is to prove the following:

Theorem A.1. If N ≥ q is such that N ≡ 1 (mod q -1) and ℓ q (N ) ≥ q, then δ N π = β N Π(N ) Π([ N q ]) q r k=1 δ q k π n k
, where for x ∈ R, [x] denotes the integer part of x, and where β N = (-1)

s-1 q-1 B N (θ, θ).

Our Theorem A.1 can be viewed as a kind of digit principle for the values δ j in the sense of [START_REF] Conrad | The digit principle[END_REF].

The plan of this appendix is the following. In §A.1, we recall the first properties of Anderson and Thakur function ω. In §A.2 we discuss the one-digit case of our Theorem, while the general case is discussed in §A.3.

A.1. The Anderson-Thakur function. Recall that T t denotes the Tate algebra over C ∞ in the variable t, C : A → A{τ } is the Carlitz module ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 3), in other words, C is the morphism of F q -algebras given by C θ = τ + θ, and

exp C = i≥0 1 D i τ i ∈ T t {{τ }}
is the Carlitz exponential. In particular, we have the following equality in T t {{τ }} :

exp C θ = C θ exp C .
Let us choose a (q -1)-th root q-1 √ -θ of -θ in C ∞ and set:

π = θ q-1 √ -θ j≥1 (1 -θ 1-q j ) -1 ∈ C × ∞ .
We recall the Anderson-Thakur function ( [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF], proof of Lemma 2.5.4):

ω(t) = q-1 √ -θ j≥0 1 - t θ q j -1 ∈ T × t .
To give an idea of how to compute exp C (f ) for certain f in T t , we verify here that exp C π θt = j≥0 π q j D j (θ q jt) is a well defined element of T t . Indeed, for j ≥ 0 : v ∞ π q j D j (θ q jt) = q j j + 1 -q q -1 .

Therefore j≥0 π q j Dj (θ q j -t) converges in T t . We will need the following crucial result in the sequel: Proposition A.2. We have the following equality in T t :

ω(t) = exp C π θ -t .
Proof. It is a consequence of the formulas established in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]. We give details for the convenience of the reader. Let us set

F (t) = exp C π θ -t .
We observe that:

C θ (F (t)) = exp C θ π θ -t = exp C (θ -t + t) π θ -t = exp C ( π) + exp C t π θ -t = t exp C π θ -t = tF (t).
Therefore: τ (F (t)) = (tθ)F (t). But we also have: τ (ω(t)) = (tθ)ω(t). Finally, we get:

τ F (t) ω(t) = F (t) ω(t) .
It is a simple and well-known consequence of a ultrametric variant of Weierstrass preparation Theorem that {f ∈ T t , τ (f ) = f } = F q [t]. Since ω ∈ T × t , we have then:

F (t) ω(t) ∈ F q [t].

Now observe that

F (t) = exp C   j≥0 π θ j+1 t j   = j≥0 λ θ j+1 t j
and that, for all j ≥ 0, v ∞ (λ θ j+1 ) = j + 1 -q q-1 . This implies v ∞ ( F (t) λ θ -1) > 0. By the definition of ω(t), we also have v ∞ ( ω(t) λ θ -1) > 0. Thus:

v ∞ F (t) ω(t) -1 > 0.
Since F (t) ω(t) ∈ F q [t], we get ω(t) = F (t).

Notice that ω(t) defines a meromorphic function on C ∞ without zeroes. Its only poles, simple, are located at t = θ, θ q , θ q 2 , . . .. As a consequence of Proposition A.2, we get: Corollary A.3. Let j ≥ 0 be an integer, then:

(tθ q j )ω(t) | t=θ q j = -π q j D j .

A.2. The one digit case. Let us consider the following L-series:

L(t) = L 1 (t) = k≥0 a∈A +,k a(t) a ∈ T t .
By Proposition 3.7, we have the following equality in T t (see [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF], Theorem 1):

L(t)ω(t) π = 1 θ -t .
This implies that L(t) extends to an entire function on C ∞ (see also Lemma 2.1 or [3, Proposition 6]). We set:

L ′ (t) = k≥0 a∈A +,k a ′ (t) a ∈ T t ,
where a ′ (t) denotes the derivative d dt a(t) of a(t) with respect to t. The derivative d dt inducing a continuous endomorphism of the algebra of entire functions C ∞ → C ∞ , L ′ (t) extends to an entire function on C ∞ . Thus, for j ≥ 0 an integer, k≥1 a∈A +,k a ′q j a converges in K ∞ and we have:

δ q j = k≥1 a∈A +,k a ′q j a = L ′ (t) | t=θ q j .
Proposition A.4. The following properties hold:

(1) We have:

δ 1 = - k≥1 1 [k] .
(2) Let j ≥ 1 be an integer, then:

δ q j = Π(q j ) [j] π 1-q j .
Proof.

(1) It is well known that, for n > 0, D n = a∈A+,n a. Therefore, a∈A+,n a ′ a = -1

[n] from which the first formula follows. (2) By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF]Remark 8.13.10], we have: L(t) | t=θ q j = 0. Thus: δ q j = L ′ (t) | t=θ q j = L(t) tθ q j | t=θ q j . But, L(t) t-θ q j (tθ q j )ω(t) π = 1 θt .

It remains to apply Corollary A.3.

Remark A.5. The transcendence over K of the "bracket series" δ 1 = i≥1

1 [i]
was first obtained by Wade [START_REF] Wade | Certain quantities transcendental over GF(p n , x)[END_REF]. The transcendence of δ 1 directly implies the transcendence of π.

A.3. The several digits case. As a consequence of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], Lemma 7.6 (see also [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Corollary 21), the series L N (t) = d≥0 a∈A +,d a(t) N a has a zero of order at least N at t = θ. Thus, L N (t) = d≥1 a∈A +,d a ′ (t) N a defines an entire function on C ∞ such that

δ N = L N (θ).
Proof of Theorem A.1. Recall that N = r i=0 n i q i , is the q-expansion of N . We set s = ℓ q (N ). We can assume that s ≥ q by Proposition A.4. From the definition of B N (t, θ) in §2.3, we have :

(-1) s-1 q-1 B N (t, θ) = L N (t) r i=0 ω(t q i ) ni π -1 ∈ A[t]. Since δ N = L N (θ) = L N (t) r i=0 (t -θ q i ) ni |t=θ ,
we obtain, by Corollary A.3 and our previous discussions:

β N = δ n r i=0 ( -π q i Di ) ni π .
Now, by Proposition A.4, we have, for all k ≥ 1, D k = [k]δ q k π q k -1 . We obtain the Theorem by using the fact that:

Π(N ) Π([ N q ]) q = k≥1 [k] n k .

B. Table

We give an explicit expression of the polynomials B s for s ∈ {q, 2q -1, 3q -2}. We recall that B s is monic of degree r = s-q q-1 . One obtains the corresponding expressions for B N (t, θ) if ℓ q (N ) = s by evaluating the variables t i 's as in §2.3.

B q = 1, B 2q-1 = θ - i1<•••<iq t i1 • • • t iq, B 3q-2 = θ 2 -θ   i1<•••<i2q-1 2q-1 j=1 t ij + i1<•••<iq q j=1 t ij   + +   i1<•••<iq q j=1 t 2 ij m1<•••<mq-1,mj =i j ′ q-1 j=1 t ij + i1<•••<i2q 2q j=1 t ij   .
One easily computes the discriminant of B 3q-2 from this table. It is then an easy computation to prove that B N (θ, t) has only simple roots for all N such that ℓ q (N ) = 3q -2.

4. 1 .

 1 Preliminaries. Lemma 4.1 and Proposition 4.2 below are slight generalizations of the arguments used in the proof of Theorem 1 in[START_REF] Diaz-Vargas | Riemann Hypothesis for Fp[T[END_REF].

Lemma 4 . 1 .

 41 Let d, N ≥ 1 and k = (k 0 , . . . , k d-1 ) ∈ {0, . . . , p -1} d . We assume that | k |≤ ℓ p (N ). For 1 ≤ i ≤ d, we set : σ i = i-1 n=0 k n . We also set σ 0 = 0 and σ d+1 = ℓ p (N ). Let m = (m 0 , . . . , m d ) ∈ N d+1 be the element defined as follows: n = 0, . . . , d, m n = σn+1 l=σn+1 p e l .

Proposition 4 . 2 .

 42 Let d, N ≥ 1 and k ∈ N d . We assume that | k |≤ ℓ p (N ). Then U d (N, k) contains a unique optimal element which is equal to the greedy element of U d (N, k). In particular a∈A +,d a(t) N a k = 0 if and only if | k |≤ ℓ p (N ).

Proposition 4 . 3 .

 43 Let d, N ≥ 1 and k ∈ N d . We assume that ℓ p (N ) ≥ p and that d(p -1) ≤ ℓ p (N )p. Then: N (d -1) < deg t a∈A +,d a(t) N a k ≤ N d. Proof. It is clear that deg t a∈A +,d a(t) N a k ≤ N d. Observe that | k |≤ d(p -1).

  1). Thus: n = 1, . . . , d, m d-n ≤ (p -1)p e l -n , Therefore: d n=1 nm d-n ≤ (p -1)p e l d n=1 np -n .

  θ) is a monic polynomial in θ, the total degree in t, θ of B N (t, θ) is less than or equal to deg t B N (t, θ) + r -2. Write:B N (t, θ) = αF, α ∈ F p [θ] \ {0}, where F is a primitive polynomial (as a polynomial in t). In particular α must divide θ r and B N (1, θ) in F p[θ]. By Lemma 2.2, this implies that α ∈ F × p . Remark 2.4. Let f (θ) be a monic irreducible polynomial in F p [θ]. Let P 1 , . . . , P m be the monic irreducible polynomials in A such that f (θ) = P 1 • • • P m . We can order them such that if d = deg θ f, then for i = 1, . . . , m, we have:

  10 + t 34 + t 40 + t 130 + t 136 + t 160 + t 514 + t 520 + t 544 + t 640 + t 170 + t 554 + t 650 + t 674 + t 680 .