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TWISTED CHARACTERISTIC p ZETA FUNCTIONS

BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Abstract. We propose a “twisted” variation of zeta functions introduced by
David Goss in 1979.
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1. Introduction

Let Fq be a finite field of characteristic p, having q elements, and let θ be an
indeterminate over Fq. We set: A := Fq[θ], A+,d := {a ∈ A, amonic ,degθ a = d},
and C∞ is the completion of an algebraic closure of Fq(( 1

θ )) which is equipped with
the canonical topology. We consider the following zeta function ([21], chapter 8):
for s = (x; y) ∈ S∞ := C×∞ × Zp, put:

ζA(s) :=
∑
d≥0

(
∑

a∈A+,d

1

( a
θd

)y
)x−d ∈ C×∞.

The facts that ζA(s) converges on S∞ and is “essentially algebraic” (i.e. for y ∈ N,
ζA((θyx;−y)) is a polynomial in x−1 with coefficients in A) can be proved by using
the following vanishing result: for n ∈ N, for d(q − 1) > `q(n),

∑
a∈A+,d

an = 0,

where `q(n) is the sum of digits of n in base q (this is a consequence of [21], Lemma
8.8.1). The zeta function ζA(s) is an example of a new kind of L-series introduced
by D. Goss in [19] (see also [20]). The “special values” of these type of L-functions
are at the heart of function field arithmetic and we refer the interested reader to
(this list is clearly not exhaustive): [3], [13], [24], [36].
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Let m,n ∈ N, n ≥ 1, let s = (x, y1, . . . , yn) ∈ S∞,n := C×∞×Znp (or s = (x, y) for
short), let’s consider the following “twisted” zeta function:

ζA(t; θ; s) :=
∑
d≥0

(
∑

a∈A+,d

a(t1) · · · a(tm)

(a(θ1)

θd1
)y1 · · · (a(θn)

θdn
)yn

)x−d,

where t = (t1, . . . , tm) ∈ Cm∞, θ = (θ1, . . . , θn) ∈ (C×∞)n and are such that 1
θi
, i =

1, . . . , n, is in the maximal ideal of the valuation ring of C∞. Using the fact that
for t ∈ Cm∞, and for d(q − 1) > m,

∑
a∈A+,d

a(t1) · · · a(tm) = 0 (this is again a

consequence of [21], Lemma 8.8.1), one can prove that the twisted zeta function
ζA(t; θ; s) converges on S∞,n and that this function is essentially algebraic, i.e. for
y = (y1, . . . , yn) ∈ Nn:

ζA(t; θ; (

n∏
j=1

θyii x;−y)) ∈ Fq[t, θ, x−1].

Observe that if m = 0, n = 1 and θ1 = θ, we recover the zeta function ζA(s), and if
m ≥ 1, n = 1, θ1 = θ, we recover the L-series introduced by F. Pellarin in [28].

Our aim in this article is to extend the above construction to the case where K/Fq
is a global function field (Fq is algebraically closed in K), ∞ is a place of K, and
A is the ring of elements of K which are regular outside ∞. Although the twisted
zeta functions proposed in this paper are in the spirit of the twisted zeta functions
ζA(t; θ; s) defined above, the proof of the convergence of these functions, and their
v-adic interpolation at finite places v of K, are more subtle and based on a technical
key Lemma which generalizes the vanishing result mentioned above (Lemma 3.2).
The zeta functions introduced by D. Goss as well as their deformations over affinoid
algebras are examples of such twisted zeta functions (see Example 5.2).

The main ingredient to our construction is what we call admissible maps (Defi-
nition 2.3). Let K∞ be the ∞-adic completion of K, let F∞ be the residue field of
K∞, and let sgn : K×∞ → F×∞ be a group homomorphism such that sgn |F×∞= IdF×∞ .

Let π be a uniformizer of K∞ such that π ∈ Ker sgn . Let K∞ be a fixed algebraic
closure of K∞ equipped with the canonical topology, let Fq be the algebraic closure

of Fq in K∞, then sgn can be naturally extended to a sign function sgn : K∞ → F×q
(Definition 2.1) according to our choice of π. Let v∞ : K∞ → Q ∪ {+∞} be the

valuation on K∞ such that v∞(π) = 1. For x ∈ K×∞, let’s set:

〈x〉 =
x

sgn(x)πv∞(x)
.

Let I(A) be the group of non-zero fractional ideals of A. By definition, an admissible
map η : I(A)→ K∞ is a map such that there exist an open subgroup of finite index

N(η) ⊂ K×∞, an element n(η) ∈ Zp, and an element γη ∈ K
×
∞, such that:

∀I ∈ I(A),∀α ∈ K× ∩N(η), η(Iα) = η(I)〈α〉n(η)γv∞(α)
η .

The twisted zeta functions considered in this work are constructed with the help of

such admissible maps (Section 4). Let’s give a basic example. Let η : I(A)→ K
×
∞

be an admissible map such that n(η) = 1 and η is algebraic (i.e. η(I(A)) ⊂ K
×
,

where K is the algebraic closure of K in K∞). Let’s set:

K(η) = K(F∞, γηπ−1, ηi(I), I ∈ I(A)),
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K∞(〈η〉) = K∞(〈γη〉, 〈ηi(I)〉, I ∈ I(A)).

Observe that K(η)/K is a finite extension, and K∞(〈η〉)/K∞ is also a finite ex-
tension. Let m,n ∈ N, n ≥ 1. Let C∞ be the completion of K∞. Let ρ1, . . . ρm :
K(η) ↪→ C∞ be m continuous Fp-algebra homomorphisms, and let σ1, . . . , σn :
K∞(〈η〉) ↪→ C∞ be n continuous Fp-algebra homomorphisms. For s = (x; y) ∈
S∞,n = C×∞ × Znp , we set:

ζη,A(ρ;σ; s) =
∑
d≥0

(
∑

I∈I(A),I⊂A
deg I=d

∏m
i=1 ρi(η(I))∏n

j=1 σj(〈η(I)〉−yj )
)x−d.

Then, as a consequence of Theorem 4.1, ζη,A(ρ;σ; s) converges on S∞,n. One can
easily notice that the above function, and its twists by some characters, generalize
the twisted zeta function ζA(t; θ; s). We refer the reader to Section 5 for more
detailed examples.

For the sake of completeness, in the last section of this article, we also introduce
multiple twisted zeta functions, as well as their v-adic interpolation at finite places
v of K, in the spirit of multiple zeta values introduced by D. Thakur ([4],[39]).

This article grew out of discussions between David Goss, Federico Pellarin and
the first author, and the authors warmly thank David Goss and Federico Pellarin.
The authors thank the referee for fruitful suggestions that enabled them to improve
the content of this paper. The second author was partially supported by ANR Grant
PerCoLaTor ANR-14-CE25-0002.

2. Notation and preliminaries

Let Fq be a finite field having q elements and of characteristic p. Let K/Fq be a
global function field (Fq is algebraically closed in K). Let ∞ be a place of K. We
denote by K∞ the∞-adic completion of K, and by F∞ the residue field of K∞. We
fix K∞ an algebraic closure of K∞ equipped with the canonical topology. Let K be
the algebraic closure of K in K∞, and let Fq ⊂ K be the algebraic closure of Fq in

K∞. Let C∞ be the completion of K∞. Let A be the ring of elements of K which
are regular outside of ∞. Let v∞ : K∞ → Z ∪ {+∞} be the normalized discrete
valuation associated to the local field K∞. We still denote by v∞ : C∞ → R∪{+∞}
the extension of v∞ to C∞.

Let I(A) be the group of fractional ideals of A, and P(A) = {αA,α ∈ K×}.
Recall that Pic(A) = I(A)

P(A) is a finite abelian group. For any ideal I ⊂ A, I 6= {0},
we set:

deg I = dimFq A/I.

Note that this function on non-zero ideals of A extends naturally to a morphism
deg : I(A)→ Z. In particular, we have:

∀α ∈ K×, degα := degαA = −d∞v∞(α),

where d∞ = dimFq F∞.

Definition 2.1. A sign function is a group homomorphism sgn : K×∞ → F×q such

that sgn(ζ) = ζ for all ζ ∈ F×q .
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We will fix a uniformizer π in K∞. Let (πn)n≥1 be a sequence of elements in K∞
such that π1 = π, and for n ≥ 1, πn+1

n+1 = πn. Let y ∈ Q, write y = m
n! ,m ∈ Z, n ≥ 1,

we set:

πy := πmn .

This is well-defined. We set:

U∞ = {u ∈ K∞, v∞(u− 1) > 0}.
Observe that U∞ is a Qp-vector space. We have with the above definition:

K
×
∞ = πQ × F×q × U∞.

Let x ∈ K×∞, then x can be written in a unique way:

x = πv∞(x) sgn(x)〈x〉, with sgn(x) ∈ F×q , 〈x〉 ∈ U∞.

Observe that the map 〈.〉 : K
×
∞ → U∞ is a group homomorphism with 〈.〉 |U∞=

IdU∞ , and that sgn|K×∞ : K×∞ → F×q is a sign function (see Definition 2.1).

We will need the following Lemma in the sequel (see also [22], Lemma 2):

Lemma 2.2.
1) Let 〈.〉′ : K

×
∞ → U∞ be a group homomorphism with 〈.〉′ |U∞= IdU∞ . Then there

exists a unique element u ∈ U∞ such that:

∀x ∈ K×∞, 〈x〉′ = 〈x〉uv∞(x).

2) Let sgn′ : K×∞ → F×q be a sign function. Then there exist e ∈ N, e ≡ 1

(mod q − 1), and an element ζ ∈ F×q , such that:

∀x ∈ K×∞, sgn′(x) = sgn(x)eζv∞(x).

3) For i = 1, 2, let 〈.〉i : K
×
∞ → U∞ be a group homomorphism such that 〈.〉i |U∞=

IdU∞ , and let γi ∈ K
×
∞. Suppose that there exist an open subgroup of finite index

N ⊂ K×∞, and n1, n2 ∈ Zp, such that:

∀α ∈ N ∩K×, 〈α〉n1
1 γ

v∞(α)
1 = 〈α〉n2

2 γ
v∞(α)
2 .

Then n1 = n2.

Proof.
1) We put: u = 〈π〉′.
2) There exists e ∈ N, e ≡ 1 (mod q − 1) such that:

∀ζ ∈ F×∞, sgn(ζ) = ζe.

Let U = K×∞ ∩ U∞. We get:

sgn′(.)

sgn(.)e
|F×∞×U= 1.

We set: ζ = sgn′(π) ∈ F×q .
3) Let α ∈ U∞ ∩N ∩K×, α 6= 1. Then:

αn1 = αn2 .

Thus n1 = n2. �



TWISTED CHARACTERISTIC p ZETA FUNCTIONS 5

Let η : I(A) → K∞ be a map such that there exist an open subgroup of finite

index N(η) ⊂ K×∞, an element n(η) ∈ Zp, an element γ′η ∈ K
×
∞, and a group

homomorphism 〈.〉′ : K∞ → U∞, with 〈.〉′ |U∞= IdU∞ , such that:

∀I ∈ I(A),∀α ∈ K× ∩N(η), η(Iα) = η(I)(〈α〉′)n(η)(γ′η)v∞(α).

By Lemma 2.2, there exists another element γη ∈ K
×
∞ such that:

∀I ∈ I(A),∀α ∈ K× ∩N(η), η(Iα) = η(I)〈α〉n(η)γv∞(α)
η .

Definition 2.3.
1) A map η : I(A)→ K∞ will be called admissible if there exist an open subgroup

of finite index N(η) ⊂ K×∞, an element n(η) ∈ Zp, and an element γη ∈ K
×
∞, such

that:

∀I ∈ I(A),∀α ∈ K× ∩N(η), η(Iα) = η(I)〈α〉n(η)γv∞(α)
η .

2) An admissible map η : I(A)→ K∞ will be called algebraic if η(I(A)) ⊂ K.

Again, by Lemma 2.2, n(η) is well-defined, and one sees that 〈γη〉 is well-defined.
Note also that the product of admissible maps is an admissible map and any con-
stant map from I(A) to K∞ is admissible.

Example 2.4. Let’s give a fundamental example, due to D. Goss, of such an
admissible map ([21], section 8.2). Write d∞ = pkd′∞ with d′∞ 6≡ 0 (mod p). Let
pm be the biggest power of p that divides | Pic(A) | . Set l = Max{m, k}, and
e∞ = pld′∞. We fix π∗ ∈ K∞ an e∞-th root of π. We set:

T = F∞((π∗)).

If I ∈ I(A), then there exists an integer h dividing | Pic(A) |, such that:

Ih = αA, α ∈ K×.

We set:

[I] = 〈α〉 1hπ−
deg I
d∞ ∈ T.

Then, K([I], I ∈ I(A))/K is a finite extension. The group homomorphism

[.] : I(A)→ K
×
∞

satisfies:

∀α ∈ K×, [αA] =
α

sgn(α)
.

Hence, [.] is an algebraic admissible map.
We refer the reader to [21, section 8.2] or [23, section 2, Remark 1] to see how

the admissible map [.] varies with different choices of uniformizer.

Definition 2.5.
1) Let η : I(A)→ K

×
∞ be an admissible map. We set:

K∞(〈η〉) := K∞(〈γη〉, 〈η(I)〉, I ∈ I(A)).

It is a finite extension of K∞.
2) Let η : I(A)→ K∞ be an admissible map with n(η) ∈ Z. We set:

K(η) := K(F∞, 〈γη〉, η(I), I ∈ I(A)).

If η is algebraic (Definition 2.3), then K(η) is a finite extension of K.
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Remark 2.6. Let N ⊂ K×∞ be an open subgroup of finite index, and let’s set:

P(N) = {xA, x ∈ K× ∩N}.

Then I(A)/P(N) is a finite abelian group. Let χ : I(A) → K∞ be a map such
that:

∀I ∈ I(A),∀J ∈ P(N), χ(IJ) = χ(I).

Observe that χ is an admissible map. Let γ ∈ K×∞, and let y ∈ Zp. Then

∀I ∈ I(A), η(I) = χ(I)〈I〉yγdeg(I)

is an admissible map with N(η) = N, n(η) = y, and γη = γ−d∞ .

Reciprocally, let η be an admissible map. Choose γ ∈ K×∞ such that γ−d∞ = γη.

We define χ : I(A)→ K∞ as follows:

∀I ∈ I(A), χ(I) =
η(I)

〈I〉n(η)γdeg(I)
.

Then, we have:

∀I ∈ I(A),∀J ∈ P(N(η)), χ(IJ) = χ(I).

Remark 2.7. Let F be a complete field with respect to a non-trivial valuation vF :
F → R ∪ {+∞} and such that F is a Fq-algebra. Let T/K∞ be a finite extension,
let FT be the residue field of T, and let πT be a uniformizer of T. Let σ : T ↪→ F be
a continuous Fp-algebra homomorphism. Let ϕ ∈ Gal(T/Fp((πT ))) ' Gal(FT /Fp),
such that:

∀ζ ∈ FT , σ(ζ) = ϕ(ζ).

Let y = σ(πT ). Then vF (y) > 0, and:

∀a ∈ T, σ(a) = ϕ(a) |πT=y .

Thus the choice of a continuous Fp-algebra homomorphism σ : T ↪→ F is equivalent
to the choice of an element y ∈ F×, vF (y) > 0, and ϕ ∈ Gal(FT /Fp).

Let F be as in the above remark. For any n ≥ 1, we set:

SF,n = F× × Znp .

We view SF,n as an abelian group with group action written additively. If F = C∞
and n = 1, then SF,n is called the “complex plane” S∞ ([21], section 8.1). Following
D. Goss, an element s ∈ SF,n is always written as s = (x; y1, . . . , yn) (or s = (x, y)

for short) with x ∈ F× and y1, . . . , yn ∈ Zp.

We end this section with some notation for the case of finite places. Let v be a
finite place of K, i.e. v : K → Z ∪ {+∞} is a discrete valuation on K such that
there exists a ∈ A with v(a) = 1. Let Pv = {a ∈ A, v(a) > 0} (or P for short) be
the maximal ideal of A corresponding to the finite place v. We denote by Kv the
v-adic completion of K. We fix Kv an algebraic closure of Kv equipped with the
canonical topology. Then v extends to a valuation v : Kv → Q ∪ {+∞}. We fix
a K-morphism K ↪→ Kv, and, by abuse of notation, we will identify the elements
in K with their images in Kv. We will fix a uniformizer πv of Kv. Then, every

x ∈ K×v , can be written in a unique way:

x = πv(x)
v sgnv(x)〈x〉v with sgnv(x) ∈ F×q , v(〈x〉v − 1) > 0.
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Let n ≥ 1 be an integer and let’s set:

SF,v,n = F× × Znp × Zn.
We view SF,v,n as an abelian group with group action written additively. An
element s ∈ SF,v,n is always written as s = (x; y; δ) with x ∈ F×, y1, . . . , yn ∈ Zp,
and δ1, . . . , δn ∈ Z.

3. A Key Lemma

Let E ⊂ K be a finite extension of K of genus gE . Let OE be the integral
closure of A in E and FE be the algebraic closure of Fq in E. We set I(OE)
to be the group of fractional ideals of OE , and P(OE) = {xOE , x ∈ E×}. Let
NE/K : I(OE) → I(A) be the group homomorphism such that, if P is a maximal
ideal of OE and if P = P ∩A is the corresponding maximal ideal of A, then:

NE/K(P) = P [
OE
P :AP ].

Note that, if I = xOE , x ∈ E×, then:

NE/K(I) = NE/K(x)A,

where NE/K : E → K denotes also the usual norm map. Let ∞1, . . . ,∞r be the
places of E above ∞. For i = 1, . . . , r, let fi be the residual degree of ∞i/∞, vi be
the associated valuation on E and Evi be the vi-adic completion of E.

Let B ⊂ OE , B ∈ I(OE). We denote by I(B) the group of fractional ideals of
OE which are relatively prime to B. For i = 1, . . . , r, let Ni be an open subgroup
of finite index of E×vi , and let di ≥ 0 be the least integer such that:

{x ∈ E×vi , vi(x− 1) ≥ di} ⊂ Ni.
We set N =

∏r
i=1Ni, and:

P(B, N) = {xOE ∈ I(B), x ∈ E×, x ≡ 1 (mod B), x ∈ Ni, i = 1, . . . , r}.
Observe that I(B)/P(B, N) is a finite abelian group. Let:

d(B) = dimFq OE/B,

d∞(N) =

r∑
i=1

d∞fi(di + 1).

More generally, let S be a finite set, possibly empty, of maximal ideals of OE which
are relatively prime to B.We denote by IS(B) the group of fractional ideals of I(OE)
which are relatively prime to B

∏
P∈S P. We also set PS(B, N) = P(B, N)∩IS(B).

Observe that we have a natural group isomorphism:

IS(B)/PS(B, N) ' I(B)/P(B, N).

We set:
dS(B) = dimFq OE/(B

∏
P∈S

P),

and

(3.1) dS(B, N, t) = 2gE [FE : Fq] + d∞(N) + dS(B) +
t[E : K]sep

(p− 1)[Fq : Fp]
where [E : K]sep is the separable degree of the finite extension E/K.

We recall a basic result ([21], Lemma 8.8.1):
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Lemma 3.1. Let h ∈ N, and let W be a finite dimensional Fp-vector space. For

i = 1, . . . , h, let fi : W → F be an Fp-linear map. If dimFpW > h
p−1 , then:

∀x1, . . . , xh ∈ F,
∑
w∈W

(x1 + f1(w)) · · · (xh + fh(w)) = 0.

Let t ≥ 0 be an integer. For i = 1, . . . , t, let sgni : K×∞ → F×q be a sign function

and ρi : K(sgni(K
×)) ↪→ F be an Fp-algebra homomorphism.

Lemma 3.1 combined with the Riemann-Roch Theorem yields the following result
which will be crucial in the sequel.

Lemma 3.2. We keep the previous notation. Let I be a non-zero ideal of OE with
I ∈ IS(B) and d be an integer. We set:

Sd,S(I,B, N) = {aOE ∈ PS(B, N), aI ⊂ OE ,deg(NE/K(aI)) = d}.

Then, if d ≥ dS(B, N, t) (3.1), we have:∑
aOE∈Sd,S(I,B,N)

ρ1(
NE/K(a)

sgn1(NE/K(a))
) · · · ρt(

NE/K(a)

sgnt(NE/K(a))
) = 0.

Proof. The proof of the Lemma is based on the arguments used in the proof of [21],
Theorem 8.9.2. We give a detailed proof for the convenience of the reader. We
choose a generator η of the cyclic group F×∞. For any integer k, we set:

Sd,S(I,B, N, k) = {aOE ∈ PS(B, N), sgn(NE/K(a)) ≡ ηk (mod F×q );

aI ⊂ OE ,deg(NE/K(aI)) = d}.

Then:

Sd,S(I,B, N) =

qd∞−1
q−1⊔
k=1

Sd,S(I,B, N, k).

Hence, it is enough to show that for any integer k such that 1 ≤ k ≤ qd∞−1
q−1 and

any integer d ≥ dS(B, N, t):∑
aOE∈Sd,S(I,B,N,k)

ρ1(
NE/K(a)

sgn1(NE/K(a))
) · · · ρt(

NE/K(a)

sgnt(NE/K(a))
) = 0.

From now on, we will fix an integer k such that 1 ≤ k ≤ qd∞−1
q−1 and an integer

d ≥ dS(B, N, t). Since there is a finite number of ideals J of A such that deg J = d,
and, given such an ideal J, there is a finite number of ideals J in OE such that
NE/K(J) = J, we deduce that Sd,S(I,B, N, k) is a finite set, possibly empty. Let’s
fix aOE ∈ Sd,S(I,B, N, k). Let V (a) be the set of elements b ∈ E such that

i) bI ⊂ OE ,
ii) vi(b) ≥ vi(a) + di + 1, for i = 1, . . . , r,
iii) ordP(b) ≥ ordP(B), for all P dividing B,
iv) ordP(b) ≥ 1, for all P ∈ S.
Observe that:

degNE/K(aI) = degNE/K(I)− d∞
r∑
i=1

fivi(a).
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But:

degNE/K(I) = [FE : Fq] dimFE
OE
I
,

therefore:

−d∞
[FE : Fq]

r∑
i=1

fivi(a) =
d

[FE : Fq]
− dimFE

OE
I
.

Since d ≥ dS(B, N, t),then we have:

d− d∞(N)− dS(B) ≥ [FE : Fq](2gE − 1).

By the Riemann-Roch Theorem, V (a) is a finite FE-vector space of dimension

dimFE V (a) =
d

[FE : Fq]
+ 1− gE −

d∞(N) + dS(B)

[FE : Fq]
.

Again, the hypothesis d ≥ dS(B, N, t) implies:

(3.2) dimFp V (a) >
t[E : K]sep

p− 1
.

We have (see [21], Lemma 8.9.3):

(a+ V (a))OE ⊂ Sd,S(I,B, N, k),

∀b, b′ ∈ V (a), (a+ b)OE = (a+ b′)OE ⇔ b = b′.

Furthermore, if sgn′ : K×∞ → F×q is a sign function, we have:

∀b ∈ V (a), sgn′(NE/K(a+ b)) = sgn′(NE/K(a)).

Let cOE ∈ Sd,S(I,B, N, k). Then:

(c+ V (c))OE ∩ (a+ V (a))OE 6= ∅ ⇔ cOE ∈ (a+ V (a))OE .

Thus, if Sd,S(I,B, N, k) 6= ∅, let’s select a1OE , . . . , alOE ∈ Sd,S(I,B, N, k) such
that Sd,S(I,B, N, k) is the disjoint union of the (ai + V (ai))OE . We have:∑

cOE∈Sd,S(I,B,N,k)

ρ1(
NE/K(c)

sgn1(NE/K(c))
) · · · ρt(

NE/K(c)

sgnt(NE/K(c))
) =

l∑
i=1

∑
b∈V (ai)

ρ1(
NE/K(ai + b)

sgn1(NE/K(ai))
) · · · ρt(

NE/K(ai + b)

sgnt(NE/K(ai))
).

Let’s fix 1 ≤ i ≤ l, and we set

S =
∑

b∈V (ai)

ρ1(NE/K(ai + b)) · · · ρt(NE/K(ai + b)).

Let E1/K consist of the elements of E which are separable over K. Let pl1 = [E :
E1]. Then:

S =
∑

b∈V (ai)

ρ1(NE1/K(ap
l1

i + bp
l1

)) · · · ρt(NE1/K(ap
l1

i + bp
l1

)).
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Therefore, we can assume that E/K is a finite separable extension. Let F be an
algebraic closure of F. Then, for i = 1, . . . , t, ρi extends to a morphism ρi : K → F .
Let σj : E → K be the distinct K-embeddings of E in K, j = 1, . . . , [E : K]. Then:

∀i = 1, . . . , t, ρi(NE/K(ai + b)) =

[E:K]∏
j=1

ρi(σj(ai + b)).

Since dimFp V (ai) >
t[E:K]sep
p−1 = t[E:K]

p−1 (3.2), Lemma 3.1 implies that S = 0. The

proof is finished. �

For i = 1, . . . , t, let ψi : I(A) → K∞ be a map such that there exists N(ψi) ⊂
K×∞ an open subgroup of finite index with the following property:

∀I ∈ I(A),∀α ∈ K× ∩N(ψi), ψi(Iα) = ψi(I)
α

sgni(α)
.

We set K(ψi) = K(sgni(K
×), ψi(I), I ∈ I(A)) ⊂ K∞ and let ρi : K(ψi) ↪→ F be

an Fp-algebra homomorphism.
Let χ : I(B)→ F be a map such that:

∀I ∈ I(B),∀J ∈ P(B, N), χ(IJ) = χ(I).

For j = 1, . . . , r, let N ′j = Nj ∩N−1
Evj /K∞

(N(ψ1)∩ . . .∩N(ψt)), then N ′j is an open

subgroup of finite index of E×vj . We set N ′ =
∏r
j=1N

′
j .

Corollary 3.3. We keep the previous notation. Then, if d ≥ dS(B, N ′, t) (3.1), we
have: ∑

I⊂OE ,I∈IS(B)
degNE/K(I)=d

χ(I) ρ1(ψ1(NE/K(I))) · · · ρt(ψt(NE/K(I))) = 0.

Proof. Let’s set:

Ud =
∑

I⊂OE ,I∈IS(B)
degNE/K(I)=d

χ(I) ρ1(ψ1(NE/K(I))) · · · ρt(ψt(NE/K(I))).

Let h =
∣∣I(B)/P(B, N ′)

∣∣. Select I1, . . . ,Ih ∈ IS(B), I1, . . . ,Ih ⊂ OE , a system of

representatives of I(B)
P(B,N ′) . Then Ud is equal to

h∑
j=1

χ(Ij)

t∏
i=1

ρi(ψi(NE/K(Ij)))
∑

aOE∈Sd,S(Ij ,B,N ′)

t∏
i=1

ρi(
NE/K(a)

sgni(NE/K(a))
).

Since d ≥ dS(B, N ′, t), by Lemma 3.2, we have:

Ud = 0.

�

Let f : Z → 1 + (q − 1)Z be a map. For i = 1, . . . , t, let ψi : I(A) → K∞ be a
map such that :

∀I ∈ I(A),∀α ∈ K×, ψi(Iα) = ψi(I)
α

sgni(α)f(deg I)
.

By Lemma 2.2, there exist ei ∈ Z, ei ≡ 1 (mod q − 1), and ζi ∈ F×q such that:

∀x ∈ K×∞, sgni(x) = sgn(x)eiζ
v∞(x)
i .
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We set K(ψi) = K(sgni(K
×), ψi(I), I ∈ I(A)) ⊂ K∞ and let ρi : K(ψi) ↪→ F be

an Fp-algebra homomorphism. Observe that there exists li ∈ N such that:

∀α ∈ K×, ρi(sgni(α)) = sgni(α)p
li
.

Let χ : I(A)→ F be a map such that:

∀I ∈ I(A),∀α ∈ K×, χ(Iα) = χ(I).

Corollary 3.4. We keep the previous notation and suppose that t ≥ 1. If

pl1e1 + · · ·+ pltet ≡ 0 (mod qd∞ − 1),

and
t∏
i=1

ζp
li

i = 1,

then : ∑
d≥0

∑
I∈I(A),I⊂A

deg I=d

χ(I)ρ1(ψ1(I)) · · · ρt(ψt(I)) = 0.

Proof. Here E = K, S = ∅, B = A, N = K×∞. For d ≥ 0, let’s set:

Ud =
∑

I∈I(A),I⊂A
deg I=d

χ(I)ρ1(ψ1(I)) · · · ρt(ψt(I)).

Let h = |Pic(A)|. Select I1, . . . , Ih ∈ I(A), I1, . . . , Ih ⊂ A, a system of representa-
tives of Pic(A). For simplicity, we will write Sd(Ij) instead of Sd,S(Ij , A,N). Then
Ud is equal to:

h∑
j=1

χ(Ij)

t∏
i=1

ρi(ψi(Ij))
∑

aA∈Sd(Ij)

t∏
i=1

ρi(
a

sgni(a)f(deg Ij)
).

Now, assume that pl1e1 + · · · + pltet ≡ 0 (mod qd∞ − 1), and
∏t
i=1 ζ

pli

i = 1. By
Lemma 3.2,

∑
d≥0 Ud is equal to the finite sum:

h∑
j=1

χ(Ij)ρ1(ψ1(Ij)) · · · ρt(ψt(Ij))
∑
d≥0

∑
aA∈Sd(Ij)

ρ1(a) . . . ρt(a).

Let’s select d ≥ 0 such that:∑
d≥0

∑
aA∈Sd(Ij)

ρ1(a) . . . ρt(a) =

d∑
m=0

∑
aA∈Sm(Ij)

ρ1(a) . . . ρt(a).

Let Vd = {a ∈ K×, aA ∈ Sm(Ij),m ≤ d} ∪ {0}. Then Vd is a finite dimensional
Fq-vector space and:

d∑
m=0

∑
aA∈Sm(Ij)

ρ1(a) . . . ρt(a) =
∑
a∈Vd

ρ1(a) . . . ρt(a).

Now, by the Riemann-Roch Theorem, for d ≥ 2gK − 1, we have:

dimFq Vd = d+ 1− gK .
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Hence, we can choose d big enough such that dimFp Vd >
t

(p−1)[Fq :Fp] . Then, by

Lemma 3.1, we have: ∑
a∈Vd

ρ1(a) . . . ρt(a) = 0.

The proof is finished. �

4. Several variable twisted zeta functions

4.1. The ∞-adic case.
Let E/K be a finite extension, and let B, N and S as in Section 3. Recall

that S is a finite set, possibly empty, of maximal ideals of OE which are relatively
prime to B, and that F is a complete field with respect to a non-trivial valuation
vF : F → R ∪ {+∞} and such that F is a Fq-algebra. Let χ : I(B)→ F be a map
such that:

∀I ∈ I(B),∀J ∈ P(B, N), χ(IJ) = χ(I).

Let m ≥ 0 be an integer. For i = 1, . . . ,m, let ψi : I(A)→ K∞ be an admissible
map with n(ψi) ∈ N and ρi : K(ψi) ↪→ F be an Fp-algebra homomorphism (see
Definition 2.5 for the definition of K(ψi)).

Let n ≥ 1 be another integer. For j = 1, . . . , n, let ηj : I(A) → K
×
∞ be an

admissible map and σj : K∞(〈ηj〉) ↪→ F be a continuous Fp-algebra homomorphism
(see Definition 2.5 for the definition of K∞(〈ηj〉)).

For I ∈ I(A), s = (x, y) ∈ SF,n, and α ∈ K×, we set:

Iρ,ψ =

m∏
i=1

ρi(ψi(I)) ∈ F,

I
y
σ,η =

n∏
j=1

σj(〈ηj(I)〉yj ) ∈ F×,

Isσ,η = xdeg I
n∏
j=1

σj(〈ηj(I)〉yj ) ∈ F×,

(αA)sσ,η = (x−d∞
n∏
j=1

σj(〈γηj 〉yj ))v∞(α)
n∏
j=1

σj(〈α〉n(ηj)yj ) ∈ F×.

Then, for I ∈ I(A), s, s′ ∈ SF,n and α ∈ K× ∩N(η1) ∩ · · · ∩N(ηn), we have:

Is+s
′

σ,η = Isσ,ηI
s′

σ,η,

(Iα)sσ,η = Isσ,η(αA)sσ,η.

We define a zeta function

ζS,OE (ρ, ψ;σ, η;χ; .) : SF,n → F

which sends s ∈ SF,n to the following sum:∑
d≥0

∑
I∈IS(B),I⊂OE
degNE/K(I)=d

χ(I)NE/K(I)ρ,ψNE/K(I)−sσ,η.

For each fixed y ∈ Znp , the next theorem proves that ζS,OE (ρ, ψ;σ, η;χ; .) is an

entire power series in x−1 with the resulting function on SF,n having good continuity
properties.
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Theorem 4.1. The zeta function ζS,OE (ρ, ψ;σ, η;χ; .) continues analytically to an
entire function on SF,n.

Proof. The proof is in the spirit of the proof of [5], Proposition 6. Recall that
∞1, . . . ,∞r are the places of E above ∞. For i = 1, . . . , r, vi is the corresponding
valuation on E associated to ∞i and Evi is the vi-adic completion of E. Moreover,
N =

∏r
i=1Ni where Ni ⊂ E×vi is an open subgroup of finite index. For i = 1, . . . , r,

we put:

N ′i = Ni ∩N−1
Evi/K∞

(N(ψ1) ∩ . . . ∩N(ψm) ∩N(η1) . . . ∩N(ηn)).

Then N ′i ⊂ E×vi is also an open subgroup of finite index. Let’s set:

N ′ =

r∏
i=1

N ′i .

Let I1, . . . ,Ih ∈ IS(B), I1, . . . ,Ih ⊂ OE be a system of representatives of
IS(B)/PS(B, N ′). Recall that

Sd,S(Ij ,B, N ′) = {aOE ∈ PS(B, N ′), aIj ⊂ OE ,deg(NE/K(aIj)) = d}.
For j = 1, . . . , h, we define Vd,j to be the following sum:∑

aOE∈Sd,S(Ij ,B,N ′)

(

m∏
i=1

ρi(γψiπ
−n(ψi)))v∞(NE/K(a))

m∏
i=1

ρi(
NE/K(a)

sgn(NE/K(a))
)n(ψi)×

× (

n∏
j=1

σj(〈γηj 〉−yj ))v∞(NE/K(a))
n∏
j=1

σj(〈NE/K(a)〉)−yjn(ηj).

Then:

xd
∑

I∈IS(B),I⊂OE
degNE/K(I)=d

χ(I)NE/K(I)ρ,ψNE/K(I)−sσ,η

=

h∑
j=1

χ(Ij)NE/K(Ij)ρ,ψNE/K(Ij)
−y
σ,ηVd,j .

Note that vF ◦ ρi |M is a valuation on K, thus, it is equivalent to the trivial
valuation or to the valuation attached to a place of K. This implies that there
exist D,D′ ∈ R, such that for all d ≥ 0, for all j ∈ {1, . . . , h} and for all aOE ∈
Sd,S(Ij ,B, N ′), we have:

vF (

m∏
i=1

ρi(NE/K(a))n(ψi)) ≥ −Dd−D′.

If k ∈ N, we denote by `p(k) the sum of the digits of k in base p. By Lemma 3.2,
if k1, . . . kn ∈ N are such that k1 + . . .+ kn ≥ 1 and if

d ≥ 2gE [FE : Fq] + d∞(N ′) + dS(B) +
(
∑m
i=1 n(ψi) +

∑n
j=1 `p(kj))[E : K]sep

(p− 1)[Fq : Fp]
,

then: ∑
aOE∈Sd,S(Ij ,B,N ′)

m∏
i=1

ρi(
NE/K(a)

sgn(NE/K(a))
)n(ψi)

n∏
j=1

σj(〈NE/K(a)〉)kj = 0.
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Now, let l ∈ N, and select k1, . . . , kn ∈ N \ {0} such that:
i) `p(kj) ≤ (l + 1)(p− 1),
ii) yjn(ηj) + kj ≡ 0 (mod pl+1Zp).

For example, write−yj =
∑
i≥0 ui,jp

i, ui,j ∈ {0, . . . , p−1}, and set kj =
∑l
i=0 ui,jp

i+

pl+1. Let

C = 2gE [FE : Fq] + d∞(N ′) + dS(B) +
(
∑m
i=1 n(ψi) + p− 1)[E : K]sep

(p− 1)[Fq : Fp]
.

Then, if d ≥ Cn(l + 1), we have:

∑
aOE∈Sd,S(Ij ,B,N ′)

m∏
i=1

ρi(
NE/K(a)

sgn(NE/K(a))
)n(ψi)

n∏
j=1

σj(
NE/K(a)

sgn(NE/K(a))
)kj = 0.

Thus, there exists D′′ ∈ R such that:

vF (Vd,j) ≥ pl+1Inf{vF (σi(π)), i = 1, . . . , n} −D′′d−D′.

Note also that vF (σi(π)) > 0, i = 1, . . . , n (see Remark 2.7). Therefore, if d ≥ Cn,
we get:

vF (Vd,j) ≥ p[ d
Cn ]Inf{vF (σi(π)), i = 1, . . . , n} −D′′d−D′.

Therefore, for d ≥ Cn, there exists D′′′ ∈ R such that we have:

vF

(
xd

∑
I∈IS(B),I⊂OE
degNE/K(I)=d

χ(I)NE/K(I)ρ,ψNE/K(I)−sσ,η

)

≥ p[ d
Cn ]Inf{vF (σi(π)), i = 1, . . . , n} −D′′d−D′′′.

In other words, the valuation vF of the coefficient of x−d in ζS,OE (ρ, ψ;σ, η;χ; s)
grows exponentially in d for large d. Hence, the zeta function ζS,OE (ρ, ψ;σ, η;χ; s)
continues analytically to an entire function on s ∈ SF,n. �

Remark 4.2. Assume that ψ1, . . . , ψm, η1, . . . ηn, and χ are group homomorphisms,
then for s = (x; y) ∈ SF,n with vF (x)� 0, we have:

ζS,OE (ρ, ψ;σ, η;χ; s) =
∏
P

(1− χ(P)NE/K(P)ρ,ψNE/K(P)−sσ,η)−1,

where P runs through the set of maximal ideals of OE that are contained in IS(B).

Let f : Z→ 1 + (q − 1)Z be a map. For i = 1, . . . ,m, let sgni : K×∞ → F×q be a

sign function, ψi : I(A)→ K∞ be a map such that:

∀I ∈ I(A),∀α ∈ K×, ψi(Iα) = ψi(I)
α

sgni(α)f(deg I)
,

and ρi : K(ψi) ↪→ F be an Fp-algebra homomorphism (see Definition 2.5 for the
definition of K(ψi)).

For j = 1, . . . , n, let fj : Z → 1 + (q − 1)Z be a map, and let ηj : I(A) → K
×
∞

be a map such that:

∀I ∈ I(A),∀α ∈ K×, ηj(Iα) = ηj(I)
α

sgn′j(α)fj(deg I)
,
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where sgn′j : K×∞ → F×q is a sign function. Finally, for j = 1, . . . , n, let

σj : K∞(sgn′j(K
×), π

1
d∞ , 〈ηj(I)〉, I ∈ I(A))→ F

be a continuous Fp-algebra homomorphism.
Let’s define l1, . . . , lm, l

′
1, . . . , l

′
n ∈ N as follows:

∀i = 1, . . . ,m, ∀α ∈ K×, ρi(sgni(α)) = sgni(α)p
li
,

∀j = 1, . . . , n, ∀ζ ∈ F×∞, σj(ζ) = ζp
l′j
.

For i = 1, . . . ,m, there exist ei ∈ Z, ei ≡ 1 (mod q − 1), and ζi ∈ F×q such that:

∀a ∈ K×∞, sgni(a) = sgn(a)eiζ
v∞(a)
i .

We assume that:

∀a ∈ K×,
m∏
i=1

(
sgni(a)

sgn(a)
)eip

li
= 1, and

m∏
i=1

ζp
li

i = 1.

Let χ : I(A)→ F be a map such that:

∀I ∈ I(A),∀α ∈ K×, χ(Iα) = χ(I).

Note that ψ1, . . . , ψm, η1, . . . , ηn are admissible maps.

Corollary 4.3. We assume that E = K, B = A, N = K×∞, S = ∅. Let m1, . . . ,mn ∈
N such that pl1e1 + · · · + plmem + m1p

l′1 + . . . + mnp
l′n ≡ 0 (mod qd∞ − 1), and

pl1e1 + · · ·+ plmem +m1p
l′1 + . . .+mnp

l′n ≥ 1. Then:

ζS,A(ρ, ψ;σ, η;χ; (σ1(π
1
d∞ )m1 · · ·σn(π

1
d∞ )mn ;−m1, . . . ,−mn)) = 0.

Proof. For i = 1, . . . , n, let xi = σi(π
1
d∞ ). Set s = (xm1

1 · · ·xmnn ;−m1, . . . ,−mn) ∈
SF,n. Let h = |Pic(A)|. Select I1, . . . , Ih ∈ I(A), I1, . . . , Ih ⊂ A, a system of repre-
sentatives of Pic(A). Let’s set:

Vd,j =
∑

aA∈Sd,S(Ij ,A,N)

m∏
i=1

ρi(
a

sgni(a)f(deg Ij)
)(aA)(m1,...,mn)

σ,η .

Then, we have:

Vd,j =
∑

aA∈Sd,S(Ij ,A,N)

m∏
i=1

ρi(a)

sgn(a)p
liei

n∏
j=1

σj(
a

sgn(a)πv∞(a)
)mj .

Since pl1e1 + · · · + plmem + m1p
l′1 + . . . + mnp

l′n ≡ 0 (mod qd∞ − 1) and x =
xm1

1 · · ·xmnn ,

Vd,jx
−d = −(

n∏
j=1

x
−mj deg Ij
j )

∑
a∈K×

aA∈Sd,S(Ij ,A,N)

ρ1(a) . . . ρm(a)σ1(a)m1 · · ·σn(a)mn .

The assertion is then a consequence of the proof of Corollary 3.4. �
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4.2. The case of finite places.
Let v be a finite place of K. We use freely the notation introduced in Section 2.

Let ψ1, . . . , ψm, η1, . . . ηn be m+ n admissible maps. We assume that

1) All the m+ n admissible maps ψ1, . . . , ψm, η1, . . . ηn are algebraic.
2) For i = 1, . . . ,m, n(ψi) ∈ N.

3) For j = 1, . . . , n, n(ηj) ∈ Z and ηj(I(A)) ⊂ K×v .

For i = 1, . . . ,m, we recall that K(ψi) = K(F∞, γψiπ−n(ψi), ψi(I), I ∈ I(A)) ⊂
Kv, and let ρi : K(ψi) ↪→ F be an Fp-algebra homomorphism. For j = 1, . . . , n, we
set Kv(〈ηj〉v) := Kv(〈ηj(I)〉v, I ∈ I(A)) which is a finite extension of Kv and let
σj : Kv(〈ηj〉v) ↪→ F be a continuous Fp-algebra homomorphism.

Let n ≥ 1, be an integer and recall that:

SF,v,n = F× × Znp × Zn.
For s = (x; y; δ) ∈ SF,v,n, I ∈ I(A), we set:

Iρ,ψ =

m∏
i=1

ρi(ψi(I)) ∈ F,

Isσ,η = xdeg I
n∏
j=1

sgnv(ηj(I))δj
n∏
j=1

σj(〈ηj(I)〉yjv ) ∈ F×.

Let E/K be a finite extension, and let B and N as in Section 3. Let S be a
finite set, possibly empty, of maximal ideals of OE which are relatively prime to B.
Let Sv be the union of S and the maximal ideals of OE above Pv and that do not
divide B. Let χ : I(B)→ F be a map such that:

∀I ∈ I(B),∀J ∈ P(B, N), χ(IJ) = χ(I).

Theorem 4.4. We consider the function from SF,v,n to F which sends s = (x; y; δ) ∈
SF,v,n to the following sum:∑

d≥0

∑
I∈ISv (B),I⊂OE
deg(NE/K(I))=d

χ(I)NE/K(I)ρ,ψNE/K(I)−sσ,η.

Then, it continues analytically to an entire function on s ∈ SF,v,n.

Proof. The proof of the Theorem is similar to the proof of Theorem 4.1. We only
give a sketch of the proof. Let N ′ be as in the proof of Theorem 4.1.

Let I1, . . . ,Ih ∈ ISv (B), I1, . . . ,Ih ⊂ OE be a system of representatives of
I(B)/P(B, N ′). Recall that

Sd,Sv (Ij ,B, N ′) = {aOE ∈ PSv (B, N ′), aIj ⊂ OE ,deg(NE/K(aIj)) = d}.
Let Vd,j be the following sum:∑
aOE∈Sd,Sv (Ij ,B,N ′)

(

m∏
i=1

ρi(γψiπ
−n(ψi)))v∞(NE/K(a)) sgnv(

n∏
j=1

σj(γψjπ
−n(ηj))−δj )v∞(NE/K(a)))

× (

n∏
j=1

〈σj(γψjπ−n(ηj))〉−yjv )v∞(NE/K(a)) sgnv(
NE/K(a)

sgn(NE/K(a))
)−δ1n(η1)−···−δnn(ηn)

×
m∏
i=1

ρi(
NE/K(a)

sgn(NE/K(a))
)n(ψi)

n∏
j=1

〈σj(
NE/K(a)

sgn(NE/K(a))
)〉−yjn(ηj)
v .
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Note that there exist integers D,D′ ∈ R, such that, for d ≥ 0, j ∈ {1, . . . , h} and
aOE ∈ Sd,Sv (Ij ,B, N ′), we have:

vF (

m∏
i=1

ρi(NE/K(a))n(ψi)) ≥ −Dd−D′.

By the proof of Lemma 3.2, there exists an integer C ≥ 1 such that, for all

k1, . . . kn ∈ N, with k1 + . . . + kn ≥ 1, for all d ≥ C(
∑n
i=1 `p(ki))

p−1 and for all δ ∈ Z,
we have: ∑

aOE∈Sd,Sv (Ij ,B,N ′)

sgnv(
NE/K(a)

sgn(NE/K(a))
)−δ

m∏
i=1

ρi(
NE/K(a)

sgn(NE/K(a))
)n(ψi)×

×
n∏
j=1

σj

( NE/K(a)

sgn(NE/K(a)) sgnv(
NE/K(a)

sgn(NE/K(a)) )

)kj
= 0.

Now, let l ∈ N, and select k1, . . . , kn ∈ N \ {0} such that:
i) `p(kj) ≤ (l + 1)(p− 1),
ii) yjn(ηj) + kj ≡ 0 (mod pl+1Zp).
Then, there exists D′′ ∈ R, such that if d ≥ Cn(l + 1), we have:

vF (Vd,j) ≥ pl+1Inf{vF (σi(πv)), i = 1, . . . , n} −D′′d−D′.
We conclude as in the proof of Theorem 4.1. �

5. Examples

5.1. The case A = Fq[θ].
We take π = 1/θ. In that case d∞ = 1, Pic(A) = {1}, and we set

A+ = {a ∈ A, amonic} = {a ∈ A, sgn(a) = 1}.
Let ϕ : Fq → Fq, x 7→ xp. Let a =

∑m
i=0 λiθ

i, λi ∈ Fq, we set:

∀j ≥ 0, ϕj(a) =

m∑
i=0

λp
j

i θ
i.

Let m ≥ 0, n ≥ 1, and e1, . . . , em, l1, . . . , ln ∈ N. Let E/K be a finite extension.
Let E1/E be a finite abelian extension and let (., E1/E) be the Artin symbol. Let
χ : Gal(E1/E) → F× be a group homomorphism. If P is a maximal ideal of OE ,
we set:

χ(P) =

{
0 if P is ramified in E1/E,

χ((P, E1/E)) otherwise.

If we apply Theorem 4.1, we get:

Corollary 5.1. Let x1, . . . , xm ∈ F, and let z1, . . . , zn ∈ F such that vF (zi) <
0, i = 1, . . . , n. Then, for s = (x, y) ∈ SF,n, the following sum converges in F :∑

d≥0

(
∑

I∈I(OE),I⊂OE ,
NE/K(I)=aA,
a∈A+,degθ a=d

χ(I)

m∏
i=1

ϕei(a) |θ=xi
n∏
j=1

〈ϕlj (a) |θ=zj 〉yj )xd,

where for y ∈ F, v∞(y) < 0, and for a ∈ A+, 〈a(y)〉 = a(y)

ydegθ a
.
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Let X be an indeterminate over K, and write:

∀a ∈ A, a(θ +X) =
∑
k≥0

a(k)Xk, a(k) ∈ A.

Then, for all k ≥ 0, .(k) : A→ A is an Fq-linear map and we have:

∀l ≥ 0, (θl)(k) =

(
l

k

)
θl−k,

where (
l

k

)
=

{
0 if l < k,

l!
k!(l−k)! (mod p) if l ≥ k.

Observe that:

∀i ≥ 0,∀k ≥ 0,∀a ∈ A, ϕi(a(k)) = (ϕi(a))(k).

Proposition 5.2. Let x1, . . . , xm ∈ F, k1, . . . , km ∈ N, and let z1, . . . , zn ∈ F
such that vF (zi) < 0, i = 1, . . . , n. Then, for s = (x, y) ∈ SF,n, the following sum
converges in F :

S(k1, . . . , km) :=
∑
d≥0

(
∑

I∈I(OE),I⊂OE ,
NE/K(I)=aA,
a∈A+,degθ a=d

χ(I)

m∏
i=1

ϕei(a(ki)) |θ=xi
n∏
j=1

〈ϕlj (a) |θ=zj 〉yj )xd.

Furthermore:

lim
k1+...+km→+∞

S(k1, . . . , km) = 0.

Proof. Let t1, . . . , tm be m indeterminates over F and let Tm(F ) be the Tate algebra
in the variables t1, . . . , tm with coefficients in F. Let F ′ be the completion of the
field of fraction of Tm(F ). By Corollary 5.1, the following sum converges in F ′ :

S :=
∑
d≥0

(
∑

I∈I(OE),I⊂OE ,
NE/K(I)=aA,
a∈A+,degθ a=d

χ(I)

m∏
i=1

ϕei(a) |θ=ti+xi
n∏
j=1

〈ϕlj (a) |θ=zj 〉yj )xd.

Since Tm(F ) is closed in F ′, we get S ∈ Tm(F ). For i = 1, . . . ,m, we have:

ϕei(a) |θ=ti+xi=
∑
k≥0

ϕei(a(k)) |θ=xi tki .

But, we have:

S =
∑

k1,...,km∈N
S(k1, . . . , km)tk11 · · · tkmm ,

where S(k1, . . . , km) ∈ F, and limk1+...+km→+∞ S(k1, . . . , km) = 0. Therefore, we
get:

S(k1, . . . , km) =
∑
d≥0

(
∑

I∈I(OE),I⊂OE ,
NE/K(I)=aA,
a∈A+,degθ a=d

χ(I)

m∏
i=1

ϕei(a(ki))|θ=xi
n∏
j=1

〈ϕlj (a)|θ=zj 〉yj )xd.

�
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We refer the interested reader to [5] and [11] for the arithmetic properties of a
special case of the above sums.

Recall that C∞ is the completion ofK∞. Let t1, . . . , tm, z bem+1 indeterminates
over C∞, and let T be the Tate algebra in the variables t1, . . . , tm, z with coefficients
in C∞. Let F be the completion of the field of fractions of T. Take in Corollary 5.1
n = 1, E1 = E = K, e1 = . . . = em = l1 = 0, xi = ti, z1 = θ, s = (z, y) ∈ S∞, we
get that the following infinite sum converges in T and is in fact an entire function
on Cm+1

∞ : ∑
d≥0

(
∑

a∈A+,degθ a=d

a(t1) · · · a(tm)

〈a〉y
)zd.

The above sums were introduced in [28]. In particular, for all n ∈ Z, the sum

L(n; t; z) :=
∑
d≥0

(
∑

a∈A+,degθ a=d

a(t1) · · · a(tm)

an
)zd ∈ T

defines an entire function on Cm+1
∞ .

Observe that, by Corollary 3.3 and Corollary 3.4, if n ≤ 0, this sum is finite and
furthermore it vanishes at z = 1 if m−n ≡ 0 (mod q−1), m−n ≥ 1. Using a special
case of Anderson’s log-algebraicity Theorem for Fq[θ] ([1], [2], [38] paragraphs 8.9
and 8.10, see also [9], [8], [10] and the forthcoming work of M. Papanikolas [27]),
F. Pellarin proved ([28]), for m = 1, a formula connecting L(1; t1; 1) to a special
function introduced by G. Anderson and D. Thakur ([3]). This formula reflects an
analytic class number formula à la Taelman ([35], [36], [17], [18]) for L(1; t; 1) (see
[8]). Such an analytic class number formula has been generalized in [16] to a larger
class of L-series (in particular for L(n; t; z), for n ≥ 1). We also refer the reader
to [5], [6], [23], [30], [31], [32], [33], [34], [37] for various arithmetic and analytic
properties of the series L(n; t; z), n ∈ Z.

Now, we look at the case of finite places. Let v be a finite place of A and let
P be the corresponding monic irreducible polynomial in A of degree d. Let Cv be
the completion of an algebraic closure Kv of the v-adic completion of K. Let Av
be the valuation ring of Kv. Then:

∀a ∈ A×v , a = sgnv(a)〈a〉v, with v(〈a〉v − 1) ≥ 1, sgnv(a) ∈ F×
qd
.

Note that 1
qd−1

∈ Z×p , thus:

∀a ∈ A×v , 〈a〉v = (aq
d−1)

1

qd−1 .

Let σ : Kv ↪→ F be a continuous Fp-algebra homomorphism. Then:

∀a ∈ A+, σ(〈a〉v) = (σ(a)q
d−1)

1

qd−1 .

Let z = σ(θ), then vF (z) ≥ 0, and z 6∈ Fqd . Furthermore, there exists i ≥ 0, such
that:

∀a ∈ A, σ(a) = ϕi(a) |θ=z .
Thus:

vF (ϕi(P ) |θ=z) > 0.

Furthermore:

σ(〈a〉v) = ((ϕi(a) |θ=z)q
d−1)

1

qd−1 =: 〈ϕi(a) |θ=z〉v.
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Let E/K be a finite extension and let E1/E be a finite abelian extension. Let
χ : Gal(E1/E) → F× be a group homomorphism. Let SP be the set of maximal
ideals of OE above P. If we apply Theorem 4.4, then, by the proof of Proposition
5.2, we get:

Corollary 5.3. Let e1, . . . , em, k1, . . . , km, l1, . . . , ln ∈ N. Let x1, . . . , xm ∈ F. Let
z1, . . . , zn ∈ F \ Fqd such that vF (ϕli(P ) |θ=zi) > 0. Then for δ ∈ Z and for
s = (x, y) ∈ SF,n, the following sum converges in F :∑

d≥0

(
∑

I∈ISP (OE),I⊂OE ,
NE/K(I)=aA,
a∈A+,degθ a=d

sgnv(a)δχ(I)

m∏
i=1

ϕei(a(ki))|θ=xi
n∏
j=1

〈ϕlj (a)|θ=zj 〉yjv )xd.

Let t1, . . . , tm, z be m+1 indeterminates over Cv, and let Tv be the Tate algebra
in the variables t1, . . . , tm, z with coefficients in Cv. Let Fv be the completion of
the field of fractions of Tv. Take in the above Corollary n = 1, E1 = E = K,
e1 = . . . = em = k1 = . . . = km = l1 = 0, xi = ti, z1 = θ, s = (z, y) ∈ S∞, δ ∈ Z,
we get that the following sum converges in Tv and is in fact an entire function on
Cm+1
v : ∑

d≥0

( ∑
a∈A+,degθ a=m,
a 6≡0 (mod P )

sgnv(a)δ
a(t1) · · · a(tm)

〈a〉yv

)
zd.

In particular, ∀n ∈ Z, the sum

Lv(n; t; z) :=
∑
d≥0

( ∑
a∈A+,degθ a=m,
a 6≡0 (mod P )

a(t1) · · · a(tm)

an

)
zd ∈ Tv

defines an entire function on Cm+1
v . We refer the reader to [7], [10], for various

arithmetic properties of “special values” of the series Lv(n; t; z), n ∈ Z.

5.2. Twisted Goss zeta functions.
In this example, A is general. Recall that C∞ is the completion of K∞. Let

m ≥ 1 be an integer. Let F ⊂ Fq be a field containing F∞. Let km(F) be defined
as follows:
- if m = 1, k1(F) = F((y1)) where y1 is an indeterminate over F,
- ifm ≥ 2, let ym be an indeterminate over km−1(F), and set km(F) = km−1(F)((ym)).
Observe that F is algebraically closed in km(F).

Let L/K∞ be a finite extension and let OL be the valuation ring of L. Then:

OL = FL[[πL]],

where FL is the residue field of L, and πL is a uniformizer of OL. Let’s consider the
following tensor product:

km(F∞)⊗F∞ OL.

This ring can be identified naturally with km(FL) ⊗FL OL. Any element f ∈
km(FL)⊗FL OL can be written in a unique way:∑

i≥0

αi ⊗ πiL, αi ∈ km(FL).

We set:
v∞(f) = Inf{v∞(πL)i, i ∈ N, αi 6= 0}.
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Then v∞ is a valuation on km(F∞) ⊗F∞ OL which does not depend on the choice
of πL. We observe that km(F∞) ⊗F∞ OL is complete with respect to v∞. Finally
denote by Lm the completion (for v∞) of the field of fractions of km(F∞)⊗̂F∞OL.
If we identify 1⊗ FL with FL, and 1⊗ πL with πL which is thus an indeterminate
over km(FL), we have:

Lm = km(FL)((πL)).

If L ⊂ L′, then we have a natural injective map compatible with v∞:

Lm ↪→ L′m.

We denote by C∞,m the completion (for v∞) of the inductive limit lim−→L/K∞ finite
Lm.

Note that C∞, km(Fq) ⊂ C∞,m, and the residue field of C∞,m is km(Fq).
Let z be an indeterminate over C∞,m, we denote by Tz(C∞,m) the Tate algebra

in the variable z with coefficients in C∞,m.

We fix a K-embedding of K in C∞. As in Section 2, we consider the Goss
admissible map [.] (Example 2.4). Note that V = K([I], I ∈ I(A)) is a finite
extension of K. Recall that V is viewed as a subfield of K∞([I], I ∈ I(A)). Let OV
be the integral closure of A in V. Since, for a ∈ K×, we have [aA] = a/ sgn(a), we
deduce that if I is a non-zero ideal of A then [I] ∈ OV . Also recall that F∞ ⊂ OV
is algebraically closed in V.

Let m ∈ N. For i = 1, . . . ,m, let ρi : K∞([I], I ∈ I(A)) → F∞((yi))t be a
continuous Fp-algebra homomorphism. Let’s observe that K∞([I], I ∈ I(A))/K∞
is a totally ramified extension of degree dividing the l.c.m. of pk and d∞, where pk

is the exact power of p dividing | Pic(A) |, thus the morphisms ρi are described as
in Remark 2.7 where F is replaced by F∞((yi)).

Let Tρ,z(C∞) be the closure of C∞[z][ρi(OV ), i = 1, . . . ,m] in Tz(C∞,m) with

respect to the Gauss norm. Let also Tρ(C∞) be the closure of C∞[ρi(OV ), i =

1, . . . ,m] in C∞,m with respect to the Gauss norm.
Let’s observe that Tρ,z(C∞) is an affinoid algebra over C∞ (this is of also the

case for Tρ(C∞)). In fact, select θ ∈ A \ Fq. Then there exist v1, . . . , vr ∈ OV such

that:
OV = ⊕rj=1F∞[θ]vj .

For i = 1, . . . ,m, let ti = ρi(θ). Then t1, . . . , tm, z are m + 1 indeterminates over
C∞. Let Tm,z(C∞) be the Tate algebra in the variables t1, . . . , tm, z with coefficients
in C∞. Clearly:

Tm,z(C∞) ⊂ Tz(C∞,m),

Tρ,z(C∞) =
∑

1≤i1,...,im≤r

Tm,z(C∞)ρ1(vi1) · · · ρm(vim).

If we apply Theorem 4.1, we get as a special case:

Corollary 5.4. Let E/K be a finite extension. Let y ∈ Zp, the following sum
converges in Tρ,z(C∞) :∑

d≥0

∑
I∈I(OE),I⊂OE
degNE/K(I)=d

ρ1([NE/K(I)]) · · · ρm([NE/K(I)]〈NE/K(I)〉yzd.

Furthermore, as a function in z, it defines an entire function on C∞ with values in
Tρ(C∞).
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Remark 5.5. Let’s suppose that A = Fq[θ], π = 1
θ , E = K. For i = 1, . . . ,m,

let ρi : K∞ → F∞((yi)) be the continuous morphism of Fq-algebras such that
ρi(

1
θ ) = yi, and let ti = ρi(θ) = 1

yi
. Then Tρ,z(C∞) is equal to the Tate algebra in

the variable t1, . . . , tm, z with coefficients in C∞. Let y ∈ Zp, then the sum in the
above Corollary is in this case:∑

d≥0

∑
a∈A+,d

a(t1) · · · a(tm)(
a

θd
)yzd.

Thus, we recover the L-series treated in example 5.1.

5.3. A-harmonic series attached to some admissible maps.

In this example, we work in the case A general. Let η : I(A) → K
×
∞ be an

admissible map such that n(η) ∈ Z. Recall that there exist an open subgroup of

finite index N(η) ⊂ K×∞, and an element γη ∈ K
×
∞, such that:

∀I ∈ I(A),∀α ∈ K× ∩N(η), η(Iα) = η(I)(
α

sgn(α)
)n(η)γv∞(α)

η .

Note that there exists an open subgroup of finite index N ⊂ K×∞, N ⊂ N(η), such
that:

∀α ∈ K× ∩N, sgn(γη)v∞(α) = 1.

Let χ : I(A)→ K
×
∞ be the map defined by:

∀I ∈ I(A), χ(I) = πv∞(η(I))+ deg I
d∞ (n(η)+v∞(γη)) sgn(η(I)).

If we set:

P = {xA, x ∈ K× ∩N}.
Then I(A)/P is a finite abelian group and:

∀I ∈ I(A),∀J ∈ P, χ(IJ) = χ(I).

Let n ∈ Z. For s = (x, y) ∈ S∞, let’s set:

Lη,A(χn; s) =
∑
d≥0

∑
I∈I(A),I⊂A

deg I=d

χn(I)〈η(I)〉−yx−d.

Then, by Theorem 4.1, Lη,A(χn; .) converges on S∞. Now, let x ∈ C×∞, and observe
that:

Lη,A(χ−n; (π
−n
d∞ (n(η)+v∞(γη)x, n)) =

∑
d≥0

∑
I∈I(A),I⊂A

deg I=d

η(I)−nx−d.

Thus, for all n ∈ Z, the following function in the variable z is entire on C∞:

Zη,A(n; z) =
∑
d≥0

∑
I∈I(A),I⊂A

deg I=d

η(I)−nzd.

Observe that, by Lemma 3.2, if nn(η) ≤ 0, we have:

Zη,A(n; z) ∈ K(η(I), I ∈ I(A))[z].

Let’s furthermore assume that η is an algebraic admissible map. Let E =
K(η(I), I ∈ I(A)) which is a finite extension of K, and let E∞ = E ⊗M K∞.
Let z be an indeterminate over K∞, following [10], we denote by Tz(E∞) the

closure of E∞[z] in E ⊗M K̃∞, where K̃∞ denotes the completion of the field of



TWISTED CHARACTERISTIC p ZETA FUNCTIONS 23

fractions of the Tate algebra in the variable z with coefficients in K∞. From the
above discussion, we get:

Corollary 5.6. Let n ∈ Z. The following sum converges in Tz(E∞) :

ζη,A(n; z) :=
∑
d≥0

∑
I∈I(A),I⊂A

deg I=d

η(I)−nzd.

Furthermore, if nn(η) ≤ 0, we have:

ζη,A(n; z) ∈ E[z].

Let v be a finite place of K, and let Pv be the maximal ideal of A associated to v.
Let I(Pv) be the group of fractional ideals of A which are relatively prime to Pv. Let
Cv be the v-adic completion of Kv. Let η be our admissible map introduced in the
beginning of the paragraph, and we assume that η is algebraic. Let χ : I(Pv)→ Kv

such that:

∀I ∈ I(Pv), χ(I) = sgnv(η(I))π
v(η(I))+ deg I

d∞ v(γη)
v .

Note that there exists an open subgroup of finite index N ′ ⊂ K×∞, N ′ ⊂ N(η), such
that:

∀α ∈ K× ∩N ′, sgnv(γη)v∞(α) = 1.

Then:
∀I ∈ I(Pv),∀J ∈ P ′, χ(IJ) = χ(I),

where

P ′ = {xA ∈ I(Pv), x ≡ 1 (mod Pv), x ∈ K× ∩N ′ ∩Ker sgn}.
Let n ∈ Z. For s = (x, y) ∈ C×v × Zp, let’s set:

Lv,η,A(χn; s) =
∑
d≥0

∑
I∈I(Pv),I⊂A

deg I=d

χn(I)〈η(I)〉−yv x−d.

Then, by Theorem 4.4, Lv,η,A(χn; .) converges on C×v × Zp. Now, let x ∈ C×v , and
observe that:

Lv,η,A(χ−n; (π
−n
d∞ v(γη)
v x, n)) =

∑
d≥0

∑
I∈I(Pv),I⊂A

deg I=d

η(I)−nx−d.

Thus, for all n ∈ Z, the following function in the variable z is entire on Cv:

Zv,η,A(n; z) =
∑
d≥0

∑
I∈I(Pv),I⊂A

deg I=d

η(I)−nzd.

By Lemma 3.2, if nn(η) ≤ 0, then:

Zv,η,A(n; z) ∈ K(η(I), I ∈ I(A))[z].

In particular, if Pv = αA, α ∈ N(η) (there exist infinitely many such maximal
ideals by Chebotarev’s density Theorem), then, for n ∈ Z we get:

Zv,η,A(n; z) =
(

1− (
α

sgn(α)
)−nn(η)γ

n deg Pv
d∞

η zdegPv
)
Zη,A(n; z).

We refer the interested reader to a forthcoming work of the authors dedicated to
the arithmetic of such A-harmonic series ([12]).
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6. Multiple several variable twisted zeta functions

We briefly explain how the constructions in Section 4 can easily be generalized
in the spirit of Thakur’s construction of positive characteristic multiple zeta values;
the reader interested by the arithmetic of multiple zeta values for K = Fq(θ) is
referred to (this list is not exhaustive): [4], [39],[40], [25], [26], [14], [15], [29]. We
keep the notation of Sections 3 and 4.

Let m ∈ N,m ≥ 1. Let k1, . . . , km ∈ N and n1, . . . , nm ∈ N \ {0}. We set:

SF,n = SF,n1
× · · · × SF,nm .

For i = 1, . . . ,m, let ψ1,i, . . . , ψki,i be ki admissible maps such that n(ψj,i) ∈ N.
For i = 1, . . . ,m, j = 1, . . . , ki, let ρj,i : K(ψj,i) → F be an Fp-algebra homomor-
phism. For i = 1, . . . ,m, we set:

∀I ∈ I(A), Iρ
i
,ψ
i

=

ki∏
j=1

ρj,i(ψj,i(I)) ∈ F.

We recall the notation in Section 3. Let E/K be a finite extension. Let B ⊂ OE
be a non-zero ideal. Let v1, . . . , vr be the places of E above∞, and for j = 1, . . . , r,
let Nj be an open subgroup of finite index of E×vj (Evj is the vj-adic completion of

E), and we set : N =
∏r
j=1Nj . Let S be a finite set, possibly empty, of maximal

ideals of OE which are relatively prime to B. For i = 1, . . . ,m, let χi : I(B) → F
be a map such that:

∀I ∈ I(B),∀J ∈ P(B, N), χi(IJ) = χi(I).

For i = 1, . . . ,m, let η1,i, . . . , ηni,i be ni admissible maps with values in K
×
∞.

For i = 1, . . . ,m, j = 1, . . . , ni, let σj,i : K(〈ηj,i〉) → F be a continuous Fp-algebra
homomorphism. For i = 1, . . . ,m, let si = (xi; yi) ∈ SF,ni , for I ∈ I(A), we set:

Isiσi,ηi
= xdeg I

i

ni∏
j=1

σj,i(〈ηj,i(I)〉)yj,i ∈ F×.

We fix i such that 1 ≤ i ≤ m. Let d ≥ 0 be an integer, for si = (xi; yi) ∈ SF,ni ,
we denote by Sd;S,OE (ρ

i
, ψ

i
;σi, ηi;χi; si) (or Sd(ρi, ψi;σi, ηi;χi; si) for short) the

following sum: ∑
I∈IS(B),I⊂OE
degNE/K(I)=d

χi(I)NE/K(I)ρ
i
,ψ
i
NE/K(I)−siσi,ηi

.

By the proof of Theorem 4.1, we get:

Corollary 6.1. For any s = (s1, . . . , sm) ∈ SF,n, we associate the following sums
with values in F :∑

d≥0

Sd(ρ1
, ψ

1
;σ1, η1

;χ1; s1)
∑

d>d2>...>dm≥0

m∏
j=2

Sdj (ρj , ψj ;σj , ηj ;χj ; sj),
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∑
d≥0

Sd(ρ1
, ψ

1
;σ1, η1

;χ1; s1)
∑

d≥d2≥...≥dm≥0

m∏
j=2

Sdj (ρj , ψj ;σj , ηj ;χj ; sj).

Then, these functions continue analytically to an entire function on SF,n.

We furthermore assume that n(ηj,i) ∈ Z, j = 1, . . . , ni, i = 1, . . . ,m, and that all
our admissible maps are algebraic. Let v be a finite place of K, and let Pv be the
maximal ideal of A corresponding to the finite place v.

Let’s set:

SF,v,n = SF,v,n1
× · · · × SF,v,nm .

For i = 1, . . . ,m, j = 1, . . . , ki, let ρj,i : K(ψi) ↪→ F be an Fp-algebra homomor-
phism. For i = 1, . . . ,m, we set as above:

∀I ∈ I(A), Iρ
i
,ψ
i

=

ki∏
j=1

ρj,i(ψj,i(I)) ∈ F.

For i = 1, . . . ,m, j = 1, . . . , ni, let σj,i : Kv(〈ηi〉v) ↪→ F be a continuous Fp-
algebra homomorphism. For i = 1, . . . ,m, for si = (x; y

i
; δi) ∈ SF,v,ni , for I ∈ I(A),

we set:

Isiσi,ηi
= xdeg I

ni∏
j=1

sgnv(ηj,i(I))δj,i
ni∏
j=1

σj,i(〈ηj,i(I)〉yjv ) ∈ F×.

Let E/K be a finite extension, and let B, N, χ1, . . . , χm, and S as above. Let Sv
be the union of S and the maximal ideals of OE above Pv and that do not divide
B.

We fix i ∈ {1, . . . ,m}. Let d ≥ 0 be an integer, for si = (x; y
i
; δi) ∈ SF,v,ni , we

set:

Sv;d(ρi, ψi;σi, ηi;χi; si) =
∑

I∈IS(B),I⊂OE
degNE/K(I)=d

χi(I)NE/K(I)ρ
i
,ψ
i
NE/K(I)−siσi,ηi

.

By the proof of Theorem 4.4, we get:

Corollary 6.2. For any s = (s1, . . . , sm) ∈ SF,v,n, we associate the following sums
with values in F :∑

d≥0

Sv;d(ρ1
, ψ

1
;σ1, η1

;χ1; s1)
∑

d>d2>...>dm≥0

m∏
j=2

Sv;dj (ρj , ψj ;σj , ηj ;χj ; sj),

∑
d≥0

Sv;d(ρ1
, ψ

1
;σ1, η1

;χ1; s1)
∑

d≥d2≥...≥dm≥0

m∏
j=2

Sv;dj (ρj , ψj ;σj , ηj ;χj ; sj).

Then, these functions continue analytically to an entire function on SF,v,n.

Let’s pursue our basic example 5.3. Let η : I(A) → K
×
∞ be an admissible map

such that n(η) ∈ Z. Let m ≥ 1 be an integer and let z1, . . . , zm be m indetermi-
nates over C∞. Let n = (n1, . . . , nm) ∈ Zm. Let’s define Zη,A(n; z) ∈ K(ηi(I), I ∈
I(A), i = 1, . . . ,m)[z2, . . . , zm][[z1]] to be the following sum:∑

d≥0

∑
I1,...,Im∈I(A)
I1,...,Im⊂A

d=deg I1>deg I2>···>deg Im≥0

1

η1(I1)n1 · · · ηm(Im)nm
zdeg I1

1 · · · zdeg Im
m ;
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let’s also define Z∗η,A(n; z) ∈ K(ηi(I), I ∈ I(A), i = 1, . . . ,m)[z2, . . . , zm][[z1]] as
the following sum:∑

d≥0

∑
I1,...,Im∈I(A)
I1,...,Im⊂A

d=deg I1≥deg I2≥···≥deg Im≥0

1

η1(I1)n1 · · · ηm(Im)nm
zdeg I1

1 · · · zdeg Im
m .

Then, as in Example 5.3, by Corollary 6.1, we deduce that Zη,A(n; z) and Z∗η,A(n; z)

define entire functions on Cm∞. Furthermore, by Lemma 3.2, if n1n(η) ≤ 0, then:

Zη,A(n; z), Z∗η,A(n; z) ∈ K(ηi(I), I ∈ I(A), i = 1, . . . , r)[z1, z2, . . . , zm].

Let’s observe that, if η = [.], A = Fq[θ], and π = 1/θ, we recover Thakur’s multiple
zeta values (as in Example 5.1, one can also recover their deformations in Tate
algebras treated in [29]):∑

d≥0

∑
a1,...,am∈A+

d=deg a1>···>deg am≥0

1

an1
1 · · · a

nm
m

m∏
i=1

z
degθ ai
i ∈ K[z2, . . . , zm][[z1]].

Let’s assume that η is algebraic. Let v be a finite place of K, and let Pv be the
maximal ideal of A associated to v. Let I(Pv) be the group of fractional ideals of A
which are relatively prime to Pv. Let Cv be the v-adic completion of Kv. We define
Zv,η,A(n; z) ∈ K(ηi(I), I ∈ I(A), i = 1, . . . , r)[z2, . . . , zm][[z1]] to be the following
sum: ∑

d≥0

∑
I1∈I(Pv),I2,...,Im∈I(A)

I1,...,Im⊂A
d=deg I1>···>deg Im≥0

1

η1(I1)n1 · · · ηm(Im)nm
zdeg I1

1 · · · zdeg Im
m ;

we also define Z∗v,η,A(n; z) ∈ K(ηi(I), I ∈ I(A), i = 1, . . . , r)[z2, . . . , zm][[z1]] to be:∑
d≥0

∑
I1∈I(Pv),I2,...,Im∈I(A)

I1,...,Im⊂A
d=deg I1≥···≥deg Im≥0

1

η1(I1)n1 · · · ηm(Im)nm
zdeg I1

1 · · · zdeg Im
m .

Again, as in Example 5.3, by Corollary 6.2, we deduce that Zv,η,A(n; z) and Z∗v,η,A(n; z)
define entire functions on Cmv .

If η = [.], A = Fq[θ], and π = 1/θ, we have:

Zv,η,A(n; z) =
∑
d≥0

∑
a1,...,am∈A+,a1 6∈Pv

d=deg a1>deg a2>···>deg am≥0

1

an1
1 · · · a

nm
m

m∏
i=1

z
degθ ai
i .

Note that, if n1, . . . , nm ≤ 0, then:

Zv,η,A(n; z) ≡ Zη,A(n; z) (mod Pn1A[z1, . . . , zm]).

Furthermore, for n ∈ Zm, we observe that Zv,η,A(n; z) is the Pv-adic limit of certain
sequences Zη,A((mk, n2, . . . , nm); z) ∈ K[z1, . . . , zm], mk ≤ 0, where mk is suitably
chosen and mk converges p-adically to n1. Indeed, let Tz(Kv) be the Tate algebra in
the variables z1, . . . , zm, with coefficients in Kv equipped with the Gauss valuation
associated to v and still denoted by v. Now, as in the proof of Theorem 4.4, for
k ≥ 0, let’s select −mk ∈ N such that:

i) −mk ≡ −n1 (mod qk+1Zp),
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ii)−mk ≡ −n1 (mod qdegPv − 1),
iii) `q(−mk) ≤ (k + degPv)(q − 1),
iv) −mk ≥ qk+1.

For example, if −n1 =
∑
i≥0 aiq

i, ai ∈ {0, . . . , q−1}, select δk ∈ {1, . . . , qdegPv −1}
such that −n1 −

∑k
i=0 aiq

i ≡ δk (mod qdegPv − 1), and set:

−mk =

k∑
i=0

aiq
i + δkq

(k+1) degPv .

Then:

v(Zη,A((mk, n2, . . . , nm); z)−
k+degPv∑
d=0

∑
a1,...,am∈A+,a1 6∈Pv

d=deg a1>···>deg am≥0

1

an1
1 · · · a

nm
m

m∏
i=1

z
degθ ai
i )

≥ qk+1 − (|n2|+ · · ·+ |nm|)(degPv + k).

Thus in Tz(Kv) :

Zv,η,A(n; z) = lim
m
Zη,A((mm, n2, . . . , nm); z).

To our knowledge, and in the caseA = Fq[θ], these type of elements Zv,η,A(n; 1) ∈
Kv have not been studied so far, and it would be very interesting to obtain infor-
mations on such type of objects, especially in the spirit of [4].
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