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x Males and females produced louder calls with an up-shifted frequency spectrum in 

response to experimental noise.  

 

*Highlights (for review)



Songbird mates change their call structure and intra-pair communication at the nest in 1 

response to environmental noise 2 

 3 

Highlights: 4 

x Both zebra finch parents incubate and they use coordinated call duets when 5 

they meet at the nest. 6 

x In their natural habitat, birds face variable wind noise that may constrain their 7 

communication at the nest.  8 

x In response to an experimental noise, pairs adjusted their duets and increased 9 

their effort to communicate. 10 

x Duets’ flexibility in response to noise depended on the context of meeting at 11 

the nest.  12 

x Males and females produced louder calls with an up-shifted frequency 13 

spectrum in response to experimental noise.  14 

 15 

Summary 16 

The coordination of behaviours between mates is a central aspect of the 17 

biology of the monogamous pair bonding in birds. This coordination may rely on 18 

intra-pair acoustic communication, which is surprisingly poorly understood. Here we 19 

examined the impact of an increased level of background noise on intra-pair acoustic 20 

communication at the nest in the zebra finch. We monitored how partners adapted 21 

their acoustic interactions in response to a playback of wind noise inside the nestbox 22 

during incubation. Both zebra finch parents incubate and use coordinated call duets 23 

when they meet at the nest. The incubating parent can vocalize to its partner either 24 

outside the nestbox (sentinel duets) or inside the nestbox (relief and visit duets), 25 
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depending on the context of the meeting. Pairs use these duets to communicate on 26 

predation threats (sentinel duets), incubation duties (relief), and other nesting 27 

activities (visit duets). Each of these duets likely represents a critical component of 28 

pair coordination. In response to the noise playback, partners called less and more 29 

rapidly during visit and relief duets. Male and female calls were more regularly and 30 

precisely alternated during relief duets. Mates increased the number of visit duets and 31 

their spatial proximity during sentinel duets. Furthermore, both males and females 32 

produced louder, higher-frequency, and less broadband calls. Taken together our 33 

results show that birds use several strategies to adjust to noise during incubation, 34 

underlining the importance of effective intra-pair communication for breeding pairs. 35 
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Introduction 44 

Monogamy in birds represents a partnership where the male and female adjust their 45 

behaviour to each other and synchronize many of their activities (Black, 1996). Many 46 

long-term monogamous species show an increase in reproductive success with pair 47 

bond duration, which may be due to the improvement in partners’ coordination over 48 

time (mate familiarity effect, (Black, 2001; Coulson, 1966; Forslund & Pärt, 1995)). 49 

In some species, partners synchronize their foraging trips or their nest visits to feed 50 
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the chicks (Lee, Kim, & Hatchwell, 2010; van Rooij & Griffith, 2013), and their 51 

degree of synchrony can correlate with their reproductive success  (Mariette & 52 

Griffith, 2012, 2015). In species in which both partners incubate, hatching success 53 

may be increased when parents better coordinate incubation bouts (Spoon, Millam, & 54 

Owings, 2006). Partners’ coordination during parental care may reflect their 55 

coordination in other situations: mates may defend their resources as a team by 56 

alarming for danger (Krams, Krama, & Igaune, 2006), repelling predators or intruders 57 

on their territory (Black, 2001; Regelmann & Curio, 1986), or alternating vigilance 58 

periods (McGowan & Woolfenden, 1989). 59 

Communication and especially acoustic communication may play a key role in 60 

mate coordination. Whereas birdsong has been studied in the context of mate choice 61 

extensively in males (Catchpole & Slater, 2008) and more rarely in females (Cooney 62 

& Cockburn, 1995; Langmore, 1998; Odom, Hall, Riebel, Omland, & Langmore, 63 

2014; Riebel, 2003; Riebel, Hall, & Langmore, 2005), much less is known about 64 

vocal interactions after pair formation between the male and female of a breeding pair 65 

(Gorissen, Eens, & Nelson, 2004) with the exception of acoustic duets. Duets are joint 66 

acoustic displays of partners that alternate or partly overlap vocal or non-vocal sounds 67 

(Dahlin & Wright, 2009; Farabaugh, 1982; Hall, 2004, 2009). Although rare (ca. 4% 68 

of bird species), they have attracted much interest, and the highly coordinated and 69 

conspicuous song duets of tropical bird species have been particularly well studied 70 

(Hall, 2004, 2009). But intra-pair communication may be more widespread and 71 

involve simpler or low-amplitude vocalizations such as calls (Lamprecht, Kaiser, 72 

Peters, & Kirchgessner, 1985; Morton & Derrickson, 1996; Todt, Hultch, & Duvall, 73 

1981; Wright & Dahlin, 2007). Females can produce sounds at the nest (Beletsky & 74 

Orians, 1985; McDonald & Greenberg, 1991; Yasukawa, 1989) that may be used in 75 
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interactive communication with their mate (Gorissen et al., 2004). Such vocal 76 

interactions can facilitate a pair’s coordination during breeding (Halkin, 1997; 77 

Ritchison, 1983). For instance, nest relief and greeting ceremonies have been 78 

described in several bird species but their functions remain unclear (Wachtmeister, 79 

2001). 80 

If vocal interactions around the nest allow coordination of behaviours between 81 

mates, they must remain efficient despite environmental constraints on acoustic 82 

communication. Noise is a common constraint on acoustic communication. By 83 

decreasing signal to noise ratio, background noise makes the signal harder to extract 84 

for the receiver (Brenowitz, 1982; Wiley & Richards, 1982). Noise particularly 85 

constrains acoustic communication if spectral components of the noise and the signal 86 

partly overlap (Barber, Crooks, & Fristrup, 2010; Francis & Barber, 2013; Halfwerk 87 

& Slabbekoorn, 2015; Slabbekoorn, 2004). Birds have evolved many adaptive 88 

strategies to cope with background noise and to increase signal reception efficacy 89 

(Brumm & Slabbekoorn, 2005). Senders can use different frequencies to avoid 90 

spectral overlap between signal and noise (Slabbekoorn & Peet, 2003). They can 91 

increase signal amplitude (the “Lombard effect”) (Brumm & Todt, 2002; Cynx, 92 

Lewis, Tavel, & Tse, 1998; Potash, 1972) or signal redundancy (Brumm & Slater, 93 

2006; Lengagne, Aubin, Lauga, & Jouventin, 1999), as well as change the timing of 94 

their vocalizations to avoid noise (Brumm, 2006b; Dreiss, Ruppli, Faller, & Roulin, 95 

2015; Gil, Honarmand, Pascual, Pérez-Mena, & Garcia, 2014). Senders and receivers 96 

can also adjust their location during communication, such as moving closer to each 97 

other (Halfwerk, Bot, & Slabbekoorn, 2012) or stay outside / inside the nest cavity 98 

(Blumenrath, Dabelsteen, & Pederson, 2004). The effects of background noise have 99 

been primarily studied on songs and other long-range vocalisations, and thus little is 100 
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understood about the effects of background noise on private, short range vocalisations 101 

(Leonard & Horn, 2005, 2008). Importantly, short range vocalisations are less 102 

affected by degradation during sound propagation and thus likely require very 103 

different adjustment strategies than long-range vocalisations. Noise likely hinders 104 

intra-pair communication around the nest during breeding, which could explain the 105 

observed impairment of reproductive success by noise (Barber et al., 2010; 106 

Slabbekoorn & Ripmeester, 2008). 107 

The zebra finch (Taeniopygia guttata) provides an excellent study system to 108 

test whether partners adapt short-range intra-pair communication to noise constraints. 109 

Zebra finches form life-long pair bonds and are highly coordinated partners, starting 110 

incubation on the same day (Gilby, Mainwaring, & Griffith, 2013), sharing incubation 111 

time equally (Delesalle, 1986; Gilby et al., 2013; Gorman, Arnold, & Nager, 2005; 112 

Zann & Rossetto, 1991), and synchronizing visits to the nest and to foraging patches 113 

during the nestling period (Mariette & Griffith, 2012, 2015). Each time they meet 114 

around the nest during incubation or the nestling period, mates perform a call duet that 115 

likely participate in coordination (Boucaud, Mariette, Villain, & Vignal, 2015; Elie et 116 

al., 2010) Zebra finches live in semi-arid zones of Australia, an unpredictable 117 

environment where windy conditions are highly variable on an hourly basis. Because 118 

zebra finch calls, and particularly nest calls, have a spectrum in the low range (Elie et 119 

al., 2010; Elie & Theunissen, 2015; Zann, 1996), they are very likely to overlap in 120 

frequency with wind noise. To our knowledge no experiment testing this effect has 121 

been conducted in zebra finches. 122 

In the present study, we exposed incubating zebra finch pairs to a natural wind 123 

noise playback inside their nestbox. Because the male and female take turns 124 

incubating, both partners were exposed to the noise. After 15 hours of noise, intra-pair 125 
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communication and partners’ behaviour were monitored and compared to the control 126 

condition. Because call duets are supposed to participate in partners’ coordination 127 

during incubation, we expect birds to show strategies to maintain signal efficacy in 128 

response to the noise playback. We monitored three duets types – incubation 129 

relief/nest visit/sentinel – and we studied four aspects of this intra-pair communication 130 

1) the temporal structure of duets 2) the male-female dynamic during the duet, 3) the 131 

number of vocal interactions between partners and the spatial proximity of partners 132 

during interactions, and finally 4) the acoustic structure of the calls used during 133 

interactions. In response to this experimental increase of noise, we expected the 134 

partners to either avoid communicating or to display strategies to cope with it e.g. via 135 

increasing signal redundancy (longer duets and/or duets composed of longer calls), 136 

increasing partners’ proximity during vocal interactions, and/or changing signal 137 

structure (frequency range and/or amplitude).  138 

 139 

Materials and methods 140 

Subjects and housing conditions 141 

Eighteen male-female pairs of zebra finches (Taeniopygia guttata) were used in this 142 

study, from October 2013 to December 2013. All birds came from our breeding 143 

colony (ENES laboratory, University of Saint-Etienne). They were all the same age 144 

(between 24 and 28 months at the start of the experiment) and the experiment was 145 

conducted on the third reproductive event of their lifetime for every pair. Before the 146 

experiment, pairs were housed separately in cages (40 x 40 x 40 cm) equipped with 147 

perches and a pool for environmental enrichment. All birds were kept under the same 148 

environmental conditions (temperature between 24 and 26 °C, light conditions 14:10 149 

h light-dark). Birds were fed with finch seed cocktail, egg paste, water and cuttlefish 150 
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bones ad libitum and supplemented with salad once a week. For the experiment, pairs 151 

were transferred to an indoor breeding aviary (6.5 x 5.5 x 3.5 m, temperature between 152 

19 and 24 °C, light conditions 14:10 h light-dark). Twenty-seven nestboxes were 153 

installed (dimensions 13 x 12 x 17 cm). 154 

During the experiment, all 18 pairs were allowed to breed freely in the aviary. Pairs 155 

were provided with dry grass and cotton ad libitum.  Birds were identified with two 156 

plastic colour bands.  157 

As the experiment was performed during incubation, pairs were captured a few days 158 

after hatching (from day 1 to 5 post hatching) and put back in their initial home cage 159 

with their nestbox containing the chicks. Other pairs were released in the aviary to 160 

replace the outgoing ones, so that the aviary always contained 12 breeding pairs, 161 

keeping the conspecific background noise at a stable level.  162 

Ethical Note 163 

Experiments were performed under the authorization no. 42-218-0901-38 SV 09 164 

(ENES Lab, Direction Départementale des Services Vétérinaires de la Loire) and 165 

were in agreement with the French and European legislation regarding experiments on 166 

animals. 167 

Experimental manipulation of noise 168 

The experiment was performed during incubation. Each nest was recorded on two 169 

consecutive morning sessions, so the design was within-pair and all analyses were 170 

thus done using within-subject statistics. On one morning, the noise inside the nest 171 

had previously been artificially increased for 15 hours and the other morning was used 172 

as control treatment. The order of treatment days was defined at random. Because of 173 

the proximity between nestboxes in the aviary, we chose to experimentally modify the 174 

noise inside the nestbox, so that only pairs recorded during the session were subjected 175 
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to the noise treatment, without disturbing other pairs around. This treatment mimicked 176 

the noise underwent by incubating birds in artificial nestboxes (that are readily used 177 

by wild zebra finches (Simon C. Griffith, 2008)), inside which wind noise is 178 

reverberated, but also in natural nests which are woven bottle-shaped nests (Zann, 179 

1996) that very weakly attenuate wind noise.  180 

Noise was played back using a modified headphone (Sennheiser, HD 25-1) serving as 181 

a speaker and specifically designed for short-range diffusion of sound. This speaker 182 

was installed the day before the first day of recording (control or noise).  183 

To mimic noise naturally encountered by the species, we used wind noise recorded in 184 

the field from a breeding area of wild zebra finches (Arid Zone Research Station, 185 

Fowlers Gap, New South Wales, Australia) with an ultra-directional microphone 186 

(Sennheiser, MKH 70). We used a sequence of 15 seconds of wind noise (sound 0) 187 

repeated for a total duration of 15 hours of playback before the recording session 188 

(from 17:30 the day before to 10:00-12:00 the day of recording). The recordings took 189 

place within the last 20% of the total playback time (from 8:30 to 12:00). So if birds 190 

habituated to the particular noise snippet repeated during the playback, we assumed 191 

habituation was largely completed after 15 hours, and all the behaviours and 192 

vocalizations analysed in our results were equally affected. 193 

The sound pressure level inside the next box was measured in the two treatments 194 

using a sound level meter (Rion NL-42, with additional NX-42WR package, 195 

frequency weighting ‘Z’, temporal weighting ‘Fast’). Wind noise playback increased 196 

sound pressure level from 58.9 dB SPL to 63.7 dB SPL (~5 dB increase) compared to 197 

control, which is a relevant increase in sound pressure level for zebra finches in the 198 

wild (Fig. S2).  This treatment represented an almost doubled acoustic pressure, which 199 

is a strong change in background noise conditions (see spectral comparison of 200 
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background noise during treatments, Fig. S1). Because the noise was played inside the 201 

nestbox, the background noise level outside remained the same in both treatments i.e 202 

58.1dB SPL in control and 58.7dB in noise (measured at 20cm from the box, with 203 

basal bird activity in the aviary). Note that the basal background noise in control 204 

treatment is created by the activity and vocalizations of the 12 pairs of birds breeding 205 

at the same time in the aviary. 206 

Recording of mates’ acoustic communication at the nest 207 

Mates’ communication at the nest was recorded with a tie-microphone (Audio 208 

Technica, AT 803) placed in the top of the nestbox, connected to a digital audio 209 

recorder (Zoom H4N, 44.1 kHz, 16 bit). An additional tie microphone was placed 210 

outside of the nestbox at 20 cm of the entrance to record vocal activity in the vicinity 211 

of the nest. Microphone calibrations were previously performed with a 10-seconds 212 

white noise and a sound level meter (Rion NL-42, with additional NX-42WR 213 

package). Duets between partners were assessed both around and inside the nest. 214 

Behavioural monitoring  215 

During all recording sessions, an observer sat in a hide inside the aviary and recorded 216 

partners’ behaviour. The location of both partners relative to the nest was monitored 217 

during vocal interactions. One recording session consisted of two consecutive 218 

incubation reliefs so that the two categories of reliefs were monitored (male returns 219 

vs. female returns to the nest). As a consequence, the duration of one session 220 

depended on the observed pair and could last from one to three and a half hours. For 221 

each session, duets were counted, classified and extracted. 222 

Definition of duets between mates 223 

Two types of duets were analysed: ‘meeting duets’ and ‘sentinel duets’. ‘Meeting 224 

duets’ are vocal greetings performed by the pair when one mate returns to the nest and 225 
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meets its partner, as described by (Elie et al., 2010). At the end of a meeting, the 226 

returning mate can relieve its partner in the nest or not, leading to two subtypes of 227 

‘meeting duets’ defined by their outcome: the ‘relief duets’ (R) when the returning 228 

mate stays in the nest and takes its turn incubating the eggs, or the ‘visit duets’ (V) 229 

when the returning mate just visits its mate at the nest, for instance bringing nest 230 

material, but do not take its turn incubating and leaves the nest at the end of the 231 

interaction. During a ‘visit duet’ (V), the returning mate can either enter the nestbox 232 

or stay at the entrance but eventually departs. 233 

A meeting duet was defined as a sequence of at least two calls, produced by both 234 

sexes and separated by less than 10 seconds (Elie et al., 2010). When the returning 235 

mate was far from the nestbox, its calls were not accurately detected among 236 

vocalizations of other birds of the aviary. As a consequence, we considered that a 237 

meeting duet started after the returning mate perched within 20 cm of the nestbox and 238 

when the partner inside the nest uttered a call less than 5 s before or after a call of its 239 

mate or if the returning mate entered the box. A meeting duet stopped either when at 240 

least one mate left the nest area, or when both birds stopped calling for a period of 10 241 

s. During a meeting duet, the calls of the partners could either perfectly alternate or 242 

partly overlap. 243 

‘Sentinel duets’ (S) are vocal interactions performed with one mate inside the nest and 244 

the other staying outside, located between 20 cm and 5 m from the nest (Elie et al., 245 

2010). Again, calls from the outside mate could not be accurately detected among 246 

vocalizations of other birds, so we used the sequence of calls of the incubating partner 247 

as a proxy of the sentinel duet. The same 10 seconds rule as above was applied to 248 

decide the end of a sentinel duet. The incubating partner rarely produced isolated 249 

calls, i.e. calls not included in a sentinel duet. 250 
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Analysis of duet structure 251 

Parameters 252 

All duets (N= 323, from N= 18 pairs, table S1) were extracted and analysed using 253 

Praat software (www.praat.org). The location of the birds in or outside the nestbox 254 

during the duet was scored and all calls were manually labelled using Praat ‘annotate’ 255 

function as time intervals. Each call was labelled as male or female and assigned to 256 

one of the three following call types (see Fig. S3 for spectrograms of duets and call 257 

types and sounds 1 to 5): 258 

- Short calls are primarily tet calls, i.e. soft and short harmonic stacks 259 

(57.7±19.2 ms) with almost no frequency modulations (Elie et al., 2010; Zann, 260 

1996). Cackle and thuck calls were rarely produced and thus are pooled in this 261 

category (Zann, 1996). 262 

- Whines are soft and high-pitched moans, with variable but usually long 263 

duration (182.3±109.3 ms). This ‘pleading’ sound is a vocalization specifically 264 

uttered at the nest site (Elie et al., 2010; Zann, 1996). It can be flanked with 265 

beak-nibbling sounds.  266 

- Arks are intermediate calls (89.4±23.0 ms) with a downsweep component 267 

(Zann, 1996). 268 

When duets were performed with both birds inside the nestbox, we reported the time 269 

partners spent together in the nest. The latency of the incubating mate to answer the 270 

calls of the returning partner was calculated as the delay between the start of the first 271 

call uttered by the returning partner and the start of the first call uttered in response by 272 

the incubating partner. Using annotations on duets, the following characteristics of the 273 

duets were automatically calculated: number of calls, call rate, number and proportion 274 

of each call category, duet duration (time from the start of the first call to the end of 275 
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the last one). Inter-Call Intervals (ICI) were calculated as the time between two call 276 

starts, and the overall ICI, calculated over the whole duet, described the tempo of the 277 

duet.  278 

Statistics. 279 

Distribution of parameters were checked and only parameters showing a symmetrical 280 

distribution (after transformation if necessary) were kept to build composite scores of 281 

the structure of each duet using Principal Components analyses (PCA) (McGregor, 282 

1992). PCs with eigenvalue above 1 were kept for the analysis.  283 

Since R and V duets are defined by their outcome, no clear acoustic basis was found 284 

to analyse them separately, so they were pooled before running PCA. The PCA 285 

described global structure of the duets: numbers and proportions of the different call 286 

types, total number of calls, tempo (call rate and overall ICI) and duration (table 1). 287 

Linear models (‘lmer’ function of ‘lme4’ R package) were then performed on PC 288 

values to assess the effect of the treatment. The following model was applied: model 1 289 

<- lmer (PC values ~ Treatment + Returning partner + Duet type + Noise treatment: 290 

Returning partner + Noise Treatment: Duet type, random=~1|pair identity), where 291 

Treatment had two levels (Noise vs. Control), Returning partner had two levels (Male 292 

vs. Female) and Duet type had two levels (R vs. V). This model was built to test for 293 

specific fixed factors and their interaction with the treatment, although not all the 294 

interactions between the factors were tested they were either considered irrelevant or 295 

biologically difficult to interpret (Forstmeier & Schielzeth, 2011). P-values were 296 

assessed using the ‘Anova’ function (‘car’ R package). S duets were analysed 297 

separately because parameters were measured on vocalizations of the incubating bird 298 

only (see above, definition of duets and variable loadings, table 2). The following 299 

model was used to assess the effect of the treatment on PC values: model 2 <- lmer 300 
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(PC values ~ Treatment * Returning partner, random=~1|pair identity), where 301 

Treatment had two levels (Noise vs. Control) and Returning partner had two levels 302 

(Male vs. Female). P-values were assessed using the ‘Anova’ function (‘car’ R 303 

package).  304 

Analysis of male-female dynamic during relief and visit duets 305 

Male-female dynamic during duets was assessed using two complementary methods: 306 

first using delays of response of each bird to the calls of its partner (ICI analysis), 307 

second using cross-correlation of male and female signals (Cross-correlation 308 

analysis). 309 

ICI analysis 310 

For this analysis, we assessed male and female tempos using means and standard 311 

deviations of intra-sex ICIs (time between two call starts of the same individual) and 312 

mean inter-sex ICIs, i.e. transitions between sexes (M-F and F-M delays) representing 313 

the reaction time of one bird to the calls of its partner. A PCA was run to build 314 

composite scores of male-female dynamic during the duet (table 3).  315 

The effect of the treatment was assessed with a linear model run on PC values (see 316 

model 1). 317 

Cross-correlation analysis 318 

In this analysis we focused on the temporal synchrony (or lack of it) in calling activity 319 

between mates by computing the cross-correlation between male and female calling 320 

signals. A calling signal is a temporal description of the calling emission and is 321 

defined as a function of time t that is 1 if the bird was producing a sound at t and 0 322 

otherwise. The sampling frequency was set to 200Hz (5 ms bins). For example if, for 323 

one part of a calling signal of 75 ms, we obtained 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0, it 324 

means that during the first 15 ms (3*5 ms) the bird was silent, then this bird produced 325 
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a call of 50 ms (10*5 ms) length, before it went back to silence for 10 ms. Smale stands 326 

for the male signal and Sfemale for the female signal. We computed the cross-327 

correlation (cc) of these two signals (Smale and Sfemale) with the following formula: 328 

cc(T) = mean ( (Smale(t) – mean(Smale(t)))*(Sfemale(t+T) – mean(Sfemale(t+T))) ).  329 

With the normalization step, we have: CC(T) = cc(T)/sd(Sfemale)*sd(Smale), where CC 330 

is the normalized cross-correlation, T the time delay, and Smale and Sfemale the male and 331 

female signals as functions of t (time). On a cross-correlation curve, a peak on the 332 

right of the x-axis (positive time values) gives information about the time between a 333 

male call and the previous female call (F->M), and a peak on the left of the x-axis 334 

(negative time values) gives information about the time between a female call and the 335 

previous male call (M->F) (Perez, Fernandez, Griffith, Vignal, & Soula, 2015). 336 

To compare cross-correlation between treatments, we measured the curve’s maximum 337 

peak height, which signs the strength of the cross-correlation, as well as the height of 338 

each peak (positive peak: F->M, negative peak: M->F). Because cross-correlation 339 

used the calculation of two means, we used only duets having more than 8 calls per 340 

individual. We first tested duets with the best correlation scores, i.e greater than 0.1, 341 

according to Perez et al. (2015). In this case, cross-correlation was thus compared 342 

between 33 relief duets (16 in control and 17 in noise) from 14 pairs, and for 18 visit 343 

duets (12 in control and 6 in noise) from 10 pairs. We then used all the duets to 344 

confirm the results; cross-correlation was thus computed for 43 relief duets (24 in 345 

control and 19 in noise) from 16 pairs, and for 24 visit duets (18 in control and 6 in 346 

noise) from 10 pairs. The same model as above was used to assess the effect of the 347 

treatment (see model 1).  348 

Analysis of the numbers of visit duets and sentinel duets, and the spatial 349 

proximity between partners during sentinel duets 350 
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Parameters 351 

Occurrences of V duets and S duets were counted during a reference period (see 352 

below). In addition, the distance between partners during sentinel duets was analysed 353 

as a proxy of the spatial proximity between partners. Three distance categories were 354 

considered (from 0 to 1 meter, from 1 to 2 meters and more than 2 meters) and the 355 

number of sentinel duets in each distance category was counted. 356 

One recording session consisted of two consecutive incubation reliefs (male return vs. 357 

female return to the nest). The duration of a recording session thus depended on pair 358 

identity, as some birds have shorter incubation shifts than others. As the observer 359 

started the recording session in the middle of an incubation shift, the first incubation 360 

shift could be more or less completed after the session’s start. To obtain comparable 361 

data for all pairs and for both sexes (as male return or female return could happen first 362 

depending on recording session), we quantified behaviours during a defined reference 363 

period. The duration of this reference period was defined as the last 40% of the time 364 

between two reliefs, an interval concentrating most of the birds’ vocal and 365 

behavioural activity. For one given pair recorded in one given treatment, two 366 

reference periods were defined (the first one being just before the first relief, the 367 

second being just before the second relief). In total, 72 reference periods were defined 368 

(four reference periods from 18 pairs). But for 15 recordings out of the total data set, 369 

the time between the start of the recording session and the first relief was shorter than 370 

this reference period (seven in noise treatment, eight in control treatment). Thus, all 371 

18 pairs remained in the final dataset but for some of them, the first reference period 372 

was missing. The data set was then composed of 28 reference periods in control (12 373 

with the female incubating and 16 with the male incubating) and 29 reference periods 374 

in noise (14 with the female incubating, 15 with the male incubating).  375 
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Statistics. 376 

The effect of the treatment on total counts was tested separately on the number of V 377 

duets, the number of S duets and the number of S duets performed in each distance 378 

category, using generalized linear models for Poisson distribution (‘glmer’ function of 379 

‘lme4’ R package). The following model was applied: model 3 <- glmer (total 380 

behavioural count ~ Treatment * Returning partner + (1| Pair), family=’poisson’). 381 

Analysis of the acoustic features of the calls used during duets 382 

Parameters 383 

Calls uttered by the incubating partner with no additional noise overlapping the calls 384 

(from the partner, from birds movements inside the nest or other birds in the aviary) 385 

were manually selected using the ‘annotate’ function of Praat software. A spectral 386 

analysis was performed using custom-written codes using the Seewave R package 387 

(Sueur, Aubin, & Simonis, 2008) implemented in R (R Core Team, 2014). After 388 

bandpass filtering (0.5kHz-20kHz corresponding to the zebra finch vocalizations 389 

spectrum, Seewave ‘fir’ function), the following parameters of the call frequency 390 

spectrum were calculated (Seewave ‘specprop’ function, FFT using a Hamming 391 

window, window length=512, overlap=50%): mean, median, first (Q25) and third 392 

(Q75) quartiles, inter-quartile range (IQR), standard deviation (Sd) and mode (all in 393 

Hertz). One additional frequency parameter was calculated from 50% overlapping 394 

FFTs (window length=512): the call dominant frequency (in kHz), which is the mean 395 

over the call duration of the frequencies of highest level of energy (Seewave ‘dfreq’ 396 

function). Last, the call amplitude was measured using the root-mean-square (RMS) 397 

of the call envelope.  398 

To compare the structure of calls used by birds in control and noise treatments, we 399 

mixed recorded calls in control with exemplars of noise. All measures were averaged 400 
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with 10 mixes obtained using 10 different exemplars of noise. A detailed explanation 401 

of the procedure is available as supplementary material (see Fig.S4). 402 

Statistics. 403 

Calls from all duet types (relief duets, visit duets or sentinel duet) were analysed 404 

together (1320 calls from 36 individuals). Acoustic parameters were log-transformed 405 

to fit a Gaussian distribution and used in a PCA. Principal components (PCs) with 406 

eigenvalue above 1 were selected (table 4).  407 

To assess the effect of the treatment on calls’ structure, a linear model (‘lmer’ 408 

function of ‘lme4’ R package) was then performed on PC values. The following 409 

model was applied: model 4 <- lmer (PC values~ Treatment + Sex of the caller + Call 410 

type + Duet type + Treatment: Sex of the caller + Treatment: Duet type + Treatment: 411 

Call type +(1|subject identity)), where Treatment had two levels (Noise vs. Control), 412 

Sex of the caller had two levels (Male vs. Female), Call type had three levels (Ark, 413 

Whine and Short calls) and Duet type had two levels (‘V or R’ vs. ‘S’). Again, only 414 

relevant and interpretable interactions were kept in the full model. P-values were 415 

assessed using the ‘Anova’ function (‘car’ R package). When interaction between 416 

factors were significant, post hoc test were performed using ‘lsmeans’ function 417 

(‘lsmeans’ R package). 418 

Statistical validation 419 

To reduce the incidence of multiple testing on type I error, we computed PC scores 420 

using PCA on raw parameters as much as possible. We did not use the Bonferroni 421 

correction because its assumption of a universal null hypothesis (all null hypothesis 422 

being true simultaneously) was not verified in our case (Perneger, 1998). But Tukey 423 

correction was used in posthoc tests. For all linear models, residuals equi-variance and 424 

distribution were checked using ‘plotresid’ function (‘RVAideMemoire’ R package). 425 
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The influential data points were tested using ‘influence’ function of ‘Influence.ME’ R 426 

package (Nieuwenhuis, Grotenhuis, & Pelzer, 2012). Validity of binomial models was 427 

checked using custom-written codes based on Atkinson (1981) and Collett (2002) (see 428 

Fig. S5 for detailed description). For linear models using Poisson distribution, 429 

residuals over-dispersion was tested using ‘overdisp.glmer’ function 430 

(‘RVAideMemoire’ R package). All models were validated and presented after 431 

removing influential random factors that changed the results. To quantify the variance 432 

of the data explained by the models, a conditional coefficient of determination of each 433 

model was calculated with ‘r.squaredGLMM’ function (‘MuMIn’ R package). 434 

 435 

RESULTS 436 

Structure of relief (R) and visit (V) duets 437 

During noise, partners meeting inside the nest (54% of the meetings) tended to spend 438 

less time together in the nest (Χ1=3.5, p=0.06, Fig.1a), but the number of meetings 439 

performed inside or outside the nest did not differ between treatments (binomial 440 

model, Χ1=0.64, p=0.42). The latency of response of the incubating partner to the 441 

calls of its outside mate increased in relief duets (post hoc test, Χ1=4.1, p=0.04, Fig. 442 

1b).  443 

During noise, both R and V duets were shorter and composed of fewer calls, since the 444 

first composite score PC1 of the PCA was significantly lower in noise than in control 445 

(Χ1=10.1, p=0.001, Fig. 1c). Both R and V duets were also performed at a higher 446 

tempo and composed of a higher proportion of short calls, since PC2 was also 447 

significantly lower in noise than in control (Χ1=11.2, p=0.001, Fig. 1d). 448 
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 449 

Table 1: Principal component analysis of the global structure of R and V duets. 450 

Percentage of each parameter composing the PC,a percentage of explained variance 451 

and eigenvalues of each PC are indicated. Transformations are indicated in 452 

parentheses. 453 

 
PC1 PC2 PC3 PC4 

Variance (% cumulative) 39% 59% 74% 87% 
Eigenvalue 4.7 2.3 1.7 1.6 
Duet duration (ln) 13.6 4.4 -8.28 2.41 
Total number of calls (ln) 20.04 -0.95 -0.08 -0.08 
Call rate (box-cox) 0.18 -7.63 25.73 -12.29 
Overall ICI1 (box-cox) -0.69 13.67 -28.17 0.43 
Number of short calls (ln) 11.02 -12.83 -3.48 -0.25 
Number of whine calls (ln) 12.73 1.09 2.31 12.57 
Number of ark calls (ln) 11.42 6.83 1.3 -8.44 
Number of female calls (ln) 14.56 -1.82 0.05 0.34 
Number of male calls (ln) 14.98 -0.11 -0.49 -1.15 
Proportion of short calls -0.37 -27.82 -13.13 -0.06 
Proportion of whine calls (square root) 0.08 1.8 16.33 37.76 
Proportion of ark calls (square root) 0.49 21.05 0.64 -24.22 

1: ICI= Inter-Call Interval 454 
a : Absolute contributions of the decomposition of inertia for each PC (‘inertia.dudi’ function from 455 
‘ade4’ R package), divided by 100 to get the percentage. Signs are the signs of the coordinate. 456 
 457 

Male-female dynamic during relief (R) and visit (V) duets  458 

During noise, R duets were performed with shorter intra-sex ICIs and inter-sex 459 

transitions, since PC1 was significantly higher, whereas intervals did not change in V 460 

duets (interaction treatment:duet type: Χ1=4.1, p=0.04; relief duets: Χ1=8.5, p=0.003; 461 

visit duets: Χ1<0.001, p=0.99, Fig. 2a). As a consequence, partners changed their 462 

calling dynamic in noise only during relief duets. 463 

 464 

Table 2: Principal component analysis of R and V duets – male-female dynamic. 465 

Percentage of each parameter composing the PC, percentage of explained variance 466 
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and eigenvalues of each PC are indicated. Transformations are indicated in 467 

parentheses.  468 

 
PC1 

Variance (% cumulative) 65% 
Eigenvalue 3.9 
M to F transition (box-cox1) -14.02 
F to M transition  (box-cox1) -16.08 
F to F ICI (box-cox1) -17.47 
M to M ICI (box-cox1) -17.38 
M to M ICI standard deviation  (box-cox1) -18.42 
F to F ICI standard deviation  (box-cox1) -16.63 

1: The box cox transformation computes one parameter transformation using the following formula: 469 
parameter (ƛ)=parameter (ƛ) – 1 /ƛ, if ƛ ≠ 0 and ln(parameter (ƛ)) if ƛ=0. The ‘boxcox’ function of the 470 
‘Mass’ R package automatically finds the appropriate ƛ value to reach a distribution as close as 471 
possible to the Gaussian distribution. 472 
 473 

Furthermore, the cross-correlation between male and female calling signals showed 474 

that the regularity of the duet increased in response to the treatment. Noise affected 475 

differently the most regular R and V duets (i.e. duets with cross-correlation curves 476 

that showed peaks above 0.1), with significant interactions between treatment and 477 

duet types (Fig. 2b and 2c). The strength of the cross correlation (maximum peak 478 

height) and the precision of male delays to answer female calls (positive peak height) 479 

both increased in R duets (Fig. 2b and 2c, Χ1=2.7, p=0.09 and Χ1=5.9, p=0.02 480 

respectively) whereas they decreased in V duets (Χ1=4.8, p=0.03 and Χ1=2.9, p=0.09 481 

respectively). When considering all the duets, the strength of the cross-correlation and 482 

the precision of male delays were still higher in noise than in control (Χ1=5.8, p=0.02 483 

and Χ1=4.9, p=0.03 respectively), but did not differentiate duet types anymore (no 484 

significant interaction treatment:duet type; Χ1=1.8, p=0.17 and Χ1=0.03, p=0.85, 485 

respectively). Overall, this analysis revealed higher regularity in male-female calling 486 

in noise compared to control (Fig. 2d), especially during R duets. In particular, male 487 

delays to answer female calls were more precise during noise.  488 
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Structure of sentinel duets (S). 489 

S duets showed fewer calls and lower tempo (higher overall ICI) in noise than control, 490 

since PC2 was significantly lower in noise than control (Χ1=7.6, p=0.007, Fig. 3b). 491 

The total duration of the duet was not affected (PC1, Χ1=0.94, p=0.33, Fig. 3a). 492 

 493 

Table 1:  Principal component analysis of the global structure of S duets. 494 

Percentage of each parameter composing the PC, percentage of explained variance 495 

and eigenvalues of each PC are indicated. Transformations are indicated in 496 

parentheses. 497 

 
PC1 PC2 

Variance (% cumulative) 64% 95% 
Eigenvalue 2.6 1.2 
Total number of calls (box-cox) -10.08 58.99 
Sequence duration (ln) -34.83 6.52 
Call rate (ln) 32.17 6.03 
Overall ICI (square root) -22.91 -28.46 
 498 

Occurrence of visit (V) and sentinel (S) duets and spatial proximity between 499 

partners. 500 

In noise, the total number of V duets increased by 2.6 ± 1.9 (Χ1=6.9, p=0.008, Fig. 501 

4a). The number of S duets did not differ between treatments (Χ1=0.8, p=0.34, Fig. 502 

4a). 503 

During S duets, the returning partner perched significantly closer to the nest in noise 504 

than in control, increasing the spatial proximity between partners (Fig. 4b). In noise, S 505 

duets took place slightly more often with the outside mate at 0 to 1 meter from the 506 

nest (Fig. 4b, Χ1=2.4, p=0.12) and significantly less at 1 to 2 meters (Χ1=9.0, 507 

p=0.003).  508 

Acoustic features of calls produced inside the nest 509 
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During noise, calls produced inside the nest were louder with an up-shifted and less 510 

broadband frequency spectrum (lower PC1, table 4), and this was true for both sexes 511 

(Fig. 5a) and all call types (Fig. 5b). Furthermore, female calls tended to be more 512 

affected by noise than male calls (interaction treatment:sex: Χ1=28.2, p<0.001; 513 

posthoc female vs male calls in noise: T27.6=-2.6, p=0.06, Fig.5a) and short calls 514 

tended to be more affected by noise than whine calls (interaction treatment:call type: 515 

Χ1=18.4, p<0.001; post hoc short vs whine calls in noise: T105.8=2.8, p=0.06, Fig.5b), 516 

see examples of call spectra Fig. 5c. 517 

 518 

Table 4: Principal component analysis of call structure. Percentage of each 519 

parameter composing the PC, percentage of explained variance and eigenvalues of 520 

each PC are indicated. Transformations are indicated in parentheses. 521 

 
PC1 PC2 

Explained variance 
(%cumulative) 43% 77% 
Eigenvalue 3.9 3.1 
Call duration 0 -1.08 
Mean frequency 3.23 -26.78 
Sd 20.29 -1.62 
Median frequency -9.18 -16.05 
Q25 -15.34 -10.74 
Q75 4.66 -24.42 
IQR 13.37 -12.67 
Dominant frequency -16.31 -5.65 
Amplitude -17.62 -0.99 
 522 

Discussion 523 

We examined how zebra finch partners cope with a strong acoustic constraint on their 524 

intra-pair communication using a playback of wind noise inside the nestbox. All duets 525 

recorded in noise were shorter and quicker, and relief duets showed changes in male-526 

female dynamic of calling (inter-call intervals and increased precision in response 527 
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timing to each other). Partners increased their effort in vocal interactions in noise 528 

(more visit duets and increased proximity during sentinel duets). Last, calls produced 529 

in the nest in noise were louder, with an up-shifted and less broadband frequency 530 

spectrum.  531 

Response to noise reveals potential functions of call duets 532 

Recent reviews on avian duetting underlined the lack of experimental evidence testing 533 

the relationship between duet structure and function (Dahlin & Benedict, 2013; Hall, 534 

2009). Our results bring new insights on this perspective. 535 

An increase in background noise partly impaired mate communication at the nest. 536 

First, the latency to initiate the duet tended to increase and duets were shorter (in time 537 

and in number of calls) and quicker in noise than in control. These results show that 538 

the noise treatment significantly constrained intra-pair communication. But even 539 

under this strong acoustic constraint, zebra finch mates continued to perform vocal 540 

duets each time they met at the nest, either during visit or during incubation relief. 541 

Although altered, continued duets under difficult acoustic conditions may confirm 542 

their biological significance. 543 

The treatment did not affect visit duets and relief duets the same way. Specifically 544 

male-female dynamic was more significantly affected during relief duets, as duets 545 

performed in noise were more regular and precise, particularly when the male 546 

answered the female. This may reflect the different roles of visit and relief duets in the 547 

zebra finch intra-pair communication system. Nest relief in species with bi-parental 548 

incubation is a crucial step. A failure of relief would leave the nest unattended and 549 

could have irremediable impact on the clutch. Coordination between mates is thus 550 

essential, and could rely at least partly on call duets associated with nest relief, as 551 
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suggested by Boucaud et al. (2015). Therefore, it may be important to maintain 552 

sufficient information in relief duets.  553 

The number of visit duets increased in noise. This could represent a strategy of signal 554 

redundancy, as many species dealing with masking background noise use redundancy 555 

to maintain signal efficacy (Brumm, Schmidt, & Schrader, 2009; Brumm & Slater, 556 

2006). Short duets in response to noise might be compensated by increased 557 

redundancy. Visit duets might be involved either in contact maintenance and/or pair 558 

bond maintenance (Malacarne, Cucco, & Camanni, 1991; Wickler, 1980). Because 559 

incubation implies long periods of separation between mates, it may be important to 560 

keep contact. In particular, sentinel duets are hypothesized to be reassuring vocal 561 

interactions between the incubating bird, unable to detect the approach of a potential 562 

threat, and its partner showing anti-predator vigilance outside the nest, as suggested 563 

by Elie et al. (2010) and Mainwaring & Griffith (2013). Under this hypothesis, even 564 

with an acoustic constraint on their duetting activity, partners would keep duetting and 565 

may change their behaviour to facilitate vocal exchanges. Birds did not significantly 566 

modify the number of sentinel duets in response to the noise treatment, but the 567 

returning bird perched closer to the nest during these sequences. This strategy was 568 

previously observed during intra-pair communication in response to noise in the great 569 

tit (Halfwerk et al., 2012): when an increased level of background noise was broadcast 570 

inside the nest to the incubating female, the male perched closer to the nest to sing, 571 

showing that the male can use the feedback from the female to adjust his behaviour 572 

and maintain signal efficacy. We found similar results here but because both partners 573 

were subjected to the noise alternatively, we cannot conclude about the mechanism: 574 

either feedback from the partner inside the nest or previous experience with the noise 575 
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could explain the behavioural changes of the partner outside the nestbox (male or 576 

female).  577 

Last, the fact that partners increased the number of visit duets may be a sign of an 578 

extreme increase of proximity between partners during vocal interactions. In this case 579 

we would expect a switch in duet interaction type in noise: an increase in the number 580 

of visit duets would be associated with a decrease in the number of sentinel duets. We 581 

did not find such a switch in our data; the number of visit duets increased but the 582 

occurrence of sentinel duets was not changed in noise, which emphasizes the fact that 583 

partners may reinforce vocal interactions in noise. 584 

Noise impacts quiet vocalizations 585 

Many studies have already demonstrated that birds modify the pitch and the amplitude 586 

of their vocalizations in response to noise, but they largely focused on loud and/or 587 

long-range vocalizations - display calls in king penguins, Aptenodytes patagonicus, 588 

(Aubin & Jouventin, 2002), separation calls in fowls, Gallus gallus domesticus, 589 

(Brumm et al. 2009), distance calls in common marmosets Callithrix jacchus 590 

(Brumm, Voss, Köllmer, & Todt, 2004), or territorial songs in several bird species ( 591 

e.g. blackbirds, (Turdus merula) (Nemeth & Brumm, 2009), great tits (Parus major) 592 

(Brumm, 2006a; Slabbekoorn & den Boer-Visser, 2006). Studies focusing on the 593 

impact of noise on vocalizations used in more private contexts are rare and concern 594 

the quite conspicuous begging calls used in parent-offspring communication (Leonard 595 

& Horn, 2001, 2005, 2008). Our results confirm that birds modify the structure of 596 

their acoustic signals in response to background noise even if the signal is not aimed 597 

at a transmission over a long distance. The changes in acoustic features (frequency 598 

range, amplitude, or call type) that may facilitate reception efficacy under noisy 599 
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conditions seem to be the same for quiet signals used at short-range as for long-range 600 

communication signals. 601 

Maintaining duet efficacy in response to noise may have predation costs 602 

During an experimental increase of background noise, zebra finch pairs adjusted their 603 

behaviour and some of theses adjustments (louder call duets, increased number of 604 

visit duets or change of posts of the returning partner) may have costs for their 605 

reproductive success. Increasing the number of visit duets may increase predation risk 606 

by facilitating nest site localisation. Furthermore, the adjustment made to calls 607 

(increasing amplitude and frequency), may also make the nest more vulnerable to 608 

predators, as low amplitude vocalizations are considered to represent an anti-predator 609 

strategy (Dalbelsteen, McGregor, Lampe, Langmore, & Holland, 1998). This could 610 

explain why duets recorded in noise were shorter and why partners spent less time 611 

together inside the nestbox: shorter duets and rapid relief might represent a trade-off 612 

with louder vocalizations to maintain low vulnerability to predation.  613 

Noise impacts unlearned vocalizations in both females and males. 614 

Male zebra finches learn their song and one of their calls (the distance call) during a 615 

juvenile phase, whereas females do not (Simpson & Vicario, 1990; Zann, 1996). This 616 

dimorphism in vocal learning has been linked to a dimorphism in brain song nuclei 617 

(the so-called song system), which atrophy in females and increase in males during 618 

development under steroid control (Bottjer, Glaessner, & Arnold, 1985). For this 619 

reason, vocal flexibility has been thought to be limited in females, and this could lead 620 

to the prediction of greater changes in males than in females during our experiment. 621 

We actually observed greater changes in females’ call structure than in males’. 622 

Moreover, most of the call types used during the vocal interactions monitored in the 623 

present study and whose structure changed in response to noise are unlearned 624 
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vocalizations in both sexes. Taken together, these results suggest that vocal flexibility 625 

does not depend on the capacity of vocal learning and do not need a developed song 626 

system. Indeed, vocal flexibility in response to noise has already been described in 627 

vocal non-learners (Aubin & Jouventin, 2002; Brumm et al., 2009). 628 

Female and male response to noise differ 629 

Whereas major changes in duet structure, interaction dynamic and call structure in 630 

response to noise were observed for both sexes, some changes were sex specific, 631 

especially changes in male-female dynamic during the duet and in call structure. 632 

These sex-specific changes may result from our protocol because both sexes were not 633 

exposed to the noise playback for the same duration. The noise playback started the 634 

day before the recording session. Because partners share incubation equally and take 635 

turn on average once per hour, both partners experienced the noise playback and had 636 

the time to habituate. However, zebra finch females generally spend the night in the 637 

nest and thus incubate the eggs overnight (Zann & Rossetto, 1991). In our population, 638 

females incubated alone in 89.5 % (±0.2) of the nights (15 pairs monitored for 136 639 

nights, unpublished data). As a consequence, females were more subjected to the 640 

playback than males and had perhaps more time to habituate. This may explain why 641 

female call structure was more changed in noise than male call structure. Last, during 642 

duets, male responses to female calls showed less variable delays in noise than in 643 

control. Because duets are joint vocal interactions, it seems difficult to explain 644 

separately female and male responses during the duet. The effects observed on male 645 

or female responses to mate calls during the duet may not be sex-specific but a result 646 

of a complex interactive communication.  647 

To conclude, we experimentally tested the impact of elevated background 648 

noise on intra-pair call duets at the nest in zebra finches. Even under difficult acoustic 649 
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conditions, partners maintained the three types of call duets (visit, relief and sentinel 650 

duets). This was achieved through several changes in partners’ behaviour: changes in 651 

acoustic features of the calls, in the structure of the duets, in the number of duets and 652 

in the spatial proximity between partners. Regularity and precision of partners’ 653 

interaction were enhanced only during relief duets, which may sign the importance of 654 

these duets in coordinating partners during the crucial moments of incubation shifts.  655 
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Figure legends 909 

Figure 1: Effect of treatment on the time together in nest (a), the latency to 910 

answer and the global structure of duets during relief (blue) and visit (grey). 911 

Median, Inter-Quartile-Range and extreme values are displayed in noise and control 912 

for: (a) time partners meeting inside the nest spent together in it, (b) latency of the 913 

incubating partner to answer to its outside mate (c) PC1 and (d) PC2 of the duet 914 

global structure during visit and relief. Model estimates are available in tables S2 and 915 

S3. *** : p<0.001, ** : p<0.01, * : p<0.05, . : p<0.1. 916 

Figure 2: Effect of treatment on the male-female temporal dynamic in duets. (a) 917 

Median, Inter-Quartile-Range and extreme values of PC1 are displayed in visit (grey) 918 

and relief (blue) duets. (b) Maximum cross-correlation peak height (mean ±se) in 919 

relief (blue circles) and visit (grey triangle) duets (significant treatment: duet type 920 

interaction Χ1=5.5, p=0.02). (c) Cross-correlation curves between male and female 921 

signals in relief  (blue circles) and visit (grey triangles) duets, showing the height of 922 

the negative and positive peaks in control (dashed lines) and noise (solid lines). 923 

Curves correspond to the mean (±se) of each peak over all duets. (d) Mean (±se) 924 
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cross-correlation over all duets in control (dashed line) and noise (solid line) for visit 925 

(grey) and relief (blue) duets. Since all data are averaged, no clear right and left peaks 926 

can be observed, because different peaks can represent different pairs. Model 927 

estimates are available in table S4. *** : p<0.001, ** : p<0.01, * : p<0.05, . : p<0.1. 928 

Figure 3: Effect of treatment on sentinel duets structure.  Median, Inter-Quartile-929 

Range and extreme values of PCs are displayed in noise and control for: (a) PC1 and 930 

(b) PC2 of the PCA on sentinel duets. Model estimates are available in table S5. *** : 931 

p<0.001, ** : p<0.01, * : p<0.05, . : p<0.1. 932 

Figure 4: Effect of treatment on the total number of visit duets and sentinel duets 933 

(a) and location of the returning partner during sentinel duets (b) in control and 934 

noise. Numbers above each bar indicate the number of pairs involved in the total 935 

count. Model estimates are available in table S6 and S7. *** : p<0.001, ** : p<0.01, * 936 

: p<0.05, . : p<0.1. 937 

Figure 5: Effect of treatment on calls’ structure. (a,b) Results are medians, Inter-938 

Quartile-Range and extreme values of PC1, presented for males and females (a) and 939 

in each call type (b) separately following significant interactions. Post hoc multiple 940 

comparisons (with Tukey correction) showed that both sexes were affected by noise 941 

(control vs noise: in females, T704.0= 11.1, p<0.001 and in males T701.9= 4.9, p<0.001) 942 

and all call types were affected by noise (control vs noise: in short calls, T700.7= 4.7, 943 

p<0.001, in ark calls T694.3= 6.9, p<0.001, in whine calls T700.9= 9.6, p<0.001). (c) 944 

Example of changes that can occur on a call spectrum (example with a short call from 945 

the same individual recorded in control and noise). Call spectrum of the control call 946 

has been corrected (see detailed procedure Fig. S4). Model estimates are available in 947 

table S8. *** : p<0.001, ** : p<0.01, * : p<0.05, . : p<0.1. 948 
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