
HAL Id: hal-01404718
https://hal.science/hal-01404718v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Basic Polynomial Algebra Subprograms
Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Robert H. C. Moir,

Marc Moreno Maza, Ning Xie, Yuzhen Xie

To cite this version:
Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Robert H. C. Moir, Marc Moreno Maza, et
al.. The Basic Polynomial Algebra Subprograms. ACM Communications in Computer Algebra, 2016,
50 (3), pp.97–100. �10.1145/3015306.3015312�. �hal-01404718�

https://hal.science/hal-01404718v1
https://hal.archives-ouvertes.fr


ACM Communications in Computer Algebra, TBA TBA

The Basic Polynomial Algebra Subprograms

Changbo Chen1, Svyatoslav Covanov2, Farnam Mansouri3,
Robert H.C. Moir4, Marc Moreno Maza4, Ning Xie4, Yuzhen Xie5

1 CIGIT, Chinese Academy of Sciences, China; 2 LORIA, University of Lorraine, France;
3 Microsoft, Vancouver, Canada; 4 ORCCA, University of Western Ontario, Canada;

5 Critical Outcome Technologies, London, Canada

December 16, 2016

Abstract

The Basic Polynomial Algebra Subprograms (BPAS) provides arithmetic operations (multiplication,
division, root isolation, etc.) for univariate and multivariate polynomials over common types of coeffi-
cients (prime fields, complex rational numbers, rational functions, etc.). The code is mainly written in
CilkPlus [10] targeting multicore processors. The current distribution focuses on dense polynomials and
the sparse case is work in progress. A strong emphasis is put on adaptive algorithms as the library aims
at supporting a wide variety of situations in terms of problem sizes and available computing resources.
The BPAS library is publicly available in source at www.bpaslib.org.

1 Design and Specification

Inspired by the Basic Linear Algebra Subprograms (BLAS), BPAS functionalities can be organized into
three levels. At Level 1, one finds basic arithmetic operations that are specific to a polynomial representa-
tion or a coefficient ring, such as multi-dimensional FFTs/TFTs, univariate real root isolation. At Level 2,
arithmetic operations are implemented for all types of coefficients rings supported by BPAS (prime fields,
ring of integers, field of rational numbers and functions). Level 3 gathers advanced arithmetic operations,
e.g. real root isolation of a zero-dimensional regular chain.

Level 1 functions are highly optimized in terms of locality and parallelism. In particular, the underlying
algorithms are often nearly optimal in terms of cache complexity [6]. This is the case for our modular multi-
dimensional FFTs/TFTs [13], modular dense polynomial arithmetic [14] and Taylor shift [4] algorithms.

At Level 2, the user can choose between algorithms minimizing work (at the possible expense of de-
creasing parallelism) and algorithms maximizing parallelism (at the possible expense of increasing work).
For instance, five different integer polynomial multiplication algorithms are available: Schönhage-Strassen,
8-way Toom-Cook, 4-way Toom-Cook, divide-and-conquer plain multiplication and the two-convolution
method. The first one has optimal work (i.e. algebraic complexity) but is purely serial due to the difficul-
ties of parallelizing 1D FFTs on multicore processors. The next three algorithms are parallelized but their

1

www.bpaslib.org


The Basic Polynomial Algebra Subprograms TBA

parallelism is static, that is, independent of the input data size; these algorithms are practically efficient
when both the input data size and the number of available cores are small, see [11] for details. The fifth
algorithm [3] relies on modular 2D FFTs which are computed by means of the row-column scheme; this
algorithm delivers a high scalability and can fully utilize fat computer nodes.

This variety of parallel solutions leads, at Level 3, to adaptive algorithms which select appropriate Level
2 functions depending on available resources (number of cores, input data size). An example is parallel
real root isolation. Many procedures for this purpose are based on a subdivision scheme. However, on
many examples, this scheme exposes limited opportunities for concurrent execution, see [4]. It is, therefore,
essential to extract as much as parallelism from the underlying routines, such as Taylor shift computations.

One application of the BPAS library is integration of rational functions [17] by means of a symbolic-
numeric method. The implementation uses: (1) the Lazard-Rioboo-Trager algorithm of [2] to integrate
univariate rational functions over the rational numbers, and (2) numerical root isolation powered by the
MPSolve library available at http://numpi.dm.unipi.it/mpsolve.

2 User Interface

Inspired by computer algebra systems like AXIOM [9] and Magma [1], BPAS makes use of type constructors
so as to provide genericity, for instance SparseUnivariatePolynomial (SUP) can be instantiated over
any BPAS ring. For efficiency consideration, certain polynomial type constructors, like DistributedDense
MultivariateModularPolynomial (DDMMP), are only available over finite fields in order to ensure that
the data encoding of a DDMMP polynomial consists only of consecutive memory cells. For the same effi-
ciency consideration, the most frequently used polynomial rings, like DenseUnivariateIntegerPolynomial
(DUZP) and DenseUnivariateRationalNumberPolynomial (DUQP) are primitive types. In other words,
SUP<Integer> and DUZP implement the same functionalities; however the implementation of the latter is
further optimized. Figure 1 shows a subset of BPAS’ tree of algebraic data structures. Class names started

#include <bpas.h>

using namespace std;

int main(int argc, char *argv[]) {
/* Univariate Integer Polynomial Multiplication */

DUZP a(128), b(128);

a.read("a_input.dat"); b.read("b_input.dat");

DUZP c = a * b;

cout << "c = " << c << endl;

/* Real Root Isolation */

DUQP p; // p = x^{127} + 127

p = (p + mpq_class(1) << 127)

+ mpq_class(127);

Intervals boxes =

p.realRootIsolate(1/20);

/* Symbolic Numeric Integration */

SparseUnivariatePolynomial<RationalNumber> f, g;

f.one(); f.setVariableName("x");

g = (polymomialParser("1+2*x+2*x^2"))^4;

UnivariateRationalFunction<

SparseUnivariatePolynomial<RationalNumber>, RationalNumber> h (f, g);

h.realSymbolicNumericIntegrate(53);

return 0;

}

Figure 1: A snippet of BPAS code and a snapshot of BPAS data algebraic structures.

with ‘BPAS’ correspond to abstract classes, while others correspond to concrete classes. BPAS counts
many other classes, for instance, Intervals and RegularChains.

2

http://numpi.dm.unipi.it/mpsolve


C. Chen, S. Covanov, F. Mansouri, R.H.C. Moir, M. Moreno Maza, N. Xie, Y. Xie

3 Implementation techniques

Modular FFTs are at the core of asymptotically fast algorithms for dense polynomial arithmetic. Thus,
a large body of code of the BPAS library is devoted to the computation of one-dimensional and multi-
dimensional FFTs over finite fields. In the current release, the characteristic of those fields is of machine
word size while larger characteristics are work in progress. The techniques used for the multi-dimensional
FFTs are described in [13, 14] while those for the one-dimensional case is inspired by the FFTW project [5].

Figure 2: One-dimensional modular FFTs: Modpn vs BPAS.

BPAS one-dimensional FFTs code is optimized in terms of cache complexity and register usage. To
achieve this, the FFT of a vector of size n is computed using a blocking strategy. That is, the corresponding
FFT graph is “decomposed” (via tensor algebra) into blocks where each block is isomorphic to the FFT
graph of an input vector of size K, where K is small, say K = 16. The value of K can be specified
by the user or determined automatically when installing the library. At compilation time, this value is
used to generate straight-line program (SLP) machine code. Instruction level parallelism (ILP) is carefully
considered: vectorized instructions are explicitly used (SSE2, SSE4) and instruction pipeline usage is highly
optimized. Various environment variables are available for the user to control different parameters in the
code generation. Figure 2 compares running times (on Intel Xeon 5650) of one-dimensional modular FFTs
computed by the Modpn library [16] and BPAS, both using serial C code in this case, where coefficients
are in a prime field whose characteristic is a 57-bit prime.

Modular FFTs support the implementation of several algorithms performing dense polynomial arith-
metic. An example is parallel multiplication of dense polynomials with integer coefficients by means of the
two-convolution method [3].

4 Benchmarks

As mentioned above, one of the main purposes of the BPAS library is to take advantage of hardware
accelerators and support the implementation of polynomial system solvers. With this goal, polynomial
multiplication plays a central role. Moreover, both sparse and dense representations are important. Indeed,
input polynomial systems are often sparse while many algebraic manipulations, like substitution, tend to
densify data. Parallel sparse polynomial arithmetic has been studied by Gastineau and Laskar in [7] and by
Monagan and Pearce in [12]. Up to our knowledge, BPAS is the first publicly available library for parallel
dense polynomial arithmetic. For this reason, we compare BPAS’ parallel dense polynomial multiplication
against state-of-the-art counterpart implementation in FLINT 2.5.2 and Maple 2015.

Figure 3 shows the integer case. The input of each test case is a pair of polynomials of degree d where
each coefficient has bit size N . Timings (in sec.) appear along the vertical axis. Two plots are provided:

3



The Basic Polynomial Algebra Subprograms TBA

Figure 3: Dense integer polynomial multiplication: BPAS vs FLINT vs Maple.

one for which d = N holds and one for d is much smaller than N . Our experimental results were obtained
on an 48-core AMD Opteron 6168, running at 900Mhz with 256 GB of RAM and 512KB of L2 cache.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symbolic Comput.,
24(3-4):235–265, 1997.

[2] M. Bronstein. Symbolic Integration I – Transcendental Functions. Springer-Verlag, 1997.
[3] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. The Basic Polynomial Algebra

Subprograms. In Proc. ICMS, LNCS, vol. 8592, p. 669-676, 2014.
[4] C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore implementation for univariate real

root isolation. J. of Physics: Conference Series, 341, 2011.
[5] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. of IEEE, 93(2):216–231, 2005.
[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. ACM Transactions

on Algorithms, 8(1):4, 2012.
[7] M. Gastineau and J. Laskar. Highly scalable multiplication for distributed sparse multivariate polynomials on

many-core systems. In CASC, pages 100–115, 2013.
[8] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory http://flintlib.org.
[9] R. D. Jenks, R. S. Sutor. AXIOM, The Scientific Computation System. Springer-Verlag, 1992.

[10] C. E. Leiserson. The Cilk++ concurrency platform. The Journal of Supercomputing, 51(3):244–257, 2010.
[11] F. Mansouri. On the parallelization of integer polynomial multiplication. Master’s thesis, The University of

Western Ontario, London, ON, Canada, 2014. www.csd.uwo.ca/~moreno/Publications/farnam-thesis.pdf.
[12] M. B. Monagan and R. Pearce. Parallel sparse polynomial multiplication using heaps. In Proceedings of ISSAC

2009, pages 263–270. ACM, 2009.
[13] M. Moreno Maza and Y. Xie. FFT-based dense polynomial arithmetic on multi-cores. In HPCS, volume 5976

of Lecture Notes in Computer Science, pages 378–399. Springer, 2009.
[14] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-cores. Int. J. Found. Comput.

Sci., 22(5):1035–1055, 2011.
[15] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7(3-4):281–292, 1971.
[16] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing fast polynomial arithmetic

into maple. J. Symb. Comput., 46(7):841–858, 2011.
[17] R. H. C. Moir, R. M. Corless, D. J. Jeffrey. Unwinding paths on the Riemann sphere for continuous integrals

of rational functions. In Proc. of EACA, 2014.

4

http://flintlib.org
www.csd.uwo.ca/~moreno/Publications/farnam-thesis.pdf

