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ABSTRACT 
The aim of this work is the development of a space–time diffuse approximation meshless method (DAM) to 
solve heat equations containing discontinuous sources. This work is devoted to transient heat transfer 
problems with static and moving heat sources applied on a metallic plate and whose power presents 
temporal discontinuities. The space–time DAM using classical weight function is convenient for continuous 
transient heat transfer. Nevertheless, for problems including discontinuities, some spurious oscillations for 
the temperature field occur. A new weight function, respecting the principle of causality, is used to 
eradicate the physically unexpected oscillations. 

1. Introduction

Meshfree methods have become an attractive alternative for problems in computational engineering 
[1]. Several meshfree methods such as element-free Galerkin [2–4], meshless local Petrov–Galerkin 
[5], and moving least squares approximation have been proposed and these methods have achieved 
remarkable progress in solving a wide range of static and dynamic problems like heterogeneous heat 
conduction [4], wave propagation [6], or, recently, three-dimensional nonlinear wave equations [7]. 
Element-free Galerkin method has also been used to deal with moving heat source problems [8]. 

Usually, these dynamic problems are solved with a separated finite difference (FD) time scheme. 
Nevertheless, some problems, such as welding processes, dynamic deformation, or even fracture or 
moving boundary tracking, can be solved using a space–time discretization [9]. Space–time finite 
element meshes [10], like time-extended finite element method [11], have been used to simulate a 
thermal cycle [12] or to deal with thermoelastodynamic problems presenting some discontinuities 
[13], for fluid–structure interaction [14, 15] and, more recently, for time-dependent diffusion convec-
tion reaction problems, adding a module to COMSOL software [16]. Dumbser et al. [17] associated 
space–time grids with the finite volume method to solve nonlinear systems like Euler equations for 
compressive gas dynamics or magnetohydrodynamics problems. Space–time grids have also been 
used with finite difference-like methods to solve wave propagation problems [18, 19]. These methods 
are well known for going through a strong dependence on mesh properties. 

As far as this note is concerned, it deals with space–time meshless methods that are over the past 
decade spread out such as the truly space–time meshfree collocation method developed by Netuzhy-
lov et al. [20]. In their work, a time-slab stepping procedure complements a space–time meshfree col-
location discretization. One of the advantages of a fully space–time discretization is that grid can be 
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independently refined in time and/or space which can be suitable in case of moving boundaries, com-
plex shapes, and crack growth. It also improves an accuracy made by Dumbser et al. [17]. 

The main purpose of this note is to propose a fully space–time meshless discretization method 
avoiding any secondary finite difference time-stepping procedure. It is shown that this method is 
convenient for continuous transient conductive or radiative [21] heat transfer problems. But, while 
solving partial differential equation containing strong temporal discontinuities, spurious numerical 
oscillations occur. Although refinement has been carried out to attempt to remove these oscillations, 
they still remained. One solution found to eradicate these unexpected oscillations was the use of an 
alternative weight function. This methodology has already been presented and tested in a previous 
note [22] when solving 1D spatial problems concerning the conduction in a bar with an internal 
fixed heat source depending on time. In this present paper, the calculation is extended to a 2D spatial 
problem to test the robustness of the method at higher dimension. Furthermore, instead of being 
restricted to a static heat source whose power discontinuously changes against time, the case of a 
moving heat source is also tested. 

In Section 2, a succinct mathematical formulation of the space–time diffuse approximation 
method is given. Section 3 presents the classical weight function. Then, Section 4 deals with a 
modified weight function suitable in the presence of highly discontinuous sources. Section 5 gives 
three different numerical examples to test the robustness of the modified weight function. 

2. Mathematical formulation

In the proposed approach, the space–time domain is first discretized into a set of N points Mi. If we 
consider a scalar field Φ and its discrete values Φi corresponding to the N nodes, the meshless method 
allows estimating derivatives (up to some order) of Φ at the N nodes by minimizing a quadratic error. 
The Taylor expansion of Φ at the calculation node is truncated at the second order by writing: 

Uestimated
Mi

¼ P XMi � XMð Þh i a XMð Þh i
T

ð1Þ

Nomenclature 

A calculation matrix 
B matrix system vector 
Bi Biot number 
cx, cy, ct distance coefficients 
cp specific heat capacity 
h convection exchange coefficient 
k number of neighbors 
Lref characteristic distance 
N number of node 
P polynomial basis function 
Pref reference power per unit volume 
Rc radius of influence using corrected distance. 
r dimensionless distance 
S dimensionless heat source 
t real time 
T temperature in°C 
Tref reference temperature 
x,y,τ dimensionless space–time coordinates 
xi,yi,τi dimensionless distance between calculation node 

and neighboring node 
X node location vector 

Greek symbols 
α vector of coefficients 
α thermal diffusivity 
Δx dimensionless x space step 
Δy dimensionless y space step 
Δτ dimensionless time step 
θ dimensionless temperature 
λ thermal conductivity 
ρ density 
σ weight function support radius 
Φ scalar field 
ω weight function 
Ω domain 

Subscripts 
c corrected 
i, j node index 
ext external 
end end of time calculation 
init initial 
M point 
x, y, τ x or y space, time   
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where P XMi � XMð Þh i is the space–time polynomial basis function vector and ⟨α(XM)⟩T is a column 
vector containing the partial derivatives: 

P XMi � XMð Þh i ¼ 1; xi; yi; si; x2
i ; y

2
i ; s

2
i ; xi � yi; xi � si; yi � si

� �
ð2Þ

with xi ¼ XMi � XM; yi ¼ YMi � YM; si ¼ sMi � sM 

a XMð Þh i
T
¼ U;

qU

qx
;
qU

qy
;
qU

qs
;

1
2!

q2U

qx2 ;
1
2!

q2U

qy2 ;
q2U

qs2 ;
q2U

qxqy
;
q2U

qxqs
;
q2U

qyqs

� �T

ð3Þ

The coefficients of vector α are determined by minimizing the following quadratic form: 

I aMð Þ ¼
Xn

j¼1
x Mj;M
� �

� uj � p Mj;M
� �� �

� aMh i
T

h i2
� �

ð4Þ

where ω(Mj, M) is a continuous positive weighting function which is maximum at M and decreases 
quickly. 

It can therefore be written for each value of i: 

qI aMð Þ

qai
¼ 0 ð5Þ

This minimization process leads to the following matrix system: 

A XMð Þ½ � a XMð Þh i
T
¼ B XMð Þh i

T
ð6Þ

where the square matrix A(XM) and the column vector B(XM) are, respectively, defined as: 

A XMð Þ½ � ¼
XN

i¼1
x XM;XMi � XMð Þ P XMi � XMð Þh i

T
ð7Þ

B XMð Þh i
T
¼
XN

i¼1
x XM;XMi � XMð Þ P XMi � XMð Þh i

T
Ui ð8Þ

The approximation matrix A(XM) has the following form: 

A XMð Þ½ � ¼
XN

i¼1
x XM;XMi � XMð Þ

�

1 xi yi si x2
i y2

i s2
i xiyi xisi yisi�

� x2
i xiyi xisi x3

i xiy2
i xis

2
i x2

i yi x2
i si xiyisi

� � y2
i yisi yix2

i y3
i yis

2
i xiy2

i xiyisi y2
i si

� � � s2
i x2

i si y2
i si s3

i xiyisi xis
2
i yis

2
i

� � � � x4
i x2

i y2
i x2

i s
2
i x2

i yi x3
i si x2

i yisi

� � � � � y4
i y2

i s
2
i xiy3

i xiy2
i si y3

i si

� � � � � � s4
i xis

2
i yi xis

3
i yis

3
i

� � � � � � � x2
i y2

i x2
i yisi x2

i y2
i si

� � � � � � � � x2
i s

2
i xiyis

2
i

� � � � � � � � � y2
i s

2
i

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð9Þ
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Thus, A(XM) is a sum of k rank 1 matrices. To avoid A(XM) being singular, k has to be at least 
equal to α(XM)’s dimension. The inversion of system [Eq. (6)] leads to the expression of α(XM) com-
ponents which are the derivatives of Φ at the calculation node in terms of the scalar value Φi at each 
neighboring node: 

U

qU
�
qx

qU
�
qy

qU
�
qs

1
2!
q2U

�
qx2

1
2!
q2U

�
qy2

1
2!
q2U

�
qs2

q2U
�
qxqy

q2U
�
qxqs

q2U
�
qyqs

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ ½AðXMÞ�
� 1
�
XN

i¼1
xðXM; XMi � XMÞ�

1
xi
yi
si
x2

i
y2

i
s2

i
xi � yi
xi � si
yi � si

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

� Ui ð10Þ

In that case, a partial derivative equation (PDE) being an expression involving some derivatives 
contained in α(XM) will be replaced at each calculation node by a weighted linear combination of 
the Φi corresponding to some selected neighboring nodes. Hence, transcribing the PDE on the entire 
domain (at all the calculation nodes) will lead to a matrix system, whose unknowns will be the dif-
ferent values of the field at the different nodes. This matrix system will be solved by an inversion pro-
cedure or, and that will be our case, by an ILUT(k) preconditioned BiCGStab solver. 

Boundary conditions can be easily set by replacing the line corresponding to a boundary node by 
the meshless approximation of the imposed condition. Concerning Dirichlet boundary conditions, 
two approaches can be used. The first consists in, as previously mentioned, using the first line of 
the inverse matrix A� 1(XM) for the approximation of the field. This approach is still an approxi-
mation of the field but allows doing interpolations. The second one is the diagonal unity method. 
It has the advantage to set the exact value for the boundary condition. 

3. Classical weight function

In this approximation, a weight function ω is involved. We have chosen the following Gaussian func-
tion: 

x XM;XMi � XMð Þ ¼ exp � 3 lnð10Þ �
XMi � XMk k

2

r XMð Þ½ �
2

!" #

x XM;XMi � XMð Þ ¼ 0 if XMi � XMk k
2
� r XMð Þ½ �

2

ð11Þ

where σ(XM) is the weight function support radius. In the classical approach, the definition of the 
weight function will impose a node selection area outside which ω ¼ 0. 

Thus, sums including the entire domain nodes must be considered as sums truncated to the only k 
nodes belonging to the vicinity of the calculation node XM. A minimum of 27 nodes is recommended 
to avoid matrix A(XM) from being singular and to consider all space–time directions [23]. 

In the neighbors research process, if the dimensionless space and time steps verify Δx ¼Δy ¼Δτ, 
the influence zone delimited by the weight function’s support is a sphere of radius R(XM). This radius 
may be altered regarding node’s position. If the condition (Δx ¼Δy ¼Δτ) is not verified, the influence 
zone is no longer circular but ellipsoidal. 
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A corrected norm is introduced as in Eq. (12): 

kkc:
X! <

XMi ; XMð Þ ! rc
ð12Þ

where rc is a <3 → < application describing the following distance (Eq. 13): 

rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi

cx

� �2

þ
yi

cy

� �2

þ
si

cs

� �2
s

ð13Þ

where cx, cy, and cτ are coefficients verifying the following conditions: 

ca ¼

min
X

Dað Þ

min
b2 x; y; sf g

min
X

Dbð Þ

� � for a¼x; y; or s

Then, using this corrected norm, the influence zone turns to be an ellipsoid which fits with the 
weight function support (Eq.(14)): 

rðXMÞ ¼ RcðXMÞ ð14Þ

Furthermore, the term  

XMi � XMk k in (Eq.(11)) is replaced by XMi � XMk kc ½Eq.ð12Þ�:

An iterative procedure is applied until the minimum of 27 neighboring nodes is reached. 

Figure 1. Initial dimensionless temperature field on a metallic plate at τinit ¼ 0.01.  
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4. Use of a “backward” modified weight function

The space–time meshless approach described so far has proven to work well in 1D spatial heat con-
duction problems as long as the source term if any is sufficiently smooth [22]. Otherwise, numerical 
oscillations take place in the solution procedure when highly discontinuous sources are considered. 
This is due to the fact that the weight function used in the formulation may select some nodes at 
future times. We have therefore proposed to choose a modified weight function which uses only 
nodes at current and previous times. We shall refer to this weight function as to a “backward” weight 
function whose main characteristics in 2D spatial problems are now briefly presented. In the classical 

Figure 2. Dimensionless temperature distribution at x ¼ 0.5, for τ ¼ 0.01, 0.015, 0.02, 0.03, and 0.05.  

Table 1. Relative errors for different grids, nx, ny, and nτ are the number of nodes, respectively, in x, y, and τ directions. 

Grid nx � ny � nτ 11 � 11 � 21 21 � 21 � 21 21 � 21 � 41 
er (%) 1.35 0.49 0.18  

Table 2. Physical properties of the [0.1 m � 0.1 m] metallic plate (mild steel) 
and initial and external temperatures. 

Parameters Value  

Lref 0.1 m 
λ 46 W/m/K 
cp 500 J/kg1/K 
ρ 7830 kg/m 
Tinit 20°C 
Text 15°C  
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approach, the only condition advocated for node selection, in the space–time (x, y, τ) domain, is a 
minimum of 27 nodes inside the discriminative radius Rc(XM). In the modified “backward” weight 
function approach, an additional condition restricts the neighbors to those located at times lower than 
the calculation node’s time. Selection process will then reach neighbors farther than those of the 
classical approach. If space and time steps are equal, the neighboring zone is a “south” hemisphere, 
otherwise it is a semiellipsoid. 

Although corrected distance (Eq. (13)) is still applied in the new selection process, it is avoided for 
the calculation of the weight function value. It means that the term XMi � XMk k in (Eq.(11)) is no 
longer replaced by XMi � XMk kc [Eq.(12)]. Furthermore, the weight function’s support radius 
σ(XM) is no longer equal to the radius of influence Rc(XM). In the new approach, the weight function 
support radius is fixed to an unvarying value r� ¼ 1:1 �max½Dx;maxðDy;DsÞ�. The discussion of the 
chosen coefficient 1.1 has already been made in [22]. 

5. Numerical examples

This section is devoted to the presentation of numerical results obtained by solving the heat equation 
with the associated boundary conditions which read: 

qh

qs
�

q2h

qx2 þ
q2h

qx2

� �

¼ Sðx; y; sÞ ð15Þ

Figure 3. Temperature against time along the diagonal of the plate for a time bounded Gaussian static heat source of 7.5 mm 
standard deviation applied on the middle of a flat steel plate, at middle time, during theat ¼ 43 s, for nx ¼ ny ¼ nτ ¼ 21, Bi ¼ 0.1, 
and Pmax ¼ 100 MW/m3 (using classical method).  
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at x ¼ 0 :
qh

qx
¼ þBi � h at x ¼ 1 :

qh

qx
¼ � Bi � h;

at y ¼ 0 :
qh

qx
¼ þBi � h at y ¼ 1 :

qh

qy
¼ � Bi � h

The dimensionless temperature is defined as h ¼ T� Text
Tinit� Text

, where T is the material temperature at
time τ, Tinit is the initial temperature, and Text is the external temperature. S ¼ P

Pref 
is the dimension-

less volumetric source where the reference source power is Pref ¼
k Tinit� Textð Þ

L2
ref

. Finally, Bi is the classical
Biot number. 

5.1. First test: Transient diffusion in a metallic plate 

We consider here the problem of laser pulse heating of a sheet of metal solved in [24] and whose 
analytical solution [25] is: 

hðx; y; sÞ ¼
Xþ1

n¼� 1

1
2
ffiffiffiffiffi
ps
p e�

ðxþn� 0:5Þ2
4s

!
Xþ1

n¼� 1

1
2
ffiffiffiffiffi
ps
p e�

ðyþn� 0:5Þ2
4s

 !

ð16Þ

This solution corresponds to the response to a unit heat pulse deposited into the center of a unit 
side square domain with adiabatic boundary conditions. As in [24], we solve here the heat equation 
with no source term and with Bi ¼ 0, but we start the calculations at a dimensionless time: τ ¼ τinit 
¼ 0.01 at which temperature is given by the analytical solution [Eq. (16)]: θ ¼ θinit(x, y, τinit) presented 

Figure 4. Temperature against time for a static Gaussian heat source of 7.5 mm standard deviation applied on the middle of a flat 
steel plate, at middle time, during theat ¼ 43 s, for nx ¼ ny ¼ nτ ¼ 21, Bi ¼ 0.1, and Pmax ¼ 100 MW/m3 (using modified method).  
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in Figure 1. The whole calculation domain in our space–time representation is therefore (x,y,τ) ∈ 
[0, 1]2 � [0.01,1]. 

Figure 2 compares analytical and calculated temperature obtained with the classical weight func-
tion for several times at x ¼ 0.1. A very good agreement is observed. As expected, when time tends to 
infinity, the temperature distribution becomes uniform over the whole plate. Table 1 shows that the 

relative error er ¼
hrms

hanalytical
, where hrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hDAM � hanalytical� �2
q

, decreases from 1.35%� for a 
11 � 11 � 21 grid to 0.18%�for a 21 � 21 � 41 grid. 

As the 21 � 21 � 21 grid leads to an error lower than 1%, the next simulations will be conducted 
with this discretization. 

5.2. Second test: Transient heat conduction with a discontinuous time-dependent  
heat source 

We now consider the heat conduction problem involving a discontinuous time-dependent heat 
source term S(x,y,τ) given as follows: 

Sðx; y; sÞ ¼
Pmax
Pref
� e � r2 r2

source=ð Þ if s ¼ 0:5 and x � sð Þ
2
þ y � sð Þ

2� �
� r2

source
� �

0 else

(

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � sð Þ
2
þ y � sð Þ

2
q

and σsource is the standard deviation of the bell curve (σsource ¼ 1.5 �∆x). 
The source heats the plate during a dimensionless time step Δτ. τend is the dimensionless final time of the 

Figure 5. Temperature against time along the diagonal of the plate for a Gaussian constant heat source of 7.5 mm standard deviation 
applied on the middle of a flat steel plate, during theat ¼ tend ¼ 14 min 13 s, for nx ¼ ny ¼ nτ ¼ 21, Bi ¼ 0.1, and Pmax ¼ 100 MW/m3.  
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problem set to 1 corresponding to a real time tend ¼ 14 min 13 s. A Biot number Bi ¼ 0.1 corresponding to 
forced convection in air was chosen and the volumetric power source Pmax was set to 100 MW/m3. The 
material properties are given in Table 2 and the problem was solved on a 21 � 21 � 21 grid. 

As shown in Figure 3, spurious oscillations appear in the temperature profiles when using the 
classical weight function. This could be explained by the fact that the principle of causality is not 
respected, especially in case of high discontinuities. Indeed, some calculation nodes are related to 
future neighboring nodes. To get rid from these oscillations, the use of the “backward” weight func-
tion is necessary. Figure 4 shows that the results are then completely smooth and correct. 

It is worth noting that these oscillations are not present in the case of a smooth continuous source 
term when using the classical weight function. As a matter of example, we show in Figure 5 the tem-
perature evolution at several points when applying the following Gaussian source applied continu-
ously during all the process: 

Sðx; y; sÞ ¼
Pmax

Pref
� e � r2 r2

source=ð Þ if x � 0:5ð Þ
2
þ y � 0:5ð Þ

2� �
� r2

source; 8s

5.3. Third test: Transient heat conduction with a moving heat source 

We finally present the results obtained when the following moving heat source starting at dimension-
less space time (x, y, τ) ¼ (0.5,0.5,05) is applied: 

Sðx; y; sÞ ¼
Pmax
Pref
� e � r2 r2

source=ð Þ � e
�
�
ðr� 0:5Þ2

0:22

�

if s � 0:5 and x � sð Þ
2
þ y � sð Þ

2� �
� r2

source
� �

0 else

(

Figure 6. Temperature field against time on the plate for a moving heat source starting at middle time tstart ¼ 7 min 7 s at the middle 
of a flat steel plate, and going along the diagonal at a speed of 0.17 mm/s, for nx ¼ ny ¼ nτ ¼ 21, Bi ¼ 1, and Pmax ¼ 10 MW/m3.  
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The source applied first in the midplate at the physical starting time of 7 min 7 s moves at a 
speed of 0.17 mm/s1 along the diagonal. The Biot number and maximum power Pmax were set 
to 1 and 10 MW/m3, respectively. This problem has been solved by our space–time meshless 
method with the classical and the backward weight functions and with the implicit in finite differ-
ence time method. We first present in Figure 6 the time variation of temperature at the center of 
the plate. One can see that the “backward” weight function leads to smooth results comparable in 
accuracy to those given by the finite difference method. On the other hand, the classical weight 
function implies the failure of the meshless method by introducing numerical oscillations. Tem-
perature evolutions with time at some points along the diagonal obtained with the backward weight 
function are finally given in Figure 7. Once again, one notices that the profiles are smooth and free 
from any oscillation. 

6. Conclusion

A fully space–time meshless method to solve two-dimensional in space heat conduction problems 
with strong source discontinuities has been presented. This method does not require any secondary 
finite difference time-stepping procedure. The classical and backward weight functions were used. It 
has been shown that when there is no source term or when the source term is not discontinuous in 
time, both weight functions lead to smooth and accurate results. However, in the presence of sharp 
source discontinuities, the classical weight function leads to inaccurate results with spurious numeri-
cal oscillations, while the backward weight function appears to be accurate and oscillation free. 

Figure 7. Temperature against time for a moving heat source along the diagonal of the plate and starting at middle time, for 
nx ¼ ny ¼ nτ ¼ 21, Bi ¼ 1, and Pmax ¼ 10 MW/m3 (using modified method).  
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